|
![]() |
| For any question on data and metadata, please contact: Eurostat user support |
|
|||
| 1.1. Contact organisation | Czech Statistical Office |
||
| 1.2. Contact organisation unit | Social Surveys Unit Household Surveys Department |
||
| 1.5. Contact mail address | Na padesatem 81, 100 82 Praha 10, Czech Republic |
||
|
|||
| 2.1. Metadata last certified | 31 March 2024 |
||
| 2.2. Metadata last posted | 31 March 2024 |
||
| 2.3. Metadata last update | 31 March 2024 |
||
|
||||||
| 3.1. Data description | ||||||
The European Union Statistics on Income and Living Conditions (EU-SILC) is a survey-based instrument aiming at collecting timely and comparable cross-sectional and longitudinal multidimensional microdata on income, poverty, social exclusion and living conditions. In addition, it collects module variables every three years, six years or ad-hoc new policy needs modules. The EU-SILC instrument provides two types of data:
Social exclusion and housing condition information is collected mainly at household level while labour, education and health information is obtained for persons aged 16 and over. The core of the instrument is income information at very detailed component level and mainly collected at personal level. |
||||||
| 3.2. Classification system | ||||||
For more details on the classification used please, see EU Vocabularies, Eurostat's metadata server or CIRCABC. |
||||||
| 3.3. Coverage - sector | ||||||
Data refer to all private households and individuals living in the private households in the national territory at the time of data collection. The EU-SILC survey is a key instrument for the European Semester and the European Pillar of Social Rights, providing information on income distribution, poverty and social exclusion, as well as various related living conditions and poverty EU policies, such as on child poverty, access to health care and other services, housing, over indebtedness and quality of life. It is also the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates. |
||||||
| 3.4. Statistical concepts and definitions | ||||||
Statistical concepts and definitions for EU-SILC are specified in Regulation (EU) 2019/1700, Commission Implementing Regulation (EU) 2019/2181, and Commission Implementing Regulation (EU) 2019/2242. Additional information is available in the EU statistics on income and living conditions (EU-SILC) methodology and in the methodological guidelines and description of EU-SILC target variables (see CIRCABC). Further details are provided in items 5, 15.1.1.1, 15.2.2 and 18.3. |
||||||
| 3.5. Statistical unit | ||||||
Statistical units are private households and all persons living in these households who have usual residence in the Member State. Annex II of the Commission implementing regulation (EU) 2019/2242 defines specific statistical units per variable and specifies the, content of the quality reports on the organization of a sample survey in the income and living conditions domain pursuant to Regulation (EU) 2019/1700 of the European Parliament and of the Council. |
||||||
| 3.6. Statistical population | ||||||
The target population is private households and all persons composing these households having their usual residence in the Member State. Private household means a person living alone or a group of persons who live together, providing oneself or themselves with the essentials of living. |
||||||
| 3.6.1. Reference population | ||||||
Definitions of reference population, household and household membership (specify any deviation from Eurostat definition in your country)
|
||||||
| 3.6.2. Population not covered by the data collection | ||||||
The sub-populations that are not covered by the data collection includes: those who moved out of the country’s territory; or those with no usual residence; or those living in institutions or who have moved to an institution compared to the previous year. |
||||||
| 3.7. Reference area | ||||||
The survey was carried out on the whole territory of the Czech Republic, none region was excluded. |
||||||
| 3.8. Coverage - Time | ||||||
Annual data, reference year 2024. Data are available for the survey years 2005-2024. |
||||||
| 3.9. Base period | ||||||
Not applicable. |
||||||
|
|||
The data involves several units of measure depending upon the variables. Income variables are transmitted to Eurostat in national currency. For more information, see methodological guidelines and description of EU-SILC target variables available on CIRCABC |
|||
|
||||||||
Description of reference period used for incomes
|
||||||||
|
|||
| 6.1. Institutional Mandate - legal acts and other agreements | |||
Regulation (EU) 2019/1700 was publish in OJ on 10 October 2019, establishing a common framework for European statistics relating to persons and households, based on data at individual level collected from samples (IESS). The Annex to the Commission implementing regulation (EU) 2019/2180 of 16 December 2019 specifies the detailed arrangements and content for the quality reports pursuant to Regulation (EU) 2019/1700 of the European Parliament and of the Council and Regulation (EU) 2019/2242. |
|||
| 6.2. Institutional Mandate - data sharing | |||
Confidential microdata are not disclosed by Eurostat. Access to confidential microdata for scientific purposes may be granted on the basis of Commission Regulation 557/2013 and Regulation 223/2009 of the European Parliament and the Council on European statistics. |
|||
|
|||
| 7.1. Confidentiality - policy | |||
Czech Statistical Office follows European legislation concerning statistical confidentality. |
|||
| 7.2. Confidentiality - data treatment | |||
Czech Statistical Office protects data according to European legislation. Anonymization at the national level means, for example, that some results are eligible to be used at NUTS 2 level as maximum. |
|||
|
|||
| 8.1. Release calendar | |||
Data are being published in the first quarter of the year following the survey year. |
|||
| 8.2. Release calendar access | |||
Please refer to the Release calendar - Eurostat (europa.eu) publicly available on the Eurostat’s website. |
|||
| 8.3. Release policy - user access | |||
