|
![]() |
| For any question on data and metadata, please contact: Eurostat user support |
|
|||
| 1.1. Contact organisation | State Data Agency. Statistics Lithuania |
||
| 1.2. Contact organisation unit | Living Standard and Employment Statistics Division |
||
| 1.5. Contact mail address | 29 Gedimino Ave., LT-01500, Vilnius, Lithuania |
||
|
|||
| 2.1. Metadata last certified | 30 May 2025 |
||
| 2.2. Metadata last posted | 30 May 2025 |
||
| 2.3. Metadata last update | 30 May 2025 |
||
|
||||||
| 3.1. Data description | ||||||
The European Union Statistics on Income and Living Conditions (EU-SILC) is a survey-based instrument aiming at collecting timely and comparable cross-sectional and longitudinal multidimensional microdata on income, poverty, social exclusion and living conditions. In addition, it collects module variables every three years, six years or ad-hoc new policy needs modules. The EU-SILC instrument provides two types of data:
Social exclusion and housing condition information is collected mainly at household level while labour, education and health information is obtained for persons aged 16 and over. The core of the instrument is income information at very detailed component level and mainly collected at personal level. |
||||||
| 3.2. Classification system | ||||||
For more details on the classification used please, see EU Vocabularies, Eurostat's metadata server or CIRCABC |
||||||
| 3.3. Coverage - sector | ||||||
Data refer to all private households and individuals living in the private households in the national territory at the time of data collection. The EU-SILC survey is a key instrument for the European Semester and the European Pillar of Social Rights, providing information on income distribution, poverty and social exclusion, as well as various related living conditions and poverty EU policies, such as on child poverty, access to health care and other services, housing, over indebtedness and quality of life. It is also the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates. |
||||||
| 3.4. Statistical concepts and definitions | ||||||
Statistical concepts and definitions for EU-SILC are specified in Regulation (EU) 2019/1700, Commission Implementing Regulation (EU) 2019/2181, and Commission Implementing Regulation (EU) 2019/2242. Additional information is available in the EU statistics on income and living conditions (EU-SILC) methodology and in the methodological guidelines and description of EU-SILC target variables (see CIRCABC). Further details are provided in items 5, 15.1.1.1, 15.2.2 and 18.3. |
||||||
| 3.5. Statistical unit | ||||||
Statistical units are private households and all persons living in these households who have usual residence in Lithuania. Annex II of the Commission implementing regulation (EU) 2019/2242 defines specific statistical units per variable and specifies the content of the quality reports on the organization of a sample survey in the income and living conditions domain pursuant to Regulation (EU) 2019/1700 of the European Parliament and of the Council. |
||||||
| 3.6. Statistical population | ||||||
The target population is private households and all persons composing these households having their usual residence in Lithuania. Private household means a person living alone or a group of persons who live together, providing oneself or themselves with the essentials of living. |
||||||
| 3.6.1. Reference population | ||||||
Definitions of reference population, household and household membership
|
||||||
| 3.6.2. Population not covered by the data collection | ||||||
The sub-populations that are not covered by the data collection includes: those who moved out of the country’s territory; or those with no usual residence; or those living in institutions or who have moved to an institution compared to the previous year. |
||||||
| 3.7. Reference area | ||||||
Regions, country. |
||||||
| 3.8. Coverage - Time | ||||||
Yearly. Since 2005 |
||||||
| 3.9. Base period | ||||||
Not applicable. |
||||||
|
|||
The data involves several units of measure depending upon the variables. Income variables are transmitted to Eurostat in national currency. For more information, see methodological guidelines and description of EU-SILC target variables available on CIRCABC |
|||
|
||||||||
Description of reference period used for incomes
|
||||||||
|
|||
| 6.1. Institutional Mandate - legal acts and other agreements | |||
Regulation (EU) 2019/1700 was publish in OJ on 10 October 2019, establishing a common framework for European statistics relating to persons and households, based on data at individual level collected from samples (IESS). The Annex to the Commission implementing regulation (EU) 2019/2180 of 16 December 2019 specifies the detailed arrangements and content for the quality reports pursuant to Regulation (EU) 2019/1700 of the European Parliament and of the Council and Regulation (EU) 2019/2242. |
|||
| 6.2. Institutional Mandate - data sharing | |||
Confidential microdata are not disclosed by Eurostat. Access to confidential microdata for scientific purposes may be granted on the basis of Commission Regulation 557/2013 and Regulation 223/2009 of the European Parliament and the Council on European statistics. |
|||
|
|||
| 7.1. Confidentiality - policy | |||
