Study on Single Wagonload Traffic in Europe
Objectives, results and recommendations

EUROPEAN RAIL FREIGHT DAYS
Brussels
November 28th, 2014
This presentation is the summary of the Study on Single Wagonload Traffic in Europe launched by EC and carried out by PwC & University La Sapienza of Rome.

This document does not represent an official position of the European Commission and its contents do not prejudge the form or content of any future policy proposal by the European Commission.
Section 1

Objective of the study
Objectives of the study

Single Wagonload traffic faces in many countries in Europe profitability and quality problems and has difficulties to keep pace with changing market requirements.

Nevertheless in most European countries – especially in the countries with the largest rail freight markets – Wagonload still forms the backbone of rail freight.

Therefore the European Commission has decided to launch a study on Single Wagonload Traffic with the following objectives.

Assess the importance of SWL market

Identify the main obstacles hampering SWL traffic growth

Define measures supporting SWL market

Identify possible supporting policies

1. Quantify the importance of Single Wagonload traffic in European rail freight and clarify its role in the European Transport market.

2. Identify the main obstacles for the further development of Single Wagonload traffic.

3. Define short- and long term measures how to secure and develop European Wagonload Traffic, addressing i.a. technical, operational, institutional and legislative issues and identifying the actors concerned e.g. RUs, IMs railway authorities.

4. Identify how EC transport policy can contribute to implement suggested measures, esp. which instruments should be used and, if necessary, where there is a need to adapt existing or create new tools.
Section 2

Answering to the key questions
Addressing the key questions

1. **WHAT** IS THE SINGLE WAGONLOAD?

2. **HOW BIG** IS THE SWL TRAFFIC?

3. **HOW DIFFERENT** IS THE SITUATION IN MS?

4. **WHAT** ARE THE TYPICAL COMMODITIES AND FLOWS?

5. **WHY** SWL IS DECREASING?

6. **IS INFRASTRUCTURE** ALSO AN ISSUE?

7. **HOW** IT IS PRODUCED (models, costs)?

8. **HOW** IT IS MARKETED OUT? (business models)
1. WHAT IS THE SINGLE WAGONLOAD?

• The transport of freight in individual railway wagons or groups of wagons (the shipment is less than a whole trainload).

• The SWL supply includes grouping and sorting of wagons in order to assembly full trains with different shipments, in order to take advantage of the full train size and, thus, increasing the productivity.

• Grouping / sorting can take place through marshalling in dedicated yards where each train is disassembled and the groups of wagons are classified to form new full load trains for the next yard, or more simplified arrangement with removal / addition of groups of wagons at intermediate stops.

• Any kind of wagons including the one loaded with combined transport units can be moved in SWL supply chain.
2. HOW BIG IS THE SWL MARKET (1/2)

3. WHAT ARE THE DIFFERENCES AMONG NETWORKS

The SWL is still a very important segment of rail freight in Europe. The collected data confirms the existence of three situations:

1) countries with 1 or more RUs still pursuing SWL;
2) countries where SWL faces constraints;
3) countries where none RUs is still pursuing SWL.

* AT, BE, CH, CZ, DE, FR, IT, PL, RO, SE, SI, SK, UK

TOTAL SWL VOLUME in the 13 reported countries*: 75 bn tkm
Estimated total EU+CH: ca. 80-85 bn tkm
2. HOW BIG IS THE SWL MARKET (2/2)

- In Europe SWL traffic share of the rail traffic dropped in 10 years from 50% to about 30% (while total rail traffic practically stabilised).

SWL market share in Europe (2004-2011)

![Graph showing SWL market share from 2004 to 2011 with a drop from 50% to 27% in 2012 (PwC*)]

Source: Eurostat

Eurostat provides data only for DE, IT, PL, SL, SK, FL, SE

- AT, BE, CH, CZ, DE, FR, IT, PL, RO, SE, SI, SK, UK (SWL transit traffic not included)
Section 2 – Answering to the key questions

4. WHAT ARE THE TYPICAL COMMODITIES AND FLOWS?

International share of SWL traffic (tkm)