In line with the Community legal framework and the European Statistics Code of Practice, Eurostat disseminates European statistics on Eurostat's website (see section 10 - 'Accessibility and clarity'), respecting professional independence and in an objective, professional and transparent manner in which all users are treated equitably. The detailed arrangements are governed by the Eurostat protocol on impartial access to Eurostat data for users. Additional information about microdata access is available in Statistics on Income and Living Conditions - Access to microdata. |
|||
|
|||
Annual |
|||
|
|||
| 10.1. Dissemination format - News release | |||
Časopis Statistika&My | Statistika&My (statistikaamy.cz) - every year in June there are articles from SILC results. |
|||
| 10.2. Dissemination format - Publications | |||
C ZSO. 2025. Household Income and Living Conditions - 2024. Household Income and Living Conditions - 2024 | CZSO |
|||
| 10.3. Dissemination format - online database | |||
Public database from CZSO - Public database VDB (czso.cz) |
|||
| 10.3.1. Data tables - consultations | |||
Not applicable. |
|||
| 10.4. Dissemination format - microdata access | |||
Microdata are accessible in national version, more info at infoservis@czso.cz. Microdata are available for universities and research institutions for scientific reasons. |
|||
| 10.5. Dissemination format - other | |||
Microdata are accessible in national version, more info at infoservis@czso.cz. Microdata are available for universities and research institutions for scientific reasons. |
|||
| 10.5.1. Metadata - consultations | |||
Not applicable. |
|||
| 10.6. Documentation on methodology | |||
CZSO. 2025. Methodology. Household Income and Living Conditions - 2024 (Household Income and Living Conditions - 2024 - Methodology | CZSO) |
|||
| 10.6.1. Metadata completeness - rate | |||
Metadata were published just once, there wasn't any revision. All the required concepts of the SIMS are provided. |
|||
| 10.7. Quality management - documentation | |||
Not applicable. |
|||
|
|||
| 11.1. Quality assurance | |||
Czech Statistical Office fulfills the commitment to quality as the principles of the European Statistics Code of Practice, which is being monitored regularly by means of a self-assesment and also by external assesment (peer reviews). |
|||
| 11.2. Quality management - assessment | |||
Quality of data is being assessed by the 95% confidence intervals estimates of totals for households and individuals, also by response rate, comparison with macronumbers or variability of weights. |
|||
|
|||
| 12.1. Relevance - User Needs | |||
The main users of EU-SILC statistical data are policy makers, research institutes (e.g. CERGE_EI, Institute of Sociology) and students. |
|||
| 12.2. Relevance - User Satisfaction | |||
Eurostat carried out an online general User Satisfaction Survey (USS) in the period between April and July 2019 to obtain a better knowledge about users, considering their needs and satisfaction with the services provided by Eurostat. The survey has shown that EU-SILC is of very high relevance for users. For the majority, both aggregates and micro-data were important or essential in their work irrespective of the purpose of their use. The use of the ad-hoc modules was less widespread than the use of the nucleus variables. Nevertheless, there was high interest to repeat these modules in order to have the possibility of comparing data over time. Users emphasized their strong need for more detailed micro-data, which is currently not possible. Under the new legal framework implemented from 2021, the NUTS 2 division will be available for the main indicators. Finally, users were satisfied with overall quality of the service delivered by Eurostat, which encompasses data quality and the supporting service provided to them. For more information, please consult the User Satisfaction Survey. |
|||
| 12.3. Completeness | |||
All variables according to the Regulation are being transmitted. Not collected variables: Income received by people aged under 16 (HY110G, HY110N) - In the Czech Republic it is not possible for children to have an employment contract. In very rare cases when child has some earnings, the earnings are included in the parent's income. Optional variables not collected: HY030G: Imputed rent (OPTIONAL) RL080: Remote education (OPTIONAL) HI130G: Interest expenses [not including interest expenses for purchasing the main dwelling] (OPTIONAL) HI140G: Household debts (OPTIONAL) |
|||
| 12.3.1. Data completeness - rate | |||
Not requested by Reg. 2019/2180. |
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.1. Accuracy - overall | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Reg. (EU) 2019/1700 Annex II, precision requirements for all data sets are expressed in standard errors and are defined as continuous functions of the actual estimates and of the size of the statistical population in a country or in a NUTS 2 region. For the income and living conditions domain, the estimated standard errors of the following indicators are examined according to certain parameters set:
Further information is provided in section 13.2 Sampling error. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.2. Sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
EU-SILC is a complex survey involving different sampling designs in different countries. In order to harmonize and make sampling errors comparable among countries, Eurostat (with the substantial methodological support of Net-SILC2) has chosen to apply the "linearization" technique coupled with the “ultimate cluster” approach for variance estimation. Linearization is a technique based on the use of linear approximation to reduce non-linear statistics to a linear form, justified by asymptotic properties of the estimator. This technique can encompass a wide variety of indicators, including EU-SILC indicators. The "ultimate cluster" approach is a simplification consisting in calculating the variance taking into account only variation among Primary Sampling Unit (PSU) totals. This method requires first stage sampling fractions to be small which is nearly always the case. This method allows a great flexibility and simplifies the calculations of variances. It can also be generalized to calculate variance of the differences of one year to another. The main hypothesis on which the calculations are based is that the "at risk of poverty" threshold is fixed. According to the characteristics and availability of data for different countries, we have used different variables to specify strata and cluster information. In particular, countries have been split into 3 groups:
