THE OUTERMOST REGIONS:
EUROPEAN REGIONS OF ASSETS AND OPPORTUNITIES

Azores
Saint Martin
Réunion
Guadeloupe
Martinique
French Guiana
Madeira
Canary Islands
Europe Direct is a service to help you find answers to your questions about the European Union.

Freephone number (*):

00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.
THE OUTERMOST REGIONS*:
‘EUROPEAN REGIONS OF ASSETS AND OPPORTUNITIES’
TABLE OF CONTENTS

Preface ... 3
Introduction ... 4
Azores ... 6
Canary Islands ... 10
Guadeloupe .. 14
French Guiana ... 18
Madeira ... 24
Martinique .. 28
Réunion ... 32
Saint Martin .. 36
The Outermost Regions in figures 40
Comprising two archipelagos (the Azores and the Canary Islands), two groups of islands (Madeira and Guadeloupe), three separate islands (Réunion, Martinique and Saint Martin) and a mainland region (French Guiana), the Outermost Regions are European territories far away from the continent, featuring very specific geo-economic particularities and remarkable natural conditions.

Situated in the Atlantic and Indian Oceans, in the Caribbean Sea and in the Amazonian jungle, the Outermost Regions are territories of unique natural characteristics and ideal locations for research and experimentation in a number of fields, such as the development of renewable energies, astrophysics or mitigating climate change effects. Their exceptional biodiversity and marine ecosystems present great potential for innovation, while their geographic location make them strategic European outposts in the world.

The European Union recognises both the assets and constraints of the Outermost Regions and helps them overcome obstacles to the development of their endogenous potential. The European funds aim to support their efforts to modernise traditional sectors and diversify into new ones, to improve their competitiveness, to reduce unemployment and to promote more inclusive growth.

This publication gives an overview of the geo-political, social and economic situation of these regions and how they can contribute to European development as a whole. It also provides an insight into some projects co-funded by the European Union that stimulate investment in a number of areas in order to contribute to their development.

The Outermost Regions have great potential and, working together, we must ensure they seize the opportunities open to them. The objectives of smart, sustainable and inclusive growth, set out in the Europe 2020 Strategy must be the goals of all Europe’s regions, near or far, and my policy will help the Outermost Regions achieve them.

Johannes HAHN
Commissioner for Regional Policy
INTRODUCTION

THE OUTERMOST REGIONS: ‘EUROPEAN REGIONS OF ASSETS AND OPPORTUNITIES’

The European Union currently has eight Outermost Regions (ORs), which form an integral part of EU territory. These are: Guadeloupe, French Guiana, Martinique, Saint Martin, Réunion (France); the Canary Islands (Spain) and the Azores and Madeira (Portugal). Unlike the Overseas Countries and Territories (OCTs), which have associate status with their respective Member States (Denmark, France, the Netherlands and the United Kingdom), the Outermost Regions must adhere in full to the rights and obligations arising from the European Treaties.

However, Article 349 of the Treaty on the Functioning of the European Union (TFEU) recognises that the ORs have specific features that set them apart from the rest of the EU, and that these can have a negative impact on their economic and social development. These are factors such as their remoteness, their island status, adverse topographical and climatic conditions or their dependence on a limited number of local industries. Under this article, and thus in line with the European Treaties, specific measures may be adopted which are appropriate for the situation in the Outermost Regions and take account of their special characteristics and handicaps.

Aside from their handicaps and problems, the ORs also have unique assets and potential that can benefit the EU. They constitute a European territorial presence in strategic areas of the world, and have outstanding geographical and geological features that make them useful research and innovation laboratories in industries of the future such as: biodiversity; terrestrial and marine ecosystems; pharmacology; renewable energy and space science.

THE ORS AND EU POLICY

All EU policies apply to the Outermost Regions. Cohesion policy is a key tool for the ORs’ regional development strategies. It provides important support for convergence towards the Europe 2020 objectives and for modernising and diversifying the regions’ economies. The European Regional Development Fund (ERDF), which includes an additional grant for the ORs and sparsely populated areas of Finland and Sweden to offset the extra costs they incur, the Cohesion Fund (for the Portuguese ORs) and the European Social Fund (ESF) are major tools that contribute to structuring public and private investment in these regions.

