1.1. Contact organisation
Belgian Science Policy Office (BELSPO)
1.2. Contact organisation unit
MERI (Monitoring and Evaluation of Research and Innovation)
1.3. Contact name
Restricted from publication
1.4. Contact person function
Restricted from publication
1.5. Contact mail address
WTC III
Avenue Simon Bolivar 30
1000 Brussels
1.6. Contact email address
Restricted from publication
1.7. Contact phone number
Restricted from publication
1.8. Contact fax number
Not required.
10 October 2025
2.1. Metadata last certified
10 October 2025
2.2. Metadata last posted
10 October 2025
2.3. Metadata last update
10 October 2025
3.1. Data description
Statistics on Private non-profit R&D (PNPRD) measure research and experimental development (R&D) performed in the private non-profit sector, i.e. R&D expenditure and R&D personnel. In line with this objective the target population for the national R&D survey of the private non-profit sector should consist of all R&D performing units (including all R&D performers – occasional and continuous, known and unknown - in all branches and size classes) belonging to this sector.
The main concepts and definitions used for the production of R&D statistics are given by the OECD (2015), Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, The Measurement of Scientific, Technological and Innovation Activities, which is the internationally recognised standard methodology for collecting R&D statistics and by Eurostat’s European Business Statistics Methodological Manual on R&D Statistics (EBS Methodological Manual on R&D Statistics)..
The guiding document to preparing the quality reports is the European Statistical System (ESS) Handbook for Quality and Metadata Reports — re-edition 2021.
Since the beginning of 2021, the collection of R&D statistics is based on Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020. The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail.
3.2. Classification system
- The distribution of principal economic activity and by product field is based on Statistical classification of economic activities in the European Community (NACE Rev. 2);
- The local units for the statistics are compiled at regional level according to NUTS 2 – Nomenclature of Territorial Units for Statistics;
- The distribution by socioeconomic objectives (SEO) is based on Nomenclature for the Analysis and Comparisons of Scientific Programmes and Budgets (NABS);
- The fields of research and development based on Classification and distribution by Fields of Research and Development (FORD);
- The R&D personnel and researchers by educational attainment are classified by the International Standard Classification of Education ISCED 2011
3.3. Coverage - sector
See below.
3.3.1. General coverage
There is no deviation from Frascati Manual definition for all concepts used (R&D, FORD and NABS).
3.3.2. Sector institutional coverage
| Private non-profit sector | included |
|---|---|
| Inclusion of units that primarily do not belong to PNP and the borderline cases | not applicable |
3.3.3. R&D variable coverage
| R&D administration and other support activities | included |
|---|---|
| External R&D personnel | not available |
| Clinical trials: compliance with the recommendations in Frascati Manual §2.61. | yes |
3.3.4. International R&D transactions
| Receipts from rest of the world by sector - availability | included |
|---|---|
| Payments to rest of the world by sector - availability | not included |
3.3.5. Extramural R&D expenditures
According to the Frascati Manual (FM), expenditure on extramural R&D (i.e. R&D performed outside the statistical unit) is not included in intramural R&D performance totals (FM, §4.12).
| Data collection on extramural R&D expenditure (Yes/No) | yes |
|---|---|
| Method for separating extramural R&D expenditure from intramural R&D expenditure | dedicated survey question on types of cost is divided up into "intramural expenditure" and "extramural expenditure" per type. |
| Difficulties to distinguish intramural from extramural R&D expenditure | No difficulty. |
3.4. Statistical concepts and definitions
See below.
3.4.1. R&D expenditure
| Coverage of years | Every calendar year |
|---|---|
| Source of funds | Per sector (BES, GOV, HES, PNP, ROW) |
| Type of R&D | available from 2016 |
| Type of costs | included |
| Defence R&D - method for obtaining data on R&D expenditure | not included |
3.4.2. R&D personnel
See below.
