Research & Innovation - Participant Portal


TOPIC : Improvement of innovative compression concepts for large scale transport applications

Topic identifier: FCH-01-7-2018
Publication date: 16 January 2018

Types of action: FCH2-RIA Research and Innovation action
Opening date:
16 January 2018
Deadline: 24 April 2018 17:00:00

Time Zone : (Brussels time)
  Horizon 2020 H2020 website
Pillar: Societal Challenges
Work Programme Year: H2020-JTI-FCH-2018
Work Programme Part: H2020-JTI-FCH-2018
Topic Updates
  • 20 August 2018 17:58

    An overview of the evaluation results (flash call info) is now available under the "Additional Documents" section of each topic page.

Topic Description
Specific Challenge:

Costs associated to the hydrogen refuelling station represent a large share of the overall hydrogen costs in transport applications, with a strong impact on the business models of hydrogen mobility. Large scale refuelling (e.g. hydrogen passenger cars, busses and trucks fleets, rail transport as well as maritime applications) expected in the next years will require hydrogen refuelling stations with capacities of 1 t/day or more, at pressure levels of 350 bar or 700 bar (i.e. 450 bar or 900 bar at the station). CAPEX and OPEX (energy costs + maintenance) of the station can represent 3 €/kg H2 or more. About 50% of these costs are related to the compression, making this component a significant bottleneck for FCV deployments, as also found in fuel cell bus demonstration projects (CHIC, CUTE. HYTRANSIT…). In particular, operational expenditures are critical in the context of large-scale stations. These costs include energy, maintenance, as well as the indirect costs induced when a station is out of order.
Currently available mechanical hydrogen compressors are too costly for large-scale applications and lack the desired durability, efficiency and reliability. This results in high operational and maintenance costs. Lack of reliability of mechanical compressors is due to the large number of moving parts, the challenge of guaranteeing the tightness of high-pressure moving parts, and the lifetime of membranes (~2000 h).
Breakthrough disruptive technologies exist (including electrochemical and metal hydride compressors) and promise significant reduction of total cost of ownership of hydrogen refuelling stations because of the elimination of mechanical compressor disadvantages. However, the maturity of these technologies has to be increased with respect to capacity, durability, lifetime and reliability. None of these technologies has demonstrated until now the ability of providing sufficient flow rates for large-scale applications at reasonable costs. Previous FCH 2 JU funded projects have enabled the development of small prototypes (PHAEDRUS, COSMHYC). However, no large-scale system has been developed to date, as the focus was set on 200 kg/day stations, corresponding to the needs of the market introduction of passenger cars.
Therefore, there is a need for major improvements to meet the criteria of large refuelling stations, both at the scale of the core technology (focus on kinetics and scale effects in selected materials, impact of improved kinetics on life time and performances, architecture of core components) as well as for the system integration (design of entire system, innovative concepts adapted to larger scale, choice of adapted auxiliaries). In addition, the new technologies currently require the use of critical raw materials (such as platinum or rare earths) in most of the developed concepts.


This topic calls for proposals to develop and test at pilot scale an innovative compressor concept for hydrogen refuelling stations that is able to provide large flow rates (50 kg/h or more) at affordable costs and is well adapted for at least one representative transport application (350 bar or 700 bar). The compression concept should include either one of the disruptive technology (e.g. electrochemical or metal hydrides; any other disruptive technologies can be eligible if an appropriate argumentation is provided) or a combination of hybridised compression technologies, including at least one disruptive technology.

Hydrogen should contribute to the integration of renewable energies into the European energy mix. Therefore, the compression concept should be able to use hydrogen from different sources (onsite electrolysis, biogas reforming, hydrogen bottles and pipeline). Consequently, the allowable inlet pressure should be low (preferably in the range of 20 bar, or lower).
The project should contribute to increase the maturity level of at least one disruptive compression technology. In particular, it should enable to:

  • decrease the degradation of the technology down to at least the same level as mechanical compressors;
  • reduce the use of critical raw materials;
  • demonstrate an improvement of the reliability and availability of the HRS;
  • decrease the total costs of ownership of the HRS;
  • improve the efficiency of the hydrogen value chain by decreasing the electricity consumption.