In the process of statistical data collection, processing and analysis and dissemination of statistical information, Statistics Lithuania fully guarantees confidentiality of the data submitted by respondents (households, enterprises, institutions, organisations and other statistical units), as defined in the Confidentiality policy guidelines of the State Data Agency. |
|||
| 7.2. Confidentiality - data treatment | |||
Statistical Disclosure Control Manual, approved by Order No DĮ-29 of 19 January 2024 of the Director General of Statistics Lithuania; The State Data Governance Information System Data Security Regulations and Rules for the Secure Management of Electronic Information in the State Data Governance Information System, approved by Order No DĮ-163 of 20 August 2024 of the Director General of the State Data Agency. |
|||
|
|||
| 8.1. Release calendar | |||
Data release calendar can be found in the official statistical website. |
|||
| 8.2. Release calendar access | |||
Please refer to the Release calendar - Eurostat (europa.eu) publicly available on the Eurostat’s website. |
|||
| 8.3. Release policy - user access | |||
In line with the Community legal framework and the European Statistics Code of Practice, Eurostat disseminates European statistics on Eurostat's website (see section 10 - 'Accessibility and clarity'), respecting professional independence and in an objective, professional and transparent manner in which all users are treated equitably. The detailed arrangements are governed by the Eurostat protocol on impartial access to Eurostat data for users. Additional information about microdata access is available in Statistics on Income and Living Conditions - Access to microdata - Eurostat (europa.eu). |
|||
|
|||
Annual |
|||
|
|||
| 10.1. Dissemination format - News release | |||
Data release calendar can be found in the official statistical website. |
|||
| 10.2. Dissemination format - Publications | |||
More information can be found in the official statistical website. |
|||
| 10.3. Dissemination format - online database | |||
More information can be found in the official statistical website. |
|||
| 10.3.1. Data tables - consultations | |||
Optional. |
|||
| 10.4. Dissemination format - microdata access | |||
More information can be found in the open dataset dedicated website. |
|||
| 10.5. Dissemination format - other | |||
More information can be found in the official statistical website. |
|||
| 10.5.1. Metadata - consultations | |||
Optional |
|||
| 10.6. Documentation on methodology | |||
More information can be found in the official statistical website. |
|||
| 10.6.1. Metadata completeness - rate | |||
Optional |
|||
| 10.7. Quality management - documentation | |||
More information can be found in the official statistical website. |
|||
|
|||
| 11.1. Quality assurance | |||
The quality of statistical information and its production process is ensured by the provisions of the European Statistics Code of Practice and ESS Quality Assurance Framework. In 2007, a quality management system, conforming to the requirements of the international quality management system standard ISO 9001, was introduced at Statistics Lithuania. The main trends in activity of Statistics Lithuania aimed at quality management and continuous development in the institution are established in the Quality Policy. Monitoring of the quality indicators of statistical processes and their results and self-evaluation of statistical survey managers is regularly carried out in order to identify the areas which need improvement and to promptly eliminate the shortcomings. |
|||
| 11.2. Quality management - assessment | |||
Quality of data is in compliance with the requirements of accuracy, timeliness and punctuality, coherence and comparability. According to the yearly updated Plan for Measuring the Indicators of Activities of The State Data Agency, results of the quality indicators of the statistical Income and Living Conditions Survey are presented in fields 13–15 of this metainformation inventory. The quality of the information obtained is analysed. Additional statistical quality checks are performed at the macro level. The estimates of statistical indicators are compared with the previous period, other statistical information and data from administrative sources. |
|||
|
|||
| 12.1. Relevance - User Needs | |||
The main users of EU-SILC statistical data are policy makers, research institutes, media, and students. |
|||
| 12.2. Relevance - User Satisfaction | |||
Eurostat carried out an online general User Satisfaction Survey (USS) in the period between April and July 2019 to obtain a better knowledge about users, considering their needs and satisfaction with the services provided by Eurostat. The survey has shown that EU-SILC is of very high relevance for users. For the majority, both aggregates and micro-data were important or essential in their work irrespective of the purpose of their use. The use of the ad-hoc modules was less widespread than the use of the nucleus variables. Nevertheless, there was high interest to repeat these modules in order to have the possibility of comparing data over time. Users emphasized their strong need for more detailed micro-data, which is currently not possible. Under the new legal framework implemented from 2021, the NUTS 2 division will be available for the main indicators. Finally, users were satisfied with overall quality of the service delivered by Eurostat, which encompasses data quality and the supporting service provided to them. For more information, please consult the User Satisfaction Survey. |
