Pooling resources to make better diagnoses of rare diseases

By pooling patient data and applying state-of-the art genetic methods, EU-funded research is improving the diagnosis of rare diseases that affect the lives of tens of millions of EU citizens.

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia

Countries
Countries
  Algeria
  Argentina
  Australia
  Austria
  Bangladesh
  Belarus
  Belgium
  Benin
  Bolivia
  Brazil
  Bulgaria
  Burkina Faso
  Cambodia
  Cameroon
  Canada
  Cape Verde
  Chile
  China
  Colombia
  Costa Rica
  Croatia
  Cyprus
  Czech Republic
  Denmark
  Ecuador
  Egypt
  Estonia
  Ethiopia
  Faroe Islands
  Finland
  France
  French Polynesia
  Georgia


  Infocentre

Published: 12 June 2018  
Related theme(s) and subtheme(s)
Health & life sciencesGenomics  |  Medical research  |  Rare & orphan diseases
International cooperation
Research policyHorizon 2020
Countries involved in the project described in the article
Belgium  |  Czech Republic  |  France  |  Germany  |  Italy  |  Netherlands  |  Portugal  |  Spain  |  United Kingdom  |  United States
Add to PDF "basket"

Pooling resources to make better diagnoses of rare diseases

Image

© s_l #188023440, 2018. Source: fotolia.com

It is estimated that rare diseases affect more than 30 million people in the EU. However, with potentially between 6 000 and 8 000 rare disease entities, patient populations for each individual rare disease are small and dispersed, which makes international collaboration crucial.

The EU-funded project Solve-RD aims to improve the diagnosis of rare diseases and is starting its work with four core networks of care providers, called European Reference Networks. These have been established to share and enhance the knowledge and resources used for treating rare diseases.

The initial four European Reference Networks involved in the project cover rare neurological diseases: neuromuscular diseases, congenital malformations and intellectual disability, and genetic tumour risk syndromes. These will add and share their patient data, taking the lead in improving the diagnosis and treatment of these rare diseases. Other European Reference Networks will be included as the project progresses.

“Patients with a rare disease generally go through a long and arduous process, often described as a ‘rare disease odyssey’, that can last up to 15 years before finding a physician who knows what is actually wrong with them,” explains Holm Graessner, managing director of the coordinating entity for the Solve-RD project at the University of Tübingen in Germany. “Scientific advances can also take a long time as it is difficult to find sufficient numbers of people with the same rare disease to enable successful research.”

Difficult diagnosis

Collectively rare diseases can affect many people, with some perhaps running into hundreds of thousands. However, in recent years, it has become clear that the analysis of a doctor alone does not suffice to diagnose a rare disease. “The key is to develop better genetic tests to effectively diagnose rare disease,” says Graessner.

Applying genomics and other ’omic’ or high-throughput techniques for the molecular characterisation of rare diseases can lead to the development of new types of diagnoses for a large number of undiagnosed rare diseases.

This is where Solve-RD comes in. The academic partners in the project have designed an infrastructure that will enable the coordination and analysis of data generated across Europe on rare diseases.

By combining the existing genetic patient data from all the project collaborators, Solve-RD can greatly increase the chances of finding a second or third patient with the same rare disease. “This commitment to share data on rare diseases on this scale is unique,” Graessner says.

But Solve-RD will also go further by applying the latest available ‘multi-omics’ methods. If the DNA data highlights a particular disease the researchers will turn to other tests to investigate genetic functions.

Again, combining the various ‘omics’ techniques can provide extra information that could ensure the diagnosis of a rare disease. However, the enormous amount of data resulting from this multi-omics approach must be converted into useful, comprehensible information by bioinformatic scientists using smart algorithms. These approaches can include artificial intelligence applications.

Virtual networks

The project will expand its work to the remaining 24 European Reference Networks that were set up to improve and harmonise diagnosis and treatment for people suffering from rare diseases.

“Using shared knowledge and guidelines, a patient in Romania, for example, will receive the same diagnostics and treatment as a patient in Sweden or Spain,” explains Graessner. “Solve-RD will have a significant impact on our knowledge and clinical practice when it comes to diagnosing and treating rare diseases in Europe,” he concludes.

The project aims to increase diagnostic yield by up to 20 % and anticipates diagnosing some 2 000 currently undiagnosed cases.

Project details

  • Project acronym: Solve-RD
  • Project number: 779257
  • Participants: Germany (Coordinator), Netherlands, France, Spain, Czech Republic, United States, Belgium, Italy, Portugal
  • Total costs: € 15 361 621
  • EU contribution: € 15 361 621
  • Duration: January 2018 to Decemeber 2022

See also

 

Convert article(s) to PDF

No article selected


loading


Search articles

Notes:
To restrict search results to articles in the Information Centre, i.e. this site, use this search box rather than the one at the top of the page.

After searching, you can expand the results to include the whole Research and Innovation web site, or another section of it, or all Europa, afterwards without searching again.

Please note that new content may take a few days to be indexed by the search engine and therefore to appear in the results.

Print Version
Share this article
See also
Project website
Project details