|
![]() |
| For any question on data and metadata, please contact: Eurostat user support |
|
|||
| 1.1. Contact organisation | National Statistical Institute |
||
| 1.2. Contact organisation unit | Statistics on Living Conditions Department Demographic and Social Statistics Directorate |
||
| 1.5. Contact mail address | 2 P.Volov street, 1038 Sofia, Bulgaria |
||
|
|||
| 2.1. Metadata last certified | 25 April 2025 |
||
| 2.2. Metadata last posted | 25 April 2025 |
||
| 2.3. Metadata last update | 25 April 2025 |
||
|
||||||
| 3.1. Data description | ||||||
The European Union Statistics on Income and Living Conditions (EU-SILC) is a survey-based instrument aiming at collecting timely and comparable cross-sectional and longitudinal multidimensional microdata on income, poverty, social exclusion and living conditions. In addition, it collects module variables every three years, six years or ad-hoc new policy needs modules. The EU-SILC instrument provides two types of data:
Social exclusion and housing condition information is collected mainly at household level while labour, education and health information is obtained for persons aged 16 and over. The core of the instrument is income information at very detailed component level and mainly collected at personal level.
EU-SILC provides four basic files containing target variables based on common concepts and definitions. Annual data for the countries contain the following components:
Each year additional data on the household and household members on specific topics is collected, the so-called ad-hoc modules. The indicators on poverty and social inclusion are calculated on the basis of the survey "Statistics on income and living conditions" and a common methodology for data collection, target variables obtaining and calculating of common indicators, approved by Eurostat. The poverty rate is the share of households that are below the poverty line which is defined as 60% of the median equivalised disposable income. |
||||||
| 3.2. Classification system | ||||||
For more details on the classification used please, see EU Vocabularies, Eurostat's metadata server or CIRCABC. |
||||||
| 3.3. Coverage - sector | ||||||
Data refer to all private households and individuals living in the private households in the national territory at the time of data collection. The EU-SILC survey is a key instrument for the European Semester and the European Pillar of Social Rights, providing information on income distribution, poverty and social exclusion, as well as various related living conditions and poverty EU policies, such as on child poverty, access to health care and other services, housing, over indebtedness and quality of life. It is also the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates. The following social fields are included in the survey methodology:
|
||||||
| 3.4. Statistical concepts and definitions | ||||||
Statistical concepts and definitions for EU-SILC are specified in Regulation (EU) 2019/1700, Commission Implementing Regulation (EU) 2019/2181, and Commission Implementing Regulation (EU) 2019/2242. Additional information is available in the EU statistics on income and living conditions (EU-SILC) methodology and in the methodological guidelines and description of EU-SILC target variables (see CIRCABC). Further details are provided in items 5, 15.1.1.1, 15.2.2 and 18.3. |
||||||
| 3.5. Statistical unit | ||||||
Statistical units are private households and all persons living in these households who have usual residence in the Member State. Annex II of the Commission implementing regulation (EU) 2019/2242 defines specific statistical units per variable and specifies the, content of the quality reports on the organization of a sample survey in the income and living conditions domain pursuant to Regulation (EU) 2019/1700 of the European Parliament and of the Council. |
||||||
| 3.6. Statistical population | ||||||
The target population is private households and all persons composing these households having their usual residence in the Member State. Private household means a person living alone or a group of persons who live together, providing oneself or themselves with the essentials of living. The BG-SILC target population consists of all private households and their current members residing in the country. Usual residence is a place where a person normally spends their daily period of rest, regardless of temporary absences for purposes of recreation, holidays, visits to friends and relatives, business, medical treatment or religious pilgrimage.
