|
![]() |
| For any question on data and metadata, please contact: Eurostat user support |
|
|||
| 1.1. Contact organisation | Central Statistical Bureau of Latvia |
||
| 1.2. Contact organisation unit | Social Statistics Department |
||
| 1.5. Contact mail address | Lāčplēša Street 1, Riga, Latvia, LV-1010
|
||
|
|||
| 2.1. Metadata last certified | 26 May 2025 |
||
| 2.2. Metadata last posted | 27 May 2025 |
||
| 2.3. Metadata last update | 27 May 2025 |
||
|
||||||
| 3.1. Data description | ||||||
The European Union Statistics on Income and Living Conditions (EU-SILC) is a survey-based instrument aiming at collecting timely and comparable cross-sectional and longitudinal multidimensional microdata on income, poverty, social exclusion and living conditions. In addition, it collects module variables every three years, six years or ad-hoc new policy needs modules. The EU-SILC instrument provides two types of data:
|
||||||
| 3.2. Classification system | ||||||
• International Standard Classification of Education (ISCED'2011); • International Standard Classification of Occupations (ISCO-08); • Classification of Economic Activities (NACE Rev.2-2008); • Common classification of territorial units for statistics (NUTS 2); • SCL - Geographical code list; • The recommendations made by the United Nations in the Canberra Group Handbook on Household Income Statistics should also be taken into account. For more details on the classification used please, see EU Vocabularies. |
||||||
| 3.3. Coverage - sector | ||||||
Data refer to all private households and individuals living in the private households in the national territory at the time of data collection. The EU-SILC survey is a key instrument for the European Semester and the European Pillar of Social Rights, providing information on income distribution, poverty and social exclusion, as well as various related living conditions and poverty EU policies, such as on child poverty, access to health care and other services, housing, over indebtedness and quality of life. It is also the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates. |
||||||
| 3.4. Statistical concepts and definitions | ||||||
Statistical concepts and definitions for EU-SILC are specified in Regulation (EU) 2019/1700, Commission Implementing Regulation (EU) 2019/2181, and Commission Implementing Regulation (EU) 2019/2242. Additional information is available in the EU statistics on income and living conditions (EU-SILC) methodology and in the methodological guidelines and description of EU-SILC target variables. Further details are provided in items 5, 15.1.1.1, 15.2.2 and 18.3. |
||||||
| 3.5. Statistical unit | ||||||
Statistical units are private households and all persons living in these households who have usual residence in the Member State. Annex II of the Commission implementing regulation (EU) 2019/2242 defines specific statistical units per variable and specifies the, content of the quality reports on the organization of a sample survey in the income and living conditions domain pursuant to Regulation (EU) 2019/1700 of the European Parliament and of the Council. |
||||||
| 3.6. Statistical population | ||||||
The target population is private households and all persons composing these households having their usual residence in the Member State. Private household means a person living alone or a group of persons who live together, providing oneself or themselves with the essentials of living. |
||||||
| 3.6.1. Reference population | ||||||
Definitions of reference population, household and household membership
|
||||||
| 3.6.2. Population not covered by the data collection | ||||||
The sub-populations that are not covered by the data collection includes: those who moved out of the country’s territory; or those with no usual residence; or those living in institutions or who have moved to an institution compared to the previous year. |
||||||
| 3.7. Reference area | ||||||
Reference area is territory of Latvia. |
||||||
| 3.8. Coverage - Time | ||||||
Latest data is 2024 data and 2023 data (for income, poverty, income inequality, low work intensity, activity status during 2023). Data are available for the survey years 2005-2024. |
||||||
| 3.9. Base period | ||||||
Not applicable. |
||||||
|
|||
The data involves several units of measure depending upon the variables. Income variables are transmitted to Eurostat in national currency. For more information, see methodological guidelines and description of EU-SILC target variables. |
|||
|
||||||||
Description of reference period used for incomes
|
||||||||
|
|||
| 6.1. Institutional Mandate - legal acts and other agreements | |||