Annexes: CZ_2024_Annex 3-Sampling_errors_13.2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.2.1. Sampling error - indicators | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The concept of accuracy refers to the precision of estimates computed from a sample rather than from the entire population. Accuracy depends on sample size, sampling design effects and structure of the population under study. In addition to that, sampling errors and non-sampling errors need to be taken into account. Sampling error refers to the variability that occurs at random because of the use of a sample rather than a census and non-sampling errors are errors that occur in all phases of the data collection and production process. Annexes: CZ_2024_Annex A EU-SILC - content tables |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3. Non-sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-sampling errors are basically of 4 types:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1. Coverage error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage errors include over-coverage, under-coverage, and misclassification:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1.1. Over-coverage - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage error
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1.2. Common units - proportion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not requested by Reg. 2019/2180 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.2. Measurement error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Measurement error for cross-sectional data Cross-sectional data
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3. Non response error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-response errors are errors due to an unsuccessful attempt to obtain the desired information from an eligible unit. Two main types of non-response errors are considered: 1) Unit non-response which refers to the absence of information of the whole units (households and/or persons) selected into the sample. According to Annex VI of the Reg.(EU) 2019/2242
NRh=(1-(Ra * Rh)) * 100 Where Ra is the address contact rate defined as: Ra= Number of address/selected person (including phone, mail if applicable) successfully contacted/Number of valid addresses/selected person (including phone, mail if applicable) selected and Rh is the proportion of complete household interviews accepted for the database Rh=Number of household interviews completed and accepted for database/Number of eligible households at contacted addresses (including phone, mail if applicable) • Individual non-response rates (NRp) is computed as follows: NRp=(1-(Rp)) * 100 Where Rp is the proportion of complete personal interviews within the households accepted for the database Rp= Number of personal interview completed/Number of eligible individuals in the households whose interviews were completed and accepted for the database • Overall individual non-response rates (*NRp) is computed as follows: *NRp=(1-(Ra * Rh * Rp)) * 100 For those Members States where a sample of persons rather than a sample of households (addresses, phones, mails etc.) was selected, the individual non-response rates will be calculated for ‘the selected respondent. 2) Item non-response which refers to the situation where a sample unit has been successfully enumerated, but not all the required information has been obtained.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.1. Unit non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit non-response rate for cross-sectional
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.2. Item non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The computation of item non-response is essential to fulfil the precision requirements. Item non-response rate is provided for the main income variables both at household and personal level. Item non-response which refers to the situation where a sample unit has been successfully enumerated, but not all the required information has been obtained. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.2.1. Item non-response rate by indicator | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Annex 2 - Item non-response Annexes: CZ_2024_Annex 2-Item_non_response_13.3.3.2.1 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.4. Processing error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description of data entry, coding controls and the editing system
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.5. Model assumption error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
| 14.1. Timeliness | |||
Annex to Reg. (EU) 2019/1700: Information on:
Please provide the link in national legislation, calendar of publication or other relevant information: Household Income and Living Conditions - 2024 | Products |
|||
| 14.1.1. Time lag - first result | |||
National results were disseminated 6th March 2025 Household Income and Living Conditions - 2024 | Products |
|||
| 14.1.2. Time lag - final result | |||
National results were disseminated 6th March 2025 Household Income and Living Conditions - 2024 | Products |
|||
| 14.2. Punctuality | |||
The data was delivered on time according to the Regulation. |
|||
| 14.2.1. Punctuality - delivery and publication | |||
The data was released on the time they were scheduled for release. |
