Going digital: Simulations and gaming in apprenticeships

Date: 10 June 2021 Location: Brussels, Bayton, Bergara, Utrecht, Kokkola

> Employment, Social Affairs

European Commission

Structure of the webinar

- 1) Introduction: Why we need to digitalise apprenticeships (*Tim SCHREIBER*, EC)
- 2) Warm up question on potential of simulations and gaming (*Simon BROEK*, Ockham IPS)
- 3) Where do simulations and gaming sit in the digital apprenticeships landscape? (*Andrew MCCOSHAN*, Plexus Research & Consulting)
- 4) Best practice examples (moderated by *Simon BROEK*):
 - Simulations in apprenticeships in the Industry and Transport sector (*Petri AHONIEMI*, Central Ostrobothnia Vocational College (KPEDU))
 - Application of serious games and VR simulators in VET (Unai ZIARSOLO, CIFP Miguel ALTUNA)
- **5)** How to integrate simulation and serious games into apprenticeships (*Alessandro BROLPITO*, ETF)

6) Q&A

Introduction

Poll question:

1. What is the potential of simulations and gaming?

- Apprenticeships should only be a real-life work experience
- Simulations and gaming can reduce costs in apprenticeship training, but real-life work experience is better
- Simulations and gaming can enhance the learning experience in apprenticeships, as learners can experience more diverse work settings in a simulating environment
- Simulations and gaming can, to a large extent, replace real-life work experience in apprenticeships

Where do simulations and gaming sit in the digital apprenticeships landscape?

How did we get here?

1980s	1990s	2000s	2010s	
Computer-assisted instruction	Multi-media PCs	DVDs	iPads, tablets	
First programmes	Laptops	CD-ROM/DVD drives integrated into devices,	Virtual Reality (VR)	
exclusively for educational use	CD-ROMs, including simulations	capacity increases	Augmented Reality (AR)	
TV	Interactive whiteboards	Smartphones, apps	Educational apps	
Videotapes, cassettes	MIT OpenCour ettes Early internet access initiative		Gaming	
		Internet access	Massive Open Online Courses (MOOCs)	
		3G to 4G	First 5G networks	

Growing Open Educational Resources/Courses

How does tech relate to teaching and learning?

Digital technologies

- Online resources, tools and programmes, MOOCs etc.
- Commercial platforms, LinkedIn, YouTube
- Mobile learning
- Simulations VR, AR
- Gaming
- Artificial Intelligence (AI)/learning analytics
- Assessment tools, credentials, open badges

Teaching and learning

- Embodied
- Experiential, learning-by-doing
- Social/collaborative
- Project-based
- Game-based

Simulations and games meet teaching

- **Experiential learning** Digital simulation and gaming can enhance type and scale
- Game-based learning A good fit with important aspects of apprenticeships, and expansion has the potential to bring a number of benefits
- Social and collaborative learning A key strength of gaming
- Blended How might blended learning be applied to situations where two learning environments are involved – the classroom and the workplace?
- Assessment Widens evidence for assessment; speeds up feedback; improves links between assessors and learners
- Linking schools and workplaces Improves coordination of knowledge acquisition and practical learning

Simulations and gaming enable social/collaborative learning, project-based learning, learning-by-doing, learning related to real-world issues, and learner-centred teaching

All help to develop the skills needed in the modern workplace

Some positives of simulations and gaming

Positives

- Support pedagogical innovation
- Visualise abstract content
- Offer learners new, different experiences
- Can improve learner motivation and engagement
- Can decouple learning from time and place
- Support personalisation
- Support social learning in communities
- Faster, more tailored feedback for learners
- Simulations are cheaper than the real thing (once developed), reduce preparation/clean-up time, enable more practice, and are safer

Some challenges related to simulations and gaming

Issues

- Rates of digitalisation have historically been slow in work-based learning compared to other sectors
- How much of a barrier are high development costs, and do they lead to inequalities?
- How much are simulations and gaming *improving* how people learn?
- Simulations remove people from the real workplace experience
- Health issues in VR, AR, AI
- How far do they currently enable content creation by teachers and learners?
- How do teachers and trainers know what is a 'good' product?

Question:

What other pros and cons are you aware of?