Regulation (EU) 2019/1700 was publish in OJ on 10 October 2019, establishing a common framework for European statistics relating to persons and households, based on data at individual level collected from samples (IESS). The Annex to the Commission implementing regulation (EU) 2019/2180 of 16 December 2019 specifies the detailed arrangements and content for the quality reports pursuant to Regulation (EU) 2019/1700 of the European Parliament and of the Council and Regulation (EU) 2019/2242. |
|||
| 6.2. Institutional Mandate - data sharing | |||
Confidential microdata are not disclosed by Eurostat. Access to confidential microdata for scientific purposes may be granted on the basis of Commission Regulation 557/2013 and Regulation 223/2009 of the European Parliament and the Council on European statistics. |
|||
|
|||
| 7.1. Confidentiality - policy | |||
For EU-SILC microdata CSB of Latvia uses anonymisation rules prepared by Eurostat. In case of non-standard data request the data have to be revised by staff responsible for confidentiality issues in CSB of Latvia. |
|||
| 7.2. Confidentiality - data treatment | |||
For EU-SILC microdata CSB of Latvia uses anonymisation rules prepared by Eurostat. In case of non-standard data request the data have to be revised by staff responsible for confidentiality issues in CSB of Latvia.
In publications CSB of Latvia use several symbols informing data users about the data:
0.0 Magnitude less than 0.05 of the unit employed 0.00 Magnitude less than 0.005 of the unit employed ( ) Data based on small number of respondent answers (20–49 observations) ... Data not available or too uncertain for presentation (for example in case of less than 20 observations) |
|||
|
|||
| 8.1. Release calendar | |||
EU-SILC 2024 press release's calendar:
Publications about EU-SILC 2024 data:
EU-SILC data online database:
|
|||
| 8.2. Release calendar access | |||
Please refer to the Release calendar - Eurostat (europa.eu) publicly available on the Eurostat’s website. Advance dissemination calendar of Official statistics of Latvia available on the Official statistics portal.
|
|||
| 8.3. Release policy - user access | |||
In line with the Community legal framework and the European Statistics Code of Practice, Eurostat disseminates European statistics on Eurostat's website (see section 10 - 'Accessibility and clarity'), respecting professional independence and in an objective, professional and transparent manner in which all users are treated equitably. The detailed arrangements are governed by the Eurostat protocol on impartial access to Eurostat data for users. Additional information about microdata access is available in EU statistics on income and living conditions - Microdata - Eurostat. EU-SILC data of CSB of Latvia: 1) Datasets for research and study 2) EU-SILC Public use files (information in Latvian only). |
|||
|
|||
Annual |
|||
|
|||
| 10.1. Dissemination format - News release | |||
EU-SILC 2024 data:
|
|||
| 10.2. Dissemination format - Publications | |||
Publications about EU-SILC 2024 data:
|
|||
| 10.3. Dissemination format - online database | |||
|
|||
| 10.3.1. Data tables - consultations | |||
Information is not available. |
|||
| 10.4. Dissemination format - microdata access | |||
|
|||
| 10.5. Dissemination format - other | |||
Not available. |
|||
| 10.5.1. Metadata - consultations | |||
Information is not available. |
|||
| 10.6. Documentation on methodology | |||
EU-SILC surveys methodology in Latvia is based on METHODOLOGICAL GUIDELINES AND DESCRIPTION OF EU-SILC TARGET VARIABLES (docSILC065). |
|||
| 10.6.1. Metadata completeness - rate | |||
Information is not available. |
|||
| 10.7. Quality management - documentation | |||
Information is not available. |
|||
|
|||
| 11.1. Quality assurance | |||
Management Systems of the Central Statistical Bureau (CSB) are certified according to requirements of ISO 9001:2015 standard "Quality management systems – Requirements" and information security management system standard ISO 27001:2013. On November 29, 2018 the CSB gained a certificate of ISO 9001:2015 standard “Quality Management Systems – Requirements”, which is already the second international certificate gained by the CSB. The certification refers to development, production and dissemination of official statistics. More detailed information about Quality management systems in CSB of Latvia can be found in the official website. |
|||
| 11.2. Quality management - assessment | |||
Information about Quality management systems in CSB of Latvia. |
|||
|
|||
| 12.1. Relevance - User Needs | |||
The main users of EU-SILC statistical data are policy makers, research institutes, media, and students. |
|||
| 12.2. Relevance - User Satisfaction | |||
