|
![]() |
For any question on data and metadata, please contact: Eurostat user support |
|
|||
1.1. Contact organisation | Statistical Office of the Republic of Slovenia (SURS). |
||
1.2. Contact organisation unit | Demography and Social Statistics Division, Social Services Statistics Section |
||
1.5. Contact mail address | Litostrojska cesta 54, 1000 Ljubljana, Slovenija |
|
|||
2.1. Metadata last certified | 30 March 2025 | ||
2.2. Metadata last posted | 30 March 2025 | ||
2.3. Metadata last update | 30 March 2025 |
|
||||||||||||||||||
3.1. Data description | ||||||||||||||||||
Statistics on Business enterprise R&D (BERD) measure research and experimental development (R&D) performed in the business enterprise sector, i.e. R&D expenditure and R&D personnel. In line with this objective the target population for the national R&D survey of the business enterprise sector consists of all R&D performing units (including all R&D performers – occasional and continuous, known and unknown - in all branches and size classes) belonging to this sector. The results are related to the population of all R&D performing units classified in Sections A to U of the common statistical classification of economic activities as established by Regulation (EC) No 1893/2006 of the European Parliament and of the Council (NACE Revision 2). The main concepts and definitions used for the production of R&D statistics are given by OECD (2015), Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, The Measurement of Scientific, Technological and Innovation Activities, which is the internationally recognised standard methodology for collecting R&D statistics. Statistics on science, technology and innovation were collected based on Commission Implementing Regulation (EU) Regulation (EU) No 1197/2020 concerning the production and development of Community statistics on science and technology until the end of 2020. Since the beginning of 2021, the collection of R&D statistics is based on Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020. The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail. Please note that according to Article 12(4) of Regulation (EU) 2020/1197, the provisions of Regulation (EU) 995/2012 continue to apply for the reference years that fall before 1 January 2021. |
||||||||||||||||||
3.2. Classification system | ||||||||||||||||||
|
||||||||||||||||||
3.2.1. Additional classifications | ||||||||||||||||||
|
||||||||||||||||||
3.3. Coverage - sector | ||||||||||||||||||
See below. |
||||||||||||||||||
3.3.1. General coverage | ||||||||||||||||||
|
||||||||||||||||||
3.3.2. Sector institutional coverage | ||||||||||||||||||
|
||||||||||||||||||
3.3.3. R&D variable coverage | ||||||||||||||||||
|
||||||||||||||||||
3.3.4. International R&D transactions | ||||||||||||||||||
|
||||||||||||||||||
3.3.5. Extramural R&D expenditures | ||||||||||||||||||
According to the Frascati Manual, expenditure on extramural R&D (i.e. R&D performed outside the statistical unit enterprise) is not included in intramural R&D performance totals (FM, §4.12).
|
||||||||||||||||||
3.4. Statistical concepts and definitions | ||||||||||||||||||
See below. |
||||||||||||||||||
3.4.1. R&D expenditure | ||||||||||||||||||
|
||||||||||||||||||
3.4.2. R&D personnel | ||||||||||||||||||
See below. |
||||||||||||||||||
3.4.2.1. R&D personnel – Head Counts (HC) | ||||||||||||||||||
|
||||||||||||||||||
3.4.2.2. R&D personnel – Full Time Equivalent (FTE) | ||||||||||||||||||
|
||||||||||||||||||
3.4.2.3. FTE calculation | ||||||||||||||||||
There are some general examples (formulas) for FTE calculation:
|
||||||||||||||||||
3.4.2.4. R&D personnel - Cross-classification by function and qualification | ||||||||||||||||||
|
||||||||||||||||||
3.5. Statistical unit | ||||||||||||||||||
The statistical unit for BERD is the enterprise as defined by Council Regulation (EEC) No 1993/696 of 15 March 1993. |
||||||||||||||||||
3.6. Statistical population | ||||||||||||||||||
See below. |
||||||||||||||||||
3.6.1. National target population | ||||||||||||||||||
The objective of the European R&D statistics is to cover all intramural R&D activities. In line with this objective the target population for the national R&D survey of the Business Enterprise Sector should consist of all R&D performing enterprises (including all R&D performers – occasional and continuous, known and unknown - in all branches and size classes) belonging to this sector. In practice however, countries in their R&D surveys might exclude some enterprises for which R&D activities are deemed to be non-existent or negligible, in order to limit the response burden or due to budgetary constraints.
