Liability of ITS services for connected cars from the perspective of a service provider

Dr. Johannes Springer, Head of Technology and Business Development Strategic Business Area Connected Car, Deutsche Telekom/T-Systems
Brussels, June 13th, 2012
Agenda.

1. Connected Car –
 ▪ Market Overview & Positioning of Deutsche Telekom.
 ▪ Profile Strategic Area Connected Car.

2. Technology and Services –
 ▪ Building blocks and architecture of telematics platforms.
 ▪ Connected Car Services

3. Liability –
 ▪ How to ensure service quality.
 ▪ Design principles: „State of the Art“.
 ▪ Process Guidelines
Connected car – what’s happening in the market?

We connect the vehicle with its environment and the driver with his private and professional contacts, emails and data.

Society
- Market penetration of mobile Internet > 25% in 2012
- Vehicle is the last „white spot“
- Need for driver-specific service and operating concept

Car Manufacturer
- Smartphones threaten highly profitable navigation business
- Differentiation via brand-specific online services
- Customer retention and loyalty

Regulation / Legislation
- E-Call 2015: Embedded SIM compulsory in every car
- 1 Mio E-Vehicles in 2020
- CO2 fleets targets per OEM*

Macro Trends
- Need to optimize utilization
- Reduction of warehousing
- Increase in production down-time due to more traffic jams

Logistics/Fleets
- Market penetration of mobile Internet > 25% in 2012
- Vehicle is the last „white spot“
- Need for driver-specific service and operating concept

Original equipment manufacturer
Deutsche Telekom’s Strategic Area Connected Car addresses the automotive industries’ challenges for online services.

Challenge

Automotive Industry
- Need to manage customers and online services
- Verticalize project services with car enabling and service provisioning

Business Customers
- Need to integrate backend services into cars & trucks
- Utilize enabling services at fleets and logistics with cloud based telematic solutions

Consumers
- Need to integrate smartphone into car
- Generate best synchronisation services consisting of docking, driver interface & car services

Government / Regulation
- Need to optimize mobility
- Provide vehicles with easy, cost-effective and secure infrastructures based upon licenses

Long-term strategic investment of Deutsche Telekom
References Deutsche Telekom / T-Systems.
Agenda.

1. Connected Car –
 - Market Overview & Positioning of Deutsche Telekom.
 - Profile Strategic Area Connected Car.

2. Technology and Services –
 - Building blocks and architecture of telematics platforms.
 - Connected Car Services

3. Liability –
 - How to ensure service quality.
 - Design principles: „State of the Art“.
 - Process Guidelines
Major building blocks needed for a telematics platform
Operating a platform using existing standards and technologies.

- Client
 - Standard Architectures, e.g. GENiVi, OSGi, ...
 - Embedded
 - Standard Architectures, e.g. GENiVi, OSGi, ...
 - Smartphone
 - Existing Platforms
 - e.g. iOS, Android, Windows, ...

- Backend Infrastructure
 - Operating Standards
 - e.g. OMA-DM
 - Security Standards
 - e.g. SSL, SAML
 - Application/Service Standards
 - e.g. eCall
 - Standard Architecture
 - OSS/BSS

- Protocol Standards
 - http/https
 - POP3
 - SMTP
 - SMS
 - ...
Examples for Connected Car Services. Liability Relevance and business impact.

<table>
<thead>
<tr>
<th>Services</th>
<th>Customers</th>
<th>Liability relevance</th>
<th>Payment and Business Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infotainment</td>
<td>Pol, weather</td>
<td>Driver</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>eCall, SVT</td>
<td>Driver, insurance</td>
<td>Lifetime fee and guarantee safety malfunction</td>
</tr>
<tr>
<td>Comfort</td>
<td>Remote control</td>
<td>Driver</td>
<td>per use /lifetime fee dissatisfaction</td>
</tr>
<tr>
<td>Dealers/Workshop</td>
<td>Diagnosis</td>
<td>Dealer</td>
<td>per vehicle vehicle break down</td>
</tr>
<tr>
<td>Fleet Operators</td>
<td>Track&trace, ecoDrive, logbook</td>
<td>Fleet operator</td>
<td>per vehicle legal Risks</td>
</tr>
<tr>
<td>Mobility</td>
<td>Track&trace, Remote door unlock</td>
<td>Carsharing fleet</td>
<td>per vehicle vehicle lost</td>
</tr>
<tr>
<td>3rd Party</td>
<td>Data tariffs</td>
<td>Driver & telco</td>
<td>Provision minor commercial risks</td>
</tr>
</tbody>
</table>

Dr. Johannes Springer / Connected Car
Tactics to deal with liability issues

Contractual “Design”

Technical / Procedural Design
Agenda.

1. Connected Car –
 - Market Overview & Positioning of Deutsche Telekom.
 - Profile Strategic Area Connected Car.

2. Technology and Services –
 - Building blocks and architecture of telematics platforms.
 - Connected Car Services

3. Liability –
 - How to ensure service quality.
 - Design principles: „State of the Art“.
 - Process Guidelines
Major Liability problems

Functional / Quality
- Functional malfunctions
- Quality problems: values, ranges, thresholds, heart-beats, on/off-distinction, etc.

Availability
- Service availability by Time (7/24)
- Service availability by Location

Performance
- Performance problems: Time lags / process speed, overload, etc.
Reference Model for Connected Car.
Design principle „measuring / logging“ to handle liability issues.
Reference Model for Connected Car.
Design principle „monitoring/reporting“ to handle liability issues.
Reference Model for Connected Car.
Design principles „sender/receiver receipt“ to handle liability issues.
Example: Remote Door Lock/Unlock.

Diagram: Remote Door Lock/Unlock

- **Local/Client**
 - Monitoring/reporting
 - Device
 - Monitoring/reporting
 - Sensor
 - Heartbeat
 - Door open/closed

- **Central/Cloud**
 - Monitoring/reporting
 - Device
 - Monitoring/reporting
 - Service
 - Sender/receiver receipt
 - Service/service

- **Services**
 - Middleware (Platform)
 - Functional logging
 - Door open/closed

- **Network**
 - IT-/TC-Operation

T-Systems
Testing and Operational Infrastructures
Staging Concept as a Process Framework

1. Step
- Integration
 - Client Services
 - Central Services

2. Step
- Tests
 - Functional
 - Operational/ (Load/ B’Up/Recovery)

3. Step
- Deployment into Production
Summary: Enabling service providers to drive innovation and to accomplish with liability requirements with a portfolio of:

- Flexible and secure hosting environment
- Fast and reliable operation processes based on standards
- IaaS, SaaS or PaaS housing models
- Monitoring and Reporting Processes
- Deployment and Review processes: Staging

Architecture
- Modular and service-oriented
- Horizontal scalability
- Security & Data privacy
- Transparency and Traceability between Service processes
- Use of COTS and Open Source Software
- Cutting-Edge technologies, e.g. NoSQL
- Future proven

Platform Services
- Device Gateway
- Service Integration
- Portal Framework
- OSS and BSS
- Trust Center (PKI)
- Identity Management
- B2B Interface Integration
- Networking Services
- Monitoring and Reporting Services
Thank you for your attention!