1.1. Contact organisation
Croatian Bureau of Statistics
1.2. Contact organisation unit
Structural Business Statistics, Innovations, Science, Technologies and Investments Department.
Innovation, Science and Technologies Unit.
1.3. Contact name
Confidential because of GDPR
1.4. Contact person function
Confidential because of GDPR
1.5. Contact mail address
Šubićeva 29, 10 000 Zagreb, Croatia.
1.6. Contact email address
Confidential because of GDPR
1.7. Contact phone number
Confidential because of GDPR
1.8. Contact fax number
Confidential because of GDPR
2.1. Metadata last certified
31 October 2025
2.2. Metadata last posted
31 October 2025
2.3. Metadata last update
31 October 2025
3.1. Data description
Statistics on Government Budget Allocations for R&D (GBARD) measure government support to research and development (R&D) activities, and thereby provide information about the priority governments give to different public R&D funding activities. This type of funder-based approach for reporting R&D involves identifying all the budget items that may support R&D activities and measuring or estimating their R&D content.
Main concepts and definitions used for the production of R&D statistics are given by the OECD (2015), Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, The Measurement of Scientific, Technological and Innovation Activities (FM 2015, Chapter 12), which is the internationally recognised standard methodology for collecting R&D statistics and by Eurostat’s European Business Statistics Methodological Manual on R&D Statistics (EBS Methodological Manual on R&D Statistics).
Since the beginning of 2021, the collection of R&D statistics is based on Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020.
The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail (Commission Implementing Regulation (EU) 2020/1197 of 30 July 2020 laying down technical specifications and arrangements pursuant to Regulation (EU) 2019/2152 of the European Parliament and of the Council on European business statistics repealing 10 legal acts in the field of business statistics (europa.eu)).
Statistics on science, technology and innovation were collected until the end of 2020 based on Commission Implementing Regulation (EU) No 2012/995 concerning the production and development of Community statistics on science and technology.
3.2. Classification system
Distribution by socioeconomic objectives (SEO) is based on the Nomenclature for the Analysis and Comparisons of Scientific Programmes and Budgets (NABS) at one digit level.
3.2.1. National classification
| National nomenclature of SEO used | National nomenclature of SEO is not used. |
|---|---|
| Correspondence table with NABS | Not applicable |
3.2.2. NABS classification
| Deviations from NABS | No deviation from NABS classification. |
|---|---|
| Problems in identifying / separating NABS chapters and sub chapters | There are generally no problems in separating NABS chapters. |
| Ability to distribute Non-oriented research and General University Funds (GUF) by fields of R&D | General advancement of knowledge by fields of science is calculated using coefficients derived from R&D survey. |
3.3. Coverage - sector
See below.
3.3.1. General coverage
| Definition of R&D | According to the Frascati manual guidelines. |
|---|---|
| Coverage of R&D or S&T in general | GBARD statistics cover only R&D. |
| Fields of R&D (FORD) covered | According to Frascati Manual. All fields of science are covered. |
| Socioeconomic objective (SEO by NABS) | All SEO by NABS are covered. |
3.3.2. Definition and coverage of government
GBARD statistics are assumed to report detailed data on all the government's budget items that may support R&D activities and to measure or estimate their R&D content. For the purposes of GBARD, the Government sector comprises (a) the central (federal) government, (b) regional (state) government and (c) local (municipal) government subsectors (FM2015, Chapter 12).
| Levels of government | Definition | Included / Not included | Comments |
|---|---|---|---|
| Central (federal) government | All government institutions (budgetary and extrabudegatary users of government budget). | Included. | Included are all government institutions (ministries, agencies) tahat are direct users of government budget. |
| Regional (state) government | Not applicable. | Not included. | Provincial government's share in total governmetnal R&D budget is not deemed to be significant. |
| Local (municipal) government | Not applicable. | Not included. | Provincial government's share in total governmetnal R&D budget is not deemed to be significant. |
3.4. Statistical concepts and definitions
Not requested.
3.5. Statistical unit
Statistical units are budgetary and extrabudgetary users of government budget.
3.6. Statistical population
See below.
3.6.1. National target population
The target population is the population for which inferences are made. The frame (or frames, as sometimes several frames are used) is a device that permits access to population units. The frame population is the set of population units, which can be accessed through the frame and the survey data really refer to this population.
| Definition of the national target population | Budgetary and extrabudgetary users of the Government Budget in the Republic of Croatia |
|---|---|
| Estimation of the target population size | 65 government bodies |
3.7. Reference area
GBARD statistics cover national data (aggregates for NUTS 1) accordind to Statistical Classification of Economic Activities in the European Community – NACE Rev. 2.1.
Annexes:
HR NUTS 2021
3.8. Coverage - Time
Calendar year 2023.
3.9. Base period
Not requested.
Unit of measure is expenditure in euros.
- Calendar year: 2023
- Fiscal year: 2023
- Start month: January.
- End month: December.
6.1. Institutional Mandate - legal acts and other agreements
See below.