|
||||||||||||||||||
3.6.2. Frame population – Description | ||||||||||||||||||
The target population is the population for which inferences are made. The frame (or frames, as sometimes several frames are used) is a device that permits access to population units. The frame population is the set of population units which can be accessed through the frame and the survey data really refer to this population.
1) i.e. enterprises previously not known or not supposed to perform R&D. |
||||||||||||||||||
3.7. Reference area | ||||||||||||||||||
Not requested. R&D statistics cover national and regional data. |
||||||||||||||||||
3.8. Coverage - Time | ||||||||||||||||||
Not requested. See point 3.4. |
||||||||||||||||||
3.9. Base period | ||||||||||||||||||
Not requested. |
|
|||
Expenditure: Euro (€) R&D personnel: number of persons (HC), full time equivalent (FTE) |
|
|||
Reference period is 2021. |
|
||||||||||||||
6.1. Institutional Mandate - legal acts and other agreements | ||||||||||||||
See below. |
||||||||||||||
6.1.1. European legislation | ||||||||||||||
|
||||||||||||||
6.1.2. National legislation | ||||||||||||||
|
||||||||||||||
6.1.3. Standards and manuals | ||||||||||||||
|
||||||||||||||
6.2. Institutional Mandate - data sharing | ||||||||||||||
Not requested. |
|
|||
7.1. Confidentiality - policy | |||
Confidentiality, being one of the process quality components, concerns the privacy of data providers (households, enterprises, administrations and other respondents), the confidentiality of the information they provide and the extent of its use for statistical purposes. A property of data indicating the extent to which their unauthorised disclosure could be prejudicial or harmful to the interest of the source or other relevant parties.
a) Confidentiality protection required by law: The National Statistics Act (hereinafter the ZDSta) stipulates within fundamental principles of national statistics in Article 2 that “national statistics shall be implemented on the principles of … confidentiality …”.
b) Confidentiality commitments of survey staff: All employees are obliged to protect the content of personal and individual data and data on reporting units which they learn during their work as official secrecy. All employees sign a statement of data protection and thus confirm that they are informed about the issue. The obligation to protect the official secrecy continues after the termination of employment. |
|||
7.2. Confidentiality - data treatment | |||
All R&D data collected are treated as confidential and are used only for statistical purposes. By following general statistical confidentiality framework used in SURS, statistics can be published only in aggregate form, i.e. in a manner that does not allow recognition of the unit to which data relate. Identifiable information can be published only exceptionally in cases where the unit gives its written consent to publish it. More information on statistical confidentiality is available at Stat website. With data for 2021 statistical data protection was also introduced to the survey. Same applies to the data delivered to Eurostat. Confidential cells are flagged with "C" (in English) or "Z" in Slovenian). |
|
|||
8.1. Release calendar | |||
Release calendar is publicly accessible. |
|||
8.2. Release calendar access | |||
Release calendar is publicly accessible. |
|||
8.3. Release policy - user access | |||
All data and metadata information are published and are accessible to users through various channels; among them is the most important website. The information on the website is available free of charge and is also available at English, for the widest possible use that is actively promoted. The release policy deternines the dissemination of statistical data to all users at the same time. |
|
|||
The data are published yearly. The data are published:
|
|
||||||||||||||||
10.1. Dissemination format - News release | ||||||||||||||||
See below. |
||||||||||||||||
10.1.1. Availability of the releases | ||||||||||||||||
1) Y - Yes, N – No |
||||||||||||||||
10.2. Dissemination format - Publications | ||||||||||||||||
See below. |
||||||||||||||||
10.2.1. Availability of means of dissemination | ||||||||||||||||
1) Y – Yes, N - No |
||||||||||||||||
10.3. Dissemination format - online database | ||||||||||||||||