|
||||||
| 3.6.1. Reference population | ||||||
Definitions of reference population, household and household membership
|
||||||
| 3.6.2. Population not covered by the data collection | ||||||
The sub-populations that are not covered by the data collection includes: those who moved out of the country’s territory; or those with no usual residence; or those living in institutions or who have moved to an institution compared to the previous year. Persons living in collective households and in institutions are generally excluded from the target population. The population moved out of territory of country, the person that have not a usual residence or who have moved to an institution from the previous wave are not covered. |
||||||
| 3.7. Reference area | ||||||
Entire territory of Republic of Bulgaria |
||||||
| 3.8. Coverage - Time | ||||||
2008-2024 |
||||||
| 3.9. Base period | ||||||
Not applicable. |
||||||
|
|||
The data involves several units of measure depending upon the variables. Income variables are transmitted to Eurostat in national currency. For more information, see methodological guidelines and description of EU-SILC target variables available on CIRCABC |
|||
|
||||||||
Description of reference period used for incomes
|
||||||||
|
|||
| 6.1. Institutional Mandate - legal acts and other agreements | |||
Regulation (EU) 2019/1700 was publish in OJ on 10 October 2019, establishing a common framework for European statistics relating to persons and households, based on data at individual level collected from samples (IESS). The Annex to the Commission implementing regulation (EU) 2019/2180 of 16 December 2019 specifies the detailed arrangements and content for the quality reports pursuant to Regulation (EU) 2019/1700 of the European Parliament and of the Council and Regulation (EU) 2019/2242. |
|||
| 6.2. Institutional Mandate - data sharing | |||
Confidential microdata are not disclosed by Eurostat. Access to confidential microdata for scientific purposes may be granted on the basis of Commission Regulation 557/2013 and Regulation 223/2009 of the European Parliament and the Council on European statistics. |
|||
|
|||
| 7.1. Confidentiality - policy | |||
|
|||
| 7.2. Confidentiality - data treatment | |||
According Art. 25 of the Statistics Act individual data are not published (they are suppressed). Dissemination of individual data is possible only according to Art. 26 of the Statistics Act. |
|||
|
|||
| 8.1. Release calendar | |||
Results are published once a year Annexes: Release Calendar |
|||
| 8.2. Release calendar access | |||
Please refer to the Release calendar - Eurostat (europa.eu) publicly available on the Eurostat’s website. |
|||
| 8.3. Release policy - user access | |||
In line with the Community legal framework and the European Statistics Code of Practice, Eurostat disseminates European statistics on Eurostat's website (see section 10 - 'Accessibility and clarity'), respecting professional independence and in an objective, professional and transparent manner in which all users are treated equitably. The detailed arrangements are governed by the Eurostat protocol on impartial access to Eurostat data for users. Additional information about microdata access is available in EU statistics on income and living conditions - Microdata - Eurostat |
|||
|
|||
Annual |
|||
|
|||
| 10.1. Dissemination format - News release | |||
Poverty and Social Inclusion Indicators. Annexes: Poverty and Social Inclusion Indicators |
|||
| 10.2. Dissemination format - Publications | |||
Research results are published as a press release only. |
|||
| 10.3. Dissemination format - online database | |||
Detailed results are available to all users of the NSI website under the heading Social Inclusion and Living Conditions - Poverty and Social Inclusion Indicators. Annexes: Poverty and Social Inclusion Indicators |
|||
| 10.3.1. Data tables - consultations | |||
2 |
|||
| 10.4. Dissemination format - microdata access | |||
Anonymised individual data can be made available for scientific research purposes, and at the individual request of the Rules for the provision of anonymised individual data for scientific and research purposes. |
|||
| 10.5. Dissemination format - other | |||
Information service on request, according to the Rules for the dissemination of statistical products and services to NSI. |
|||
| 10.5.1. Metadata - consultations | |||
Number of times a published metadata file is viewed. |
|||
| 10.6. Documentation on methodology | |||
Available methodology on the NSI internet site and ESMS reference metadata. Annexes: Survey and Indicator Methodology |
|||
| 10.6.1. Metadata completeness - rate | |||
All required concepts are provided, 100% |
|||
| 10.7. Quality management - documentation | |||
Quality report in national level is available on the NSI website. Annexes: Quality Report |
|||
|
|||
| 11.1. Quality assurance | |||
The National Statistical Institute has developed, documented, implemented and maintained a quality management system and is working to continuously improve it in accordance with the requirements of ISO 9001. The methodological framework of the SILC survey is fully in line with European and other international standards, guidelines and good practices. About 70% of the definitions and concepts used by administrative sources are close to those used for statistical purposes. National Statistical Institute (NSI) is certified according to ISO 9001 standards. The certification confirms that NSI fullfills the quality requirements for statistics production. In practical terms for the BG-SILC survey, this means:
Also NSI follows the European statistics Code of Practice. |
|||
| 11.2. Quality management - assessment | |||
