MULTI-ORGANIC RISK ASSESSMENT OF SELECTED ENDOCRINE DISRUPTERS (EURISKED)

Contract number EVK1-CT-2002-00128
Project duration 36 months
Project start date 1/10/2002

Project type Shared cost
EC contribution € 3.098.109

Co-ordinator:
Prof. Wolfgang Wuttke
Division of Clinical and Experimental Endocrinology
Faculty of Medicine
University of Göttingen
Robert-Koch-Str. 40
37075 Göttingen, Germany
Tel: +49-551-396714; Fax: +49-551-396518
ufkendo@med.uni-goettingen.de

Partners:
Prof. Olli Jänne
Biomedicum Helsinki, University of Helsinki
P.O.Box 63
Haartmaninkatu 8
00014 Helsinki, Finland
Tel: +358 9 191 25040; Fax: +358 9 191 25047
olli.janne@helsinki.fi

Prof. Jan-Ake Gustafsson
Chairman, Department of Biosciences
Karolinska Institute, Dept. of Medical Nutrition
Novum, Huddinge University Hospital
141 86 Huddinge, Sweden
Phone: +46 8 585 837 46, Fax: +46 8 779 87 95
e-mail: jan-ake.gustafsson@cnt.ki.se

Dr. Sari Mäkelä
University of Turku, Institute of Biomedicine
Department of Anatomy
Kiiamyllynkatu 10
20520 Turku, Finland
Tel: +358 2 333 7348; Fax:+358 2 333 7352
sarmak@utu.fi

Prof. Ilpo T. Huhtaniemi
Institute of Reproductive and Developmental Biology
Imperial College Faculty of Medicine
Hammersmith Hospital
Du Cane Road
London W12 ONN, United Kingdom
Phone: ++44 20 7594 2104; Fax: +44 20 7594 2184
e-mail ilpo.huhtaniemi@ic.ac.uk

Prof. Jan Kotwica
Institute of Animal Reproduction and Food Research
Polish Academy of Sciences
10-718 Olsztyn - Kortowo, Poland
Tel: +48 89 523 4666; Fax: +48 89 520 4347
janko@pan.olsztyn.pl

Prof. Josef Köhrle
Institute for Experimental Endocrinology
Molecular Endocrinology
Humboldt University Berlin
represented by Charite University Hospital
Schumannstrasse 20-21
10117 Berlin, Germany
Tel: +49 30 450 524021; Fax: +49 30 450 524922
josef.koehrle@charite.de

Dr. Margret Schlumpf
Institute of Pharmacology and Toxicology
Section of Developmental and Environmental Toxicology
University of Zürich
Winterthurerstrasse 190
8057 Zürich, Switzerland
Tel: +41 1 635 5971 / 5969; Fax: +44 1 635 6857
schlumpm@pharma.unizh.ch

Prof. Jesús Tresguerres
Endocrinología Experimental
Departamento de Fisiologia Humana
Facultad de Medicina
Universidad Complutense-Ciudad Universitaria
28040 Madrid, Spain
Tel: +34 91 394 1484; Fax: +34 91 394 1628
guerres@eucmax.sim.ucm.es

Prof. Stephen G. Hillier
Dept. of Reproductive and Developmental Sciences
University of Edinburgh
Centre for Reproductive Biology
37 Chalmers Street
Edinburgh EH3 9EW, United Kingdom
Tel: +44 131 229 2575; Fax: +44 131 228 5891
Steve.Hillier@ed.ac.uk
116

Prof. Jaime A. Moguilevsky
Universidad de Buenos Aires
Facultad de Medicina
Departamento de Fisiologia
D.P. 1121
Buenos Aires, Argentina
Fax: +54 11 4981 9912
moguilev@mail.retina.ar
Ultimate goal of the EURISKED project was to determine multi-organic effects of a variety of endocrine disrupters (EDs); these are: OMC, Nonylphenol, 4-MBC, Bisphenol A, Dibutylphtalate, Benzophenone-2, Procymidon, Linuron, Resveratrol, 8-prenylnaringenin, genistein, estradiol-benzoat, androstandiol. The plant derived substances and the plasticisers have been shown to be uterotrophic, i.e. to have estrogenic effect in the uterus, while the 2 pesticides prevented androgen stimulated prostate growth. Since these steroids, but also thyroid hormones and glucocorticoids have profound effects in many other organs outside the reproductive tract it was a goal of this project to study these effect outside the reproductive tract. As a control, targets within the reproductive tract were incorporated in the study design as well.