3.4.2.1. R&D personnel – Head Counts (HC)
| Coverage of years | every calendar year |
|---|---|
| Function | Researcher - R&D personnel |
| Qualification | Doctorate (ISCED 8), master (ISCED 7), bachelor (6), other (5 or lower) |
| Age | not included |
| Citizenship | not included |
3.4.2.2. R&D personnel – Full Time Equivalent (FTE)
| Coverage of years | 2020-2021 |
|---|---|
| Function | Researcher - R&D personnel |
| Qualification | Doctorate (ISCED 8), master (ISCED 7), bachelor (6), other (5 or lower) |
| Age | not included |
| Citizenship | not included |
3.4.2.3. FTE calculation
The survey asks for several tables to be filled in for FTEs. If the information for a variable is not directly available, estimations are made based on the ratio HC/FTE for similar organisation (sector, size, fields of research).
3.5. Statistical unit
The statistical unit is the institutional unit as defined by Council Regulation (EEC) No 1993/696 of 15 March 1993.
3.6. Statistical population
See below.
3.6.1. National target population
The target population is the population for which inferences are made. The frame (or frames, as sometimes several frames are used) is a device that permits access to population units. The frame population is the set of population units which can be accessed through the frame and the survey data really refer to this population of institutional units.
The objective of the European R&D statistics is to cover all intramural R&D activities. In line with this objective, the target population for the national R&D survey of the PNP Sector should consist of all R&D performing units (including known R&D performers or assumed to perform R&D). In practise however, countries in their R&D surveys might have difficulty in identifying R&D activities at the municipality level.
| Target population when sample/census survey is used for collection of raw data | Target population when administrative data or pre-compiled statistics are used | |
|---|---|---|
| Definition of the national target population | All PNP organisations (Frascati definition) | not applicable |
| Estimation of the target population size | 33 | not applicable |
3.7. Reference area
Not requested. R&D statistics cover national and regional data.
3.8. Coverage - Time
Not requested. See concept 12.3.2. (data availability).
3.9. Base period
The base year for the unit Purchasing Power Standard (PPS) and PPS per inhabitant at constant prices is currently 2005. All calculations of non-basic unit (national currencies) are done by Eurostat.
R&D expenditure is published in the following units: Euro (K_EUR) and Euro per inhabitant (EUR_HAB); data are available in the following units: basic unit National currency (MIO_NAC); Purchasing Power Standard (MIO_PPS); Purchasing Power Standard at 2005 prices (MIO_PPS_KP05); Purchasing Power Standard per inhabitant at constant 2005 prices (PPS_HAB_KP05); Percentage of gross domestic product (PC_GDP); and Percentage of total R&D expenditure (PC_TOT - for the breakdown by source of funds).
R&D personnel data are published in full-time equivalent (FTE), in head count (HC), as a percentage of total employment and as a percentage of active population.
2022-2023
Commission Regulation 2020/1197 of 30 July 20202, laying down technical specifications and arrangements pursuant to Regulation (EU) 2019/2152 of the European Parliament and of the Council on European business statistics repealing 10 legal acts in the field of business statistics (Text with EEA relevance).
There is no R&D specific national statistical legislation. The production of national R&D statistics is governed by the general national statistical legislation (1962 law on government statistics).
Frascati Manual 2015, Guidelines for Collecting and Reporting Data on Research and Experimental Development used for methodology.
6.1. Institutional Mandate - legal acts and other agreements
See below.
6.1.1. European legislation
Legal acts / agreements:
Since the beginning of 2021, the collection of R&D statistics is based on the Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020 laying down technical specifications and arrangements pursuant to Regulation (EU) 2019/2152 of the European Parliament and of the Council on European business statistics repealing 10 legal acts in the field of business statistics. The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail. The transmission of R&D data is mandatory for Member States and EEA countries.
Commission Implementing Regulation (EU) No 2012/995 concerning the production and development of Community statistics on science and technology was in force until the end of 2020.
6.1.2. National legislation
| Existence of R&D specific statistical legislation | No specific R&D legislation. |
|---|---|
| Are respondents obliged by the national law to provide raw and administrative data: | No. |
6.1.3. Standards and manuals
- Frascati Manual 2015, Guidelines for Collecting and Reporting Data on Research and Experimental Development
- European Business Statistics Methodological Manual on R&D
6.2. Institutional Mandate - data sharing
Not requested.
7.1. Confidentiality - policy
A property of data indicating the extent to which their unauthorised disclosure could be prejudicial or harmful to the interest of the source or other relevant parties.