Proposals should plan to assess the overall economic feasibility of the proposed compression concept, addressing operational and installation cost of the system, benchmarking with current HRS systems and including potential impacts on the rest of the station (storage, cooling etc.). The total cost of ownership (TCO) of the compression concept should be calculated, as well as the economic impact of the concept on the overall costs of the hydrogen refuelling station.
In the case of a hybridised system, the project should include modelling of the hybridised compression system in order to demonstrate that the proposed solution represents a techno-economic optimum.
The project should include demonstration of the performance of the compression concept by long term tests (a period of at least 6 months) in a relevant environment, for example a hydrogen refuelling station without public access or an outdoor test facility, at minimum 1/10 of real scale.
TRL start: 3 and TRL end: 5.
The consortium should include component suppliers, component testing entities, hydrogen system integrators or operators. The project should build on the activities and results reached in previous or existing FCH 2 JU projects, such as PHAEDRUS, COSMHYC or H2REF.
Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC) dedicated mailbox, which manages the European hydrogen safety reference database, HIAD.
Test activities should collaborate and use the protocols developed by the JRC Harmonisation Roadmap (see section 3.2.B "Collaboration with JRC – Rolling Plan 2018"), in order to benchmark performance of components and allow for comparison across different projects.

The FCH 2 JU considers that proposals requesting a contribution of EUR 2.75 million would allow this specific challenge to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts.
A maximum of 1 project may be funded under this topic.
Expected duration: 3 years

Expected Impact:

The following KPIs should be reached:

  • Development of a compression concept from low pressure (in the range of 20 bar or less) to 450 bar or 900 bar (deviations are acceptable if justified by the proposed concept), being able to use hydrogen from different sources (onsite electrolysis, biogas reforming, hydrogen bottles and pipeline) and to reach flow rates of at least 4 kg/h and show scalability in order to reach 80 kg/h or more (corresponding to 2t/day or more) on the mid-term. The concept should take into account the change of scale compared to small compressors in the early design phase;
  • Demonstrate perspective for overall investment costs reduced down to < €2000/kg H2/day, reaching < €1000/kg H2/day on the long term for a system of 1t/day or more. Demonstrate the potential for low electricity consumption for large installations (< 4 kWh/kg for a suction pressure similar to current HRS and < 8 kWh/kg for a very low suction pressure, i.e. < 5 bar);
  • Demonstrate maintenance costs of less than 5% of the investment costs per year;
  • Demonstrate availability of more than 95%;
  • If the technologies implemented induce the use of critical raw materials, demonstrate significant improvements in reducing or even avoiding the use of these critical raw materials (including platinum and rare earths, as defined in the MAWP of the FCH 2 JU); Critical raw materials should represent no more than 10% of the total investment costs of the compressor;
  • Demonstrate less than 1% performance decay in 1000 hours of operation;

This topic will contribute to meeting the techno-economic objectives 3 and 5 of the MAWP, by reducing the dependency from critical raw materials as well as the operating and capital costs of the hydrogen infrastructure.
In addition, the project should:

  • Provide recommendations supporting further technology developments, enabling future large scale production of low-costs compression systems for large flow rates;
  • Demonstrate that innovative compression concept does not introduce additional contaminants in the hydrogen so that ISO 14687:2-2012 quality can be fulfilled.

Type of action: Research and Innovation Action
The conditions related to this topic are provided in the chapter 3.3 and in the General Annexes to the Horizon 2020 Work Programme 2018– 2020 which apply mutatis mutandis.

Topic conditions and documents

1.   Eligible countries: described in Annex A of the H2020 main Work Programme.

      A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon 2020 projects. See the information in the Online Manual.