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.1. Comparability - geographical | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In the Czechia EU-SILC results are eligible to use at NUTS 2 level as maximum. But not all the results, just some. Detailed classifications are for NUTS 2 ineligible. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.1.1. Asymmetry for mirror flow statistics - coefficient | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2. Comparability - over time | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Annex 8 - Breaks in series. Annexes: CZ_2024_Annex 8-Breaks in series |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2.1. Length of comparable time series | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No breaks in series in last years. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2.2. Comparability and deviation from definition for each income variable | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Comparability and deviation from definition for each income variable
F= Fully comparable; L= Largely comparable; P= Partly comparable and NC= Not collected. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3. Coherence - cross domain | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The coherence of two or more statistical outputs refers to the degree to which the statistical processes, by which they were generated, used the same concepts and harmonised methods. A comparison with external sources for all income target variables and the number of persons who receive income from each ‘income component’ will be provided, where the Member States concerned consider such external data to be sufficiently reliable. Annexes: CZ_2024_Annex 7-Coherence_15.3-15.3.2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3.1. Coherence - sub annual and annual statistics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3.2. Coherence - National Accounts | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
See Annex 7 - Coherence. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.4. Coherence - internal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
National Accounts provided only preliminary data. The differences imply from the different approach in collecting of the data. Methodology of national accounts (czso.cz). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
Mean (average) interview duration per household = 59.2 minutes. Mean (average) interview duration per person = 18.4 minutes. |
|||
|
|||
| 17.1. Data revision - policy | |||
Not applicable. |
|||
| 17.2. Data revision - practice | |||
Not applicable. |
|||
| 17.2.1. Data revision - average size | |||
Not applicable. |
|||
|
||||||||||||||||||||||||||
Detailed information concerning sampling frame, sampling design, sampling units, sampling size, weightings and mode of data collection can be found in this section (please see below). Such information is mainly used for the computation of the accuracy measures. |
||||||||||||||||||||||||||
| 18.1. Source data | ||||||||||||||||||||||||||
The source of EU_SILC data is fully interview. |
||||||||||||||||||||||||||
| 18.1.1. Sampling Design | ||||||||||||||||||||||||||
Type of sampling design The survey was carried out on the whole territory of the Czech Republic. The sample size of newly selected dwelling (first wave in 2024) was 4 750 dwellings. The sample was obtained by applying a two-stage probability sampling scheme to each of the 14 administrative regions (NUTS3 regions) independently. The total number of dwellings selected in each region was proportional to the region's size. At the first sampling stage small geographical areas (CEUs - census enumeration units or districts) were selected by probability sampling. These CEUs served as a basis for the second-stage selection (a sample of 10 dwellings was drawn from each CEU). Before selecting the sample of dwellings, the sampling frame had to be adjusted to enable incorporation of small census enumeration units into the sampling process to reach the required full geographical coverage of the national territory. Small CEUs (with less than 20 inhabited dwellings) were merged with adjacent CEUs and the resulting larger CEUs entered the first stage of sampling. Therefore, in some cases, the 10 chosen dwellings could belong to two or more (in exceptional cases) CEUs. |
||||||||||||||||||||||||||
| 18.1.2. Sampling unit | ||||||||||||||||||||||||||
Census Enumeration Districts (CEUs) constitute the first-stage sampling units. CEUs are small geographical areas covering the whole territory of the country. They are used as enumeration districts during the census, but their use is more general. Continuously updated geographical register is maintained by the CZSO, where these units form the basic geographical layer, on which subsequent aggregations are based. This register is the base for an integrated hierarchical geographical information system and is the base for databases of regional indicators and statistical data. For each CEU, a list of all buildings is maintained in the register. This list is updated from administrative data of the construction authorities (new buildings’, flats’ or commercial premises’ acceptation protocols, demolitions’ protocols). For each building, the number of dwelling units is recorded. |
||||||||||||||||||||||||||
| 18.1.3. Sampling frame | ||||||||||||||||||||||||||
CEUs vary considerably in size measured in number of dwelling units in them. Before drawing of the first stage sample, the sampling frame of CEUs had to be adjusted in two ways:
In the second stage, 10 dwellings were sampled in each sampled CEU. CZSO’s regional fieldwork units (each covering one of the 14 NUTS3 administrative regions) received the list of selected dwellings (address + identification number of the flat in buildings with more than one flat). Before the actual fieldwork, the regional fieldwork units’ staff carried out identification of the selected dwellings and filled in the contact names on the list of selected dwellings for interviewers. The ultimate sampling unit was the dwelling, i.e. all persons with usual residence in that dwelling (their only place of residence or their main place of residence, according to the EU-SILC definition) were included in the survey. This includes also foreign nationals and subtenants living in the selected dwelling. The household definition is based on the sharing of expenditures concept – based on the declaration of the persons in sampled dwelling unit that they permanently live together and finance together expenditures to cover their needs. |
||||||||||||||||||||||||||
| 18.2. Frequency of data collection | ||||||||||||||||||||||||||
Fieldwork Data collection lasted from 03 February to 23 June 2024.