Eurostat carried out an online general User Satisfaction Survey (USS) in the period between April and July 2019 to obtain a better knowledge about users, considering their needs and satisfaction with the services provided by Eurostat. The survey has shown that EU-SILC is of very high relevance for users. For the majority, both aggregates and micro-data were important or essential in their work irrespective of the purpose of their use. The use of the ad-hoc modules was less widespread than the use of the nucleus variables. Nevertheless, there was high interest to repeat these modules in order to have the possibility of comparing data over time. Users emphasized their strong need for more detailed micro-data, which is currently not possible. Under the new legal framework implemented from 2021, the NUTS 2 division will be available for the main indicators. Finally, users were satisfied with overall quality of the service delivered by Eurostat, which encompasses data quality and the supporting service provided to them. For more information, please consult the User Satisfaction Survey. |
|||
| 12.3. Completeness | |||
All EU-SILC 2024 variables were transmitted to Eurostat. |
|||
| 12.3.1. Data completeness - rate | |||
100% |
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.1. Accuracy - overall | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Reg. (EU) 2019/1700 Annex II, precision requirements for all data sets are expressed in standard errors and are defined as continuous functions of the actual estimates and of the size of the statistical population in a country or in a NUTS 2 region. For the income and living conditions domain, the estimated standard errors of the following indicators are examined according to certain parameters set:
Further information is provided in section 13.2 Sampling error. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.2. Sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
EU-SILC is a complex survey involving different sampling designs in different countries. In order to harmonize and make sampling errors comparable among countries, Eurostat (with the substantial methodological support of Net-SILC2) has chosen to apply the "linearization" technique coupled with the “ultimate cluster” approach for variance estimation. Linearization is a technique based on the use of linear approximation to reduce non-linear statistics to a linear form, justified by asymptotic properties of the estimator. This technique can encompass a wide variety of indicators, including EU-SILC indicators. The "ultimate cluster" approach is a simplification consisting in calculating the variance taking into account only variation among Primary Sampling Unit (PSU) totals. This method requires first stage sampling fractions to be small which is nearly always the case. This method allows a great flexibility and simplifies the calculations of variances. It can also be generalized to calculate variance of the differences of one year to another. The main hypothesis on which the calculations are based is that the "at risk of poverty" threshold is fixed. According to the characteristics and availability of data for different countries, we have used different variables to specify strata and cluster information. In particular, countries have been split into 3 groups: 1) BE, BG, CZ, IE, EL, ES, FR, HR, IT, LV, HU, PL, PT, RO, SI, UK and AL, whose sampling design could be assimilated to a two-stage stratified type we used DB050 (primary strata) for strata specification and DB060 (Primary Sampling Unit) for cluster specification; 2) DK, DE, EE, CY, LT, LU, NL, AT, SK, FI, CH whose sampling design could be assimilated to a one stage stratified type we used DB050 for strata specification and DB030 (household ID) for cluster specification; 3) MT, SE, IS, NO, whose sampling design could be assimilated to a simple random sampling, we used DB030 for cluster specification and no strata.
CSB of Latvia use own methodology for calculation of sampling errors R-software and vardpoor packages. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.2.1. Sampling error - indicators | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The concept of accuracy refers to the precision of estimates computed from a sample rather than from the entire population. Accuracy depends on sample size, sampling design effects and structure of the population under study. In addition to that, sampling errors and non-sampling errors need to be taken into account. Sampling error refers to the variability that occurs at random because of the use of a sample rather than a census and non-sampling errors are errors that occur in all phases of the data collection and production process.
