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Abstract 

 

Causal impact evaluations of EU Operational-Programme (OP) interventions aggregated at the 

national level are often used as a tool to inform policy makers, and the public opinion in general, 

about the overall contribution of the European Funds in achieving desirable results within the 

various thematic objective (TO) areas. Implementing these types of TO evaluations, however, is a 

very challenging task because, in the case of data aggregated at the national level, very often, no 

comparable “untreated” units of observation can be found for the analysis, due to the unique 

features of the EU member states and small sample sizes. For these reasons, standard quasi-

experimental empirical methods can be very rarely implemented and identifying casual effects of 

the OP interventions without very strict and limiting casual-identification assumptions is merely 

impossible. Indeed, it should be understood that, in general terms, there is a clear trade-off between 

rigorous internal validity of casual-effect evaluations and the level of aggregation of OP 

interventions and result indicators: the more the analysis is focused on broad TOs at the national 

level, the more limited the internal validity tend to be; the more the focus is on specific 

interventions at a micro-level, the stronger the internal validity tend to be. This technical note 

discusses an empirical approach, called “Cross-Regional Sequential Difference-in-Difference” 

(CR-SEQDD) that exploits the regional variations in the intensities of the OP interventions, 

pertaining to a same TO, in order to estimate a dose response functions that, under very strict and 

limiting causal-identification assumptions, can be subsequently used to establish what part of a 

change in the  nationally-recorded result indicator (Y) of interest  is likely to be caused by the OP 

interventions and what part is instead due to a counterfactual spontaneous change. This is done by 

means of pairwise sequential difference-in-difference (DD) comparisons across regions with 

different intensities of the OP interventions. These DD estimations are then plotted against the 

related cross-regional differences in the intensities of the OP interventions and a fitting dose-

response function is estimated to subsequently infer about the casual effect of the nationally-

aggregated set of OP interventions considered in the analysis. Under sufficient data-availability 

scenarios, compared to different evaluation options, such as expert opinions or meta-analyses, the 

CR-SEQDD estimation procedure has the advantage of allowing a more consistent comparisons 

of the findings across different thematic areas, programming periods and EU countries. 
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1. Introduction 

The aim of impact evaluations commissioned on programme interventions funded by the European 

Structural and Investment Funds (ESIF) is at times to assess the causal effects produced at the 

national level on result indicators pertaining to thematic objectives (TOs)1 identified in the 

partnership agreements (PAs)2. These thematic evaluations of the PA imply a very high level of 

aggregation: all operational programmes (OPs) interventions are pooled together by thematic 

objective at the national level. These types of evaluations are often a tool to inform policy makers, 

and the public opinion in general, about the overall contribution of the European funds in 

achieving, at the national level, desirable results within the various thematic objective areas. The 

findings from these types of evaluations are useful at a very high decision level that pertains the 

choice, at the macro level, of where to allocate resources among largely-defined domains of 

program interventions.  

For each result indicator Y (also referred to as outcome variable3) identified with reference to a 

specific TO, the main challenge for the analysis is to separate the part of the before-after-

intervention change of Y that was caused by the ESIF support from the part of the change that was 

caused by other factors (unrelated to the ESIF interventions). This is a very important aspect 

because it prevents the reported findings, conclusions and recommendations being based on naïve 

result-indicator analyses that offer evidence under the assumption of a-priori flat spontaneous-

change trend of Y (and that, for this reason, are potentially full of “spontaneous-change” bias, 

Figure 1). For these types of thematic objective evaluations of ESIF support, however, estimating 

“causal impacts”4 is a very challenging task and every possible option has many limitations and a 

low-level of rigorous internal validity.  

                                                           
1 Thematic objectives are in terms of 11 investment priorities for the implementation of ESIF support: 1. Strengthening 

RTDI; 2. Enhancing access to, and use and quality of information and communication technologies (ICT); 3. 

Enhancing the competitiveness of SMEs; 4. Supporting the shift towards a low-carbon economy; 5. Promoting climate 

change adaptation, risk prevention and management; 6. Preserving and protecting the environment and promoting 

resource efficiency; 7. Promoting sustainable transport and removing bottlenecks in key network infrastructures; 8. 

Promoting sustainable and quality employment and supporting labour mobility; 9. Promoting social inclusion, 

combating poverty and any discrimination; 10. Investing in education, training and vocational training for skills and 

lifelong learning; 11. Enhancing institutional capacity of public authorities and stakeholders and efficient public 

administration. 
2 Patnership Agreements define the strategy and investment priorities chosen by the Member State and present a list 

of national and regional operational programmes (OPs), as well as an indicative annual financial allocation for each 

OP. 
3 In the scientific empirical impact evaluation literature, “result indicators” can also be referred to as “outcome 

variables”, “result variables” or “outcome indicators” (all these terms can be used uniquely and consistently 

throughout a same document and they are never differentiated based on long/short-term or other distinctions). 
4 “Causal impact” (or “causal effect”) in the counterfactual impact evaluation (CIE) literature is defined as the effect 

produced by a program intervention in terms of the difference between the before-after-intervention change in a result 

indicator and the counterfactual change of the same result indicator in the same period (this is the spontaneous change 

due to factors independent from the program intervention). Under this CIE definition, “impact” referrers to the causal 

estimation of the part of the change in the result indicator that was ‘produced’ by the intervention, separately from the 
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Figure 1: 

Naïf Result-Indicator Analysis 

 

 

Figure 2: 

Causal-Effect Analysis of Result Indicators 

 

                                                           
spontaneous change that would occur also in the absence of the intervention. This is unlike the definition of the 

Evaluation Network of DAC-OECD, in which “impact” is referred to as “positive and negative, primary and secondary 

long-term effects produced by a development intervention”.  This latter definition of impact is related to both a type 

of result indicator (that has to be measured in the long term) and the fact that such a change is “produced” by the 

program intervention. Under the CIE definition, instead, an “impact” is not a specific type of result indicator, but it is 

a change on any type of result indicators (also short-term ones) that was caused by the programme intervention, 

separately from the spontaneous change. 
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This is because estimating the spontaneous change of Y that would also occur in the absence of 

the ESIF support would entail to acquire data on units of observations with similar characteristics 

and with no ESIF support. In the case of data aggregated at the regional or national level this is a 

nearly impossible tasks: EU member states and regions tend to have unique features and to receive 

some support from ESIF, so that no comparable “non-treated units” can be found for the analysis.  