6.1.1. European legislation
Since the beginning of 2021, GBARD statistics are based on Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020 laying down technical specifications and arrangements pursuant to Regulation (EU) 2019/2152 of the European Parliament and of the Council on European business statistics repealing 10 legal acts in the field of business statistics. The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail. GBARD statistics were based until the end of 2020 on the Commission Implementing Regulation (EU) No 2012/995 concerning the production and development of Community statistics on science and technology.
6.1.2. National legislation
Production of national GBARD statistics is governed by the general national statistical legislation, The Official Statistics Act and the current annual implementation plan of statistical activities.
The Official Statistics Act and Annual Implementation Plan of Statistical Activities of the Republic of Croatia for 2024 (NN No 29/25)
6.1.3. Standards and manuals
- Frascati Manual 2015, Guidelines for Collecting and Reporting Data on Research and Experimental Development.
- EBS Methodological Manual on R&D Statistics.
6.2. Institutional Mandate - data sharing
Not requested.
7.1. Confidentiality - policy
Confidentiality, being one of the process quality components, concerns the privacy of data providers (households, enterprises, administrations and other respondents), the confidentiality of the information they provide and the extent of its use for statistical purposes.
A property of data indicating the extent to which their unauthorised disclosure could be prejudicial or harmful to the interest of the source or other relevant parties.
- Confidentiality protection required by law:
Statistical data collected in this survey, according to the Official Statistics Act and Ordinance on Access to Confidential Data of the CBS within the System of Official Statistics is confidential and its purpose is restricted exclusively to statistical usage (with exception of registered researchers under specified conditions). Authorized interviewers are obligated to respect these restrictions. The results are published in a cumulative form which prevents displaying data on individuals.
- Confidentiality commitments of survey staff:
According to Code of practice of European Statistics, all employees upon employment are informed of the rules and duties pertaining to confidential information and its treatment and are obliged sign statistical confidentiality statement.
7.2. Confidentiality - data treatment
Data are published in aggregated form which does not allow identification of the reporting unit. All collected data are confidential and are used only for statistical purposes.
The following rules are used to identify sensitive cells in tabular data:
- Threshold rule: The cell is considered sensitive if the cell frequency is less than a pre-specified threshold value. In practice this means if data in certain cell in the table relates to less than a pre-specified number of reporting units, the cell is primary sensitive.
- Dominance rule: The cell is considered sensitive if the value of 1 largest contributor in the cell exceeds a pre-specified percentage of total value for that cell.
When a data cell in a table is suppressed by dropping its value based on a primary cell suppression rule, the value of that cell can still be calculated if the table provides totals. Secondary cell suppression is therefore needed to avoid such disclosures. Those values under primary and secondary protection are therefore suppressed for use.
8.1. Release calendar
Release policy and release calendar are available and publicly accessible on CBS website.
8.2. Release calendar access
For Eurostat this is: Release calendar - Eurostat (europa.eu)
At national level this is: Calendar of Statistical Data Issues 2023 and Publishing Programme 2023.
8.3. Release policy - user access
According to the Release Date announced in the Publishing Programme and in the Calendar of Statistical Data Issues, publications of the Croatian Bureau of Statistics are released at 11:00 a.m. precisely, thus abiding by the Principle of Timeliness of the European Statistics Code of Practice, i.e. standard daily time set for the release.
All users access the data at the precise time and no other users have access to data prior the release. Detailed breakdowns that are transmitted to Eurostat with a confidentiality flag are not disseminated nationally for confidentiality reasons.
The frequency of GBARD data dissemination at Eurostat level is yearly for provisional and final data.
At national level the frequency of GBARD data dissemination is also yearly, at the end of December as First Release.
10.1. Dissemination format - News release
See below.
10.1.1. Availability of the releases
| Availability (Y/N)1 | Content, format, links, ... | |
|---|---|---|
| Regular releases | Y | |
| Ad-hoc releases | N |
1) Y - Yes, N – No
10.2. Dissemination format - Publications
See below.
10.2.1. Availability of means of dissemination
| Means of dissemination | Availability (Y/N)1 | Content, format, links, ... |
|---|---|---|
| General publication/article (paper, online) |
N | |
| Specific paper publication (paper, online) |
N |
1) Y – Yes, N - No
10.3. Dissemination format - online database
Currently we do not have an on-line databases for GBARD. However, we are planning to create and publish PC-Axis database.
10.3.1. Data tables - consultations
Not requested.
10.4. Dissemination format - microdata access
See below.
10.4.1. Provisions affecting the access
| Access rights to the information | Microdata are not disseminated. They can only be accessed in the secure room or via remote access. CBS prepares individual microdata databases by removing identifiers that could with large probability disclose the observed unit. More information on microdata access is available at CBS website Data for scientific purposes. |
|---|---|
| Access cost policy | Access cost policy is defined by the Ordinance on Determining the Fee Amount for the Provision of Statistical Data Processing Services and published in the Price List of Publications and Products of the Croatian Bureau of Statistics. |
| Micro-data anonymisation rules | The micro-data are anonymized by CBS according to the rules of statistical data dissemination policy. |
10.5. Dissemination format - other
See below.
10.5.1. Metadata - consultations
Not requested.