Molecular and cell biological experiments as well as research in animals and in the human indicate that ED´s with estrogenic actions exist, which are present in either cosmetics (such as UV-absorbers and stabilisers) or pesticides / fungicides. Little research has been done as to whether these substances interact with other steroid receptors or act in non-reproductive organs like the neuroendocrine brain, the cardiovascular, skeletal or urogenital system during development and adult life. Hence, risk assessment for organs known to be estrogen-, androgen-, progestin-, glucocorticoid- or thyroid hormone-receptive following exposure to the above mentioned endocrine disrupters could not be made on the basis of the data available at the time of the beginning of the project. To study such effects with basic experimental and clinical tools represents the fundamental objective of this RTD project.

Many ED´s have been defined as ligands to a variety of steroid hormone receptors, their effects being studied in a multitude of cell lines. Many diseases have been related to pre- or postnatal exposure to ED´s and long-lasting effects need to be studied. In-vivo experiments in rats and mice will be performed, in which dams and newborn pups received substances known to be either estrogenic or antiandrogenic or to have anithyroid hormonal effects, namely 2 UV-absorbers used in the production of sunscreens, 1 stabiliser used in cosmetics, 1 fungicide used in fruit plantations, 1 pesticide and 1 synthetic flavone with antithyroid effects. In addition, adult gonadectomised or adrenalectomised rats and gene-targeted mice (steroid receptor knock-out mice) were also fed with the substances Estrogenic, androgenic, progestational, glucocorticoid, and thyroidal effects will be studied with genomic and proteomic tools in the brain and in the cardiovascular, skeletal and uro-genital systems. Experiments with steroid-receptor knock-out mice proved ultimately as to whether the substances of interest have steroid hormone receptor mediated activities in the intact organism. 5 of the 18 substances with known ED activity on the OECD list released recently were studied and those displaying multi-steroidal effects were incorporated into the main study. Clinical trials were performed with commercially available UV screens. The effects of phyotestrogens on the cardiovascular system (including the lipid profiles) and the bone were also determined. Transdermal resorption of UV-absorbers and their temporal presence in the body were studied in rats and human subjects.

Scientific achievements:
By means of histology, including immunocytochemistry it was shown that all uterine parts (endometrium, myometrium) were stimulated by the phytoestrogens, whereas 4-
MBC and OMC had very mild uterotrophic effects. Linuron and Procymidone were ineffective. 8-Prenylnaringenin, a hop derived flavonoid caused formation of polyploid structures in the endometrium, an effect which has never been published before. In the mammary gland all phytoestrogens clearly stimulated the formation of the the nuclear proliferation marker Proliferating Cell Nuclear Antigen (PCNA) and of the progesterone receptors, both are very typical estrogenic effects. Under higher doses, the phytoestrogens stimulated also development of mammary gland ducts and milk production. If occurring also in the human, this would endanger the uterus and the mammary gland to develop malignant tumours. In the thyroid most test substances inhibited either thyroidperoxidase, which may endanger the organism to become hypothyroid, or thyroid hormone deiodinases. Some of the tested UV filters proved to be estrogenic, an undesired effect could occur if the substances are resorbed transcutaneously. These investigations were performed in the 3rd year; the measurement performed so far did not result in detectable serum levels of the UV screens when commercially available product were tested in female and male patients. The present method may not be sufficiently sensitive, therefore the remaining serum samples of all test substances are being analysed in cooperation with partner 3, who has developed a highly sensitive estrogen reporter cell systems. The 2 pesticides tested inhibited testosterone induced growth of prostates and seminal vesicles. This anti-androgenic effect may have adverse effects in pubertal boys not only in the development of prostate or seminal vesicles but also in bone maturation. These results will enable the consortium to focus in the future in some more details in the various mouse and rat models and this will be of major importance to estimate the putative danger for the human.