For this reason, producing reliable “causal impact” estimates of the effects of the ESIF 

interventions on nationally (or regionally) aggregated result indicators has inherently a low degree 

of internal validity. This is not due to shortcomings of the currently available methodological tools. 

Rather, it is because rigorously estimating casual effects is proven to be scientifically unfeasible 

in a scenario in which there are no adequate data sources of comparable units of observation 

unexposed to the interventions that are sufficiently similar to the treated units. When this happens 

there is no way around but to accept that the empirical evidence will have limitations. This 

circumstance is not yet fully adequately considered in many evaluation designs of ESIF 

interventions: there is indeed a clear trade-off between the rigour of the internal validity of the 

analysis and the level of aggregation of the result indicators. The more the evaluation is focused 

on broad thematic objects at the national level, the less rigorous is the level of internal validity in 

estimating true causal effects of the ESIF interventions. The more the analysis focuses on more 

specific interventions at a micro-level the more likely it is that the impact identification conditions 

will be more favourable and the degree of internal validity of the causal effect estimations will be 

higher. 

 Due to such difficulties, for these thematic objective evaluations of ESIF interventions, the 

available options that have been explored in ToR documents (in an effort to move away from naïf 

result-indicator analyses), are in terms of: A) Meta-analyses of existing evaluation studies or 

scientific papers; B) the use of use of experts / expert panels. These two options can provide 

findings suitable for formulating a judgment on what part of the change in the result indicators is 

due to the ESIF and what part is due instead to spontaneous change or “deadweight”. Causal 

estimations that rely on expert opinions (or opinions gathered from in in-depth field surveys), 

however, are hard to be consistently replicated and this could lead to inconsistencies in comparing 

the findings of different thematic-objective evaluations across different programming periods or 

different areas of interventions. The same can apply also to meta-analysis estimations: in this case 

the assessment of the “causal effect” will be based on the pooling together existing evaluations 

that could form a puzzle of many different degrees of reliability in the causal estimations and many 

different sources of the evidence (e.g. quasi-experimental CIEs, other econometric/statistical 

models, predictions from theory of change, opinions from key actors, etc.). 

This technical note presents an empirical approach, called “Cross-Regional Sequential 

Difference-in-Difference” (CR-SEQDD), for providing some evidence on TO evaluations of ESIF 
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interventions aggregated at the national level5. The intuitive idea behind this CR-SEQDD approach 

is to exploit the cross-sectional variation in the intensities of the OP interventions (pertaining to a 

same TO) that can be recorded regionally (within a same programming period) in order to estimate 

(controlling for regional differences) a set of parameters that are subsequently used at the national 

level to establish what part of a change in the relevant result indicator (Y) is likely to be caused by 

the ESIF support and what part is instead caused by spontaneous change.  This can be done by 

comparing, with a difference-in-difference (DD) scheme, the before-after treatment change of Y 

recorded in the regions with higher intensities of the ESIF support to the change of Y recorded in 

the regions with lower intensity of ESIF support. These DD comparisons can be performed 

sequentially (in a cross-sectional acception) for each pair of regions, following an ascending order 

of the intensity of the ESIF support. If the latter was indeed the major factor in affecting the 

nationally-recorded before-after-intervention change of Y, these sequential DD comparisons 

should show that a more positive change of Y is recorded in the regions with higher intensities of 

ESIF support than in the regions with lower intensity of the support. If this is not the case, instead, 

it would be more likely that the nationally-recorded change of Y was the result of a spontaneous 

change that would have been recorded even in the absence of the program intervention. 

 As described in detail in the next section, the internal validity of the CR-SEQDD estimates 

holds only under very strict causal identification assumptions and the approach combines together 

different standard econometric tools that have been in existence for decades, with known 

limitations in the range of applicability. For these reasons, by all means, the CR-SEQDD approach 

should not be regarded as a breakthrough methodological tool that produces findings with the same 

strong internal validity as a standard quasi-experimental approach implemented under more 

favourable scenarios in terms of causal identification conditions. Unlike experts’ opinions and 

meta-analyses, however, CR-SEQDD offers the advantage of being a fully replicable empirical 

tool, enabling a consistent comparison of the findings across different times and areas of 

interventions when it comes to performing TO evaluations of the OP interventions aggregated at 

the national level. Even if the approach has obvious limitations, it does represent a way of offering 

evidence that is indeed informative in terms of allowing reliable comparisons of the findings across 

different thematic areas, programming periods and/or EU countries (the same identical strict casual 

identification assumptions would apply to the evaluations of different thematic areas, periods and 

or EU countries, enabling a suitable comparison of the results)6. Moreover, CR-SEQDD is 

deliberately set to be a fairly simple empirical tool, in order to make it possible to be applied at 

large also in non-academic settings, highlighting in a straightforward and transparent way the data 

                                                           
5 In the existing literature, sequential difference in difference models have been previously used in the context of a 

dynamic temporal sequences of program interventions (Ding and Lehrer 2010). However, a part form exploiting 

repeated DD comparisons, the approach discussed in this technical note focuses on cross-sectional sequences of DD 

comparisons and shares little similarities with the temporally-sequential difference in difference models. 
6 In addition, as previously mentioned, the limitations of the method do stem from the harsh causal identification 

conditions posed by these broad thematic objects. Under the same circumstances, no other alternative empirical tool 

would be able to relax such very strict casual identification assumptions. 
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requirements, strong limitations and causal identification assumptions necessary for the 

estimation.  

