Aeronautics & Air Transport in FP7

Liam Breslin

DG RTD-H.3 - Aeronautics
Brussels, 8th February 2007
2000
European Aeronautics: A Vision for 2020

2002
Strategic Research Agenda
Six Challenges for Aeronautics

2005
2nd Issue of the Strategic Research Agenda
Six High Level Target Concepts

Society's needs
Global leadership
Activities

1. The **greening** of air transport
2. Increasing **time** efficiency
3. Ensuring **customer** satisfaction and safety
4. Improving **cost** efficiency
5. **Protection** of the aircraft and passengers
6. **Pioneering** the air transport of the future
Instruments

Level 1 (EU-funding: max. up to 8 million €)
Upstream research and technology development activities – \(CP, \) \(CSA \)

Level 2 (EU-funding: min. 8 million € up to max. 60 million €)
Downstream research and technology development activities up to higher technology readiness, multidisciplinary integration and validation - \(CP \)

Level 3
Research and technology development activities up to the highest technology readiness, focusing on the combination of systems and the final proof in fully integrated system of systems – \(JTI, JU \)

Structuring Aeronautics Research
Activities strengthening excellence in research fields through lasting networking - \(NoE \)

Supporting Programme Implementation
Activities setting mechanisms or developing strategies for programme implementation – \(CSA \ (and \ CP) \)

Launching FP7 – Conference for Information Multipliers – Brussels, 7-8 February 2007
Research / Technology and Product Development in Aeronautics

Research and technology acquisition → Product development

Fundamental knowledge
Technology development
Technology validation
Demonstrators
Prototypes
Product definition
Product design and development
Product demonstration
Production

Collaborative Research
Level 1
Joint Technology Initiative
Level 2

Novel F.P.7 Concept
EU Framework Programme

EUREKA
-10
-5
0
+5
years

Launching FP7 – Conference for Information Multipliers – Brussels, 7-8 February 2007
The Greening of Air Transport

Embraces both the global issue of climate change (CO$_2$, NOx, soot, water vapour, particulates) as well as the local issues of noise and air quality

- Green Aircraft
 - Flight Physics
 - Aerostructures
 - Propulsion
 - Systems and Equipment
 - Avionics
- Ecological Production and Maintenance
 - Production
 - Maintenance and Disposal
- Green Air Transport Operations
 - Flight and Air Traffic Management
 - Airports
Increasing Time Efficiency

Aims at **significant reduction of journey time** through maintaining flight time within schedule and minimising the time that passengers have to spend in airports in the travel-related process.

- **Aircraft Systems and Equipment for Improved Aircraft Throughput**
 - Systems and Equipment
 - Avionics
 - Maintenance and Repair

- **Time Efficient Air transport Operations**
 - Air Traffic Management
 - Airports
Ensuring Customer Satisfaction and Safety

Aims at a quantum leap in passengers choice and schedule flexibility as well as at a significant reduction in accident rate in respond to the forecasted growth in air travel demand.

- Friendly Cabin
 - Design Systems and Tools
 - Noise and Vibration
 - Systems and Equipment
- Passenger Friendly Air Transport Operations
 - Maintenance and Repair
 - Airports
- Aircraft Safety
 - Aero-structures
 - Systems and equipment
 - Human factors
- Operational Safety
 - Design Systems and Tools
 - Maintenance
 - Air Traffic Management
 - Airports
 - Human Factors

Launching FP7 – Conference for Information Multipliers – Brussels, 7-8 February 2007
Improving Cost Efficiency

Embraces all the cost that arise in the whole air system design and operation

• Aircraft Development Costs
 • Flight Physics
 • Aerostructures
 • Propulsion
 • Systems and Equipment
 • Avionics
 • Production

• Aircraft Operational Costs
 • Flight Physics
 • Aerostructures
 • Propulsion
 • Systems
 • Avionics
 • Maintenance

• Air Transport System Operational Costs
 • Design Systems and Tools
 • Air Traffic Management
 • Airports *(DG TREN Call)*
 • Human Factors
Protection of Aircraft and Passengers

Aims to making impossible that an attacking force of any kind succeeds in creating injury, loss, damage or disruption either on the travellers or on citizens.

• **Aircraft Security**
 - Aerostructures
 - Systems and Equipment
 - Avionics

• **Operational Security**
 - Air Traffic Management
 - Airports
 - Human Factors
Pioneering the Air Transport of the Future

Stretches the Vision 2020 horizon to explore and pioneer the more radical, revolutionary, environmentally efficient and innovative technologies that might configure the step changes required in the air transport of the second half of this century.

