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Context • High fertiliser prices 

• Concerns with fertiliser availability

• Food purchasing power under pressure in EU 

and globally

• Will farmers apply sufficient fertilisers to their 

crops?

• Communication from the Commission on 

Ensuring availability and affordability of 

fertilisers

• … against a back-ground of long-term goal to 

improve fertiliser use efficiency (e.g. F2F).



Objective of this study: To assess the impacts of reductions in N-fertiliser use 

on yields of the main staple crops at the EU level.

Context

Yield gaps Non linearity
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Methods
DAYCENT MODEL: a state-of-the-art data-rich process-based 

biogeochemical modelling platform that simulates C and N flows within the 

soil and between soil, atmosphere and vegetation, with daily time steps.



Methods

• Mineral N fertilizer: 30% at planting + 70% at standing crops

• Each mineral N fertilization: 75% NH4 and 25% NO3

• Organic fertilization: applied generally after harvest or on standing crop in highly demanding crops 

such as maize. Maximum organic N rate: 170 kg/ha per year

• Mineral N fertiliser use is crop specific, partitioned from national-level EUROSTAT statistics (until 

2020) on N use, according to crop requirements

• Spatial allocation of crops is based on EUROSTAT statistics, but only the 4 most representative 

annual crops at regional level (NUTS2) are simulated in the model framework

DAYCENT MODEL: a state-of-the-art data-rich process-based 

biogeochemical modelling platform that simulates C and N 

flows within the soil and between soil, atmosphere and vegetation, 

with daily time steps.



General appraoch:

• Three scenarios of abrupt reduction of mineral N fertiliser use (2019-

2022) across the EU: -5%, -15% -25% compared with baseline. 

• Everything else is assumed to remain equal,

• same crops,

• same amounts of organic N-fertiliser use

• Effects simulated with DayCent biogeochemical model, at 1x1 km 

resolution

• Results aggregated per crop type at NUTS2, national and EU level

Methods



Model validation

Modelled crop response to N
Simulated yields vs EUROSTAT data



Results – crop yield reduction at EU27 level

Reduction of N-fertiliser use

5% 15% 25%

Impacts calculated for Year 1 Average 

year 1-4

Year 1 Average 

year 1-4

Year 1 Average 

year 1-4

Barley 1.5 1.9 4.4 5.8 7.4 9.8

Soft wheat 1.6 2.1 5.0 6.4 8.5 10.8

Durum wheat 1.4 1.7 4.1 5.2 6.7 8.7

Green maize 1.6 1.6 5.1 5.1 8.8 8.8

Grain maize 1.7 1.7 5.2 5.3 8.6 8.8

Rapeseed 1.4 1.8 4.2 5.4 7.0 8.9
Field beans and peas 0.0 0.0 0.0 0.1 0.1 0.1

Potatoes 1.3 1.4 3.7 4.3 6.1 7.1

Rye 1.1 1.6 3.6 5.1 5.7 8.3

Soybeans 0.0 0.0 0.0 0.0 0.0 0.0

Sugar beet 1.6 1.9 4.9 5.6 8.2 9.4

Sunflowers 0.7 0.9 2.2 2.8 3.7 4.8

Rice 1.9 2.0 6.0 6.4 10.4 11.2

Grassland 0.5 0.6 1.4 1.8 2.3 3.0
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Results: 
Yield reductions for reduction of mineral N-fertilizer input by 5, 15 and 25 %.
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• Overall, our modelling study indicates similar order of yield response as 

reported in literature: 

%Yield loss = approximately 1/3 of %N-reduction 

(i.e. crop yield losses in the range of 1-2% with 5% reduction of Nmin fertilizers; ca. 5% yield loss with 15% Nmin reduction).

however, with substantial variation among regions and crop types.

• Important factors that determine such variation include (1) current surplus use 

of N fertilisers; (2) share of  organic N fertilisers; (3) genetically determined 

crop N demand; (4) crop calendars; (5) inter-annual weather variations. Most 

of these factors are represented in the model.

• Yield reductions tend to increase if N use is reduced for multiple years, due to 

depletion of mineral N and (more gradually) of soil organic matter.

Discussion & conclusions



• This is a study with simple what-if scenarios, not a prediction. Future weather data 

are unknown.

• Difficult to find data for comprehensive validation. 

• Not all feedback mechanisms are included (e.g. if lower availability of feed results in 

less livestock production there will also be less manure). 

• Potential to assess longer-term scenarios with adaptation (e.g. shift to different crops, 

more efficient N use, use of alternative nutrient sources)

• Publication in scientific journal

Limitations and potential for follow-up
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