See Annex A, sheet 13.2.1. - Main indicators, standard error and CI at country level & Persistent-risk-of-poverty ratio over four years to the population, standart error and CI*
* CSB of Latvia use own methodology for calculation of sampling errors R-software and vardpoor packages. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3. Non-sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-sampling errors are basically of 4 types:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1. Coverage error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage errors include over-coverage, under-coverage and misclassification:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1.1. Over-coverage - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage error
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1.2. Common units - proportion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not requested by Reg. 2019/2180 - This item can be filled in on voluntary basis |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.2. Measurement error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Measurement error for cross-sectional data
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3. Non response error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-response errors are errors due to an unsuccessful attempt to obtain the desired information from an eligible unit. Two main types of non-response errors are considered: 1) Unit non-response which refers to the absence of information of the whole units (households and/or persons) selected into the sample. According to Annex VI of the Reg.(EU) 2019/2242
NRh=(1-(Ra * Rh)) * 100 Where Ra is the address contact rate defined as: Ra= Number of address/selected person (including phone, mail if applicable) successfully contacted/Number of valid addresses/selected person (including phone, mail if applicable) selected and Rh is the proportion of complete household interviews accepted for the database Rh=Number of household interviews completed and accepted for database/Number of eligible households at contacted addresses (including phone, mail if applicable) • Individual non-response rates (NRp) is computed as follows: NRp=(1-(Rp)) * 100 Where Rp is the proportion of complete personal interviews within the households accepted for the database Rp= Number of personal interview completed/Number of eligible individuals in the households whose interviews were completed and accepted for the database • Overall individual non-response rates (*NRp) is computed as follows: *NRp=(1-(Ra * Rh * Rp)) * 100 For those Members States where a sample of persons rather than a sample of households (addresses, phones, mails etc.) was selected, the individual non-response rates will be calculated for ‘the selected respondent. 2) Item non-response which refers to the situation where a sample unit has been successfully enumerated, but not all the required information has been obtained. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.1. Unit non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit non-response rate for cross-sectional
where A=total (cross-sectional) sample, B =New sub-sample (new rotational group) introduced for first time in the survey this year, C= Sub-sample (rotational group) surveyed for last time in the survey this year.
See Annex A, sheet 13.3.3.1 - Unit non-response rate for longitudinal data |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.2. Item non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The computation of item non-response is essential to fulfil the precision requirements. Item non-response rate is provided for the main income variables both at household and personal level. Item non-response which refers to the situation where a sample unit has been successfully enumerated, but not all the required information has been obtained. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.2.1. Item non-response rate by indicator | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Annex 2 - Item non-response rate |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.4. Processing error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description of data entry, coding controls and the editing system
See Annex A, sheet 13.3.4 - Re-interview rates by wave |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.5. Model assumption error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
| 14.1. Timeliness | |||
The data is prepared within the deadline set up by the Regulation (EU) No 2019/1700 |
|||
| 14.1.1. Time lag - first result | |||
First results are published 12 months after income reference period (year of 2023). Data release calendar can be found in the official statistical Latvian website. |
|||
| 14.1.2. Time lag - final result | |||
Final results are published 13 months after income reference period (year of 2023). Data release calendar can be found in the official statistical Latvian website. |
|||
| 14.2. Punctuality | |||
CSB of Latvia publish EU-SILC data according to calendar of publication. Data release calendar can be found in the official statistical Latvian website. |
|||
| 14.2.1. Punctuality - delivery and publication | |||
CSB of Latvia publish EU-SILC data according to calendar of publication. Data release calendar can be found in the official statistical Latvian website. First results at national level are published 12 months after income reference period (year of 2023). 100% of data release delivered on time. |
|||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.1. Comparability - geographical | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Latvia in one region ar NUTS2 level. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.1.1. Asymmetry for mirror flow statistics - coefficient | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2. Comparability - over time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Annex 8 - Break in series. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2.1. Length of comparable time series | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Annex 8 - Break in series. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2.2. Comparability and deviation from definition for each income variable | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3. Coherence - cross domain | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The coherence of two or more statistical outputs refers to the degree to which the statistical processes, by which they were generated, used the same concepts and harmonised methods. A comparison with external sources for all income target variables and the number of persons who receive income from each ‘income component’ will be provided, where the Member States concerned consider such external data to be sufficiently reliable. See Annex 7 - Coherence. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3.1. Coherence - sub annual and annual statistics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3.2. Coherence - National Accounts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Annex 7 - Coherence_15.3-15.3.2. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.4. Coherence - internal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Annex 7 - Coherence. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