Overall share: 64%

Traffic of SWL train in transit is not considered

Most important commodity moved by SWL

<table>
<thead>
<tr>
<th>Overall share: 64%</th>
<th>AT</th>
<th>BE</th>
<th>CZ</th>
<th>FR</th>
<th>DE</th>
<th>IT</th>
<th>SE</th>
<th>CH</th>
<th>PL</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic metals, metal products</td>
<td>I</td>
<td>I</td>
<td>III</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical products and Fertilizers</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal and lignite; oil and LNG</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Heavy Industry (incl. transport equipment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>Secondary raw materials, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products of agriculture</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>III</td>
<td>II</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 2 – Answering to the key questions

5. WHY SWL IS DECREASING? (1/2)

Four main factors reported by stakeholders and confirmed by the evidence

1. Decrease in the trade of some specific "captive" commodities

<table>
<thead>
<tr>
<th>Commodity (examples)</th>
<th>2008-2012 total land transport</th>
<th>2008-2012 total rail transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic metals</td>
<td>-18%</td>
<td>-15%</td>
</tr>
<tr>
<td>Transport equipment</td>
<td>-16%</td>
<td>-18%</td>
</tr>
</tbody>
</table>

Given the importance of international traffic (64% of SWL traffic), such strategies affect all SWL flows, even in countries not adopting such policies.

2. SWL supply "rightsizing" or abandonment by RUs in some Countries (due to budget constraints)

Better cost-effectiveness of SWL cannot be achieved as quickly as requested by the increasingly strict budget constraints.

(15-50% SWL services reported as not covering their production costs, due also to the complexity of the transport chain)
5. WHY SWL IS DECREASING? (2/2)

Increased competition by road freight transport (SWL main competitor on less-than-trainload flows)

Road transport demonstrated to remain price-competitive despite increase in fuel prices.

It is highly rated by shippers in terms of flexibility.

Quality to customers perceived as not sufficient, particularly for international flows

- **Late trains** (>1 hours delay) are still 10-25% of the SWL ones.
- **Tracking & tracing** has been reported as not available on international SWL traffic by shippers.
5. WHY SWL IS DECREASING? (2/2)

5. Limited effect on SWL of the liberalization process

Due to the complexity and lower profitability of SWL, new entrants focused on the intermodal and full train markets (only a couple of the new entrants contacted for the survey stated that they actually supply SWL services).

6. Large part of the SWL system are still operated according to traditional production and business models

Enhanced models (linear trains, combination of other types of rail freight supply) aiming at better use of available capacity and simplification of the transport chain exist but are not operated at large scale yet.

7. Technological innovations have been developed but often not deployed at large scale

- A number of technological innovations have been developed and in most cases they are quite mature;
- Large scale implementations, however, might be quite expensive, and the overall decline of the system does not encourage for such investments.
5. IS INFRASTRUCTURE ALSO AN ISSUE? (1/2)

Rightsizing of available "essential" infrastructure took place ...

... but it does not appear as a primary cause: IMs appear reacting to traffic decrease more than anticipating it, even if the risk of "vicious circle" exists.

Besides, changes in production models also generated reduction of SWL infrastructure density.
Section 2 – Answering to the key questions

5. IS INFRASTRUCTURE ALSO AN ISSUE? (2/2)

Rightsizing of available "essential" infrastructure for SWL: the private sidings

Private sidings /1000 km rail network

Issues generating reduction of private sidings

• **Lack of funding** for new infrastructure & rehabilitation (except few countries), while road connections to industrial plants are built and maintained at no cost for the companies.

• **High costs / burdens for safety certifications** (Romania, Poland).

• **Lack of urban planning provisions** requiring rail connections to new industrial / storage areas.

But structural conditions also matter ...

% of employment in industrial sector
Section 2 – Answering to the key questions

7. HOW IT IS PRODUCED (1/2)

- The study analysed a number of SWL production models in terms of type of network, related drivers, level of flexibility, etc.

- Three production models appear to be the most relevant in the Countries examined in detail.

- Network structure is in most cases supply-oriented aiming at optimising SWL productivity against demand constraints in terms of distribution, frequency, balance between directions etc.

- Main challenge is to design the network in a way allowing the respect of demand requirements in particular in terms of pick-up & delivery time constraints.