Data on R&D are published at a more detailed level in the SiStat database. |
||||||||||||||||
10.3.1. Data tables - consultations | ||||||||||||||||
Not requested. |
||||||||||||||||
10.4. Dissemination format - microdata access | ||||||||||||||||
See below. |
||||||||||||||||
10.4.1. Provisions affecting the access | ||||||||||||||||
|
||||||||||||||||
10.5. Dissemination format - other | ||||||||||||||||
See below. |
||||||||||||||||
10.5.1. Metadata - consultations | ||||||||||||||||
Not requested. |
||||||||||||||||
10.5.2. Availability of other dissemination means | ||||||||||||||||
1) Y – Yes, N - No |
||||||||||||||||
10.6. Documentation on methodology | ||||||||||||||||
Methodological materials on SURS’s website are available at Stat website. Theme: Development and Technology, Subtheme: Research, Development and Innovation
Theme: Development and Technology, Subtheme: Research, Development and Innovation
|
||||||||||||||||
10.6.1. Metadata completeness - rate | ||||||||||||||||
Not requested. |
||||||||||||||||
10.7. Quality management - documentation | ||||||||||||||||
See below. |
||||||||||||||||
10.7.1. Information and clarity | ||||||||||||||||
|
|
|||
11.1. Quality assurance | |||
Check 11.2. |
|||
11.2. Quality management - assessment | |||
Overall quality of R&D statistics is good. The coverage of reporting units is full. R&D statistics domain follow general quality management activities used in SURS (including the European Statistics Code of Practice and the Fundamental Principles of Official Statistics). Detailed methodological instructions for completing questionnaire are available. Data validation is performed in collaboration with reporting units. Discussion of results, substantive matters and key issues are points on the agenda or the subjects under discussion of the Research and Development, and Technology Statistics Advisory Committee. However, there are still some aspects to be improved at R&D statistics. Despite the available methodological guidelines and instructions reporting units still have some problems with recognizing their R&D performance, understanding the R&D definitions, identifying an capturing the real/proper R&D content of activities and corresponding items. Most of the reporting units do not have records tailored to survey reporting, so they often make use of estimates without considering the substantive relevance between the items. In the R&D statistics domain’s quality assurance activities are guaranteed through:
continuous updating and improvement of methodological instructions in the light of past experience. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.1. Relevance - User Needs | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.1.1. Needs at national level | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) Users' class codification 1- Institutions:
2- Social actors: Employers’ associations, trade unions, lobbies, among others, at the European, national or regional level. 3- Media: International or regional media – specialized or for the general public – interested both in figures and analyses or comments. The media are the main channels of statistics to the general public. 4- Researchers and students (Researchers and students need statistics, analyses, ad hoc services, access to specific data.) 5- Enterprises or businesses (Either for their own market analysis, their marketing strategy (large enterprises) or because they offer consultancy services) 6- Other (User class defined for national purposes, different from the previous classes. ) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.2. Relevance - User Satisfaction | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
To evaluate if users' needs have been satisfied, the best way is to use user satisfaction surveys. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.2.1. National Surveys and feedback | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.3. Completeness | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.3.1. Data completeness - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not available. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.3.2. Completeness - overview | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Completeness is assessed via comparison of the data delivered against the requirements of Commission Implementing Regulation (EU) No 2020/1197.