At the level of the ESS the EU regulation 223/2009 on European statistics defines confidential data as data which allows statistical units (respondents) to be identified, either directly - by formal identifiers such as respondents’ names, addresses, identification numbers - or indirectly - by using a combination of variables or characteristics such as age, gender, education - thereby disclosing individual information (see Article 2(1)(e) of regulation 223/2009).
At national level:
a) Confidentiality protection required by law:
The National Statistics Law's (1962) provisions for confidentiality are applied.
b) Confidentiality commitments of survey staff:
Survey staff applied all legally required confidentiality commitments.
7.2. Confidentiality - data treatment
All legal directives are followed.
8.1. Release calendar
As a general rule, 1 July 2025 (after data are approved by all competent authorties within Belgium and reported to Eurostat) - delay due to reprogramming, this year 5 August 2025.
8.2. Release calendar access
For Eurostat this is: Release calendar - Eurostat (europa.eu)
As a general rule, 1 July 2025 (after data are approved by all competent authorties within Belgium and reported to Eurostat) - delay due to reprogramming, this year 5 August 2025.
8.3. Release policy - user access
1 July 2023 (after data are approved by all competent authorties within Belgium and reported to Eurostat)
As a general rule, 1 July 2025 (after data are approved by all competent authorties within Belgium and reported to Eurostat) - delay due to reprogramming, this year 5 August 2025.
The frequency of R&D data dissemination at Eurostat level is yearly for provisional and final data alternately
10.1. Dissemination format - News release
See below.
10.1.1. Availability of the releases
| Availability (Y/N)1) | Links | |
|---|---|---|
| Regular releases | Y | |
| Ad-hoc releases | Y |
1) Y - Yes, N – No
Annexes:
French language survey for PNP
Dutch lanuage survey for PNP
10.2. Dissemination format - Publications
See below.
10.2.1. Availability of means of dissemination
| Means of dissemination | Availability (Y/N)1) | Links |
|---|---|---|
| General publication/article | Y | |
| Specific paper publication (e.g. sectoral provided to enterprises) | Y |
1) Y – Yes, N - No
10.3. Dissemination format - online database
An online database is available on the BELSPO website: Online Database BELSPO Website
There are two ways to view the data: an interactive application allows the creation of user-defined graphs and tables with drop-down menus for the selection of the necessary variables;
A full data set with all available data is available for download under the heading complete data files in Excel format.
10.3.1. Data tables - consultations
Not requested.
10.4. Dissemination format - microdata access
No micro data are disseminated, except for research purposes and following strict rules concerning privacy protection.
10.4.1. Provisions affecting the access
| Access rights to the micro-data | only after approval by the CFS/STAT (Federal Cooperation Commission for R&D statistics), and anonymised |
|---|---|
| Access cost policy | none |
| Micro-data anonymisation rules | where necessary for specific research purpose |
10.5. Dissemination format - other
See below.
10.5.1. Metadata - consultations
Not requested.
10.5.2. Availability of other dissemination means
| Dissemination means | Availability (Y/N)1) | Micro-data / Aggregate figures | Comments |
|---|---|---|---|
| Internet: main results available on the national statistical authority’s website | yes | Aggregated data | |
| Data prepared for individual ad hoc requests | yes | Aggregated and/or microdata | Requests for microdata need to be approved by all authorities concerned. |
| Other | no |
1) Y – Yes, N - No
10.6. Documentation on methodology
Frascati Manual 2015 plus internal guidelines, available for all national and regional data analysts on dedicated, shared extranet site.
10.6.1. Metadata completeness - rate
Not requested.
10.7. Quality management - documentation
See below.
10.7.1. Documentation and users’ requests
| Type(s) of data accompanying information available (metadata, graphs, quality reports, etc.) | Both paper and electronic publications contain methodology sections. |
|---|---|
| Requests on further clarification, most problematic issues | The requests received concern additional information (further, more detailed breakdowns for example) |
See below
11.1. Quality assurance
At Eurostat level, the common quality framework of the European Statistical System (ESS) is composed of the European Statistics Code of Practice, the Quality Assurance Framework of the ESS, and the general quality management principles (such as continuous interaction with users, continuous improvement, integration, and harmonisation).