Data are accompanied with quality reports analysing the accuracy, coherence and comparability of the data. The quality of the BG-SILC survey can be assumed to be high. Its concepts and methodology have been developed according to European and international standards and using best practices from all EU Member States. BG-SILC indicators are considered to be sufficiently accurate for all practical purposes they are put into. The indicators are disseminated following a predetermined Release calendar. Further work is ongoing to improve the quality and in particular the comparability of the indicators. Key priorities are greater harmonisation of methods for quality adjustment and sampling. There is a yearly ISO 9001 internal and external audits for the whole department. |
|||
|
|||
| 12.1. Relevance - User Needs | |||
The main users of EU-SILC statistical data are policy makers, research institutes, media, and students. BG-SILC the main users are:
|
|||
| 12.2. Relevance - User Satisfaction | |||
Eurostat carried out an online general User Satisfaction Survey (USS) in the period between April and July 2019 to obtain a better knowledge about users, considering their needs and satisfaction with the services provided by Eurostat. The survey has shown that EU-SILC is of very high relevance for users. For the majority, both aggregates and micro-data were important or essential in their work irrespective of the purpose of their use. The use of the ad-hoc modules was less widespread than the use of the nucleus variables. Nevertheless, there was high interest to repeat these modules in order to have the possibility of comparing data over time. Users emphasized their strong need for more detailed micro-data, which is currently not possible. Under the new legal framework implemented from 2021, the NUTS 2 division will be available for the main indicators. Finally, users were satisfied with overall quality of the service delivered by Eurostat, which encompasses data quality and the supporting service provided to them. For more information, please consult the User Satisfaction Survey. |
|||
| 12.3. Completeness | |||
All target variables in the BG-SILC survey are fully in line with the methodological guidelines (Doc065 2024 operation year) and the Commission (Eurostat) requirements. |
|||
| 12.3.1. Data completeness - rate | |||
Not requested by Reg. 2019/2180. |
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.1. Accuracy - overall | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Reg. (EU) 2019/1700 Annex II, precision requirements for all data sets are expressed in standard errors and are defined as continuous functions of the actual estimates and of the size of the statistical population in a country or in a NUTS 2 region. For the income and living conditions domain, the estimated standard errors of the following indicators are examined according to certain parameters set:
Further information is provided in section 13.2 Sampling error. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.2. Sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
EU-SILC is a complex survey involving different sampling designs in different countries. In order to harmonize and make sampling errors comparable among countries, Eurostat (with the substantial methodological support of Net-SILC2) has chosen to apply the "linearization" technique coupled with the “ultimate cluster” approach for variance estimation. Linearization is a technique based on the use of linear approximation to reduce non-linear statistics to a linear form, justified by asymptotic properties of the estimator. This technique can encompass a wide variety of indicators, including EU-SILC indicators. The "ultimate cluster" approach is a simplification consisting in calculating the variance taking into account only variation among Primary Sampling Unit (PSU) totals. This method requires first stage sampling fractions to be small which is nearly always the case. This method allows a great flexibility and simplifies the calculations of variances. It can also be generalized to calculate variance of the differences of one year to another. The main hypothesis on which the calculations are based is that the "at risk of poverty" threshold is fixed. According to the characteristics and availability of data for different countries, we have used different variables to specify strata and cluster information. In particular, countries have been split into 3 groups:
In 2024 survey year, Bulgaria used bootstrap variance estimation technique to obtain standard error for the main indicator of interest AROPE. In total, 100 replicate samples were drawn. The replicates weights were obtained by using calibration approach. The calibration approach was identical to the calculation of RB050 weights. This additional procedure gives unbiased estimator for the population totals and increases the precision. Standard error was calculated using the information from 100 replicate samples where the PSU sample size is reflation of sample size of the main survey for the corresponding year. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.2.1. Sampling error - indicators | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The concept of accuracy refers to the precision of estimates computed from a sample rather than from the entire population. Accuracy depends on sample size, sampling design effects and structure of the population under study. In addition to that, sampling errors and non-sampling errors need to be taken into account. Sampling error refers to the variability that occurs at random because of the use of a sample rather than a census and non-sampling errors are errors that occur in all phases of the data collection and production process.