 

2.  CR-SEQDD properties, causal identification conditions and data requirements 

The CR-SEQDD approach presented in this technical note can be implemented under the following 

circumstances and data availability scenarios: 

-The intensities of the OP interventions pertaining to a same TO are measurable and they can be 

allocated at the regional level within the programming period of interest; 

-The intensities of the OP interventions and the result indicator/s (Y) are measured in terms of 

intensities defined with respect to a same baseline size-indicator that captures obvious scale effects 

that may influence the absolute value of the change of Y. For example: number of residents, or 

residents with higher-education degree:  OP intensity = (TO 1 support)/ (residents); Y=(patent 

applications) / (residents). This baseline size-indicator controls for scale-effect differences among 

regions that can lead to obvious different potentials for the absolute changes of Y along the 

estimation period of interest.  

-Across the different regions of the EU member state/s considered in the analysis, the intensities 

of the ESIF supported OP interventions (pertaining to a same TO) have a sufficiently large degree 

of variation. As illustrated more in detail in the next sections, this is a necessary condition for the 

CR-SEQD estimates to achieve standard errors and confidence intervals that are of limited size, 

enabling the results to be sufficiently informative;  

-The regional-level data on the result indicator(s) Y have to cover at least the beginning and the 

end of the programming period/s of interest; 

At the heart of this CR-SEQDD approach are the pairwise difference in difference (DD) schemes 

that sequentially (along the cross-sectional order of the regions based on the treatment intensity) 

compare the before-after-intervention cross-regional change of Y. In these pairwise cross-regional 

DD comparisons, the before-after-intervention change of Y recorded in the low-intensity region 

are assumed to be the counterfactual change that would be recorded in the higher-intensity regions 

in the presence of a lower intensity of the treatment. This assumption requires a very strict causal 

identification condition in terms of cross-regional differences of the relevant baseline 

characteristics that have to be fixed effects: factors that exert a constant over-time effect on the 

levels of Y recorded in the subsequent units of time, rather than determining multiplier effects on 

the future levels of Y.  In the DD literature (e.g. Moffit 1991, Lechner 2011, Angrist and Pischke 

2009, Card and Krueger 1994, 2000) this casual identification condition is referred to as the 

“parallel trend assumption” (Figure 3): if exposed to similar intensities of the OP interventions (or 

in the absence of any OP intervention) regions are free to achieve different levels of Y (based on 

their different baseline factors) but they have to display similar growth trend of Y (due to the fact 
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that the different baseline factors are assumed to be fixed effects that, as such, have no influence 

on the changes of Y over time)7. 

 

Figure 3: 

Difference-in-Difference (DD) Cross-Regional Comparisons 

 

 

In the case where the estimation period can be extended to include one additional pre-intervention 

time, in which the regional units of observation are all unexposed to the treatment (or exposed to 

                                                           
7 The fixed-effect /parallel-trend condition assumed by the DD schemes can be further explained by means of the 

following example.  Suppose that Region A (receiving a low intensity of OP interventions) is structurally different 

than region B (higher intensity of the OP interventions). For example, the R&D capacity of Region A is higher than 

Region B because Region A has more universities, larger number of existing R&D labs and facilities, stronger 

concentration of residents with higher education. These structural differences between Region A and Region B, entails 

that Region A tends to have, in any given year, an higher value of a result indicator Y (e.g. n. of patent applications) 

than Region B. Under this scenario, in a standard quasi-experimental CIE setting, in order to obtain causal estimates 

of the OP interventions it would be required to find a comparison group of other regions with very similar structural 

characteristics of region A and B, but different intensities of treatment (or no treatment at all). With a DD comparison, 

instead, the way in which the different structural characteristics of the regions is taken into account in the analysis is 

by means of transforming the values of result indicator Y into changes between the beginning and the end of the OP 

interventions (e.g. 2014-2020). The rationale behind this empirical option is the following: if the differences between 

the two regions are structural characteristics, these different features may be elements that are constantly in existence 

in any given year during the 2014-2020 period considered in the analysis (e.g. if one Regions has a larger number of 

universities this feature tend to be always in existence). For this reason, these structural characteristics, in the DD 

methodological literature, are referred to as “fixed effects”. These fixed effects by definition do have an influence on 

the levels of result indicator Y (e.g. yearly number of pro-capita patent applications), but they cannot have an influence 

on the change of Y between different years (these “fixed effects” are always in existence and therefore they cannot 

induce a change in Y between different periods). 
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a treatment of the same intensity), the CR-SEQDD model can be estimated with a difference-in-

difference-in-difference scheme (DDD, e.g. Moffit 1991, Bondonio 2000, Lechner 2011). In this 

case, the required causal identification condition would be less stringent, requiring that the 

treatment and control units would display growth trends of Y that are similar only once adjusted 

for the treatment-control differences in the growth of Y recorded on the previous period (Figure 

4). 

 

Figure 4: 

Difference-in-Difference-in-Difference (DDD) Cross-Regional Comparisons 

 

 

Other assumptions that are required by CR-SEQDD are in the following terms: 

-The result indicators (Y) have to be affected solely by the OP interventions pertaining to the TO 

considered in the analysis and not by the OP interventions pertaining to other TOs not included in 

the analysis; 

-The spatial spillovers produced by the OP interventions considered in the analysis have to be 

contained within the same region in which they are implemented, rather than spanning across 

different regions; 

-The marginal return on Y of each additional unit of intensity of the OP interventions is constant 

both cross-regionally and across the different values of the treatment intensity within the 

estimation period considered in the analysis. This assumption is necessary, as explained more in 
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detail in the next section, because the differences in the treatment intensities across the different 

regions have to be pooled together in the final step of the analysis, regardless of the baseline level 

of treatment intensity.  

