Methodological support for ERDF and Cohesion Fund result indicators in the field of transport post 2020

THUR STREET

Evaluation Network Meeting 16th October 2020

Paul Riley, Maurits Van der Hoofd, Fergal Trace JASPERS – European Investment Bank

Key Details of Indicator RCR55:

Annual Users of newly built, reconstructed, upgraded or modernised roads

- Overview of the indicator

- Measures the total number of passenger-km travelled on roads newly built, reconstructed, upgraded or modernised due to ERDF or CF financial support
- Provides a measurement of the intensity of use over 1-year
- Takes into account all passengers (including also the driver) in the vehicles travelling on the road
- **Data required:** Annual Average Daily Traffic (AADT); Lengths of sections; Vehicle Occupancy Rates

- Sources of Data: Field Surveys (e.g., manual counts); installed technology; published datasets

Calculating Indicator RCR55

Į	Step 1	: AADT e	stimation
	[AADT] =	COUNT x EXP	ANSION x CONVERSION = [COUNT] x $[PC_{DT}] / [PC_{H}] x [PC_{AADT}] / [PC_{DT}]$
	Where	AADT:	Annual Average Daily Traffic
		COUNT:	The traffic volume observed for the selected period
		PC _{DT:}	The 24-hour count from the Permanent Counter for the survey day(s)
		PC _H :	The count from the Permanent Counter for the short period
		PC _{AADT} :	The AADT from the Permanent Counter for the survey year

[Passenger-Km] = $\sum_{j=1}^{n} AADT_j x Length_j x Occupancy x DAYS$

Where	Passenger-Km:	The value of the Indicator	
	AADT _i :	The Average Annual Daily Traffic on section j	
	Length _j :	The length of section j	
	n:	The number of sections defined for the scheme	
	Occupancy:	The average number of passengers per vehicle	
	DAYS:	The number of days in the year in question (365 or 366)	

Key Details of Indicator RCR56:

4

Time savings due to improved road infrastructure (road passengerhours/year)

- Overview of the indicator
 - Measures the total number of passenger-hours saved due to newly built, reconstructed, upgraded or modernised roads with ERDF/CF support
 - Provides a measurement of how much time was saved over 1-year
 - Takes into account all passengers (including also the driver) in the vehicles travelling on the road
- Data required: Annual Average Daily Traffic (AADT); lengths of sections; vehicle occupancy rates [see Indicator RCR55]; average speeds
- Sources of Data: Field surveys (e.g., speed surveys); online tools (e.g., Google Maps)

Calculating Indicator RCR56

5

Step 1: Hours saved calculation

[HOURS SAVED] =		$\sum_{j=1}^{n}$ ([Length_j b / Speed_j b] – [Length_j f/a] / Speed_j f/a]) * Occupancy * AADT_j f/a * DAYS	
Where	HOURS SAVED:	Passenger hours saved per year	
	Length _i b:	Length of the existing road on section j in baseline scenario	
	Speed, b:	Average speed on existing road on section j in the baseline scenario	
	Length _i f/a:	Length of the new road on section j (forecast or achieved)	
	Speed, f/a:	Average speed on the new road on section j (forecast or achieved)	
	Occupancy:	Average occupancy per vehicle	
	AADT _i f/a:	Annual Average Daily Traffic on section j (forecast or achieved)	
	n:	The number of sections defined for the scheme	
	DAYS:	Number of days in the year (365 or 366)	

6

Key Details of Indicator RCR64:

Annual Users of Dedicated Cycling Infrastructure (users/year)

• Overview of the indicator

- Measures the total annual number of users of dedicated cycling infrastructure
- Taken at the most busy point on the new cycling infrastructure and represents a conservative estimate of usage of new cycling infrastructure.
- Data required: Bike counts
- Sources of Data: Field Surveys (e.g., bicycle counts); installed technology (e.g., automatic counters); online tools

Calculating Indicator RCR64

7

Step 1: Users of cycling infrastructure

	[USERS] =	(COUNT) * (EXPANSION) = (COUNT) * (PCAT) / (PCH)
Where	USERS: COUNT: EXPANSION: PCAT: PCH:	Annual users of cycling infrastructure The cycling volume observed for the selected period The expansion factor from selected period to annual users The Annual Users from the permanent counter The count from the permanent counter for the selected period.