Main indicators, standard error and CI at country level
Main indicators, standard error and CI at NUTS 2 level
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3. Non-sampling error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-sampling errors are basically of 4 types:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1. Coverage error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage errors include over-coverage, under-coverage and misclassification:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1.1. Over-coverage - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coverage error
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.1.2. Common units - proportion | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not requested by Reg. 2019/2180 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.2. Measurement error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
As with any other statistical survey, BG-SILC may be burdened with non-sampling errors which occur at various stages of the survey and which cannot be eliminated completely. This mainly applies to interviewers’ errors at the stage of collecting the information, errors due to the respondents’ misunderstanding of questions and inaccurate or sometimes even false answers as well as the errors taking place at the stage of data recording. BG-SILC is a non-obligatory, representative survey of individual households, performed by a face-to-face interview technique with the use of the CAPI method. Two types of questionnaires: individual and household questionnaire were applied. In order to finalize the questionnaires, any observations made on the questionnaires of the previous years were taken into account. The data collected from the survey were compared to the data obtained from the registers. Some of the persons, who according to the register receive minimum income, defined themselves as unemployed or non-active in the survey, because they assess their current activity as temporary and did not indicate their income. Income from interests, dividends in unincorporated businesses is in general not provided from the households. Measurement error for cross-sectional data
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3. Non response error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Non-response errors are errors due to an unsuccessful attempt to obtain the desired information from an eligible unit. Two main types of non-response errors are considered: 1) Unit non-response which refers to the absence of information of the whole units (households and/or persons) selected into the sample. According to Annex VI of the Reg.(EU) 2019/2242
NRh=(1-(Ra * Rh)) * 100 Where Ra is the address contact rate defined as: Ra= Number of address/selected person (including phone, mail if applicable) successfully contacted/Number of valid addresses/selected person (including phone, mail if applicable) selected and Rh is the proportion of complete household interviews accepted for the database Rh=Number of household interviews completed and accepted for database/Number of eligible households at contacted addresses (including phone, mail if applicable) • Individual non-response rates (NRp) is computed as follows: NRp=(1-(Rp)) * 100 Where Rp is the proportion of complete personal interviews within the households accepted for the database Rp= Number of personal interview completed/Number of eligible individuals in the households whose interviews were completed and accepted for the database • Overall individual non-response rates (*NRp) is computed as follows: *NRp=(1-(Ra * Rh * Rp)) * 100 For those Members States where a sample of persons rather than a sample of households (addresses, phones, mails etc.) was selected, the individual non-response rates will be calculated for ‘the selected respondent. 2) Item non-response which refers to the situation where a sample unit has been successfully enumerated, but not all the required information has been obtained. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.1. Unit non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit non-response rate for cross-sectional
where A=total (cross-sectional) sample, B =New sub-sample (new rotational group) introduced for first time in the survey this year, C= Sub-sample (rotational group) surveyed for last time in the survey this year.
Longitudinal Data
Response rate for households by wave
Responce rate for persons by wave
Sample and responce rate by wave
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.2. Item non-response - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The computation of item non-response is essential to fulfil the precision requirements. Item non-response rate is provided for the main income variables both at household and personal level. Item non-response which refers to the situation where a sample unit has been successfully enumerated, but not all the required information has been obtained. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.3.2.1. Item non-response rate by indicator | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
For income variables the following information are provided in the Annex 2:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.4. Processing error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Description of data entry, coding controls and the editing system
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13.3.5. Model assumption error | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
| 14.1. Timeliness | |||
SILC cross-sectional and longitudinal data are available in the form of tables 10 months after the end of the data collection period. Date of dissemination of nation results: 25 April 2025. |
|||
| 14.1.1. Time lag - first result | |||
First data are available 6 months after data collection. |
|||
| 14.1.2. Time lag - final result | |||
Final results are available 10 months after data collection. |
|||
| 14.2. Punctuality | |||
The first results were sent for validation on 17 December 2024 according to the IESS regulation. |
|||
| 14.2.1. Punctuality - delivery and publication | |||
No time lag between delivery of data and deadline of legislation. The final data were validated at the middle of February 2025, or in time according to the deadline of 28 February of year N+1. |
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.1. Comparability - geographical | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The coherence of two or more statistical outputs refers to the degree to which the statistical processes, by which they were generated, used the same concepts and harmonised methods. A comparison with external sources for all income target variables and the number of persons who receive income from each ‘income component’ will be provided, where the Member States concerned consider such external data to be sufficiently reliable. Comparability across EU Member States is considered high due to use of harmonised concepts, variables, definitions and classifications. Comparability between different regions of the country is considered high. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.1.1. Asymmetry for mirror flow statistics - coefficient | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2. Comparability - over time | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No break in series to be reported for 2024. Please see the annex Break in series for more information. Regarding income, the following changes should be taken into account:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2.1. Length of comparable time series | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.2.2. Comparability and deviation from definition for each income variable | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Comparability and deviation from definition for each income variable