- **Breakthrough and Emerging Technologies**
 - Lift
 - Propulsion
 - Interior Space
 - Life-cycle

- **Step Changes in Air Transport Operation**
 - Novel Air Transport Vehicles
 - Guidance and Control
 - Airports
Level 2 Themes for the 1st Call

- **Integrated approach to fault tolerant avionics**
 Integration and validation of basic elements of a comprehensive aircraft electronics platform, including the relevant tools and methods. Demonstration of the integrated platform in terms of functionality, re-configurability, fault tolerance and cost.

- **Integrated approach to aircraft electromagnetic environment**
 Development of integrated modelling, simulation, testing, certification and maintenance solutions able to cope with the overall aircraft electromagnetic environment. To consider the different flight phases and to cover a broadband of electromagnetic perturbations.

Level 2 Themes for the 1st Call

- **Life-cycle based development of structures**
 The project should develop a numerical modelling system which provides a step change in integrated virtual design, virtual manufacturing and in-service maintenance and derivatives development so covering the full life-cycle of an aircraft structure.

- **Network centric aircraft communications for global aircraft operations**
 The project should define, develop and demonstrate an aircraft communication concept which will integrate a full range of applications and services, including airlines operations, cabin crew operations, in-flight and on-ground passenger services, airport operations, security services and air traffic management related operations, including the unification of all the related networking protocols. Account should be taken of communication concepts developed in SESAR for air traffic management.
Level 2 Themes for the 1st Call

• **Integrated approach to health monitoring and non-destructive evaluation of aircraft structures**

 The approach will consider a large ensemble of non destructive testing techniques. The applications should cover fixed-wing and rotary-wing aircraft as well as engines components.

• **Integrated approach to novel engine architectures**

 The project should include the definition, development, integration and validation of advanced engine concepts and technologies at both components and system levels in novel engine architectures. The project shall include the latest advances in engine integration, validation and modelling.

Networks of Excellence (NoE)

• **Integration of research capacities in the domain of aerodynamic flows modelling**
 Key upstream modelling and simulation areas relevant to the virtual prototyping activities of the European aeronautical industry in advanced fluid dynamics.
 Research on long-term goals in flow modelling and simulation from academia, research centres, etc. aiming at transferring fundamental research results into the industrial framework.

• **Integration of research capacities in the domain of aviation safety**
 Full range of research activities underpinning certification and regulatory aspects in the different technical domains relevant to aviation safety.
 Research capacities related to safety modelling and metrics, human behaviour, software and hardware, new approaches to certification, etc.
Aeronautics and Air Transport Workprogramme

<table>
<thead>
<tr>
<th>The Greening of Air Transport</th>
<th>Increasing Time Efficiency</th>
<th>Ensuring Customer Satisfaction and Safety</th>
<th>Improving Cost Efficiency</th>
<th>Protection of Aircraft and Passengers</th>
<th>Pioneering the Air Transport Of the Future</th>
</tr>
</thead>
</table>

Supporting Programme Implementation

- Setting mechanisms and strategies – **CSA** (and **CP**)

- Understanding interactions between air transport, energy, environment and society
- Understanding the behaviour of the different actors and drivers of the air transport system
- Improving passenger choice in air transportation with the incorporation of additional and new vehicles
- Stimulating radical technological challenges
- Stimulating participation of SMEs
- Stimulating participation of Member States with aeronautical RTD potential
- Stimulating research with INCO partner countries
Objectives

• to provide a step forward in the technology capability of ATS environmentally friendly systems:
 • integration of advanced technologies
 • full scale demonstrators

• to improve on the overall ATS impact on environment:
 • noise and emission reduction
 • fuel consumption

• to consolidate the European industry around a project of common European interest
Green Engines

SMART Wing Aircraft

Systems for Green Operation

ATS Model

First Definition of ecology efficiency
Refined Definition of ecology efficiency

Simulator Platform AC, ATM, AP (flight segment)

Eco-Design

Green Rotorcraft

Regional Air Transport

Launching FP7 – Conference for Information Multipliers – Brussels, 7-8 February 2007
Transport (incl. Aeronautics)

1st Call Aeronautics and Air Transport

Main Features

22nd Dec. 2006 Publication of Call for Proposals

3rd May 2007 Closing of the Call for Proposals

Budget: 153 million € for 2007
 (about 217 million € for 2007 + 2008)
 (4 million € of DG TREN)

Budget Split: 50% Level 1 / 50% Level 2