Mean (average) interview duration per household = 27.6 minutes. Mean (average) interview duration per person = 9.9 minutes. |
|||
|
|||
| 17.1. Data revision - policy | |||
Not available |
|||
| 17.2. Data revision - practice | |||
Not available |
|||
| 17.2.1. Data revision - average size | |||
Not available |
|||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Detailed information concerning sampling frame, sampling design, sampling units, sampling size, weightings and mode of data collection can be found in this section (please see below). Such information is mainly used for the computation of the accuracy measures. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.1. Source data | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stratified, two stage sampling design with rotating panels is used for EU-SILC survey at CSB Latvia. At the first stage, primary sampling units (PSUs) are selected from the list of survey polygons with inclusion probabilities proportional to their size. Survey polygons are artificially created GIS polygons that divide the whole population of dwellings into approximately homogeneous areas by their size (approx. 300 dwellings for each survey polygon in cities and towns and approx. 150 dwellings otherwise). At the second stage, dwellings are used as secondary sampling units (SSUs). Since 2021 CSB Latvia produces and stores frames of dwellings and persons on monthly basis (beginning of corresponding month) in Social statistics database register (SSDN). New sample panel for the next year’ s EU-SILC sample is selected during November using information from corresponding month. Hence, the time lag between the last update of frames and beginning of the EU-SILC survey interviewing process is three months. Important note abour PSUs: until EU-SILC 2020 (first wave households) CSB of Latvia used PSUs numbers which deffers form PSUs numbers, which will be used for first wave households from EU-SILC 2021 onwards. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.1.1. Sampling Design | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type of sampling design A stratified two-stage sampling was used for the EU-SILC survey in Latvia. A systematic sampling with inclusion probabilities proportional to the unit size was carried out at the first stage and a simple random sampling was carried out at the second stage.
Stratification and sub-stratification criteria The stratification was made depending on the type of municipality (Riga, cities, towns, rural areas). The Classification of Administrative Territories and Territorial Units (CATTU) of Latvia was used for stratification.
Sample size and allocation criteria Actual sample size of EU-SILC 2023 - 8742 Achieved sample size of EU-SILC 2023 - 6091 Individual interviews (16+ persons) - 10496
Distribution of Achieved sample by DB075 (rotational group)
1
Distribution of 16+ household members (RB245=1) by DB075 (rotational group)
A non-proportional allocation was used to select SSUs. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.1.2. Sampling unit | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Population Census counting areas were used as primary sampling units (PSUs) at the first stage. In general, the entire territory of Latvia is covered in lists of Population Census counting areas. PSUs were selected by a systematic sampling with inclusion probabilities proportional to the population size (number of households) of PSUs. Dwellings were used as secondary sampling units (SSUs). A simple random sampling was used to select SSUs from the PSUs selected at the first sampling stage. In Latvia several households can be registered in one dwelling. All households and individuals living in the selected dwelling were included in the EU-SILC survey in the first wave. If none of persons enumerated in the Household List lived in the selected dwelling in the first wave, then it was possible to interview all households and individuals living in the selected dwelling. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.1.3. Sampling frame | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stratified, two stage sampling design with rotating panels is used for EU-SILC survey at CSB Latvia. At the first stage, primary sampling units (PSUs) are selected from the list of survey polygons with inclusion probabilities proportional to their size. Survey polygons are artificially created GIS polygons that divide the whole population of dwellings into approximately homogeneous areas by their size (approx. 300 dwellings for each survey polygon in cities and towns and approx. 150 dwellings otherwise). At the second stage, dwellings are used as secondary sampling units (SSUs). Since 2021 CSB Latvia produces and stores frames of dwellings and persons on monthly basis (beginning of corresponding month) in Social statistics database register (SSDN). New sample panel for the next year’ s EU-SILC sample is selected during November using information from corresponding month. Hence, the time lag between the last update of frames and beginning of the EU-SILC survey interviewing process is three months. To compensate the non-response and taking into account the design effect it was decided to select 8672 dwellings. In Latvia more than one household can live in one dwelling. Therefore, there were 8742 households living in the selected dwellings. In case if it was not possible to contact the selected dwelling (the dwelling cannot be located, it was not possible to contact any person living in the dwelling or the dwelling was inaccessible, etc.) it was assumed that one household lived in the selected dwelling. The response rates differ very much in each stratum. For this reason dwellings were not included with probabilities proportional to stratum size, but the initial sample size was proportional to population size of each stratum. The initial sample size was adjusted according to response rates in each stratum to get the final sample size in each stratum.