 

3. Estimation procedure 

In simple terms, the CR-SEQDD estimation procedure can be summarized by means of the 

following steps: 

A) The before-after-intervention trend of the result indicator (Y) of interest for the analysis and 

the intensity of the OP interventions belonging to the pertaining thematic objective (TO) are 

recorded for each region; 

B) Regions are sorted in ascending order of the intensity of the OP interventions [ i.e. the treatment 

(T)] pertaining to the thematic objective (TO) considered in the analysis;  

C) Sequentially, along the order of the treatment intensity, a series of pairwise cross-regional 

difference-in-difference (DD) comparisons [or DDD comparisons if allowed by the data 

availability scenario] are implemented. The results from these DD or DDD pairwise comparisons 

are in terms of casual impact parameters (DDY) or (DDDY) that (with all the limitations posed by 

the very strict impact identification assumptions mentioned in the previous section) estimate the 

degree by which an higher intensity of the OP interventions (compared to the baseline of the region 

with the lower intensity) generate a positive change of Y; 

D) The results from each pairwise cross-regional DD comparison are displayed in a two-way 

scatter plot that contains on the vertical axis the causal impact parameters DDY and on the 

horizontal axis the corresponding difference of treatment intensity (DT) between the pair of 

regions; 

E) Based on the two-way scatter plot chart D), a linear or quadratic dose-response function is fitted 

and estimated in terms of  DDY =  +DT +  (1)    or   DDY =  + DT + DT)2+ 8 (2). 

Under the strict assumption of a constant marginal return of T (as mentioned in the previous 

section), this linear (1) or quadric function (2)9 is then used to predict what would be the expected 

contribution on DDY of the DT registered at the national level in the period of interest, compared 

                                                           
8 The standard errors of the coefficient estimates of these models have to be obtained with a suitable bootstrapping 

procedure that takes into account the non-independence of the clusters of DD comparisons involving a same region 

(e.g. Gonçalves and White 2005, Chen and Onnela 2019). 
9 In principle, more complex functional forms could be also considered in the case that they ensure a better fit of the 

data. Due to the small number of regions that will be available in most of the empirical applications, however, a more 

parsimonious functional form will be preferable, in most cases, for preserving the statistical efficiency of the estimated 

parameters of the model. 
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to a scenario of absence of treatment (i.e. DT=c, with c=nationally-recorded intensity of the OP 

interventions); 

F) The predicted DDY value (𝐷𝐷�̂�), estimated in step E) for the nationally-recorded intensity of 

the OP interventions, is then compared with the raw change (DY) of the result indicator recorded 

nationally in the period of interest. When 𝐷𝐷�̂� reaches similar values of DY, the CR-SEQDD 

findings are indicative of a causal impact of the OP interventions being responsible for most of the 

nationally-recorded DY. When 𝐷𝐷�̂� is largely lower than DY, the CR-SEQDD findings are 

indicative of a strong component of spontaneous change being responsible for most of the 

nationally-recorded DY10.  

Under ideal data availability conditions (detailed in the application examples described in the next 

section), the 𝐷𝐷�̂� estimates from the final step F) of the analysis are capable of highlighting (with 

adequate statistical precision) the fraction of the nationally recorded DY that is deemed to be 

caused by the OP interventions, and, conversely, the fraction that is instead caused by spontaneous 

change.  Because of the very strict causal identification assumption required by CR-SEQDD, 

however, the estimated results are best to be reported also in terms of 95% confidence intervals of 

the 𝐷𝐷�̂� estimated at the nationally recorded intensity of the OP interventions, rather exclusively 

as single-point estimates. 

 

4. Application Examples 

This section presents four application examples of the CR-SEQDD estimation procedure [steps 

A)-F), described above].  For ease of comparability, all examples are related to the evaluation of 

nationally-aggregated OP interventions pertaining to Thematic Objective (TO) 1, Strengthening 

research, technological development and innovation.  The sample of regions is N=15, and the 

available regional-level data concerns: 

DYi =(Yipost - Yipre) = Pre-post-intervention change in the yearly number of patent applications per 

million of residents recorded in region (i) [t=pre (pre-intervention year) and t=post (post-

intervention year]11;  

                                                           
10 As an alternative to the estimation procedure A)-F), in some circumstances, a function DY=f(T) can be fitted and 

estimated directly on the two-way plot chart of the regional distribution of T and DY. The estimated parameters from 

DY=f(T) can be used to find the predicted value of DY corresponding to the nationally recorded level of T. In this case, 

the estimated contribution of the nationally-recorded intensity of the OP interventions (T=c) on the pre-post-

intervention change of the result-indicator (DY) is obtained as the difference between the predicted values of DY 

corresponding to T=c, and T=0. This option generally entails a lower statistical efficiency of the estimation, but avoids 

the issues of non-independence of the observations in estimating the standard errors of the model.  
11 For easy of simplicity, the application examples focus on cross-regional DD comparisons, instead of DDD 

comparisons. These application examples, however, can be easily extended to include DDD comparisons when the 

available data do include, in addition to DY=(Ypost-Ypre), also the changes of Y recorded along a previous period of 
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Ti= Per-capita intensity of the ESIF monetary resources spent in the (pre-post) period for all the 

OP interventions pertaining to TO1. 

Example I):  Ideal data-availability scenario, strong causal effect of the OP interventions 

In the following example I), the regional data  available for the analysis (Table 1) are ideal because 

of the very high amplitude of the cross-regional variation of T (Table 1).  