Criteria: A) Obligatory data. Only 'Very Good' = 100%, Poor' >95%; 'Very Poor' <100% apply. B) Optional data. 'Very Good' = 100%; 'Good' = >75%; 'Satisfactory' 50 to 75%%; 'Poor' 25 to 50%; 'Very Poor' 0 to 25%. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.3.3. Data availability | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.3.3.1. Data availability - R&D Expenditure | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) Y-start year, N – data not available |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.3.3.2. Data availability - R&D Personnel (HC) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) Y-start year, N – data not available |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.3.3.3. Data availability - R&D Personnel (FTE) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) Y-start year, N – data not available |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12.3.3.4. Data availability - other | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) This question is optional. It refers to variables and breakdowns NOT asked by the Commission Implementing Regulation (EU) No 2020/1197 (neither as 'optional'), if R&D data for BES are collected for additional breakdowns or/and at more detailed level than requested. 2) Y-start year |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.1. Accuracy - overall | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Accuracy in the statistical sense denotes the closeness of computations or estimates to the exact or true values. Statistics are not equal with the true values because of variability (the statistics change from implementation to implementation of the survey due to random effects) and bias (the average of the possible values of the statistics from implementation to implementation is not equal to the true value due to systematic effects). Several types of statistical errors occur during the survey process. The following typology of errors has been adopted: 1. Sampling errors. These only affect sample surveys. They are due to the fact that only a subset of the population, usually randomly selected, is enumerated. 2. Non-sampling errors. Non-sampling errors affect sample surveys and complete enumerations alike and comprise: a) Coverage errors, b) Measurement errors, c) Non response errors and d) Processing errors. Model assumption errors should be treated under the heading of the respective error they are trying to reduce. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.1.1. Accuracy - Overall by 'Types of Error' | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) Ranking of the type(s) of errors that result in over/under-estimation, from the most important source of error (1) to the least important source of error (5). In the event that errors of a particular type do not exist, is used the sign ‘-‘. 2) The perceived direction of the ‘overall’ error using the signs “+” for over estimation, “-” for under estimation and “+/-” when assumption of the direction of the error cannot be made for R&D. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.1.2. Assessment of the accuracy with regard to the main indicators | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) 'Very Good' = High level of coverage (annual rate of substitution in the target population lower than 5%). High average rates of response (>80%) in census and sample surveys (BES R&D). Full data consistency with reference to totals and relationships between variables in the dataset sent to Eurostat. 2) 'Good' = In the event that at least one out of the three criteria above described would not be fully met. 3) 'Satisfactory' = In the event that the average rate of response would be lower than 60% even by meeting the two remaining criteria. 4) 'Poor' = In the event that the average rate of response would be lower than 60% and at least one of the two remaining criteria would not be met. 5) 'Very Poor' = If all the three criteria are not met. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.2. Sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
That part of the difference between a population value and an estimate thereof, derived from a random sample, which is due to the fact that only a subset of the population is enumerated. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.2.1. Sampling error - indicators | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The main indicator used to measure sampling errors is the coefficient of variation (CV). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.2.1.1. Variance Estimation Method | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Does not apply. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.2.1.2. Coefficient of variation for key variables by NACE | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) Industry sector (NACE Rev. 2: 01-03, 05-09, 10-33, 35, 36-39, 41-43) 2) Services sector (NACE Rev 2.: 45-47,49-53,55-56,58-63,64-66 68,69-75,77-82,84,85,86-88,90-93,94-96,97-98,99) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.2.1.3. Coefficient of variation for key variables by Size Class | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3. Non-sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-sampling errors occur in all phases of a survey. They add to the sampling errors (if present) and contribute to decreasing overall accuracy. It is important to assess their relative weight in the total error and devote appropriate resources for their control and assessment. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.1. Coverage error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage errors (or frame errors) are due to divergences between the target population and the frame population. The frame population is the set of target population members that has a chance to be selected into the survey sample. It is a listing of all items in the population from which the sample is drawn that contains contact details as well as sufficient information to perform stratification and sampling.
a) Description/assessment of coverage errors: The coverage errors were not detected. Some reporting units actively engaged in the R&D activity in the previous year that fully outsourced R&D activity in the reference period were included.