|||
| 12.3. Completeness | |||
All required variables are transmitted to Eurostat according to the Regulation. HY145N is collected under HY140(G,N) seeing the most of the income components are reported gross. HY121(G,N) collected under HY120(G,N). Voluntary module on impact of covid-19 has been not collected. |
|||
| 12.3.1. Data completeness - rate | |||
optional |
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.1. Accuracy - overall | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Reg. (EU) 2019/1700 Annex II, precision requirements for all data sets are expressed in standard errors and are defined as continuous functions of the actual estimates and of the size of the statistical population in a country or in a NUTS 2 region. For the income and living conditions domain, the estimated standard errors of the following indicators are examined according to certain parameters set:
Further information is provided in section 13.2 Sampling error. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.2. Sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
EU-SILC is a complex survey involving different sampling designs in different countries. In order to harmonize and make sampling errors comparable among countries, Eurostat (with the substantial methodological support of Net-SILC2) has chosen to apply the "linearization" technique coupled with the “ultimate cluster” approach for variance estimation. Linearization is a technique based on the use of linear approximation to reduce non-linear statistics to a linear form, justified by asymptotic properties of the estimator. This technique can encompass a wide variety of indicators, including EU-SILC indicators. The "ultimate cluster" approach is a simplification consisting in calculating the variance taking into account only variation among Primary Sampling Unit (PSU) totals. This method requires first stage sampling fractions to be small which is nearly always the case. This method allows a great flexibility and simplifies the calculations of variances. It can also be generalized to calculate variance of the differences of one year to another. The main hypothesis on which the calculations are based is that the "at risk of poverty" threshold is fixed. According to the characteristics and availability of data for different countries, we have used different variables to specify strata and cluster information. In particular, countries have been split into 3 groups: 1) BE, BG, CZ, IE, EL, ES, FR, HR, IT, LV, HU, PL, PT, RO, SI, UK and AL, whose sampling design could be assimilated to a two-stage stratified type we used DB050 (primary strata) for strata specification and DB060 (Primary Sampling Unit) for cluster specification; 2) DK, DE, EE, CY, LT, LU, NL, AT, SK, FI, CH whose sampling design could be assimilated to a one stage stratified type we used DB050 for strata specification and DB030 (household ID) for cluster specification; 3) MT, SE, IS, NO, whose sampling design could be assimilated to a simple random sampling, we used DB030 for cluster specification and no strata. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.2.1. Sampling error - indicators | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The concept of accuracy refers to the precision of estimates computed from a sample rather than from the entire population. Accuracy depends on sample size, sampling design effects and structure of the population under study. In addition to that, sampling errors and non-sampling errors need to be taken into account. Sampling error refers to the variability that occurs at random because of the use of a sample rather than a census and non-sampling errors are errors that occur in all phases of the data collection and production process. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3. Non-sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-sampling errors are basically of 4 types:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1. Coverage error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage errors include over-coverage, under-coverage and misclassification:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1.1. Over-coverage - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No coverage errors were detected
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1.2. Common units - proportion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
optional |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.2. Measurement error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Proxy interview rate = 24.9 per cent Measurement error for cross-sectional data Cross-sectional data
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3. Non response error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-response errors are errors due to an unsuccessful attempt to obtain the desired information from an eligible unit. Two main types of non-response errors are considered: 1) Unit non-response which refers to the absence of information of the whole units (households and/or persons) selected into the sample. According to Annex VI of the Reg.(EU) 2019/2242