10.5.2. Availability of other dissemination means
| Dissemination means | Availability (Y/N)1 | Micro-data / Aggregate figures | Comments |
|---|---|---|---|
| Internet: main results available on the national statistical authority’s website | Y | aggregate figures | Data on GBARD are published in the First Release. |
| Data prepared for individual ad hoc requests | Y | micro-data / aggregate figures | GBARD data not available on the CBS website can be prepared for individual ad-hoc requests that guarantee their anonymization and confidentiality. |
| Other | N |
1) Y – Yes, N - No
10.6. Documentation on methodology
Methodological documents are published as a part of First Release and are available on the website of the Croatian Bureau of Statistics.
The meta-information available together with the data published in official First Release – part “Notes on methodology” are information about Data sources, comparability and short interpretation and analysis of results.
10.6.1. Metadata completeness - rate
Not requested.
10.7. Quality management - documentation
See below.
10.7.1. Documentation and users’ requests
| Type(s) of data accompanying information available (metadata, graphs, etc.) | GBARD data are accompanied with notes on methodology, tables, graphs and further explanations are given to users if requested. |
|---|---|
| Request on further clarification | Users generally have no additional questions or requests for further clarifications. |
| Measure to increase clarity | We do not intend to take any measures to increse clarity. |
| Impression of users on the clarity of the accompanying information to the data | Not known. |
11.1. Quality assurance
Croatian Bureau of Statistics uses the model of total quality management which comprises European Code of Practice. In order to ensure this, a quality system has been established. The CBS regularly submits quality reports according to the templates prescribed for each area of statistics by the corresponding organizational unit of Eurostat. A template was developed based on the ESMS, ESQRS and SIMS structures. In order to produce complete reports on quality, considering all quality indicators, the CBS has prepared a Manual for the calculation of quality indicators. Quality reports for individual statistical surveys are available on the website of the CBS.
The POMI quality database offers many opportunities as well as DESAP questionnaire for doing self-assessment.
As already mentioned before the developed tools like POMI quality and application database in combination with the GSBPM give the opportunity for each statistical survey to be improved if necessary.
An independent Internal Audit unit conducts internal audits in the CBS, gives professional opinion and has an advisory role for improving CBS business operation, estimate systems, processes and the internal controlling system based on the risk management, carries out internal audits in accordance with the best professional practice and internal audit standards in line with the International standards on internal auditing and the Ethics Code of the Internal Auditors.
Annexes:
Quality Assurance Framework of the European Statistical System
11.2. Quality management - assessment
Since year 2016 we are continuously making efforts to increase the quality of the survey. For the year 2016 we have done a number of improvements in the statistical production process which caused break in series. The methodology of the survey has been revised in accordance with the Frascati Manual 2015, definitions have been changed and certain methodological concepts have been broken down in more detail in the questionnaire. Fut+rthermore, the process of data collection and processing has been improved. The data collection instrument is an electronic questionnaire in Excel with embeded controls and notes on methodology. Additional controls have been introduced with regard to the collection of primary data, which, along with repeated contacting of reporting units, had the effect of reducing the non-response rate for certain items. The switch to electronic data collection improved data processing, data editing and tablulation.
Overal assessment of national GBARD methodology is of good quality. Considering the specific structure of government budget, which makes it impossible to list data necessary for calculating GBARD by socio-economic objectives, data are collected directly from government institutions, direct beneficiaries of government budget. We keep close cooperation with the Ministry of Science and Education, which is our main reporting unit, and we throughly analyse all of the items reported in the questionnaire.
12.1. Relevance - User Needs
See below.
12.1.1. Needs at national level
| Users’ class1 | Description of users | Users’ needs |
|---|---|---|
| 1 - Institutions at European level | Eurostat | data analysis, publishing, international comparisons |
| 1 - Institutions at the national level | Ministry of Science and Education | data analysis, policy documents, strategies and reports, progress evaluation |
| 3 - Media | Media | data publishing and analysis |
| 4 - Researchers and students | Researchers and students | data analysis |
1) Users' class codification
1- Institutions:
- European level: Commission (DGs, Secretariat General), Council, European Parliament, ECB, other European agencies etc.
- in Member States, at the national or regional level: Ministries of Economy or Finance, other ministries (for sectoral comparisons), National Statistical Institutes and other statistical agencies (norms, training, etc.), and
- International organisations: OECD, UN, IMF, ILO, etc.
2- Social actors: Employers’ associations, trade unions, lobbies, among others, at the European, national or regional level.
3- Media: International or regional media – specialized or for the general public – interested both in figures and analyses or comments. The media are the main channels of statistics to the general public.
4- Researchers and students (Researchers and students need statistics, analyses, ad hoc services, access to specific data.)
5- Enterprises or businesses (Either for their own market analysis, their marketing strategy (large enterprises) or because they offer consultancy services)
6- Other (User class defined for national purposes, different from the previous classes.)
12.2. Relevance - User Satisfaction
To evaluate if users' needs have been satisfied, the best way is to use user satisfaction surveys.
12.2.1. National Surveys and feedback
| Conduction of a user satisfaction survey or any other type of monitoring user satisfaction | User satisfaction survey was conducted in 2015 and 2022. |
|---|---|
| User satisfaction survey specific for GBARD statistics | No |
| Short description of the feedback received | The survey was not R&D statistics only. Therefore there is no feedback received. |
12.3. Completeness
See below.