Main deliverables:
The experiments allow risk assessment in developing and adult animals not only in reproductive but also in other steroid-receptor organs (Milestone 1). The molecular mechanisms behind these actions were elaborated in the brain, the cardiovascular system and the bone (Milestone 2). Risk assessment for the non-reproductive organs was also possible in the human (Milestone 2)

The results obtained testing the 11 studied endocrine disrupters allow differentiation between substances with estrogenic, anti-androgenic, thyroid affecting and undefinable effects. The estrogenic substances were “given in consecutive order of uterotrophic strength” Benophenone-2 > 8-Prenylnaringenin > 4MBC > OMC > Bisphenol A > Dibutylphtalate. The latter three compounds were almost devoid of uterorophic effects. Resveratrol, Procymidone and Linuron proved to be ineffective in the uterus. Clear anti-androgenic effects were observed for Procymidone and Linuron. The thyroid function was affected by 4MBC > OMC > 8-Prenylnaringenin > Genistein. Molecular mechanisms involved in altering thyroid hormone levels involve not yet clearly established hypothalamic/pituitary mechanisms, inhibition of thyroid peroxidase and inhibition of deiodinases in various organs. The effects of some substances like 4-MBC at a high dose could not be explained on the basis of interaction with steroid receptors.

Socio-economic relevance and policy implications:
While estrogenic and anti-androgenic effects of some of the studied endocrine disrupters were intensively investigated also internationally, the effects in the thyroid gland and in the adrenal open totally new perspectives, which clearly deserve further investigation. Here, food additives on the market to replace hormone replacement therapy (soy, red clover, genistein) or used for cosmetic purposes like bust enhancement (8-prenylnaringenin) or as anti-ageing compound (Resveratrol) need further attention. Since genistein and 8-prenylnaringenin do not only interfere with thyroid hormones but had strong estrogenic effects, their safety concerning uterus and mammary gland should
be thoroughly investigated. It should thus be a political goal to make European food safer, to sponsor research addressing the safety of isoflavone containing foods, particularly in view of the potency of their estrogenic effects in the mammary gland and in the uterus, which may endanger these organs for the development of cancers.

Concerning the anti-androgenic effects of Linuron and Procymidone it was not in the scope of this project to compare effects obtained in the laboratory with those that might occur in heavily exposed humans. However these pesticides are widely used in agriculture and therefore rigid control of food, particularly maybe foodstuff, is adviseable.

The plasticizers had very moderate effects in all test systems used by the consortium and therefore they appear not to be of major concern when consumed. However in concert with other EDC they may add to endocrine disrupting effects.

Conclusions:
With cell biological, molecular, animal experimental and clinical studies the putative adverse effects of a number of tested EDCs in the thyroid system, the mammary gland and the uterus were established. The putatively dangerous effects warrant further exploration and political activities.

Dissemination of results:
These results were disseminated primarily in scientific media (congresses, progress report of EU funded projects and scientific publications). Most consortium members also had close contact to local news media (TV, Newspapers, Public journals).

Keywords: Endocrine disrupters, risk assessment, multi-organic
Peer Reviewed Articles:

Resulting directly from EURISKED (acknowledging contract)

1. Rimoldi G., Christoffel J., Wuttke W. Morphological findings in uterus, vagina and mammary gland of rats long term treated with oral estradiol or the phytoestrogen genistein. In preparation

4. Seidlova-Wuttke, D., Jarry, H., Christoffel, J., Rimoldi, G., Wuttke W. 2005 Effects of Bisphenol-A (BPA), Dibutylphtalate (DBP), Benzophenone-2(BP2), Procymidone (Proc) and Linurone (Lin) on fat tissue, a variety of hormones and metabolic parameters - a 3 months-comparison with effects of estradiol (E2) in ovariectomized (ovx) rats. Toxicology. 2005 Sep 15;213(1-2):13-24.

8. Böttner M., Christoffel J., Rimoldi, G., Wuttke W. Effects of long-term treatment with resveratrol and subcutaneous and oral estradiol administration on the the pituitary-thyroid-axis. ECED, 2005 accepted

10. Seidlová-Wuttke D., Jarry H., Wuttke W. 2004 Pure estrogenic effect of benzophenone-2 (BP2) but not of bisphenol A (BPA) and dibutylphtalate (DBP) in uterus, vagina and bone. Toxicology; 205:103-112

12. Schlecht C., Klammer H., Jarry H., Wuttke W. 2004 Effects of estradiol, benzophenone-2 and benzophenone-3 on the expression pattern of the estrogen receptors (ER) alpha and beta, the estrogen receptor-related receptor 1 (ERR1) and the arylhydrocarbon receptor (AhR) in adult ovariectomized rats. Toxicology, 205:123-130

30. Gubbay O, Rae MT, Niven D, McNeilly AS, Guo W, Zeleznik AJ and Hillier SG. (2005) The survival of ovarian surface epithelial cells is stimulated by the
cAMP/CREB (cAMP Response Element-Binding) signalling pathway. In preparation