- The production models adopted by main RUs govern the utilisation of relevant infrastructure (main and small marshalling yards, freight stations etc.).
7. HOW IT IS PRODUCED (2/2)

- The complexity of the SWL production chain implies that also the cost structure is relatively complex.

- For a typical shipment, the main leg (inter-marshallying yards trains) costs just 13% of the total; adding 10% for charges for track access, lead to a total of 23%.

- Marshalling yards services in first and last marshalling yards are 15% of total costs. If we consider also the intermediate marshalling (7%), the total marshalling costs represent 22% of the total.

- Distribution costs (distribution trains + sorting at node stations) excluding marshalling yards services costs in first and last marshalling yards are 25% of total costs.

- Wagon costs are 9% of the cost structure.

- Commercial costs and overhead represent the remaining 20%.

- Cost structures appear to be quite different among the RUs for which data are available.

- Specific "local" factors appears to have a strong impacts (e.g. level of infrastructure charges, average length of the "long haul" trips, adopted production models etc.).
Section 2 – Answering to the key questions

8. HOW IT IS MARKETED
the business models

Current SWL BM are still strongly driven by production constraints

... the on going / possible evolution

IMPROVED TRADITIONAL SWL BM

- **TARGET MARKET SEGMENTS**
 - Existing demand for WL services
 - Limited pick-up / delivery points

- **SUPPLY IMPROVEMENTS**
 - Reliable and frequent interhub direct trains carrying different segments*
 - Increased capacity utilisation

- **MARKET APPROACH**
 - Involvement of forwarders/logist. op.
 - Provision of cross docking or value added services (not just transport)
 - Improved tracking & tracing

NEW WAGONLOAD SERVICES

- **TARGET MARKET SEGMENTS**
 - Relatively large WL flows
 - LTL Combined Tr. flows

- **SUPPLY IMPROVEMENTS**
 - Network of reliable mixed trains carrying different WL & CT segments
 - Low cost service providers for last mile

- **MARKET APPROACH**
 - Involvement of CT operator
 - Provision of cross docking or value added services (not just transport)
 - Improved tracking & tracing

* e.g. conventional wagons between private sidings or between one private siding and road transport at the other end; combined transports between terminals etc.
Section 3

Actions for the relaunch
PROPOSED ACTIONS (1/4)

- PwC analyses & the answers from the stakeholders consultation (37 answers from IM, RUs, shippers association & other operators) confirms that a number of actions on 5 key areas (efficiency, infrastructure availability, regulation of rail and other modes, quality, technology) are perceived as necessary, but there is **not a single "magic wand"** to relaunch SWL.

<table>
<thead>
<tr>
<th>Impact area</th>
<th>Priority level</th>
<th>Recommended actions to be implemented by EC</th>
<th>Recommended actions to be implemented by MS</th>
<th>Recommended actions to be implemented by Stakeholders</th>
</tr>
</thead>
</table>
| **IMPROVING THE EFFICIENCY AND/OR ECONOMIC SUSTAINABILITY OF SWL SERVICES** | HIGH | • Supervise (also through appropriate guidelines) & monitor the implementation of proper TAC regimes respecting EU regulation | • Ensure the implementation of **proper TAC regimes** respecting EU regulation
• Implementing conditions allowing workers **polyvalence** (as in other modes of transport) | • Implement **capacity booking** solutions
• Plan and operate **enhanced production models** mixing SWL with other (regular) rail freight flows to increase capacity utilisation |
| | MEDIUM / LOW | • Support “short liner” (last mile) operation through specific funding (similar to Marco Polo) | • **Support last mile operation as PSO** in specific areas where no RU is interested to operate them at market conditions
• **Align TAC reductions between intermodal** (if existing) and SWL
• Ensure the implementation of proper TAC regimes differentiating the levels by path quality / priority | • **100%**
• **Involve port authorities** in the management of last mile services |
PROPOSED ACTIONS (2/4)