b) Measures taken to reduce their effect: / |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.1.1. Over-coverage - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnitude of error (%) = (Observed Value-True Value)/ True Value (%). The coverage errors were not detected. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.1.1.1. Over-coverage rate - groups | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.1.2. Common units - proportion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not requested. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.1.3. Frame misclassification rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Misclassification rate measures the percentage of enterprises that changed stratum between the time the frame was last updated and the time the survey was carried out. It is defined as the number of enterprises that changed stratum divided by the number of enterprises which belong to the stratum, according to the frame. The rate can be estimated based on the characteristics of the surveyed enterprises. Does not apply to any of this category.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.2. Measurement error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Measurement errors occur during data collection and generate bias by recording values different than the true ones (e.g. difficulty to distinguish intramural from extramural R&D Expenditure). The survey questionnaire used for data collection may have led to the recording of wrong values, or there may be respondent or interviewer bias.
a) Description/assessment of measurement errors: Data error detection controls are focused on the consistency of the totals derived from different breakdowns. In case an important intra-annual change in figures is identified, one or more contacts with the reporting unit are made in order to obtain additional explanatory notes on data deviation or to arrange data retransmission. The main reasons that cause measurement errors are: the questionnaire is filled in by several persons or organisational units or person that is not so informed on R&D projects, non-compliance with the methodological instructions, subjective and often unreliable and inconsistent assessment of funds as data can not be derived directly from reporting unit's records. b) Measures taken to reduce their effect: If some errors are detected by the person responsible at SURS for data editing, it is first determined whether an error is remedied without contacting the reporting units, or the error is unclear and requires additional explanations form the reporting units. The reporting unit is always contacted when it is not clear from the reported data whether they are correct or not. Is also applies to the reporting unit when the reported data are very different form the data reported by the same reporting units for previous years. In order to reduce the number of errors, it is very important that we regularly get feedback from reporting units by recontacting them. It is important to "educate" persons responsible for reporting, provide them methodological support, the reporting units in order to correctly and accurately fill in the questionnaire. The number of measurement errors would be reduced by using a clear, comprehensible questionnaire and clear, short and precise methodological guidelines for completing it. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3. Non response error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-response occurs when a survey failed to collect data on all survey variables from all the population units designated for data collection in a sample or complete enumeration. There are two elements of non-response:
The extent of response (and accordingly of non response) is also measured with response rates. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3.1. Unit non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The main interest is to judge if the response from the target population was satisfying by computing the weighted and un-weighted response rate. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3.1.1. Unit non-response rates by Size Class | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
* The sample consists of Legal Units. The initial sample included 2,713 units, with approximately 1% either falling outside the target population or undergoing bankruptcy. ** Weights are calculated at the enterprise level rather than at the level of individual Legal Units. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3.1.2. Unit non-response rates by NACE | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) Industry (NACE Rev. 2: 01-03, 05-09,10-33,35,36-39,41-43) 2) Services (NACE Rev 2.: 45-47,49-53,55-56,58-63,64-66 68,69-75,77-82,84,85,86-88,90-93,94-96,97-98,99) |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3.1.3. Recalls/Reminders description | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Units that did not submit data on time are reminded twice by electronic reminder, and all key units are additionally reminded by telephone call. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3.1.4. Unit non-response survey | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3.2. Item non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3.2.1. Un-weighted item non-response rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.3.3. Magnitude of errors due to non-response | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.4. Processing error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Between data collection and the beginning of statistical analysis, data must undergo a certain processing: coding, data entry, data editing, imputation, etc. Errors introduced at these stages are called processing errors. Data editing identifies inconsistencies or errors in the data. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.4.1. Identification of the main processing errors | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