Best practice examples of simulations and gaming

Simulations in apprenticeships in the Industry and Transport sector

KPEDU IN FIGURES 2020

Transfer of skills

"Everyone has their own learning path, their own story."

"There must be a safe learning environment for learning skills."

"The teacher is a guide who points the way in the right direction."

"Combine a high level of simulation pedagogy with an enthusiastic, professional teacher, and good things will happen."

Soft skills

To be a professional, good employee, students need:

"Courage"	"Competence"	" "A feeling of be	elonging to a gro	oup" To make a "Io	eap of faith"
"Confidence"	"Learning"	"Understanding"	"Listening"	"We need to make	it possible"
"Friendliness"	"Interaction	skills" "A combina	ation of good tea	ching, simulation pe	dagogy, and robotics"

Photographs by Mrs. Eeva Huotari

SCANIA

100

Application of serious games and VR simulators in VET

Summary

- Some issues to overcome in hands-on training
- Digitalisation
- **Examples of gamification:**
 - **#1 Behilab** 3D software for beef cutting
 - **#2** Auto game Electrical troubleshooting in cars
 - **#3 Drone flight** Flight practices with drones
 - **#4 Control of the Asian hornet** 2D game to learn the control and elimination protocols

Hands on training: Issues to overcome

Hands-on training poses issues to overcome, including related to:

Physical safety of students

High cost of consumables

Preparation time required for real exercises

Digitalisation

The new generations are digital

Example 1: Behilab

Beef cutting

Non-immersive serious game to train on meat cutting, mainly beef

Menu and identification of parts

Source: Tknika

Location on the carcass and puzzle

Source: Tknika

Quartering

Where should it be cut?

Obtained result and final classification

Final ranking

Example 2: Auto Game

Simulator for the detection of electrical faults in automotive vehicles

Source: Tknika

From play to practice

Students put into practice what they have learnt in the simulation

Source: Iurreta LHII

Source: Iurreta LHII

Example 3: Drone flight

Different drones and different practice scenarios

Source: Realflight

Example 4: Control of the Asian hornet

The student can assume the different roles in the process of detection, control, and elimination of the insect

Source: Gijón City hall

Conclusions

VR and serious games are an attractive alternative to overcome challenges such as security, equipment costs, and accessibility in VET

Advantages

Can be used individually (e.g. at home)

They are very suitable for repetition learning

Disadvantages

Miss of the feeling of real experience

How to integrate simulation and serious games into apprenticeships?

Integration of digital technologies in teaching **and learning** requires significant educational innovation and implies a process of planning for pedagogical, technological, and organisational change

School managers have to ensure a strategic approach and an open and fertile environment

Educators need to feel confident and competent in using and designing appropriate learning experiences for their learners

Students need to be actively involved

Use of digital technology in teaching and learning

Aim

- Responsiveness to learners/labour market/societal changes
- Engaging learning experiences

Driven by pedagogy

Learner and teacher centered approach

Examples

- Personalised learning
- Authentic learning in an increasingly digitalised economy and society

Preconditions

Development of a high-performing digital education ecosystem

- Infrastructure, connectivity, and digital equipment
- Digital planning and development, and organisational capabilities
- Quality and engaging digital learning resources and tools

Enhancing digital skills and competences for the digital transformation

- A matter of skills, knowledge, and attitude
- Self-regulatory processes: Adaptation to feedback they receive from teachers, but also from digital environments (peer feedback and educational software)

How to assess and improve capacity at local level

SELFIE work-based learning systems

Launch: Q3 2021

- Collective self-reflection process, including trainers, learning organisations
- Holistic and tailored survey, comparative reports, eco-system for `actions'
- Methodological support: Survey outcomes -> strategy -> development plan

SELFIE (WBL) into action

Example of the SELFIE process being piloted in Ukraine to implement SELFIE in schools, including VET

Further questions?

For any additional questions, please contact:

Andrew McCoshan

E-mail: <u>andrewmccoshan@btinternet.com</u>

Alessandro Brolpito

E-mail: Alessandro.Brolpito@etf.europa.eu **Website:** <u>www.etf.europa.eu</u>

Simon Broek

E-mail: s.broek@ockham-ips.nl

Thank you for your time and attention!

Watch out for other upcoming EAfA events!