12.3.1. Data completeness - rate
The survey covers all mandatory and optional variables laid down in Commission Regulation (EC) No 995/2012 of 26 October 2012 implementing Decision No 1608/2003/EC of the European Parliament and of the Council concerning the production and development of Community statistics on science and technology. All mandatory and voluntary variables were collected. All statistics produced on R&D are available.
12.3.2. Completeness - overview
Completeness is assessed via comparison of the data delivered against the requirements of Commission Implementing Regulation (EU) No 2020/1197.
| 5 (Very Good) |
4 (Good) |
3 (Satisfactory) |
2 (Poor) |
1 (Very poor) |
Reasons for missing cells | |
|---|---|---|---|---|---|---|
| Provisional budget statistics1 | X | |||||
| Obligatory final budget statistics1 | X | |||||
| Optional final budget statistics2 | X |
1) Criteria: Obligatory data (provisional budget and final budget). Only 'Very Good' = 100% and 'Very Poor' <100% apply.
2) Criteria: Optional data (final budget). 'Very Good' = 100%; 'Good' = >75%;'Satisfactory' 50 to 75%%; 'Poor' 25 to 50%; 'Very Poor' 0 to 25%.
12.3.3. Data availability
See below.
12.3.3.1. Data availability – Provisional data
| Availability1 | Frequency of data collection | Gap years – years with missing data | Time of compilation (T+x)2 | Comments | |
|---|---|---|---|---|---|
| Total GBARD | Y-2009 | Annual | 0 | T+3 | |
| NABS Chapter level | Y-2009 | Annual | 0 | T+3 | |
| NABS Sub-chapter level | Y-2010 | Annual | 0 | T+3 | |
| Special categories - Biotech | N | ||||
| Special categories - Nanotech | N | ||||
| Special categories - Security | N |
1) Availability of the data: N: No, data are not available, Y: Yes, data are available + start year.
2) Time of compilation: T is assumed to represent the end of reference period, x expresses the number of months after (positive) or before (negative) T when data is compiled
12.3.3.2. Data availability – Final data
| Availability1 | Frequency of data collection | Gap years – years with missing data | Time of compilation (T+x)2 | Comments | |
|---|---|---|---|---|---|
| Total GBARD | Y-2008 | Annual | 0 | T+9 | |
| NABS Chapter level | Y-2008 | Annual | 0 | T+9 | |
| NABS Sub-chapter level | Y-2009 | Annual | 0 | T+9 | |
| Special categories - Biotech | N | ||||
| Special categories - Nanotech | N | ||||
| Special categories - Security | N |
1) Availability of the data: N: No, data are not available, Y: Yes, data are available + start year.
2) Time of compilation: T is assumed to represent the end of reference period, x expresses the number of months after (positive) or before (negative) T when data is compiled
12.3.3.3. Data availability – Other special categories
| Special categories | Stage1 | Availability1 | Frequency of data colletion | Gap years – years with missing data | Time of compilation (T+x)3 | Comments |
|---|---|---|---|---|---|---|
| GBARD by sectors of performance | F | Y-2008 | Annual | 0 | T+9 | |
| GBARD by types of transfers | F | Y-2008 | Annual | 0 | T+9 |
1) Stage: P - provisional, F - final.
2) Availability of the data: No, data are not available, Y: Yes, data are available + start year.
3) Time of compilation: T is assumed to represent the end of reference period, x expresses the number of months after (positive) or before (negative) T when data is compiled
13.1. Accuracy - overall
Accuracy in the statistical sense denotes the closeness of computations or estimates to the exact or true values. Statistics are not equal with the true values because of variability (the statistics change from implementation to implementation of the survey due to random effects) and bias (the average of the possible values of the statistics from implementation to implementation is not equal to the true value due to systematic effects).
Several types of statistical errors occur during the survey process. The following typology of errors has been adopted:
- Sampling errors. These only affect sample surveys. They are due to the fact that only a subset of the population, usually randomly selected, is enumerated.
- Non-sampling errors. Non-sampling errors affect sample surveys and complete enumerations alike and comprise:
-
- Coverage errors,
- Measurement errors,
- Non response errors and
- Processing errors.
Model assumption errors should be treated under the heading of the respective error they are trying to reduce.
13.1.1. Accuracy - Overall by 'Types of Error'
| Sampling errors | Non-sampling errors1) | Model-assumption Errors1) | Perceived direction of the error2) | |||
|---|---|---|---|---|---|---|
| Coverage errors | Measurement errors | Processing errors | Non response errors | |||
| not applicable | not applicable | not applicable | not applicable | not applicable | not applicable | not applicable |
1) Ranking of the type(s) of errors that result in over/under-estimation, from the most important source of error (1) to the least important source of error (5) In the event that errors of a particular type do not exist, is used the sign ‘-‘.
2) The perceived direction of the ‘overall’ error using the signs “+” for over estimation, “-” for under estimation and “+/-” when assumption of the direction of the error cannot be made for GBARD.