The ORs are also beneficiaries of various financial instruments and special schemes that have been introduced in the areas of fisheries (European Fisheries Fund – EFF) and agriculture (European Agricultural Fund for Rural Development – EAFRD; Programme of Options Specifically Relating to Remoteness and Insularity – POSEI).

• The POSEI Programme, set up in 2001, provides grants for production, processing and marketing of agricultural produce in the ORs and for these regions is equivalent to the first pillar of the common agricultural policy;

• “POSEI Fisheries” is a scheme aimed at mitigating the extra costs associated with marketing certain fisheries products from the Outermost Regions.

The Outermost Regions are closely involved in the ERDF co-financed Territorial Cooperation Programmes, which act as a vital tool for strengthening their regional integration. There are four transnational and cross-border cooperation programmes devoted to them for the period 2007-13:

• the ‘MAC’ programme, involving Madeira, the Azores and the Canary Islands and also covering neighbouring west African countries;

• the ‘INTERREG – Caribbean’ programme linking Martinique, Guadeloupe, Saint Martin and French Guiana and also involving the other Caribbean states;

• the ‘Indian Ocean’ programme, involving Réunion and its neighbouring states in the Indian Ocean;

• the ‘Amazonia’ programme involving French Guiana, Surinam and north-eastern Brazil’s Amazonian states (Amapá, Pará and Amazonas).

In addition, the seventh Framework Programme for Research and Technological Development (FP7) contains specific provisions designed to foster the potential of the Outermost Regions and improve their access to the European Research Area. Due to their exceptional geographical locations, these
regions could host research centres dedicated to renewable energy, space, agriculture, the sea or biodiversity. These activities will fall under cohesion policy for the period 2014-2020. Within this framework, the concept of ‘smart specialisation’ will be reinforced and measures aimed at allowing those involved in research and innovation in the ORs to achieve excellence will be introduced. Further measures will be designed under the ‘Horizon 2020’ programme, aimed at widening participation by the ORs in the programme as a whole.

The special nature of the Outermost Regions is also taken into account in the area of state aid, so as to provide a suitable environment in which small, medium and very small enterprises can develop. Under Article 107(3)(a) of the TFEU, higher levels of state aid are therefore permitted in the ORs, regardless of their GDP. The ORs also benefit from certain tax exemptions or special arrangements which take local situations into account.

Other EU policies are also specially adapted for the ORs: transport, energy, new information and communication technologies and trade relations with third countries.

OUTERMOST REGIONS EVOLVING...

Under Article 355(6) of the TFEU, the European Council may, at the initiative of the Member State concerned, adopt a decision amending the status of a Danish, Dutch or French Overseas Country or Territory (OCT) in relation to the European Union.

On the basis of this article of the Treaty, Mayotte, currently an OCT and a French département since March 2011, may become an Outermost Region by 2014. France has submitted a change of status request to the Council, which must reach a unanimous decision on the subject.

The Netherlands Antilles and Aruba may also go through the same process, as they have expressed interest in acceding to Outermost Region status.

AN ONGOING PARTNERSHIP...

An OR interservice group run by the ‘Coordination of Outermost Regions’ Unit in the European Commission’s Directorate-General for Regional Policy coordinates policies that affect these territories. This body raises the profile of the Outermost Regions by taking their specific handicaps into consideration and promoting their assets.

To add to this initiative, there is also an active partnership and joint action between the Commission’s departments, the European Parliament, the Member States and the ORs themselves.

The Conference of Presidents of the Outermost Regions meets annually in the EU region holding the rotating EU Presidency at the time. The meeting is attended by the European Commission and Parliament.