13.3.5. Model assumption error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not requested. |
|
|||||||||||||||
14.1. Timeliness | |||||||||||||||
Timeliness and punctuality refer to time and dates, but in a different manner: the timeliness of statistics reflects the length of time between their availability and the event or phenomenon they describe. Punctuality refers to the time lag between the release date of the data and the target date on which they should have been delivered, with reference to dates announced in the official release calendar. |
|||||||||||||||
14.1.1. Time lag - first result | |||||||||||||||
Time lag between the end of reference period and the release date of the results: a) End of reference period: 31 December 2021 b) Date of first release of national data: 5 November 2022 c) Lag (days): T +10 |
|||||||||||||||
14.1.2. Time lag - final result | |||||||||||||||
a) End of reference period: 31. December 2021 b) Date of first release of national data: 2 March 2023 c) Lag (days): T +14 |
|||||||||||||||
14.2. Punctuality | |||||||||||||||
Punctuality refers to the time lag between the release date of data and the target date on which they were scheduled for release as announced officially. |
|||||||||||||||
14.2.1. Punctuality - delivery and publication | |||||||||||||||
Punctuality of time schedule of data release = (Actual date of the data release) - (Scheduled date of the data release). |
|||||||||||||||
14.2.1.1. Deadline and date of data transmission | |||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.1. Comparability - geographical | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.1.1. Asymmetry for mirror flow statistics - coefficient | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not requested. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.1.2. General issues of comparability | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
National R&D statistics is produced in line with the Frascati methodology. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.1.3. Survey Concepts Issues | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The following table lists a number of key survey concepts and conceptual issues; it gives reference to the Commission Implementing Regulation (EU) No 2020/1197 or Frascati manual and EBS Methodological Manual on R&D Statistics paragraphs with recommendations about these concepts / issues.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.1.4. Deviations from recommendations | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The following table lists a number of key methodological issues, which may affect the international comparability of national R&D statistics. The table gives the references in the Frascati manual, where related recommendations are made. Countries are asked to report on the existence of any deviations from existing recommendations and comment upon.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.2. Comparability - over time | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.2.1. Length of comparable time series | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.2.2. Breaks in time series | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1) Breaks years are years for which data are not fully comparable to the previous period. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.2.3. Collection of data in the even years | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data are produced in the same way every year. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.3. Coherence - cross domain | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This part deals with any national coherence assessments which may have been undertaken. It reports results for variables which are the same or relevant to R&D statistics, from other national surveys and / or administrative sources and explains and comments on their degree of agreement with R&D statistics. Intramural R & D expenditure (code 230101 in the Commission Implementing Regulation (EU) 2020/1197) and R & D personnel (code 230201) are surveyed also in foreign-controlled EU enterprises statistics (inward FATS). The Community innovation survey 2020 (CIS2020) (inn_cis12) (europa.eu) also collects the R&D expenditure of enterprises that form the coverage of the CIS2020 survey. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.3.1. Coherence - sub annual and annual statistics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not requested. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.3.2. Coherence - National Accounts | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not available. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.3.3. National Coherence Assessments | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.3.4. Coherence – Foreign-controlled EU enterprises – inward FATS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Restricted from publication | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.4. Coherence - internal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.4.1. Comparison between preliminary and final data | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This part compares key R&D variables as preliminary and final data.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