11.2. Quality management - assessment
After the conclusion of every survey (annually), there is an evaluation planned with all competent authorities to evaluate the past survey en prepare for the next.
All results are discussed with all data providers and feedback is incoprorated in next steps.
See below
12.1. Relevance - User Needs
See below.
12.1.1. Needs at national level
| Users’ class1) | Description of users | Users’ needs |
|---|---|---|
| 4 | Researchers and students | research and publications |
| 3 | Media | information for the public |
| 2 | Social actors | context for activities |
1) Users' class codification
1- Institutions:
- European level: Commission (DGs, Secretariat General), Council, European Parliament, ECB, other European agencies etc.
- in Member States, at the national or regional level: Ministries of Economy or Finance, other ministries (for sectoral comparisons), National Statistical Institutes and other statistical agencies (norms, training, etc.), and
- International organisations: OECD, UN, IMF, ILO, etc.
2- Social actors: Employers’ associations, trade unions, lobbies, among others, at the European, national or regional level.
3- Media: International or regional media – specialized or for the general public – interested both in figures and analyses or comments. The media are the main channels of statistics to the general public.
4- Researchers and students (Researchers and students need statistics, analyses, ad hoc services, access to specific data.)
5- Enterprises or businesses (Either for their own market analysis, their marketing strategy (large enterprises) or because they offer consultancy services)
6- Other (User class defined for national purposes, different from the previous classes.)
12.2. Relevance - User Satisfaction
To evaluate if users' needs have been satisfied, the best way is to use user satisfaction surveys.
12.2.1. National Surveys and feedback
| Conduction of a user satisfaction survey or any other type of monitoring user satisfaction | We evaluate with the participating regional and community authorities if the data assembled corrsepond to policy needs and if the quality is sufficient. |
|---|---|
| User satisfaction survey specific for R&D statistics | not systematically surveyed |
| Short description of the feedback received | Not applicable |
12.3. Completeness
See below.
12.3.1. Data completeness - rate
Not available
12.3.2. Data availability
see below
12.3.2.1. Incorporation of PNP sector in another sector
| Incorporation of PNP in another sector | PNP data is not incorporated in another sector. |
|---|---|
| Reasons for not producing separate R&D statistics for the PNP sector | not applicable |
| Share of PNP expenditure in the total expenditure of the other sector | not applicable |
| Share of PNP R&D Personnel in the respective figure of the other sector | not applicable |
12.3.2.2. Non-collection of R&D data for the PNP sector
| Reasons for not compiling R&D statistics for the PNP sector | not applicable |
|---|---|
| PNP R&D expenditure/ GERD*100) | 2% |
| Share of PNP R&D Personnel in the respective figure of the total national economy | 2% |
12.3.2.3. Data availability on more detail level
| Additional dimension/variable available at national level1) | Availability2) | Frequency of data collection | Breakdown variables | Combinations of breakdown variables | Level of detail |
|---|---|---|---|---|---|
| not available | |||||
1) This question is optional. It refers to variables and breakdowns NOT asked by the Commission Implementing Regulation (EU) No 2020/1197 (neither as 'optional').
2) Y-start year
12.3.2.4. R&D personnel - Cross-classification by function and qualification (if available in FTE and HC)
| Cross-classification | Unit | Frequency |
|---|---|---|
| Cross-classification by function and qualification | HC and FTE | annually |
See below
13.1. Accuracy - overall
Accuracy in the statistical sense denotes the closeness of computations or estimates to the exact or true values. Statistics are not equal with the true values because of variability (the statistics change from implementation to implementation of the survey due to random effects) and bias (the average of the possible values of the statistics from implementation to implementation is not equal to the true value due to systematic effects).
Several types of statistical errors occur during the survey process. The following typology of errors has been adopted:
1. Sampling errors. These only affect sample surveys. They are due to the fact that only a subset of the population, usually randomly selected, is enumerated.
2. Non-sampling errors. Non-sampling errors affect sample surveys and complete enumerations alike and comprise:
a) Coverage errors,
b) Measurement errors,
c) Non response errors and
d) Processing errors.
Model assumption errors should be treated under the heading of the respective error they are trying to reduce.