Table 1: 

Intensities of OP interventions (T) and patent applications (Y) per million of residents 

 

Source: data generated for exemplification purposes 
 

Indeed the national average level of  T (=intensity of the OP interventions =€ 63.4 Million / Million 

of residents) is smaller than the (max, min) difference across the regional values of T and the 

standard deviation of the regional values of T is more than 1/3 of the national average level of T. 

                                                           
observation [i.e. DY(Ypre-Ypre-1)] in which all regions were not exposed to the same OP interventions considered in 

the analysis, or to a constant-across-regions intensity of the OP interventions. 

Region Pop.

TO1 OP  

support           

( 1=€Mil.)

T                  

[Intensity of 

TO1 support ] 

1 = (1 €Mil.) / 

(Mil. 

Residents)

Ypre             

1= No. Pat.  

Appl. / Mil. 

Residents

Ypost             

1= No. Pat.  

Appl. / Mil. 

Residents

DY                 

= (Ypost) - 

(Ypre)

A 500,000      0 0 65.5 66.0 0.5

B 1,200,000    24 20 58.4 62.8 4.4

C 800,000      36 45 55.3 64.1 8.8

D 2,400,000    120 50 52.3 62.0 9.7

E 3,000,000    165 55 50.1 60.8 10.7

F 1,400,000    86.8 62 48.6 61.2 12.6

G 2,000,000    130 65 53.5 66.7 13.2

H 1,500,000    102 68 52.3 65.7 13.4

I 2,200,000    154 70 55.7 69.8 14.1

L 1,200,000    88.8 74 58.9 73.5 14.6

M 600,000      45.6 76 60.2 75.3 15.1

N 1,400,000    109.2 78 56.4 71.8 15.4

O 2,000,000    160 80 57.3 73.5 16.2

P 1,100,000    93.5 85 60.1 76.9 16.8

Q 1,600,000    137.6 86 56.3 73.7 17.4

Nation 22,900,000  1452.5 63.4 54.8 67.5 12.7
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Under this circumstances, the national intensity of T is inside the common support of the regional 

variations of T.  

Table 2 contains the results of the pairwise cross-regional sequential (DD) estimations, while Table 

3 illustrates the related pairwise cross-regional changes in the treatment intensity. 

 

Table 2: 

Pairwise Difference-in-difference variations (DDY) between Comparison and Baseline Regions 
 

 

 

 

  

A B C D E F G H I L M N O P Q

A -

B 3.9 -

C 8.3 4.4 -

D 9.2 5.3 0.9 -

E 10.2 6.3 1.9 1 -

F 12.1 8.2 3.8 2.9 1.9 -

G 12.7 8.8 4.4 3.5 2.5 0.6 -

H 12.9 9 4.6 3.7 2.7 0.8 0.2 -

I 13.6 9.7 5.3 4.4 3.4 1.5 0.9 0.7 -

L 14.1 10.2 5.8 4.9 3.9 2 1.4 1.2 0.5 -

M 14.6 10.7 6.3 5.4 4.4 2.5 1.9 1.7 1 0.5 -

N 14.9 11 6.6 5.7 4.7 2.8 2.2 2 1.3 0.8 0.3 -

O 15.7 11.8 7.4 6.5 5.5 3.6 3 2.8 2.1 1.6 1.1 0.8 -

P 16.3 12.4 8 7.1 6.1 4.2 3.6 3.4 2.7 2.2 1.7 1.4 0.6 -

Q 16.9 13 8.6 7.7 6.7 4.8 4.2 4 3.3 2.8 2.3 2 1.2 0.6 -

Comparison 

Region 

(Higher T)

Baseline Region  (Lower T)

1= [No. Pat.  Appl. / Mil. Residents]  in terms of pairwise Difference-in-difference variation of Y (DDY) between 

Comparison and Baseline Regions
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Table 3: 

Pairwise Cross-Regional Differences in the Intensities of the OP Interventions (DT) 

 

 

The two-way scatter plot chart of Figure 5 contains on the vertical axis the DD estimates from the 

pairwise cross-regional comparisons of DY (Table 2), and on the horizontal axis the corresponding 

pairwise differences across the regional OP-intervention intensities (DT), Table 3.  

The data of the scatter plot chart of Figure 5 are perfectly fitted by a linear dose-response functional 

form in terms of DDY =  +DT +   that is estimated with OLS and a suitable bootstrap procedure 

for the standard errors and related confidence intervals. 

 

A B C D E F G H I L M N O P Q

A -

B 20 -

C 45 25 -

D 50 30 5 -

E 55 35 10 5 -

F 62 42 17 12 7 -

G 65 45 20 15 10 3 -

H 68 48 23 18 13 6 3 -

I 70 50 25 20 15 8 5 2 -

L 74 54 29 24 19 12 9 6 4 -

M 76 56 31 26 21 14 11 8 6 2 -

N 78 58 33 28 23 16 13 10 8 4 2 -

O 80 60 35 30 25 18 15 12 10 6 4 2 -

P 85 65 40 35 30 23 20 17 15 11 9 7 5 -

Q 86 66 41 36 31 24 21 18 16 12 10 8 6 1 -

Baseline Region

Comparison 

Region 

1= [€Mil / Mil. Residents]  in terms of cross-regional pairwise differences of OP-intervention intensities.
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Figure 5: 

Two-way Scatter Plot Chart 

Vertical Axis=Pairwise Cross-Regional Causal Impact Estimations DDY 

Horizontal Axis=Pairwise Cross-Regional Variation of Treatment Intensity (DT) 

 

 

The estimated parameters of the linear dose-response function are: 

Number of obs      =       105 

Wald chi2(1)       =   1398.59 

Prob > chi2        =    0.0000 

R-squared          =    0.9945 

Adj R-squared      =    0.9945 

Root MSE           =    0.3171 

------------------------------------------------------------------------------ 

             |   Observed   Bootstrap                         Normal-based 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          DT |   .1915361   .0051216    37.40   0.000      .181498    .2015743 

            |   .1524562   .1015183     1.50   0.133     -.046516    .3514285 

 

Based on these parameters, the predicted value (𝐷𝐷�̂�) for the nationally-recorded intensity of the 

OP interventions, is estimated as: 0.1525 + 0.1915 * 63.4 =12.3 (additional number of yearly patent 

applications per million of residents caused nationally by an intensity of € 63.4 Million worth of 
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OP interventions in TO 1). The 95% confidence interval of such 𝐷𝐷�̂� predicted values is estimated 

as [+11.46, 13.13]12. 