Renewal of sample: rotational groups The survey uses the integrated four-year rotational panel design. Since the 2005 operation was the first year of the survey, there was only one sample replication and no rotation was applied. The rotational scheme with four replications was begun in 2008. In 2009 first rotational panel was ended and the household from the 2005 operation was dropped from the sample. In 2024, households from the 2020 operation were dropped from the sample. Each next year, one sub-sample rotates out and a new one is drawn and substituted for. The longitudinal dataset contains households sampled from 2021 (first interviews), 2022 (second interviews), 2023 (third interviews) and 2024 (fourth interviews).
Longitudinal sample: 2021 - 2024 2022 - 2024 2023 - 2024 |
||||||||||||||||||||||||||
| 18.3. Data collection | ||||||||||||||||||||||||||
Mode of data collection
Description of collecting income variables
Annexes: CZ_2024_Annex 4-Data_collection_18.3 CZ_2024_Annex 1 - questionnaire |
||||||||||||||||||||||||||
| 18.4. Data validation | ||||||||||||||||||||||||||
Data control The raw data files are a subject to initial centrally performed checks – checking the integrity of identification numbers, consistency with the sample, completeness of the questionnaire sets for all dwellings. Central staff is responsible for further checking of the data, using a special software application containing a set of logical controls above all data, controls of derived variables. The controls contain consistency issues through all waves. Three kinds of errors are distinguished: critical errors (must be corrected, limited to a small set of key consistency issues), errors to verify (must be commented, involving contacting the interviewer in charge of that household, if additional information is necessary) and informative flags (extraordinary or unusual situations, which should be looked at). |
||||||||||||||||||||||||||
| 18.5. Data compilation | ||||||||||||||||||||||||||
Imputation procedure used Situation of missing income data for one of the household members was rare (10 cases) in 2024. For these persons, the income was imputed by the simple hot-deck method (using a randomly chosen person with similar characteristics from another household). Access to administrative register information on individual level is not possible. We use our developed model for gross/net conversion, which was developed with regard to the Czech tax laws. The item non-response of non-income variables is rare, so model approach development is unnecessary. We use the hot-deck method for new households and information from the previous year for households in subsequent waves of the survey. The amount of CZK 3000 was added to income in kind of an employee for each month of using a company car. |
||||||||||||||||||||||||||
| 18.5.1. Imputation - rate | ||||||||||||||||||||||||||
Imputation is the process used to assign replacement values for missing, invalid or inconsistent data that have failed edits. This includes automatic and manual imputations; it excludes follow-up with respondents and the corresponding corrections (if applicable). The unweighted imputation rate for a variable is the ratio of the number of imputed values to the total number of values requested for the variable. |
||||||||||||||||||||||||||
| 18.5.2. Weighting methods | ||||||||||||||||||||||||||
See Annex 5. Annexes: CZ_2024_Annex 5-Weighting procedure |
||||||||||||||||||||||||||
| 18.5.3. Estimation and imputation | ||||||||||||||||||||||||||
See Annex 6. Annexes: CZ_2024_Annex 6-Estimation and Imputation (Country level description) |
||||||||||||||||||||||||||
| 18.6. Adjustment | ||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||
| 18.6.1. Seasonal adjustment | ||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||
|
|||
See Annex 9 - Rolling module
A note from the survey: PC360: Feeling discriminated in public spaces (shop, café, restaurant, leisure facilities etc.) - Apart from defined possibilities, we added possibility "I have not been to these places in the last year", because our pretesting of the questionnaire showed this possibility as needed. And in the real survey more than 600 persons selected this possibility. We suggest to add it into Doc065. Annexes: CZ_2024_Annex 9-Rolling module |
|||
|
|||
|
|||