13.2. Sampling error
That part of the difference between a population value and an estimate thereof, derived from a random sample, which is due to the fact that only a subset of the population is enumerated.
13.2.1. Sampling error - indicators
Confidence interval for Total R&D expenditure: not applicable
Confidence interval for Total R&D personnel (FTE): not applicable
13.3. Non-sampling error
Non-sampling errors occur in all phases of a survey. They add to the sampling errors (if present) and contribute to decreasing overall accuracy. It is important to assess their relative weight in the total error and devote appropriate resources for their control and assessment.
a) Extent of non-sampling errors:
Not applicable
b) Measures taken to reduce the extent of non-sampling errors:
Not applicable
c) Methods used in order to correct/adjust for such errors:
Not applicable
13.3.1. Coverage error
Coverage errors are due to divergences between the target population and the frame population. The frame population is the set of target population members that has a chance to be selected into the survey sample. It is a listing of all items in the population from which the sample is drawn that contains contact details as well as sufficient information to perform stratification and sampling.
13.3.1.1. Over-coverage - rate
Not requested.
13.3.1.2. Common units - proportion
Not requested.
13.3.2. Measurement error
Not requested.
13.3.3. Non response error
Not requested.
13.3.3.1. Unit non-response - rate
Not requested.
13.3.3.2. Item non-response - rate
Not requested.
13.3.4. Processing error
Not requested.
13.3.5. Model assumption error
Not requested.
14.1. Timeliness
Timeliness and punctuality refer to time and dates, but in a different manner: the timeliness of statistics reflects the length of time between their availability and the event or phenomenon they describe. Punctuality refers to the time lag between the release date of the data and the target date on which they should have been delivered, with reference to dates announced in the official release calendar.
14.1.1. Time lag - first result
Time lag between the end of reference period and the release date of the results:
Indicator: (Release date of provisional/ first results) - (Date of reference for the data)
a) End of reference period: 31 December 2023
b) Date of first release of national data: 1 July 2025
c) Lag (days): 545 days (18 months)
14.1.2. Time lag - final result
a) End of reference period: 31 December 2023
b) Date of first release of national data: 1 July 2025
c) Lag (days): 545 days (18 months)
14.2. Punctuality
Punctuality refers to the time lag between the release date of data and the target date on which they were scheduled for release as announced officially.
14.2.1. Punctuality - delivery and publication
Punctuality of time schedule of data release = (Actual date of the data release) - (Scheduled date of the data release)
14.2.1.1. Deadline and date of data transmission
| Transmission of provisional data | Transmission of final data | |
|---|---|---|
| Legally defined deadline of data transmission (T+_ months) | 10 | 18 |
| Actual date of transmission of the data (T+x months) | 10 | 19 |
| Delay (days) | 0 | 30 |
| Reasoning for delay |
See below
15.1. Comparability - geographical
See below.
15.1.1. Asymmetry for mirror flow statistics - coefficient
Not requested.
15.1.2. General issues of comparability
See below
15.1.3. Survey Concepts Issues
The following table lists a number of key survey concepts and conceptual issues; it gives reference to the Commission Implementing Regulation (EU) No 2020/1197 or Frascati manual (FM) paragraphs and the EBS Methodological Manual on R&D Statistics with recommendations about these concepts / issues.
| Concept / Issues | Reference to recommendations | Deviation from recommendations | Comments on national definition / Treatment – deviations from recommendations |
|---|---|---|---|
| R&D personnel | FM2015 Chapter 5 (mainly sub-chapter 5.2). | none | |
| Researcher | FM2015, § 5.35-5.39. | none | |
| Approach to obtaining Headcount (HC) data | FM2015, § 5.58-5.61 (in combination with Eurostat's EBS Methodological Manual on R&D Statistics). | none | |
| Reporting data according to formula: Total R&D personnel = Internal R&D personnel + External R&D personnel | FM2015, §5.25 | none | |
| Approach to obtaining FTE data | FM2015, § 5.49-5.57 (in combination with Eurostat's EBS Methodological Manual on R&D Statistics). | none | |
| Intramural R&D expenditure | FM2015,Chapter 4 (mainly sub-chapter 4.2). | none | |
| Statistical unit | FM2015, § 10.40-10.42 (in combination with Eurostat's EBS Methodological Manual on R&D Statistics). | none | |
| Target population | FM2015, § 10.40-10.42 ((in combination with Eurostat's EBS Methodological Manual on R&D Statistics). | none | |
| Sector coverage | FM2015, § 10.2-10.8 ((in combination with Eurostat's EBS Methodological Manual on R&D Statistics). | none | |
| Reference period for the main data | Reg. 2020/1197: Annex 1, Table 18 | none | |
| Reference period for all data | Reg. 2020/1197: Annex 1, Table 18 | none |
15.1.4. Deviations from recommendations
The following table lists a number of key methodological issues, which may affect the international comparability of national R&D statistics. The table gives the references in the Frascati manual, where related recommendations are made. Countries are asked to report on the existence of any deviations from existing recommendations and comment upon.