<table>
<thead>
<tr>
<th>Impact area</th>
<th>Priority level</th>
<th>Recommended actions to be implemented by EC</th>
<th>Recommended actions to be implemented by MS</th>
<th>Recommended actions to be implemented by Stakeholders</th>
</tr>
</thead>
</table>
| ENSURING THE AVAILABILITY OF ESSENTIAL INFRASTRUCTURE / FACILITIES | HIGH 89% | • Enhance the existing regulation on service facilities (art. 13 of the Recast) by imposing sufficient notice & market analysis (including consultation of RUs) before deciding the closure of service facilities under Annex II.2 of the Recast directive
• Define guidelines (and possibly funding) for the incentives to construction & rehabilitation of private sidings
• Allow the simplification of safety and operational requirements for secondary lines where only freight trains circulate | • Implement funding programs (possibly with the support of EC) for the construction & rehabilitation of private sidings
• Simplify certification procedure of private sidings (in countries where they are complex) | • Realise active interaction between IMs, RUs and also shippers and local authorities concerning the “rightsizing” of essential infrastructure for SWL

91% Solution with higher consensus (relevant or very relevant for >85%)
PROPOSED ACTIONS (3/4)

<table>
<thead>
<tr>
<th>Impact area</th>
<th>Priority level</th>
<th>Recommended actions to be implemented by EC</th>
<th>Recommended actions to be implemented by MS</th>
<th>Recommended actions to be implemented by Stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFFECTIVE REGULATION OF THE RAIL FREIGHT TRANSPORT</td>
<td>HIGH 95%</td>
<td>• Monitor the implementation of the relevant EU regulation such as the Recast directive 95%</td>
<td>• Transpose relevant EU regulation (such as the Recast directive) if not done yet n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>MEDIUM/LOW</td>
<td>• Foster the implementation of a static platform providing user-friendly access to information about last mile infrastructure 95%</td>
<td></td>
<td>n.a.</td>
</tr>
<tr>
<td>EFFECTIVE REGULATION OF THE COMPETING MODES</td>
<td>HIGH 86%</td>
<td>• Ensure / verify the harmonisation of operating conditions with other modes, in particular concerning the infrastructure charging policies between rail and competing modes</td>
<td>• Align the conditions of road and rail transport concerning the provision of the “last mile” infrastructure connecting industrial plants and warehouses to the respective network</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Study on Single Wagonload Traffic in Europe • Objectives, results and recommendations

PwC

28 November 2014

20
PROPOSED ACTIONS (4/4)

<table>
<thead>
<tr>
<th>Impact area</th>
<th>Priority level</th>
<th>Recommended actions to be implemented by EC</th>
<th>Recommended actions to be implemented by MS</th>
<th>Recommended actions to be implemented by Stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPROVING THE SWL QUALITY TO THE CUSTOMERS</td>
<td>HIGH</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>• Implement enhanced wagons tracking & tracking solutions (also for international flows) available to customers (dynamic platforms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Propose innovative business solutions tailored to market needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGICAL INNOVATION</td>
<td>HIGH</td>
<td>• Support R&D on technology that are not fully mature yet (e.g. power source for “intelligent wagons”)</td>
<td>• Ensure the applicability of innovative technologies such as remote controlled shunting locomotives (e.g. in terms of safety provisions)</td>
<td>• Go from research / pilot stage to full scale implementation for mature technologies allowing significant benefits at limited costs (e.g. ICT solutions for fleet management, capacity booking, tracking and tracing; hybrid & remote controlled locomotives, etc.)</td>
</tr>
</tbody>
</table>

Solution with higher consensus (relevant or very relevant for >85%)
THE TECHNOLOGICAL SOLUTIONS

Wagon & loco fleet management
Considered by most respondent a "must" for any operator, and obviously not just for SWL, improving fleet utilization, predictability etc. IT based solution exists. To be combined with "intelligent wagon" solutions.

Capacity booking systems
Through coordination between partner RUs, it allow a better use of available capacity (→ increasing productivity) and increasing quality for customers (e.g. Expected Time of Arrival).

Remote controlled locomotives
Remote controlled locos are already successfully used in some countries & together with hybrid traction, they can improve cost-effectiveness & efficiency of last mile operations.

Wagon / consignment tracking & tracing
To provide same level of service as competing modes. Available in some RUs at national level, but not for international traffic. Elimination of manual reporting & interoperability of existing systems are the key steps.