This result produced by the CR-SEQDD model, when compared to the nationally–recorded 

raw change of the result indicator Y (DY =+12.7, Table 1), indicates that the OP interventions were 

likely to be responsible for almost all of the of before-after-intervention change in the result 

indicator Y, with a minimal role played by spontaneous change in affecting such change.  

  

                                                           
12 11.46=(-0.046516 +0.1815*63.4) ; 13.13=(0.3514285+0.2015743*63.4). 
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Example II):  Ideal data availability scenario, absence of causal effect of the OP interventions 

 

In the following example II), the regional data (Table 4) are the same as in example I) as regards 

the intensities of the OP interventions. In terms of the regional values of DY, instead, the data are 

not favourable for the finding of a strong causal effect of the OP interventions. 

 

Table 4: 

Intensities of OP interventions (T) and patent applications (Y) per million of residents 

 

Source: data generated for exemplification purposes 

  

Region Pop.

TO1 OP  

support           

( 1=€Mil.)

T                  

[Intensity of 

TO1 support ] 

1 = (1 €Mil.) / 

(Mil. 

Residents)

Ypre             

1= No. Pat.  

Appl. / Mil. 

Residents

Ypost             

1= No. Pat.  

Appl. / Mil. 

Residents

DY                 

= (Ypost) - 

(Ypre)

A 500,000        0 0 65.5 70.0 4.5

B 1,200,000     24 20 58.4 62.5 4.1

C 800,000        36 45 55.3 59.5 4.2

D 2,400,000     120 50 52.3 56.1 3.8

E 3,000,000     165 55 50.1 54.6 4.5

F 1,400,000     86.8 62 48.6 54.7 6.1

G 2,000,000     130 65 53.5 59.1 5.6

H 1,500,000     102 68 52.3 56.6 4.3

I 2,200,000     154 70 55.7 59.9 4.2

L 1,200,000     88.8 74 58.9 65.0 6.1

M 600,000        45.6 76 60.2 64.3 4.1

N 1,400,000     109.2 78 56.4 61.2 4.8

O 2,000,000     160 80 57.3 62.7 5.4

P 1,100,000     93.5 85 60.1 64.4 4.3

Q 1,600,000     137.6 86 56.3 61.0 4.7

Nation 22,900,000   1452.5 63.4 54.8 59.5 4.7
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Similarly as in the previous example, Table 5 contains the results of the pairwise cross-regional 

sequential (DD) estimations, while Table 6 illustrates the related pairwise cross-regional changes 

in the treatment intensity. 

 

 

Table 5: 

Pairwise Difference-in-difference variations (DDY) between Comparison and Baseline Regions 

 

 

 

 

  

A B C D E F G H I L M N O P Q

A -

B -0.4 -

C -0.3 0.1 -

D -0.7 -0.3 -0.4 -

E 0.0 0.4 0.3 0.7 -

F 1.6 2.0 1.9 2.3 1.6 -

G 1.1 1.5 1.4 1.8 1.1 -0.5 -

H -0.2 0.2 0.1 0.5 -0.2 -1.8 -1.3 -

I -0.3 0.1 0.0 0.4 -0.3 -1.9 -1.4 -0.1 -

L 1.6 2.0 1.9 2.3 1.6 0.0 0.5 1.8 1.9 -

M -0.4 0.0 -0.1 0.3 -0.4 -2.0 -1.5 -0.2 -0.1 -2.0 -

N 0.3 0.7 0.6 1.0 0.3 -1.3 -0.8 0.5 0.6 -1.3 0.7 -

O 0.9 1.3 1.2 1.6 0.9 -0.7 -0.2 1.1 1.2 -0.7 1.3 0.6 -

P -0.2 0.2 0.1 0.5 -0.2 -1.8 -1.3 0.0 0.1 -1.8 0.2 -0.5 -1.1 -

Q 0.2 0.6 0.5 0.9 0.2 -1.4 -0.9 0.4 0.5 -1.4 0.6 -0.1 -0.7 0.4 -

Comparison 

Region 

(Higher T)

Baseline Region  (Lower T)

1= [No. Pat.  Appl. / Mil. Residents]  in terms of pairwise Difference-in-difference variation of Y (DDY) between 

Comparison and Baseline Regions
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Table 6: 

Pairwise Cross-Regional Differences in the Intensities of the OP Interventions (DT) 

 

 

The two-way scatter plot chart of Figure 6 contains on the vertical axis the DD estimates from the 

pairwise cross-regional comparisons of DY (Table 5), and on the horizontal axis the corresponding 

pairwise differences across the regional OP-intervention intensities (DT, Table 6).  