| Methodological issues | Reference to recommendations | Deviation from recommendations | Comments on national treatment / treatment deviations from recommendations |
|---|---|---|---|
| Data collection method | FM2015 Chapter 10 (mainly sub-chapter 10.6). | none | |
| Survey questionnaire / data collection form | FM2015 Chapter 10 (mainly sub-chapter 10.6). | none | |
| Cooperation with respondents | FM2015 Chapter 10 (mainly sub-chapter 10.6). | none | |
| Data processing methods | FM2015 Chapter 10 (mainly sub-chapter 10.6). | none | |
| Treatment of non-response | FM2015 Chapter 10 (mainly sub-chapter 10.6). | none | |
| Data compilation of final and preliminary data | Reg. 2020/1197: Annex 1, Table 18 | none |
15.2. Comparability - over time
See below.
15.2.1. Length of comparable time series
See below.
15.2.2. Breaks in time series
| Length of comparable time series | Break years1) | Nature of the breaks | |
|---|---|---|---|
| R&D personnel (HC) | 2002 - | ||
| Function | 2002 - | 2016 | "technicians" no longer distnguished within all personnel. |
| Qualification | 2002 - | ||
| R&D personnel (FTE) | 2002 - | ||
| Function | 2002 - | 2016 | "technicians" no longer distnguished within all personnel. |
| Qualification | 2002 - | ||
| R&D expenditure | 2002 - | ||
| Source of funds | 2002 - | ||
| Type of costs | 2000 - | ||
| Type of R&D | 2000- | ||
| Other |
1) Breaks years are years for which data are not fully comparable to the previous period.
15.2.3. Collection of data in the even years
The survey is organised annually
15.3. Coherence - cross domain
See below.
15.3.1. Coherence - sub annual and annual statistics
Not requested.
15.3.2. Coherence - National Accounts
High coherence - the National bank uses our R&D data.
15.4. Coherence - internal
See below.
15.4.1. Comparison between preliminary and final data
This part compares key R&D variables as preliminary and final data.
| Total PNP R&D expenditure (in 1000 of national currency) | Total PNP R&D personnel (in FTEs) | Total number of PNP researchers (in FTEs) | |
|---|---|---|---|
| Preliminary data (delivered at T+10) | 113 580 | 933 | 630 |
| Final data (delivered T+18) | 111 103 | 915 | 730 |
| Difference (of final data) | 2,477 | -18 | 100 |
Comments:
....
15.4.2. Consistency between R&D personnel and expenditure
| Average remuneration per year (cost in national currency) | Explanation of consistency issues if any |
|
|---|---|---|
| Consistency between FTEs of internal R&D personnel and R&D labour costs (1) | 75519 euro per FTE | not applicable |
| Consistency between FTEs of external R&D personnel and other current costs for external R&D personnel (2) | not available | Due to administrative policies, the definition of external personnel can't be applied universally to all Belgian not for profit sectors: HES personnel gets paid by administrations for education and would consequently all be external personnel. |
(1) Calculate the average remuneration (cost) of individuals belonging to the internal R&D personnel, excluding those who are only formally ‘employees’ (university students, grant holders, etc.).
(2) Calculate the average remuneration (cost) of individuals belonging to the external R&D personnel (FTEs/other current R&D costs for external R&D personnel).