Renewal of sample: rotational groups Latvia applies a rotational panel where the sample is divided into four sub-samples. Each of them represents the whole population. Every year one rotation group rotates out (is dropped) and a new one is added to the sample. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.2. Frequency of data collection | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A sample distribution over time was not used because the EU-SILC survey is organized on an annual basis. The number of households successfully interviewed in each month of fieldwork is shown below in table below. Sample distribution over time (Longitudinal 2021 - 2023, Cross-sectional 2024)
Fieldwork First time CAWI data collection started in the 31th of January 2024 and lasted till the 20st of February 2024. CAPI/CATI data collection started in the 15th of March 2024 and lasted till the 30th of June 2024.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.3. Data collection | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mode of data collection
Description of collecting income variables
Checking of an administrative data sources: - additional data about respondents was included as preprint and respondent was able to correct it during interview; - income data of pensions and benefits from administrative registers was compared with same data of previous years (number of recipients and totals) - income data of employee cash or near cash income was compared with two different data sources - annual data and monthly data |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.4. Data validation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data validation was detected by logical checks and verification of received data, including verification online during the fieldwork. During the fieldwork distribution of the main variables has been compared between all interviewers. In case of significant difference of results, the interviewer was asked to peruse the methodology of the variable again. Compliance of the database with Eurostat requirements was checked with the SAS program. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.5. Data compilation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Data editing Data from the EU-SILC 2024 operation were compared with data from the previous EU-SILC operations, when it was possible. During the fieldwork distribution of the main variables has been compared between all interviewers. In case of significant difference of results, the interviewer was asked to peruse the methodology of the variable again. Compliance of the database with Eurostat requirements was checked with the SAS data checking program.
Weighting procedure For weighting procedure see Annex 5 - Weighting procedure.
Data estimation and imputation For data estimation and imputation see Annex 6 - Estimation and Imputation. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.5.1. Imputation - rate | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For data imputation see Annex 6 - Estimation and Imputation. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.5.2. Weighting procedure | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For weighting procedure see Annex 5 - Weighting procedure. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.5.3. Estimation and imputation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For data estimation and imputation see Annex 6 - Estimation and Imputation. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.6. Adjustment | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.6.1. Seasonal adjustment | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
Information on the quality of the rolling modules is available in the Annex 9 - Rolling module. |
|||
|
|||
|
|||
| Annex 1-National Questionnaire LV (LV) Annex 1-National Questionnaire LV (EN) Annex 1-National Questionnaire LV (RU) Annex 2-Item_non_response Annex 3-Sampling_errors Annex 4-Data_collection Annex 5-Weighting procedure Annex 6-Estimation and Imputation Annex 7-Coherence Annex 7-Coherence_15.3-15.3.2 Annex 8-Breaks in series Annex 9-Rolling module Annex A-Content tables |
|||