Key Details of Indicator RCR60: Freight Transport on Inland Waterways

8

• Overview of the indicator

- The number of tonne-kilometres produced on an inland waterway, over one year.
- It covers all types of inland waterway freight.
- **Data required:** Freight volumes in each direction per section; Nr. of vessels in each direction; Disruption periods; Lengths of sections
- Sources of Data: River management authorities; Operators

Calculating Indicator RCR60

Step 1: Tonne-km calculation

$[TONNE-KM] = \sum_{j=1}^{n} [TONNE_j] \times [L_j]$			
Where	n:	The number of defined sections	
	TONNE-KM:	The value of the indicator	
	TONNE _j :	The volume of tonnes carried for the year on each section	
	L _j :	The length of the section in question	

Key Details of Indicator RCR59: Freight transport on rail (tonne-km/year)

- Overview of the indicator
 - The number of tonne-kilometres produced on the scope of railway infrastructure that is the subject of the Project investment, over one year.
 - It covers all types of rail freight.
 - Measures the total number of tonne-kms realized due to newly built, reconstructed, upgraded or modernised railways with ERDF/CF support
- Data required: Freight volumes per section; Lengths of sections
- Sources of Data: Infrastructure Managers; Railway Undertakings

Calculating Indicator RCR59

11

Step 1: Net tonne-km calculation

Investment Bank

The Ell bank

	[TONNE-KM]=	$\sum_{j=1}^{n} [\text{TONNE}_j] \times [L_j]$	
Where	n:	The number of defined sections	
	TONNE-KM:	The value of the indicator	
	TONNE _A :	The volume of net tonnes carried per year on the section in question	
	L:	The length of the relevant section	
In case gr the metho	oss tonnes are p dological suppo	provided, these need to be converted to net, see ort document for instructions.	

Indicator RCR58

Annual users of newly built, upgraded, reconstructed or modernised railways in passenger-kms per year

What does it Measure ?

Sum of annual distance travelled by all users (passengers).

Need to know numbers of passengers and lengths of sections

Data usually required

13

• Passenger Volumes per Project section

- Project broken down to homogenous sections with same or similar levels of traffic
- Usually sections between railway stations or entry directions of a big station project
- Passengers counted/estimated for each section / train type / hour for a certain period
- Daily Passenger Traffic_{Section}
- Data to factor up Daily Passenger Traffic to annual value : Annual Expansion Factors
- Length of sections (infra. manager) : Length_{Section}

European Investment Bank

The EU bank

Source	Details / options	Advantages / disadvantages / risks
Rail Passenger Service Operator	 Regular passenger counts on trains either manual or using permanent technology Ticket sales data Both for Project and wider network 	 ✓ Can give good coverage across the year ✓ Useable to build Annual Expansion Factors ✓ If data offered for free, cheapest method ↓ Availability, reliability, completeness issues ↓ May need substantial data fusion ↓ May not be available for all operators
Field surveys	 Manual counting most likely in trains or on platforms Hand-held technologies can be used to support manual counting Temporary installed technology can help with counting or extend period of count 	 Reliable source of data, control over quality Short period counts relatively cheap Potential site access issues Costs need to be covered Measurement period tends to be short

		L
Source	Details / options	Advantages / disadvantages / risks
Other published data sets, on-line tools	 Usually statistical publications at international/national/regional level E.g. monthly, weekly, daily traffic data profiles 	 ✓ Useable to build Annual Expansion Factors ↓ Rarely available at project level, unlikely for Project sections
	 Network GIS, passenger reservations 	
Permanent Installed Technologies	 Typically infrared counters/video on trains Usually owned by Rail Operator Data could be for Project, wider network or other sections. 	 ✓ Complete source of annual data ✓ Useable to build Annual Expansion Factors ↓ Availability issues ↓ Still rare (often in new trains) ↓ Can be inaccurate in peaks ↓ Probably unavailable for Project sections
Investment Bank The EU bank	1	European

Experience and Cost Considerations -Manual Field Surveys

17

JASPERS country experience

- Many consultants experienced with manual public transport field surveys
- Ministries or Railway infrastructure managers may have limited experience but should be able to procure it, if necessary with some external advice

Costs of manual field surveys

- Depends on the complexity of the Project (extent of sections and train services)
- Several temporary employees (through agency) with limited skill requirements will be needed for a day AND one/two experts to plan, train, organise, supervise, evaluate
- Small cost compared to other project studies, design or investment, fundable by TA

Summary on Passenger Volume Data Collection

If data available and of sufficient scope and quality

- Railway Operator passenger count and ticket data
- Try to map whole year traffic
- If necessary seek other available aggregated datasets to build Annual Expansion Factors

If operator sources not sufficient to estimate daily traffic for the Project

- Do manual counts for a short (at least 2 days) period
- Seek other available aggregated datasets to build Annual Expansion Factors

Final Calculation Steps

21

Annual Passenger Traffic_{Section} =

Daily Passenger Traffic_{Section} x Annual Expansion Factor

INDICATOR RCR58 Annual Users = $\Sigma_{(All sections)}$ (Annual Passenger Traffic_{Section}) x (Length_{Section})

Indicator RCR101

• What does it Measure ?