13.1.2. Assessment of the accuracy
| Indicators | 5 (Very Good)1 | 4 (Good)2 | 3 (Satisfactory)3 | 2 (Poor)4 | 1 (Very poor)5 |
|---|---|---|---|---|---|
| GBARD | X | ||||
| National public funding to transnationally coordinated R & D | X |
1) High level of coverage (At least all national or federal ministries and the ministries and agencies responsible for R&D funding at state or regional level). High rate of response (>90%) in data collection. All figures broken down by NABS.
2) If at least one out of the three criteria described above would not be fully met.
3) In the event that the rate of response would be lower than 80% even by meeting the two remaining criteria.
4) In the event that the average rate of response would be lower than 70% and at least one of the two remaining criteria would not be met.
5) If all the three criteria described above are not met.
13.2. Sampling error
Not requested.
13.2.1. Sampling error - indicators
Not requested.
13.3. Non-sampling error
Non-sampling errors occur in all phases of a survey. They add to the sampling errors (if present) and contribute to decreasing overall accuracy. It is important to assess their relative weight in the total error and devote appropriate resources for their control and assessment.
13.3.1. Coverage error
Coverage errors are due to divergences between the target population and the frame population. The frame population is the set of target population members that has a chance to be selected into the survey sample. It is a listing of all items in the population from which the sample is drawn that contains contact details as well as sufficient information to perform stratification and sampling.
- Description/assessment of coverage errors: The total target population is included in the sample.
- Measures taken to reduce their effect:
13.3.1.1. Over-coverage - rate
There are no over-coverage errors in the survey.
13.3.1.2. Common units - proportion
Not requested.
13.3.2. Measurement error
Measurement errors occur during data collection and generate bias by recording values different than the true ones. The survey questionnaire used for data collection may have led to the recording of wrong values.
- Description/assessment of measurement errors: Not applicable.
- Measures taken to reduce their effect: Not applicable.
13.3.3. Non response error
Non response errors: occur when a survey failed to collect data on all survey variables from all the population units designated for data collection in a sample or complete enumeration.
- Problems in obtaining data from targeted information providers: All units responded.
- Measures taken to reduce their effect: Not applicable.
- Effect of non-response errors on the produced statistics: Not applicable.
13.3.3.1. Unit non-response - rate
Unit non-response rate is 0%.
13.3.3.2. Item non-response - rate
Not requested.
13.3.4. Processing error
Between data collection and the beginning of statistical analysis, data must undergo a certain processing: coding, data entry, data editing, imputation, etc. Errors introduced at these stages are called processing errors. Data editing identifies inconsistencies or errors in the data.
- Data processing and editing processes: Data entry errors are minimize by means of consistency controls on key aggregates added to the survey questionnaire (in Excel form) and by means of processing software by visual checking.
- Description of errors: So far no processing errors have been identified.
- Measures taken to reduce their effect:
13.3.5. Model assumption error
Model assumption errors occur when the assumptions made for the estimation of parameters, models, the testing of statistical hypotheses, etc., are violated. As a result, the quality of the resulting statistics is affected (e.g. degrees of confidence might be inflated).
Description/assessment: Not aplicable.
14.1. Timeliness
Timeliness and punctuality refer to time and dates, but in a different manner: the timeliness of statistics reflects the length of time between their availability and the event or phenomenon they describe. Punctuality refers to the time lag between the release date of the data and the target date on which they should have been delivered, with reference to dates announced in the official release calendar.
14.1.1. Time lag - first result
Date of first release of national data: 20 December 2024
14.1.2. Time lag - final result
Date of first release of national data: 20 December 2024.
14.2. Punctuality
Punctuality refers to the time lag between the release date of data and the target date on which they were scheduled for release as announced officially.
14.2.1. Punctuality - delivery and publication
Punctuality of time schedule of data release = (Actual date of the data release) - (Scheduled date of the data release)
14.2.1.1. Deadline and date of data transmission
| Transmission of provisional data | Transmission of final data | |
|---|---|---|
| Legally defined deadline of data transmission (T+_ months) | 6 | 12 |
| Actual date of transmission of the data (T+x months) | 6 | 12 |
| Delay (days) | 0 | 0 |
| Reasoning for delay | - | - |
15.1. Comparability - geographical
See below.
15.1.1. Asymmetry for mirror flow statistics - coefficient
Not requested.
15.1.2. Survey Concepts Issues
The following table lists a number of key survey concepts and conceptual issues; it gives reference to the Commission Regulation No 2020/1197, Frascati manual and the EBS Methodological Manual on R&D Statistics paragraphs with recommendations about these concepts / issues.
| Concept / Issue | Reference to recommendations | Deviation from recommendations | National definition / Treatment / Deviations from recommendations |
|---|---|---|---|
| Research and development | FM2015 Chapter 2 (mainly paragraphs 2.3 and 2.4). | No deviation | |
| Coverage of levels of government | FM2015, §12.5 to 12.9 | No deviation | |
| Socioeconomic objectives coverage and breakdown | Reg. 2020/1197: Annex 1, Table 20 | No deviation | |
| Reference period | Reg. 2020/1197: Annex 1, Table 20 | No deviation |
15.1.3. Deviations from recommendations
GBARD encompass all spending allocations met from sources of government revenue foreseen within the budget, such as taxation. Spending allocations by extra-budgetary government entities are within the scope only to the extent that their funds are allocated through the budgetary process (FM2015 §12.9). The following table lists a number of key methodological issues, which may affect the international comparability of national GBARD statistics.
