Back to top
National reference metadata

Belgium

Reference metadata describe statistical concepts and methodologies used for the collection and generation of data. They provide information on data quality and, since they are strongly content-oriented, assist users in interpreting the data. Reference metadata, unlike structural metadata, can be decoupled from the data.

For more information, please consult our metadata website section.

Close

Government budget allocations for R&D (GBARD) (gba)

National Reference Metadata in Single Integrated Metadata Structure (SIMS)

Compiling agency: Federal Public Planning Service Science Policy

Need help? Contact the Eurostat user support


Short metadata
Full metadata

Statistics on Government Budget Allocations for R&D (GBARD) measure government support to research and development (R&D) activities, and thereby provide information about the priority governments give to different public R&D funding activities. This type of funder-based approach for reporting R&D involves identifying all the budget items that may support R&D activities and measuring or estimating their R&D content.

Main concepts and definitions used for the production of R&D statistics are given by the OECD (2015), Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, The Measurement of Scientific, Technological and Innovation Activities (FM 2015, Chapter 12), which is the internationally recognised standard methodology for collecting R&D statistics and by Eurostat’s European Business Statistics Methodological Manual on R&D Statistics (EBS Methodological Manual on R&D Statistics).

Since the beginning of 2021, the collection of R&D statistics is based on Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020.

The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail (Commission Implementing Regulation (EU) 2020/1197 of 30 July 2020 laying down technical specifications and arrangements pursuant to Regulation (EU) 2019/2152 of the European Parliament and of the Council on European business statistics repealing 10 legal acts in the field of business statistics (europa.eu)).

Statistics on science, technology and innovation were collected until the end of 2020 based on Commission Implementing Regulation (EU) No 2012/995 concerning the production and development of Community statistics on science and technology.

27 October 2023

Not requested.

N/A

See below.

Not requested.

a) Calendar year:

2021

b) Fiscal year:

    Start month:

    End month:

Accuracy in the statistical sense denotes the closeness of computations or estimates to the exact or true values. Statistics are not equal with the true values because of variability (the statistics change from implementation to implementation of the survey due to random effects) and bias (the average of the possible values of the statistics from implementation to implementation is not equal to the true value due to systematic effects).

 

Several types of statistical errors occur during the survey process. The following typology of errors has been adopted:

1. Sampling errors. These only affect sample surveys. They are due to the fact that only a subset of the population, usually randomly selected, is enumerated.

2. Non-sampling errors. Non-sampling errors affect sample surveys and complete enumerations alike and comprise:

a) Coverage errors,

b) Measurement errors,

c) Non response errors and

d) Processing errors.

 

Model assumption errors should be treated under the heading of the respective error they are trying to reduce.

Not requested.

See below.

a)       Provisional data: All budget lines of the different Belgian authorities that contain an element of R&D

 

b)      Final data: All budget lines of the different Belgian authorities that contain an element of R&D

 

c)       General University Funds (GUF): see 18.3.2.

 

 

Yearly

Timeliness and punctuality refer to time and dates, but in a different manner: the timeliness of statistics reflects the length of time between their availability and the event or phenomenon they describe. Punctuality refers to the time lag between the release date of the data and the target date on which they should have been delivered, with reference to dates announced in the official release calendar.

See below.

See below.