NRh=(1-(Ra * Rh)) * 100 Where Ra is the address contact rate defined as: Ra= Number of address/selected person (including phone, mail if applicable) successfully contacted/Number of valid addresses/selected person (including phone, mail if applicable) selected and Rh is the proportion of complete household interviews accepted for the database Rh=Number of household interviews completed and accepted for database/Number of eligible households at contacted addresses (including phone, mail if applicable) • Individual non-response rates (NRp) is computed as follows: NRp=(1-(Rp)) * 100 Where Rp is the proportion of complete personal interviews within the households accepted for the database Rp= Number of personal interview completed/Number of eligible individuals in the households whose interviews were completed and accepted for the database • Overall individual non-response rates (*NRp) is computed as follows: *NRp=(1-(Ra * Rh * Rp)) * 100 For those Members States where a sample of persons rather than a sample of households (addresses, phones, mails etc.) was selected, the individual non-response rates will be calculated for ‘the selected respondent. 2) Item non-response which refers to the situation where a sample unit has been successfully enumerated, but not all the required information has been obtained. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.1. Unit non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit non-response rate for cross-sectional
where A=total (cross-sectional) sample, B =New sub-sample (new rotational group) introduced for first time in the survey this year, C= Sub-sample (rotational group) surveyed for last time in the survey this year. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.2. Item non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The computation of item non-response is essential to fulfil the precision requirements. Item non-response rate is provided for the main income variables both at household and personal level. Item non-response which refers to the situation where a sample unit has been successfully enumerated, but not all the required information has been obtained. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.2.1. Item non-response rate by indicator | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Annex |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.4. Processing error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description of data entry, coding controls and the editing system
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.5. Model assumption error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
| 14.1. Timeliness | |||
See the information provided in 14.1.1 and 14.1.2 |
|||
| 14.1.1. Time lag - first result | |||
Statistical information is published in 12 months after the end of the reporting period (fieldwork) |
|||
| 14.1.2. Time lag - final result | |||
Statistical information is published in 13 months after the end of the reporting period (fieldwork) |
|||
| 14.2. Punctuality | |||
See the information provided in 14.2.1 |
|||
| 14.2.1. Punctuality - delivery and publication | |||
Statistical information is published in accordance with an Official Statistics Calendar. In case of delay, users are notified in advance by indicating the reason and a new date of publication. |
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.1. Comparability - geographical | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Statistical information is comparable between EU countries. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.1.1. Asymmetry for mirror flow statistics - coefficient | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2. Comparability - over time | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Since 2005 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2.1. Length of comparable time series | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Since 2005 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2.2. Comparability and deviation from definition for each income variable | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Comparability and deviation from definition for each income variable
F= Fully comparable; L= Largely comparable; P= Partly comparable and NC= Not collected. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3. Coherence - cross domain | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The coherence of two or more statistical outputs refers to the degree to which the statistical processes, by which they were generated, used the same concepts and harmonised methods. A comparison with external sources for all income target variables and the number of persons who receive income from each ‘income component’ will be provided, where the Member States concerned consider such external data to be sufficiently reliable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3.1. Coherence - sub annual and annual statistics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3.2. Coherence - National Accounts | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Annex |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.4. Coherence - internal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
no inconsistencies |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
Mean (average) interview duration per household = 41 minutes. |
|||
|
|||
| 17.1. Data revision - policy | |||
The revision policy applied by Statistics Lithuania is described in the Description of Procedure for Performance, Analysis and Publication of Revisions of Statistical Information. |
|||