The assessment of costs associated with a statistical product is a rather complicated task since there must exist a mechanism for appointing portions of shared costs (for instance shared IT resources and dissemination channels) and overheads (office space, utility bills etc). The assessment must become detailed and clear enough so that international comparisons among agencies of different structures are feasible.
16.1. Costs summary
| Costs for the statistical authority (in national currency) | Cost for the NSI in time use/person/day | |
|---|---|---|
| Staff costs | 1 FTE | 1 FTE |
| Data collection costs | none | none |
| Other costs | none | none |
| Total costs | 1 FTE | 1 FTE |
1) The shares of the figures given in the first column that are accounted for by payments to private firms or other Government agencies.
Comments on costs:
....
16.2. Components of burden and description of how these estimates were reached
| Value | Computation method | |
|---|---|---|
| Number of Respondents (R) | 18 | |
| Average Time required to complete the questionnaire in hours (T)1) | between 4 hours and 2 weeks | |
| Average hourly cost (in national currency) of a respondent (C) | confidential | |
| Total cost | confidential |
1) T = the time required to provide the information, including time spent assembling information prior to completing a form or taking part in interview and the time taken up by any subsequent contacts after receipt of the questionnaire (‘Re-contact time’)
see below
17.1. Data revision - policy
Not requested.
17.2. Data revision - practice
Not requested.
17.2.1. Data revision - average size
Not requested.
See below
18.1. Source data
Several separate activities are used for the collection of raw data or pre-compiled administrative data and statistics related to R&D. This section collects information on the type of data collection instruments used as well as methodological information for each data collection instrument. Depending on the type of data collection instrument used, only the sections corresponding to that data collection instrument are filled in.
18.1.1. Data source – general information
See below
18.1.2. Sample/census survey information
| Sampling unit | not applicable |
|---|---|
| Stratification variables (if any - for sample surveys only) | not applicable |
| Stratification variable classes | not applicable |
| Population size | 33 |
| Planned sample size | not applicable |
| Sample selection mechanism (for sample surveys only) | not applicable |
| Survey frame | not applicable |
| Sample design | not applicable |
| Sample size | not applicable |
| Survey frame quality | not applicable |
| Variables the survey contributes to | all legally required variables by the Implementing Regulation. |
18.1.3. Information on collection of administrative data or of pre-compiled statistics
| Source | not applicable |
|---|---|
| Description of collected data / statistics | not applicable |
| Reference period, in relation to the variables the administrative source contributes to | not applicable |
| Variables the administrative source contributes to | not applicable |
18.2. Frequency of data collection
See 12.3.2.
18.3. Data collection
See below.
18.3.1. Data collection overview
| Information provider | All R&D active PNP organisations |
|---|---|
| Description of collected information | All obligatory variables (see Implementing Regulation) |
| Data collection method | annual census survey |
| Time-use surveys for the calculation of R&D coefficients | not available |
| Realised sample size (per stratum) | not applicable |
| Mode of data collection (face-to-face interviews; telephone interviews; postal surveys, etc.) | online form and excel form |
| Incentives used for increasing response | reminders |
| Follow-up of non-respondents | mail/telephone |
| Replacement of non-respondents (e.g. if proxy interviewing is employed) | not applicable |
| Response rate (ratio of completed "interviews" over total number of eligible enterprises or enterprises of unknown eligibility) | 54% |
| Non-response analysis (if applicable -- also see section 18.5. Data compilation - Weighting and Estimation methods) | not available |
18.3.2. Questionnaire and other documents
| Annex | Name of the file |
|---|---|
| R&D national questionnaire and explanatory notes in English: | not available
|
| R&D national questionnaire and explanatory notes in the national language: | R&D NP CCR&PNP_F_2024, R&D NP CCR&PNP_N_2024 |
| Other relevant documentation of national methodology in English: | not available |
| Other relevant documentation of national methodology in the national language: | included in the survey |
Annexes:
French language survey for PNP
Dutch language survey for PNP
18.4. Data validation
Internal (within survey: consistency with other variables) and external (consistency with earlier respons)
18.5. Data compilation
See below.
18.5.1. Imputation - rate
Imputation is the method of creating plausible (but artificial) substitute values for all those missing.