15.4.2. Consistency between R&D personnel and expenditure | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(1) Calculate the average remuneration (cost) of individuals belonging to the internal R&D personnel, excluding those who are only formally ‘employees’ (university students, grant holders, etc.). (2) Calculate the average remuneration (cost) of individuals belonging to the external R&D personnel (FTEs/other current R&D costs for external R&D personnel). |
|
|||||||||||||||||||||
The assessment of costs associated with a statistical product is a rather complicated task since there must exist a mechanism for appointing portions of shared costs (for instance shared IT resources and dissemination channels) and overheads (office space, utility bills etc). The assessment must become detailed and clear enough so that international comparisons among agencies of different structures are feasible. |
|||||||||||||||||||||
16.1. Costs summary | |||||||||||||||||||||
1) The shares of the figures given in the first column that are accounted for by payments to private firms or other Government agencies. |
|||||||||||||||||||||
16.2. Components of burden and description of how these estimates were reached | |||||||||||||||||||||
1) T = the time required to provide the information, including time spent assembling information prior to completing a form or taking part in interview and the time taken up by any subsequent contacts after receipt of the questionnaire (‘Re-contact time’) |
|
|||
17.1. Data revision - policy | |||
Not requested. |
|||
17.2. Data revision - practice | |||
Not requested. |
|||
17.2.1. Data revision - average size | |||
Not requested. |
|
||||||||||||||||||||||||||||||||||||||||||||
18.1. Source data | ||||||||||||||||||||||||||||||||||||||||||||
Several separate activities are used for the collection of raw data or pre-compiled administrative data and statistics related to R&D. For simplicity, we call them surveys irrespective of whether they are sample surveys, censuses, collections of administrative data/pre-compiled statistics. This section presents the names of the surveys by sector of performance as well as methodological information for each survey. Depending on the type of survey and sector of performance, only the sections corresponding to that survey and sector are filled in. |
||||||||||||||||||||||||||||||||||||||||||||
18.1.1. Data source – general information | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
18.1.2. Sample/census survey information | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
18.1.3. Information on collection of administrative data or of pre-compiled statistics | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
18.2. Frequency of data collection | ||||||||||||||||||||||||||||||||||||||||||||
See 12.3.3. |
||||||||||||||||||||||||||||||||||||||||||||
18.3. Data collection | ||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||
18.3.1. Data collection overview | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
18.3.2. Questionnaire and other documents | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
18.4. Data validation | ||||||||||||||||||||||||||||||||||||||||||||
Validation activities are: comparing the statistics with previous cycles, investigating inconsistencies in the statistics; performing micro data editing. |
||||||||||||||||||||||||||||||||||||||||||||
18.5. Data compilation | ||||||||||||||||||||||||||||||||||||||||||||
See below. |
||||||||||||||||||||||||||||||||||||||||||||
18.5.1. Imputation - rate | ||||||||||||||||||||||||||||||||||||||||||||
Imputation is the method of creating plausible (but artificial) substitute values for all those missing. Definition: Imputation rate (for the variable x) % = (Number of imputed records for the variable x) / (Total number of possible records for x)*100. |
||||||||||||||||||||||||||||||||||||||||||||
18.5.1.1. Imputation rate (un-weighted) (%) by Size class | ||||||||||||||||||||||||||||||||||||||||||||
Does not apply. |
||||||||||||||||||||||||||||||||||||||||||||
18.5.1.2. Imputation rate (un-weighted) (%) by NACE | ||||||||||||||||||||||||||||||||||||||||||||
1) Industry (NACE Rev. 2: 01-03, 05-09,10-33,35,36-39,41-43) 2) Services (NACE Rev 2.: 45-47, 49-53, 55-56, 58-63, 64-66 68, 69-75, 77-82, 84, 85, 86-88, 90-93, 94-96, 97-98, 99)
Does not apply. |
||||||||||||||||||||||||||||||||||||||||||||
18.5.2. Data compilation methods | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
18.5.3. Measurement issues | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
18.5.4. Weighting and estimation methods | ||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||
18.6. Adjustment | ||||||||||||||||||||||||||||||||||||||||||||
Not requested. |
||||||||||||||||||||||||||||||||||||||||||||
18.6.1. Seasonal adjustment | ||||||||||||||||||||||||||||||||||||||||||||
Not requested. |
|
|||
With the final data of R&D we implementeted new definition of enterprises. Definition is "Enterprise is legal or natural persons which had turnover or employees or investments and were therefore active during at least a part of the reference period. An enterprise may consist of several ownership-related legal persons, as long as they operate on the market as one independent enterprise". Slovenia is really small country therefore the differences were not seen so much in data. **2017–2019 data revision**
|
|
|||
|
|||