| Methodological issues | Reference to recommendations | Deviation from recommendations | National definition / Treatment / Deviations from recommendations |
|---|---|---|---|
| Definition of GBARD | FM § 12.9 | No deviation | |
| Stages of data collection | FM2015 §12.41 | No deviation | |
| Gross / net approach, net principle | FM2015 §12.20 and 12.21 | No deviation | |
| EU/other funds | Eurostat's EBS Methodological Manual on R&D Statistics | No deviation | EU funds are not included. |
| Types of expenditure | FM2015 §12.15 to 12.18 | No deviation | |
| Current and capital expenditure | FM §12.15 | No deviation | Only resources from the State budget are included. Other government funds are included if they are in the budget. |
| Extra budgetary funds | FM §12.8, 12.20, 12.38 | No deviation | |
| Loans | FM §12.31, 12.32, 12.34 | No deviation | Loans to be repaid are not included. |
| Indirect funding, tax rebates, etc. | FM §12.31 - 12.38 | No deviation | Indirect funding is excluded. |
| Treatment of multi-annual projects | FM2015 §12.44 | No deviation | |
| Treatment of GBARD going to R&D abroad | FM2015 §12.19 | No deviation | |
| Criterion for distribution by socioeconomic objective | FM2015 §12.50 to 12.71 | No deviation | |
| Method of identification of primary objective | Eurostat's EBS Methodological Manual on R&D Statistics, topic 2, statement B.6 | No deviation |
15.2. Comparability - over time
See below.
15.2.1. Length of comparable time series
See below.
15.2.2. Breaks in time series
| Length of comparable time series | Break years1 | Nature of the breaks | |
|---|---|---|---|
| Provisional data | 15 | Not applicable | |
| Final data | 15 | Not applicable |
1) Breaks years are years for which data are not fully comparable to the previous period.
15.3. Coherence - cross domain
- Government financed GERD covers only R&D performed on national terrirory, and GBARD also includes payments to foreign performers.
- Government financed GERD covers R&D financed by all levels of government, while GBARD covers only central government.
- GERD includes all sources of funding of R&D conducted on national territory, while GBARD covers only R&D financed by government (inluding abroad).
- GBARD covers money allocated in a given year, but government financed GERD shows actual spending because money can be spent by performer in a year later than it was allocated by the funder.
15.3.1. Coherence - sub annual and annual statistics
Not requested.
15.3.2. Coherence - National Accounts
Not requested.
15.4. Coherence - internal
This part compares GBARD statistics from the provisional and final budget for the reference year.
15.4.1. Comparison between provisional and final data according to NABS 2007
| R&D allocations in the provisional budget delivered at T+6 | R&D allocations in the final budget delivered at T+12 | Difference (of final data) | |
|---|---|---|---|
| Exploration and exploitation of the Earth | 5 256 | 6 322 | 20,3% |
| Environment | 3 092 | 11 428 | 269,6% |
| Exploration and exploitation of space | 29 | 45 | 55,2% |
| Transport, telecommunication and other infrastructures | 2 103 | 3 948 | 87,7% |
| Energy | 845 | 2 026 | 139,8% |
| Industrial production and technology | 3 247 | 10 481 | 222,8% |
| Health | 3 972 | 8 760 | 120,5% |
| Agriculture | 12 085 | 6 362 | -47,4% |
| Education | 8 327 | 8 630 | 3,6% |
| Culture, recreation, religion and mass media | 1 067 | 2 725 | 155,4% |
| Political and social systems, structures and processes | 4 510 | 3 541 | -21,5% |
| General advancement of knowledge: R&D financed from General University Funds (GUF) | 304 502 | 307 770 | 1,1% |
| General advancement of knowledge: R&D financed from other sources than GUF | 151 389 | 160 807 | 6,2% |
| Defence | 1 644 | 337 | -77,1% |
| TOTAL GBARD | 502 068 | 533 182 | 6,2% |
The assessment of costs associated with a statistical product is a rather complicated task since there must exist a mechanism for appointing portions of shared costs (for instance shared IT resources and dissemination channels) and overheads (office space, utility bills etc). The assessment must become detailed and clear enough so that international comparisons among agencies of different structures are feasible.
16.1. Costs summary
| Costs for the statistical authority (in national currency) | % sub-contracted1) | |
|---|---|---|
| Staff costs | 8 850 euro | |
| Data collection costs | ||
| Other costs | 1 108 euro | |
| Total costs | 9 958 euro | |
| Comments on costs | ||
| Currently we are not able to provide the data. | ||
1) The shares of the figures given in the first column that are accounted for by payments to private firms or other Government agencies.