Sum of annual time savings across all users (passengers)

Need to know numbers of passengers and travel times in Project and Base-line situation

Commission

European Investment Bank The Ell bank

Basic Data Usually Required

- Travel Time Savings / Section / Train type
 - From timetables before and after Project
 - Train type e.g. IC express, regional all-stopping

- Annual Passenger Traffic / Section / Train type
 - Daily Passenger Traffic derived from passenger volumes data
 - Data to factor up Daily Passenger Traffic to annual value : Annual Expansion Factor
 - usually collected for indicator RCR58 (annual railway users)

http://bombay-local.blogspot.com			
Panvel-Nerul-T	hane time table	29th May 201	
LEAVING	LEAVING	REACHING	
PANVEL AT	NERUL AT	THANE AT	
4.40		5.34	
5.09 (From	Belapur)	5.49	
5.45		6.38	
<u> </u>	6.32	7.04	
6.45		7.38	
6.47 (From	Belapur)	7.19	
	7.09	7.41	
7.24		8.17	
_	8.02	8.34	
8.06 FAST	8.27	8.52	
_	8.32	9.03	
<u> </u>	9.24	9.56	
9.16	9.40	10.11	
	9.51	10.22	
9.56		10.49	

24

Annual Time Savings_{Section}, Train type = Time Savings_{Section}, Train type x Daily Passenger Traffic_{Section}, Train type

x Annual Expansion Factor_{Train type}

INDICATOR RCR101 =

 $\Sigma_{(Sections, Train types)}$ (Annual Time Savings_{Section, Train type})

Other Potential Sources of Time savings

Source of time savings	Is a significant benefit when	Measurement / 25 Calculation
Increased Train Service Frequency	Project focused on increasing track capacity for service frequency increase	Number of boarding passengers at each impacted station
 Means reduced waiting time and increase of perceived comfort of service 	nequency increase	X Perceived travel time saving
ImprovementtoRailwayStationAccessibilityandEfficiency•relocated or new stops•new station underpasses, access points•improve integration with buses•changes to train transfer requirements	Project is new/modernised railway station	 Best calculated with use of transport network model : Measured data on traffic can be used to calibrate the transport model. Door-to-door time savings can be exported as direct output of model.
 Improved Service Reliability reductions in average delay and variability of arrival time enabled by the project. European Investment Bank The Eul bank 	 Project addresses a major bottleneck e.g. major railway station or inter- station section with insufficient capacity for desired timetable. 	 Needs regular measurement of reliability of train services. Reliability time is calculated as for other travel time with use of weighting of delay and time variability

Increased Train Service Frequency

- Often rail infrastructure capacity investments leading to higher service frequency e.g.
 - New station tracks and platforms
 - Double-tracking of a line between cities
- Benefits for those using more frequent services
- Service Frequency can be converted to perceived travel time as
 - Service Interval Penalty = Function(Service Interval)
- Example calculation in fiche

Investment

The Ell bank

40

60

27

Improvement to Railway Station

Accessibility and Efficiency

- Often urban rail investments with new stops /stop relocations or station layout improvements
- Door-to-door perceived travel time improvements
 - Travel time spent outside of a train can be weighted (e.g. UK TAG standards)
 - Best estimated with detailed transport multi-modal or public transport network model calibrated with measured traffic data
 - Door-to-door travel time can be exported as a direct output of a transport model.

Improved Service Reliability

- Often relevant to bottleneck investments
- Requires systematic monitoring and assessment of delay and travel time variability
 - Data collected by infrastructure managers/railway operators
- Standard ways to convert reliability issues into perceived time savings
- E.g. UK TAG guidance : Perceived time savings =
 - 2.5 x Average (µ) Delay +
 - > 3.5 x Standard Deviation (σ) of Delay

Please visit JASPERS website for more information about our activities and projects: http://jaspers.eib.org/

JASPERS contacts

Paul Riley

Senior Transport Sector Specialist European Investment Bank JASPERS Mattiellistrasse 2-4i A-1040 Vienna

tel. +352 437982010

p.riley@eib.org http://jaspers.eib.org/

Maurits van der Hoofd

Transport Engineer European Investment Bank JASPERS Rue de la Loi 227 B-1040 Brussels

tel. +32 27124171

m.vanderhoofd@eib.org http://jaspers.eib.org/

Fergal Trace

Transport Economist European Investment Bank JASPERS Rue de la Loi 227 B-1040 Brussels

tel. +32 27124184

f.trace@eib.org http://jaspers.eib.org/