 

 

 

A B C D E F G H I L M N O P Q

A -

B 20 -

C 45 25 -

D 50 30 5 -

E 55 35 10 5 -

F 62 42 17 12 7 -

G 65 45 20 15 10 3 -

H 68 48 23 18 13 6 3 -

I 70 50 25 20 15 8 5 2 -

L 74 54 29 24 19 12 9 6 4 -

M 76 56 31 26 21 14 11 8 6 2 -

N 78 58 33 28 23 16 13 10 8 4 2 -

O 80 60 35 30 25 18 15 12 10 6 4 2 -

P 85 65 40 35 30 23 20 17 15 11 9 7 5 -

Q 86 66 41 36 31 24 21 18 16 12 10 8 6 1 -

Baseline Region

Comparison 

Region 

1= [€ Mil. / Mil. Residents]  in terms of cross-regional pairwise differences of OP-intervention intensities.
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Figure 6: 

Two-way Scatter Plot Chart (Linear Fitting) 

Vertical Axis=Pairwise Cross-Regional Causal Impact Estimations DDY 

Horizontal Axis=Pairwise Cross-Regional Variation of Treatment Intensity (T) 

 

 

The estimated parameters of the linear dose-response function fitted on the data of Figure 6 are: 

Number of obs      =       105 

Wald chi2(1)       =      1.27 

Prob > chi2        =    0.2600 

R-squared          =    0.0439 

Adj R-squared      =    0.0346 

Root MSE           =    1.0153 

------------------------------------------------------------------------------ 

             |   Observed   Bootstrap                         Normal-based 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          DT |   .0097267   .0086355     1.13   0.260    -.0071984    .0266519 

            |  -.0635309    .343532    -0.18   0.853    -.7368413    .6097794 
------------------------------------------------------------------------------ 
 

Figure 7 illustrates the quadrating fitting model on the same cross-sectional DD comparisons and 

DT data. 
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Figure 7: 

Two-way Scatter Plot Chart (Quadratic Fitting) 

Vertical Axis=Pairwise Cross-Regional Causal Impact Estimations DDY 

Horizontal Axis=Pairwise Cross-Regional Variation of Treatment Intensity (T) 

 

 

 

 

The estimated parameters of this quadratic dose-response function are: 

 

Number of obs      =       105 

Wald chi2(2)       =      3.26 

Prob > chi2        =    0.1963 

R-squared          =    0.0670 

Adj R-squared      =    0.0487 

Root MSE           =    1.0079 

------------------------------------------------------------------------------ 

             |   Observed   Bootstrap                         Normal-based 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          DT |   .0341292   .0234206     1.46   0.145    -.0117744    .0800328 

       (DT)2 |  -.0003206    .000429    -0.75   0.455    -.0011615    .0005203 

            |  -.3249222   .3914696    -0.83   0.407    -1.092189    .4423441 
------------------------------------------------------------------------------ 
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The estimated coefficients of both the linear and the quadratic functional forms have large standard 

errors and are not statistically significant at the 0.05 level. Based on these parameters, the predicted 

value (𝐷𝐷�̂�), estimated at the nationally-recorded intensity of the OP interventions (DT), is close 

to zero, with a point estimation that, for both functional forms, is equal to +0.55 (additional number 

of yearly patent applications per million of residents caused nationally by an intensity of €63.4 

Million worth of OP interventions in TO 1). Because of the very large standard errors of the 

coefficient estimates, the related 95% confidence interval of this (𝐷𝐷�̂�) predicted value is also 

extremely ample for both functional forms13. 

Because in this application example the very large standard errors and corresponding 

confidence intervals of the results do not stem from a data limitation in terms of insufficient cross-

regional variation in the treatment intensities, the CR-SEQDD estimates are conclusive in 

indicating that the nationally-recorded pre-post intervention DY=+63.4 (Table 4) is most likely 

due to spontaneous change, and that the causal contribution of the OP interventions is instead 

minimal. 

  

                                                           
13 The 95% confidence interval is ( ) and () for the linear and quadratic functional form, respectively. 
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Example III):  Sufficient data-availability scenario, strong causal effect of the OP interventions 

 

In the following example III), the regional data availability scenario (Table 7) is not ideal, but it is 

still sufficient to enable the CR-SEQDD estimation to produce some indicative findings. This is 

because the amplitude of the cross-regional variation of T is more limited than in the previous 

examples I) and II): no regions are untreated, the maximum range of cross-regional variation of T 

is 34 (€ Million  / Million of residents, which is slightly lower than the national average of T = 

40.8) and the standard deviation of the regional distribution of T is about 1/4 of the national average 

level of T. In terms, instead, of the regional values of DY, the data used in this example are 

favourable for the finding of a strong causal effect of the OP interventions. 

 

Table 7: 

Intensities of OP interventions (T) and patent applications (Y) per million of residents 

 

Source: data generated for exemplification purposes 

Region Pop.

TO1 OP  

support           

( 1=€Mil.)

T                  

[Intensity of 

TO1 support ] 

1 = (1 €Mil.) / 

(Mil. 

Residents)

Ypre             

1= No. Pat.  

Appl. / Mil. 

Residents

Ypost             

1= No. Pat.  

Appl. / Mil. 

Residents

DY                 

= (Ypost) - 

(Ypre)

A 500,000        12.5 25 65.5 69.8 4.3

B 1,200,000     32.4 27 58.4 61.5 3.1

C 800,000        24 30 55.3 59.7 4.4

D 2,400,000     76.8 32 52.3 57.2 4.9

E 3,000,000     99 33 50.1 55.5 5.4

F 1,400,000     49 35 48.6 54.9 6.3

G 2,000,000     74 37 53.5 60.1 6.6

H 1,500,000     60 40 52.3 59.0 6.7

I 2,200,000     92.4 42 55.7 62.8 7.1

L 1,200,000     54 45 58.9 66.2 7.3

M 600,000        28.8 48 60.2 67.8 7.6

N 1,400,000     70 50 56.4 64.1 7.7

O 2,000,000     106 53 57.3 65.4 8.1

P 1,100,000     61.6 56 60.1 68.5 8.4

Q 1,600,000     94.4 59 56.3 65.0 8.7

Nation 22,900,000   934.9 40.8 54.8 61.3 6.5
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Figure 8 illustrates the two-way scatter plot chart, fitted with a linear dose-response function, that 

contains on the vertical axis the DD estimates from the pairwise cross-regional comparisons of DY 

derived from Table 7, and on the horizontal axis the corresponding pairwise differences across the 

regional OP-intervention intensities (DT). 