16.2. Components of burden and description of how these estimates were reached
| Value | Computation method | |
|---|---|---|
| Number of Respondents (R) | 65 | Number of reporting unit as number of all persons involved in filling in the questionnaire is impossible to collect. |
| Average Time required to complete the questionnaire in hours (T)1 | 1,0 hours | Information is collected from a question at the end of a questionnaire. Average number is calculated from reporting units reporting the time needed to complete the questionnaire (time spent assembling information prior to completing the questionnaire was not included as well as the time taken up by subsequent contacts after submitting the questionnaire). |
| Average hourly cost (in national currency) of a respondent (C) | 9,00 | Average monthly gross earnings per hour in euro according to CBS Labour market survey. |
| Total cost | 585 |
1) T = the time required to provide the information, including time spent assembling information prior to completing a form or taking part in interview and the time taken up by any subsequent contacts after receipt of the questionnaire (‘Re-contact time’)
17.1. Data revision - policy
Not requested.
17.2. Data revision - practice
Not requested.
17.2.1. Data revision - average size
Not requested.
18.1. Source data
- Provisional data:
Data are collected from budgetary and extra-budgetary users of the Government Budget. The Ministry of Science and Education provided data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-1 form, while other government bodies provided data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-2 form.
- Final data:
Data are collected from budgetary and extra-budgetary users of the Government Budget. The Ministry of Science and Education provided data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-1 form, while other government bodies provided data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-2 form.
- General University Funds (GUF):
Data from General University Funds (GUF) are collected from all reporting units. Some of them do have resources and some not. The Ministry of Science and Education which provide data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-1 form, often use R&D coefficients for distributing total resources.
18.2. Frequency of data collection
Data is collected annually.
18.3. Data collection
See below.
18.3.1. Data collection overview
| Provisional data | Final data | Comments | |
|---|---|---|---|
| Data collection method | Direct survey | Direct survey | |
| Stage of data collection | 4. Initial budget appropriations | 5. Final budget appropriations | |
| Reporting units | Reporting units are government institutions (budgetary and extrabudgetary users of government budget). Reporting units are funding institutions. | Reporting units are government institutions (budgetary and extrabudgetary users of government budget). Reporting units are funding institutions. | |
| Basic variable | Appropriations | - | |
| Time of data collection (T+x)1) | Provisional and final data are collected on the same questionnaire. Reporting units have to fill in the questionnaire by the end of November. T+6 |
Provisional and final data are collected on the same questionnaire. Reporting units have to fill in the questionnaire by the end of November. T+12 |
|
| Problems in the translation of budget items | The specific structure of government budget makes it difficult to collect data by budget analysis, so data are collected directly from reporting units - direct users of government budget. | ||
1) Time of data collection (T+x): T is assumed to represent the end of reference period. x expresses the number of months after (positive) or before (negative) T when data is collected.
18.3.2. General University Funds (GUF)
General University Funds (GUF) is calculated as an estimation estimated by coefficients collected by R&D survey. The Ministry of Science and Education fills in the total amount od General University Funds (GUF) in the questionnaire PIIR-1. Expenditures for individual fields of science in the GUF category are calculated on the basis of the coefficients obtained from R&D survey.
18.3.3. Distribution by socioeconomic objectives (SEO)
| Level of distribution of budgetary items – institution or programme/project | Project level. |
|---|---|
| Criterion of distribution – purpose or content | Purpose approach is applied. |
| Method of identification of primary objectives | - |
| Difficulties of distribution | There are generally no difficulties of distribution by SEO, except for distribution of General advancement of knowledge by fields of science, which is calculated using coefficients derived from R&D survey. |
18.3.4. Questionnaire and other documents
| Annex | Name of the file |
|---|---|
| GBARD national questionnaire and explanatory notes in English: | not available |
| GBARD national questionnaire and explanatory notes in the national language: | PIIR-1 and PIIR-2 (only in Croatian language) |
| Other relevant documentation of national methodology in English: | not available |
| Other relevant documentation of national methodology in the national language: | not available |
18.4. Data validation
As already stated above, the statistical survey on budget allocations for research and development, includes budgetary and extra-budgetary users of the state budget in the Republic of Croatia, i.e. all bodies that financed during 2023 and planned to finance R&D activity in 2024.
First step is to download from the web the address book of budgetary and extra-budgetary users of the state budget (Register of budgetary and extra-budgetary users). The register of budgetary and extra-budgetary users is established and maintained by the Ministry of Finance for the purposes of determining the scope of budgetary and extra-budgetary users of the general budget. Update it in such a way that 'heads' are taken and a report is sent to them. For example The Ministry of Culture and Media should send a consolidated report for all institutions that are part of it (state archives, archaeological museums, castles, galleries, museums...). It is necessary to carefully check which units to include, because some are not allowed to provide data (e.g. SOA, Information Systems Security Institute), and some are part of the reporting unit from which we received the data. It should be checked whether they have been included (e.g. the State Institute for Radiological and Nuclear Safety, which should be included in the Ministry of Internal Affairs report).
18.5. Data compilation
See below.
18.5.1. Imputation - rate
No data imputation is performed.
18.5.2. Data compilation methods
See below.