Definition:
Imputation rate (for the variable x) % = (Number of imputed records for the variable x) * 100/ (Total number of possible records for x)
18.5.2. Data compilation methods
| Data compilation method - Final data | census, estimation of missing data based on previously collected data |
|---|---|
| Data compilation method - Preliminary data | calculation of 3 key variables on the basis of already collected data for that year, calculation of the ratio of the same organisations to the totals for every variable in the previous year, applying same ratio to data for this year. |
18.5.3. Measurement issues
| Method of derivation of regional data | Not applicable |
|---|---|
| Coefficients used for estimation of the R&D share of more general expenditure items | RPO’s/competent authority’s decision |
| Inclusion or exclusion of VAT and provisions for depreciation in the measurement of expenditures | VAT excluded |
18.5.4. Weighting and estimation methods
| Description of weighting method | not applicable |
|---|---|
| Description of the estimation method | Consumption price index applied to previous expenditure, personnel data kept as was |
18.6. Adjustment
Not requested.
18.6.1. Seasonal adjustment
Not requested.
Statistics on Private non-profit R&D (PNPRD) measure research and experimental development (R&D) performed in the private non-profit sector, i.e. R&D expenditure and R&D personnel. In line with this objective the target population for the national R&D survey of the private non-profit sector should consist of all R&D performing units (including all R&D performers – occasional and continuous, known and unknown - in all branches and size classes) belonging to this sector.
The main concepts and definitions used for the production of R&D statistics are given by the OECD (2015), Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, The Measurement of Scientific, Technological and Innovation Activities, which is the internationally recognised standard methodology for collecting R&D statistics and by Eurostat’s European Business Statistics Methodological Manual on R&D Statistics (EBS Methodological Manual on R&D Statistics)..
The guiding document to preparing the quality reports is the European Statistical System (ESS) Handbook for Quality and Metadata Reports — re-edition 2021.
Since the beginning of 2021, the collection of R&D statistics is based on Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020. The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail.
10 October 2025
See below.
The statistical unit is the institutional unit as defined by Council Regulation (EEC) No 1993/696 of 15 March 1993.
See below.
Not requested. R&D statistics cover national and regional data.
2022-2023
Accuracy in the statistical sense denotes the closeness of computations or estimates to the exact or true values. Statistics are not equal with the true values because of variability (the statistics change from implementation to implementation of the survey due to random effects) and bias (the average of the possible values of the statistics from implementation to implementation is not equal to the true value due to systematic effects).
Several types of statistical errors occur during the survey process. The following typology of errors has been adopted:
1. Sampling errors. These only affect sample surveys. They are due to the fact that only a subset of the population, usually randomly selected, is enumerated.
2. Non-sampling errors. Non-sampling errors affect sample surveys and complete enumerations alike and comprise:
a) Coverage errors,
b) Measurement errors,
c) Non response errors and
d) Processing errors.
Model assumption errors should be treated under the heading of the respective error they are trying to reduce.
R&D expenditure is published in the following units: Euro (K_EUR) and Euro per inhabitant (EUR_HAB); data are available in the following units: basic unit National currency (MIO_NAC); Purchasing Power Standard (MIO_PPS); Purchasing Power Standard at 2005 prices (MIO_PPS_KP05); Purchasing Power Standard per inhabitant at constant 2005 prices (PPS_HAB_KP05); Percentage of gross domestic product (PC_GDP); and Percentage of total R&D expenditure (PC_TOT - for the breakdown by source of funds).
R&D personnel data are published in full-time equivalent (FTE), in head count (HC), as a percentage of total employment and as a percentage of active population.
See below.
Several separate activities are used for the collection of raw data or pre-compiled administrative data and statistics related to R&D. This section collects information on the type of data collection instruments used as well as methodological information for each data collection instrument. Depending on the type of data collection instrument used, only the sections corresponding to that data collection instrument are filled in.
The frequency of R&D data dissemination at Eurostat level is yearly for provisional and final data alternately
Timeliness and punctuality refer to time and dates, but in a different manner: the timeliness of statistics reflects the length of time between their availability and the event or phenomenon they describe. Punctuality refers to the time lag between the release date of the data and the target date on which they should have been delivered, with reference to dates announced in the official release calendar.
See below.
See below.