 

Figure 8: 

Two-way Scatter Plot Chart (Linear Fitting) 

Vertical Axis=Pairwise Cross-Regional Causal Impact Estimations DDY 

Horizontal Axis=Pairwise Cross-Regional Variation of Treatment Intensity (T) 

 

The estimated parameters of the linear-fitting dose-response function are: 

Number of obs      =       105 

Wald chi2(1)       =    188.22 

Prob > chi2        =    0.0000 

R-squared          =    0.7182 

Adj R-squared      =    0.7155 

Root MSE           =    0.7348 

------------------------------------------------------------------------------ 

             |   Observed   Bootstrap                         Normal-based 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          DT |   .1412373   .0102946    13.72   0.000     .1210601    .1614144 

            |   .1535672    .166306     0.92   0.356    -.1723867     .479521 
------------------------------------------------------------------------------ 
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Based on these parameters, the predicted value (𝐷𝐷�̂�) for the nationally-recorded intensity of the 

OP interventions, is estimated as: 0.15356+ 0.141237* 40.8 =5.9 (additional number of yearly 

patent applications per million of residents caused nationally by an intensity of €40.8 Million worth 

of OP interventions in TO 1).  

Although the standard errors of the dose response parameters (particularly for the intercept ) have 

larger standard errors than in example I), the 95% confidence interval [+4.77, +7.06] of the 𝐷𝐷�̂� 

predicted values remains such that the findings are indicative of a strong casual effect of the OP 

interventions. Indeed, when compared to the nationally–recorded raw change of the result indicator 

Y (DY =+6.5, Table 7), the CR-SEQDD estimates indicate that the OP interventions were likely 

to be responsible for a very large part of the before-after-intervention national change of Y, with a 

minimal role played by spontaneous change.  
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Example IV):  Sufficient data-availability scenario, weaker causal effect of the OP interventions 

 

In the following example IV), the regional data (Table 8) are the same of the previous example 

III) for what it concerns the intensities of the OP interventions. In terms of the regional values of 

DY, instead, the data are conducive to estimate a weaker (than example III) causal effect of the 

OP interventions. 

Table 8: 

Intensities of OP interventions (T) and patent applications (Y) per million of residents 

 

Source: data generated for exemplification purposes 

 

Figure 9 describes the two-way scatter plot chart, fitted with a linear dose-response function, that 

contains on the vertical axis the DD estimates from the pairwise cross-regional comparisons of DY 

Region Pop.

TO1 OP  

support           

( 1=€Mil.)

T                  

[Intensity of 

TO1 support ] 

1 = (1 €Mil.) / 

(Mil. 

Residents)

Ypre             

1= No. Pat.  

Appl. / Mil. 

Residents

Ypost             

1= No. Pat.  

Appl. / Mil. 

Residents

DY                 

= (Ypost) - 

(Ypre)

A 500,000        12.5 25 65.5 69.0 3.5

B 1,200,000     32.4 27 58.4 61.5 3.1

C 800,000        24 30 55.3 59.5 4.2

D 2,400,000     76.8 32 52.3 56.1 3.8

E 3,000,000     99 33 50.1 54.6 4.5

F 1,400,000     49 35 48.6 52.5 3.9

G 2,000,000     74 37 53.5 57.1 3.6

H 1,500,000     60 40 52.3 56.5 4.2

I 2,200,000     92.4 42 55.7 60.5 4.8

L 1,200,000     54 45 58.9 64.0 5.1

M 600,000        28.8 48 60.2 65.4 5.2

N 1,400,000     70 50 56.4 61.2 4.8

O 2,000,000     106 53 57.3 62.2 4.9

P 1,100,000     61.6 56 60.1 65.2 5.1

Q 1,600,000     94.4 59 56.3 61.6 5.3

Nation 22,900,000   934.9 40.8 54.8 59.2 4.4
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derived from Table 8, and on the horizontal axis the corresponding pairwise differences across the 

regional OP-intervention intensities (DT). 

Figure 9: 

Two-way Scatter Plot Chart (Linear Fitting) 

Vertical Axis=Pairwise Cross-Regional Causal Impact Estimations DDY 

Horizontal Axis=Pairwise Cross-Regional Variation of Treatment Intensity (T) 

 

 

The estimated parameters of the linear-fitting dose-response function are: 

Number of obs      =       105 

Wald chi2(1)       =    132.57 

Prob > chi2        =    0.0000 

R-squared          =    0.4678 

Adj R-squared      =    0.4626 

Root MSE           =    0.4989 

------------------------------------------------------------------------------ 

             |   Observed   Bootstrap                         Normal-based 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          DT |   .0563097   .0048906    11.51   0.000     .0467243    .0658952 

            |   .0024534    .124269     0.02   0.984    -.2411092    .2460161 
------------------------------------------------------------------------------ 
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Based on these parameters, the predicted value (𝐷𝐷�̂�) for the nationally-recorded intensity of the 

OP interventions, is estimated as: .0024534 + 0.0563097* 40.8 =2.3 (additional number of yearly 

patent applications per million of residents caused nationally by an intensity of €40.8 Million worth 

of OP interventions in TO 1).  

Although the standard error of the intercept () of the dose response model is quite large, the 95% 

confidence interval [+1.67, +2.94] of the 𝐷𝐷�̂� predicted values remains narrow enough to indicate 

that OP interventions were responsible for about 38%-66,8%14 of the pre-post treatment raw 

change of Y recorded at the national level. The remaining 62%-33.2% of the change of Y is instead 

estimated to be produced by spontaneous change. 

 

 

 

 

 

 

 

 

 

  

                                                           
14 38%=(1.67 / 4.4) ; 66.8 %= (2.94 / 4.4). 
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