18.5.2.1. Identifying R&D
| Method(s) of separating R&D from non-R&D | Labour costs of institutions of higher education (universities, polytechnics and schools of professional higher education) are calculated in the share of 50% of total labour costs. Capital investment of univesities, polytechnics and schools of professional higher education is calculated in the share of 50% of total capital investment. Coefficients have been fixed in cooperation with the Ministry of Science and Education. SEO General advancement of knowledge by fields of science is calculated according to coefficients derived from R&D survey. |
|---|---|
| Description of the use of the coefficient (if applicable) | - |
| Coefficient estimation method | - |
| Frequency of updating of coefficients | SEO General advancement of knowledge by fields of science is calculated according to coefficients derived from R&D survey, which are calculated every year. |
18.5.2.2. General University Funds (GUF)
| Method(s) of separating R&D from non-R&D | Coefficients are applied. |
|---|---|
| Description of the use of the coefficient (if applicable) | The coefficients applied are based on R&D survey. |
| Coefficient estimation method | The coefficients applied are based on R&D survey and are calculated for FOS. |
| Frequency of updating of coefficients | Coefficients are updated every year. |
18.5.2.3. Other issues
| Treatment of multi-annual programmes | Multi-annual programmes are allocated to the year in which they are budgeted. |
|---|---|
| Possibility to classify budgetary items by COFOG functions | No |
| Possibility to classify budgetary items by other nomenclatures e.g. NACE | No |
| Method of estimation of future budgets | - |
18.6. Adjustment
Not requested.
18.6.1. Seasonal adjustment
Not requested.
No comments.
Statistics on Government Budget Allocations for R&D (GBARD) measure government support to research and development (R&D) activities, and thereby provide information about the priority governments give to different public R&D funding activities. This type of funder-based approach for reporting R&D involves identifying all the budget items that may support R&D activities and measuring or estimating their R&D content.
Main concepts and definitions used for the production of R&D statistics are given by the OECD (2015), Frascati Manual 2015: Guidelines for Collecting and Reporting Data on Research and Experimental Development, The Measurement of Scientific, Technological and Innovation Activities (FM 2015, Chapter 12), which is the internationally recognised standard methodology for collecting R&D statistics and by Eurostat’s European Business Statistics Methodological Manual on R&D Statistics (EBS Methodological Manual on R&D Statistics).
Since the beginning of 2021, the collection of R&D statistics is based on Commission Implementing Regulation (EU) No 2020/1197 of 30 July 2020.
The Regulation sets the framework for the collection of R&D statistics and specifies the main variables of interest and their breakdowns at predefined level of detail (Commission Implementing Regulation (EU) 2020/1197 of 30 July 2020 laying down technical specifications and arrangements pursuant to Regulation (EU) 2019/2152 of the European Parliament and of the Council on European business statistics repealing 10 legal acts in the field of business statistics (europa.eu)).
Statistics on science, technology and innovation were collected until the end of 2020 based on Commission Implementing Regulation (EU) No 2012/995 concerning the production and development of Community statistics on science and technology.
31 October 2025
Not requested.
Statistical units are budgetary and extrabudgetary users of government budget.
See below.
GBARD statistics cover national data (aggregates for NUTS 1) accordind to Statistical Classification of Economic Activities in the European Community – NACE Rev. 2.1.
Annexes:
HR NUTS 2021
- Calendar year: 2023
- Fiscal year: 2023
- Start month: January.
- End month: December.
Accuracy in the statistical sense denotes the closeness of computations or estimates to the exact or true values. Statistics are not equal with the true values because of variability (the statistics change from implementation to implementation of the survey due to random effects) and bias (the average of the possible values of the statistics from implementation to implementation is not equal to the true value due to systematic effects).
Several types of statistical errors occur during the survey process. The following typology of errors has been adopted:
- Sampling errors. These only affect sample surveys. They are due to the fact that only a subset of the population, usually randomly selected, is enumerated.
- Non-sampling errors. Non-sampling errors affect sample surveys and complete enumerations alike and comprise:
-
- Coverage errors,
- Measurement errors,
- Non response errors and
- Processing errors.
Model assumption errors should be treated under the heading of the respective error they are trying to reduce.
Unit of measure is expenditure in euros.
See below.
- Provisional data:
Data are collected from budgetary and extra-budgetary users of the Government Budget. The Ministry of Science and Education provided data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-1 form, while other government bodies provided data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-2 form.
- Final data:
Data are collected from budgetary and extra-budgetary users of the Government Budget. The Ministry of Science and Education provided data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-1 form, while other government bodies provided data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-2 form.
- General University Funds (GUF):
Data from General University Funds (GUF) are collected from all reporting units. Some of them do have resources and some not. The Ministry of Science and Education which provide data in the Annual Report on the Government Budget Appropriations or Outlays for the R&D Activity ‒ PIIR-1 form, often use R&D coefficients for distributing total resources.
The frequency of GBARD data dissemination at Eurostat level is yearly for provisional and final data.
At national level the frequency of GBARD data dissemination is also yearly, at the end of December as First Release.
Timeliness and punctuality refer to time and dates, but in a different manner: the timeliness of statistics reflects the length of time between their availability and the event or phenomenon they describe. Punctuality refers to the time lag between the release date of the data and the target date on which they should have been delivered, with reference to dates announced in the official release calendar.
See below.
See below.