2.   Eligibility and admissibility conditions: described in Annex B and Annex C of the H2020 main Work Programme.

 The following exception applies (see 'chapter 3.3. Call management rules' from the FCH2 JU 2018 Work Plan and specific topic description):

- "For all Innovation Actions, an additional eligibility criterion has been introduced to limit the FCH 2 JU requested contribution"

     Proposal page limits and layout: Please refer to Part B of the proposal template in the submission tool below.


3.   Evaluation:

  • Evaluation criteria, scoring and thresholds are described in Annex H of the H2020 main Work Programme.
  • Submission and evaluation processes are described in the Online Manual.

4.   Indicative time for evaluation and grant agreement:
      Information on the outcome of evaluation: maximum 5 months from the deadline for submission.
      Signature of grant agreements: maximum 8 months from the deadline for submission.


5.   Proposal templates, evaluation forms and model grant agreements (MGA):

FCH JU Research and Innovation Action (FCH-RIA)

Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement

FCH JU Innovation Action (FCH-IA)

Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement

FCH JU Coordination and Support Action (FCH-CSA)

Specific rules and funding rates
Proposal templates are available after entering the submission tool below.
Standard evaluation form
FCH JU MGA - Multi-Beneficiary
H2020 Annotated Grant Agreement


6.   Additional requirements:

      Horizon 2020 budget flexibility
      Classified information
      Technology readiness levels (TRL)
      Financial support to Third Parties

Members of consortium are required to conclude a consortium agreement, in principle prior to the signature of the grant agreement.

7.   Open access must be granted to all scientific publications resulting from Horizon 2020 actions.

Where relevant, proposals should also provide information on how the participants will manage the research data generated and/or collected during the project, such as details on what types of data the project will generate, whether and how this data will be exploited or made accessible for verification and re-use, and how it will be curated and preserved.

Open access to research data
The Open Research Data Pilot has been extended to cover all Horizon 2020 topics for which the submission is opened on 26 July 2016 or later. Projects funded under this topic will therefore by default provide open access to the research data they generate, except if they decide to opt-out under the conditions described in Annex L of the H2020 main Work Programme. Projects can opt-out at any stage, that is both before and after the grant signature.

Note that the evaluation phase proposals will not be evaluated more favourably because they plan to open or share their data, and will not be penalised for opting out.

Open research data sharing applies to the data needed to validate the results presented in scientific publications. Additionally, projects can choose to make other data available open access and need to describe their approach in a Data Management Plan.

Projects need to create a Data Management Plan (DMP), except if they opt-out of making their research data open access. A first version of the DMP must be provided as an early deliverable within six months of the project and should be updated during the project as appropriate. The Commission already provides guidance documents, including a template for DMPs. See the Online Manual.

Eligibility of costs: costs related to data management and data sharing are eligible for reimbursement during the project duration.

The legal requirements for projects participating in this pilot are in the article 29.3 of the Model Grant Agreement.

8.   Additional documents

FCH JU Work Plan
FCH2 JU Multi Annual Work Plan 
FCH2 JU – Regulation of establishment
H2020 Regulation of Establishment
H2020 Rules for Participation
H2020 Specific Programme

Additional documents

  • Flash call info en

Submission Service

No submission system is open for this topic.

Get support

H2020 Online Manual is your guide on the procedures from proposal submission to managing your grant.

Participant Portal FAQ – Submission of proposals.

National Contact Points (NCP) - contact your NCP for further assistance in your national language(s).

Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.

Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.

IT Helpdesk - contact the Participant Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.

Ethics – for compliance with ethical issues, see the Online Manual and Science and Society Portal

European IPR Helpdesk assists you on intellectual property issues

CEN and CENELEC, the European Standards Organisations, advise you how to tackle standardisation in your project proposal. Contact CEN-CENELEC Research Helpdesk at

The European Charter for Researchers and the Code of Conduct for their recruitment

Partner Search Services help you find a partner organisation for your proposal.