| 17.2. Data revision - practice | |||
The final results are published, no scheduled revisions are performed. |
|||
| 17.2.1. Data revision - average size | |||
The average size of revisions is not calculated. |
|||
|
|||||||||||||||||||||||||||
Detailed information concerning sampling frame, sampling design, sampling units, sampling size, weightings and mode of data collection can be found in this section (please see below). Such information is mainly used for the computation of the accuracy measures. |
|||||||||||||||||||||||||||
| 18.1. Source data | |||||||||||||||||||||||||||
The sampling frame of EU-SILC is the Population Register updated regularly. The sources of income are the statistical survey and the following administrative data sources: the State Social Insurance Fund Board (Sodra), the State Tax Inspectorate (STI), the Ministry of Social Security and Labour (MSSL). |
|||||||||||||||||||||||||||
| 18.1.1. Sampling Design | |||||||||||||||||||||||||||
For the first time households which were selected for the survey in 2005 divided into 4 rational groups. One of these groups was dropped out after 2005 operation and not included to the survey of 2006 according to the original integrated design. A new sub-sample of households was selected to the sample of year 2006. For new sample stratified sample design was used. Population register was used as a sampling frame. Simple random sample of persons was used in each stratum. The second group was dropped out after 2006 operation and not included to the survey of year 2007. A new sub-sample of households was selected to the sample of year 2007 according the same rules as selected a new sub-sample before and so was in every following year. And so on. While selecting the new rotational group of the sample the country were grouped into 25 strata: 5 largest cities, other cities and rural area by county (a total of 10 counties). Simple random sample of non–institutional persons aged 16 and over was selected from the Population Register in each stratum. Household which lives in the selected person’s address was surveyed. Within each of 25 strata simple random sample was used to select the person’s address. |
|||||||||||||||||||||||||||
| 18.1.2. Sampling unit | |||||||||||||||||||||||||||
Persistent resident aged 18 and over with related household members. |
|||||||||||||||||||||||||||
| 18.1.3. Sampling frame | |||||||||||||||||||||||||||
Population Register |
|||||||||||||||||||||||||||
| 18.2. Frequency of data collection | |||||||||||||||||||||||||||
Fixed income reference period was used and therefore the sample was not principally divided into months or weeks. Fieldwork period was from the January till the April. |
|||||||||||||||||||||||||||
| 18.3. Data collection | |||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
| 18.4. Data validation | |||||||||||||||||||||||||||
Completed questionnaires were checked by supervisors. Necessary call-backs were made.The computer program included the possible logical checks between questions and questionnaires, also a package of alerts (warning and error ones) related to ranges of admissible values and logical connections between questions. Coding controls were implemented in post-data-collection. After the data entry was finished the data were checked for consistency by specialists of the Living Standard and Employment Statistics Division. |
|||||||||||||||||||||||||||
| 18.5. Data compilation | |||||||||||||||||||||||||||
Non-income data are mainly collected as interview, some personal data are obtained from population register. Income data are collected from interview, linked to an administrative data, compared and edited if needed. All wave data are pieced together by topic, compared and edited if necessary. |
|||||||||||||||||||||||||||
| 18.5.1. Imputation - rate | |||||||||||||||||||||||||||
no additional information |
|||||||||||||||||||||||||||
| 18.5.2. Weighting procedure | |||||||||||||||||||||||||||
annex |
|||||||||||||||||||||||||||
| 18.5.3. Estimation and imputation | |||||||||||||||||||||||||||
Item non-response is mostly related employee cash or near cash income (PY010), cash benefits or losses from self-employment (PY050) and tax on Income and Social Contributions (HY140). Also few cases are related disability benefits (PY130), family/child related allowances (HY050) and interest, dividends, etc (HY090). Deterministic methods (median imputation) were used for PY010G, PY050G.PY030G, HY090G. Deductive methods were used for HY050G, HY140G (deductive imputation). The data on the private use of the company car is collected in the individual questionnaire. The questions about car mode, type, year and other are asked. The amount which person has gained is estimated using Straight Line Method. |
|||||||||||||||||||||||||||
| 18.6. Adjustment | |||||||||||||||||||||||||||
Not applicable. |
|||||||||||||||||||||||||||
| 18.6.1. Seasonal adjustment | |||||||||||||||||||||||||||
Not applicable. |
|||||||||||||||||||||||||||
|
|||
|
|||
|
|||
| LT_2024_Annex 2-Item_non_response_13.3.3.2.1 LT_2024_Annex 3-Sampling_errors_13.2 LT_2024_Annex 4-Data_collection_18.3 LT_2024_Annex 5-Weighting procedure LT_2024_Annex 5 -Weighting procedure LT_2024_Annex 7-Coherence_15.3-15.3.2 LT_2024_Annex 8-Breaks in series_15.2-updated LT_2024_Annex 9-Rolling module LT_2024_Annex A EU-SILC - content tables LT 2024 questionnaires |
|||