F= Fully comparable; L= Largely comparable; P= Partly comparable and NC= Not collected. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3. Coherence - cross domain | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The coherence of two or more statistical outputs refers to the degree to which the statistical processes, by which they were generated, used the same concepts and harmonised methods. A comparison with external sources for all income target variables and the number of persons who receive income from each ‘income component’ will be provided, where the Member States concerned consider such external data to be sufficiently reliable. The cross-sectional data for the EU-SILC2024 were compared to the Labor force survey 2024 and HBS 2024. When comparing SILC and HBS we must take into account the discrepancies. The differences are to great extent brought about by the methodological diversity. Here are the main methodological differences:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3.1. Coherence - sub annual and annual statistics | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.3.2. Coherence - National Accounts | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The cross-sectional data for the BG-SILC2024 were compared to the National Accounts (NA) related to preliminary measurement of household income in 2023. When comparing SILC and NA we must take into account the following discrepancies:
Coverage rates (CR) are calculated as the percentage of the BG-SILC value compared with the corresponding NA value, with the following formula for each income component: CR = (BG-SILCincome_weighted _total / NAincome) * 100 The coverage rate for “Ïncome from self-employment” is 142.1% and the coverage rate for “Employee income” is 123.3%. The following should be taken into account when making comparisons with national accounts:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 15.4. Coherence - internal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
No any lack of coherence in the BG-SILC data set that was coded/collected differently outside of the methodology. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
Mean (average) interview duration per household = 67 minutes. Mean (average) interview duration per person 16+ = 21.8 minutes. The mean interview duration per household is calculated as the sum of the duration of all household interviews plus the sum of the duration of all personal interviews, divided by the number of household questionnaires completed. Only households accepted for the database have to be considered. |
|||
|
|||
| 17.1. Data revision - policy | |||
Not applicable. |
|||
| 17.2. Data revision - practice | |||
No revisions to report. |
|||
| 17.2.1. Data revision - average size | |||
Not applicable. |
|||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.1. Source data | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The sample for BG-SILC 2024 are selected from the sampling frame based on the Population Census 2021. The data base includes all private households and their current members residing in the country. Persons living in collective households and in institutions are excluded from the target population. Student’s and worker’s hostels are excluded at the first stage of selection of PSU, because these households rarely stay on the same addresses and are difficult to trace. The frame is regularly updated according to the administrative changes made. Household data within the selected PSUs are updated according to the Information System “Demography” data (ISD). The longitudinal component consists of the sub-samples R1, R3, R4, R5 and R6. All personal/household income variables were collected by interview. Where the information is available, the data from the administrative source is directly used. The National Revenue Agency provides data from the register of insured persons. This register used for PY010, PY030, PY050 and HY090 variables. The National Social Security Institute provides data on income from pensions and other social security payments. This register used for PY090, PY100, PY110, PY120, PY130, HY050 and HY110 variables. The Social Assistance Agency provides data on income from social benefits. This register used for HY050, HY060 and HY070 variables. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.1.1. Sampling Design | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Type of sampling design Six-year rotation panel is used for BG-SILC2024 in Bulgaria. It contains 6 independent sub-samples and follows stratified two-stage cluster sampling design. Separated strata are formed based on the country administrative-territorial division. All private households in the country are covered. In 2024 the sample size of the panel is 9722 private households from 6 rotational groups, distributed over all regions of the country. Except from the sampled household all its members aged 16 years or more are also surveyed. Households are participating in the survey for 6 consecutive years. Every year 1 rotational group is dropped and replaced by another. In 2024 a new rotational group with 2660 households was introduced. Stratification and sub stratification criteria The general population and administrative-territorial division by statistical districts of the settlement, comprises all the households in the country. Register prepared for the Population Census 2021 was used as sampling frame for selection last rotational group (R2). The sampling frame is annually updated with data from the Information System “Demography” data (ISD). Information about new born and died persons is used for actualization of sampling frame. The sample is stratified by administrative-territorial districts in the country (NUTS3) and the household’s location. As a result 56 strata are formed (28 of urban and 28 of rural population). Municipalities and settlements are ranged according to the number of their population within each stratum. Sample selection schemes The number of census enumeration units (PSU) is calculated for each strata included in the sample. The clusters on the first stage are chosen with probability proportion to population size (number of households) in the PSUs. Systematic sampling of secondary units (households) in each primary unit selected is applied. Each PSU contains 5 households. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.1.2. Sampling unit | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Two stage sampling on a territorial principle is implemented as follows:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.1.3. Sampling frame | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Concerning the SILC instrument, three different sample size definitions can be applied:
Given that the effective sample size has been already treated in the section dealing with sampling errors, in this section the attention focuses mainly on the achieved sample size. The total gross sample size (number of households) has been calculated analyzing the non-response rates and design effects of the previous BG-SILC surveys. The total sample size in 2024 is 9722 households:
Number of households for which an interview is accepted for the database. Rotational group breakdown and total
Number of persons of 16 years or older who are members of the households for which the interview is accepted for the database, and who completed a personal interview. Rotational group breakdown and total
The sample size for longitudinal component was 30329 households and 55718 persons aged 16 and over. Number of households in longitudinal component
Number of persons 16 years and older
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.2. Frequency of data collection | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In 20243 the data collection took place in the period March-June 2024 with reference period of data the previous calendar year (2023). Sample distribution (household questionnaire) over time
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.3. Data collection | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mode of data collection
Description of collecting income variables
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.4. Data validation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In the process Data-entry is a logical control of extreme values, filled-in information on all issues, data comparability checks, links between individual questionnaires and registers is carried out. After processing the primary data and receiving the target changes, a verification with the SAS program provided by Eurostat for verification and validation of the data is performed. Additional compatibility checks are performed before publishing the information. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.5. Data compilation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The database contains different types of weights:
Weighting factors were calculated as required to take into account the units’ probability of selection, non-response and to adjust the sample to external data relating to the distribution of households and persons in the target population, such as sex and age, residence or administrative-territorial districts (NUTS 3). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.5.1. Imputation - rate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The information provided here is the same as the one in the concept 13.3.3.2.1. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.5.2. Weighting methods | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The weighting procedure consists of the following steps: First, calculation of design weights which represent the inverse of the inclusion probabilities of the sample units. According to the country specifics the sample is stratified to 56 strata by NUTS 3 (28 regions) and location (town/village). Second, adjustment for non-response. The procedure used is “weighting classes”. The classes are defined by the sampling design strata because of the limited information available for non-responding households. The final step is calibration of the non-response weights to population totals for the new rotation group (the result is base weights RB060). Calibration is done using the SAS Macro Calmar 2. The main source for calibration totals is the Information System “Demography”. Another source of information is the 2021 Population Census database. The weighting procedure for the previous 5 rotation groups consists of the following steps: The base weights RB060 were adjusted for non-response at individual level. On the basis of a logistic regression the weights of the enumerated persons were adjusted with the probability of following up to obtain RB060 for 2024. This was applied for each rotation group separately. After that RB060 for each of the 5 rotation groups were calibrated separately to the population as of 31 December 2023 the same way as for the new rotation group. To combine all sub-samples (the 6 rotation groups) all weights were multiplied with a scaling factor of 1/6 and the weights were calibrated to the population as of 31 December 2023 using variables at individual and at household level. Detailed information on the weighting procedures is included in Annex 5. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.5.3. Estimation and imputation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Imputation procedure Data processing is performed with statistical software SPSS. Total gross income and disposable household income were calculated according to Document 065 (2024 operation). All personal/household income variables were collected by interview. Where the information is available, the data from the administrative source is directly used. The National Revenue Agency provides data from the register of insured persons. The National Social Security Institute provides data on income from pensions and other social security payments. The Social Assistance Agency provides data on income from social benefits. The interviewers and the respondents have the option of reporting income gross and/or net at component level. From 2012 Emploee cash or near cash income (PY010) is collected only net. The form in which the net amounts are recorded in database are net of tax on income at source and of social contributions. The education at pre-school data were checked with the administrative data from the Ministry of Education. Those data show if a child is registered or not in a childcare/school structure. If the data for number of hours of education during a typical week are missing and the children are registered to school on the basis of register information then imputed the number of hours according to the national standards to the children that appear enrolled (40 hours weekly). List of variables where imputation is used and the instances of imputation as a percentage of the total number of observations per variable shall be reported in the annex. Company car The information on the private use of a company car is collected in the individual questionnaire. To evaluate the benefits of private use of company car we used the amount of kilometers driven, the number of months in which the car is used, the cost of fuel under statutory spending limits and the average price of fuel for the year. Take into account the amount that the employer provides of limit on fuel costs. In case of missing value imputation is applied with the use of hot-deck and regression imputation with simulated residuals methods. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.6. Adjustment | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 18.6.1. Seasonal adjustment | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Not applicable. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||
No comments. |
|||
|
|||
|
|||
| Annexes SIMS2024 |
|||