Since 2010, a ‘Forum of the Outermost Regions’ has been held every two years in Brussels, attended by representatives from the world of politics, the European institutions, the ORs and Member States, as well as socioeconomic players, academics and representatives of the private sector.
AZORES

MEMBER STATE | Portugal

LOCATION | Archipelago located in the North Atlantic Ocean, approximately 1,500 km west of Lisbon and 3,600 km east of North America

SURFACE AREA | 2,322 km²
(from 17.1 in Corvo to 7,446 in São Miguel)

POPULATION | 245,811 inhabitants
(from 430 in Corvo to 137,830 in São Miguel)

DENSITY | 105.9 inhabitants/km²
(from 25.1 in Corvo to 185.1 in São Miguel)

CAPITAL/MAIN TOWNS | Ponta Delgada, Angra do Heroísmo and Horta

TOPOGRAPHY/CLIMATE
The Azores archipelago is of volcanic origin and is characterised by green landscapes, rugged coast line and mountainous relief. Pico mountain on the island of Pico (2,351 m) is the highest point in Portugal. The maritime area within 200 nautical miles around the Azores is 954,496 km². The 9 islands are distributed in three natural geographic groups spread over an area of 600 km:

• eastern group: São Miguel (the largest) and Santa Maria;
• central group: Terceira, Graciosa, Faial, São Jorge and Pico;
• western group: Flores and Corvo (the smallest).

The Azores have a mesothermal moist climate with oceanic features. The average temperature in the summer is 24 °C and in the winter 14 °C, milder compared to other regions on the same latitude.
ECONOMIC ACTIVITIES

The traditional activities are livestock farming for the production of milk (over 30% of Portugal’s milk production) and meat, fishing and the agri-food industry (cheese, milk, butter, canned fish, tea, pineapple and wine).

Tourism is also a strong economic activity, as well as services in general. Amongst the archipelago’s growth activities are oceanography and blue growth, spatial technologies and biotechnology.

POLITICAL AND ADMINISTRATIVE STATUS

Since 1976, the Azores are an Autonomous Region of Portugal, with its own government and a regional parliament, with broad political and legislative competences. The Presidency of the Government has its seat in Ponta Delgada (São Miguel), and the Parliament in Horta (Faial).

UNIVERSITIES/SPECIALITIES

The University of the Azores, created in 1976, has over 6,000 students, distributed in its centres of São Miguel, Terceira and Faial. The areas of excellence and international recognition of the University of the Azores are, amongst others, fisheries and oceanography, with particular reference to the study of hydrothermal deep sea vents, volcanology, seismology, climatology and biotechnology.

The Azores have been at the forefront in the use of indigenous energy resources. In the 1980s the first geothermal plant was established on São Miguel and the first wind park on Santa Maria. An experimental project for the production of energy from the use of oceanic tides was implemented in the 1990s with the construction of the Oscillating Water Column (OWC) station on the Island of Pico.

Geothermal energy is the greatest source of renewable energy in the Azores, accounting in 2011 for 22.1% of the electricity production of a total production of renewable sources of 30%.

On Santa Maria is located one of the first ESA (European Space Agency) ESTRACK stations with launcher tracking capability.

Located on the Island of Graciosa are an International Monitoring System (IMS) infrasound station, part of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and a site for Atmospheric Radiation Measurement (ARM), which is one of the 5 sites in the world developing a project for the study of global climate models thorough development and the test of radiation and cloud formation.
HILLTOP STATION TRACKS EU single-track:"ROCKETS AND SATELLITE DATA"

PROJECT PROFILE

PROJECT | Satellite tracker at Santa Maria

BENEFICIARY | Direção Regional da Ciência, Tecnologia e Comunicações

FUNDING | European Regional Development Fund (ERDF) – Pró-Convergência

TOTAL | EUR 1,037,500
EU co-funding: EUR 881,900

PERIOD | 10/10/2008 – 31/12/2009

PROJECT DESCRIPTION

The new station is sited on Monte das Flores, a hill 210 m high with an excellent tracking view over the Atlantic Ocean. It consists of a 5.5 m parabolic antenna on a concrete platform, telecoms equipment, an uninterruptible power system, lightning protection, and support infrastructure. With its auto-tracking capability, the antenna can pick up real-time telemetry from rockets travelling at 28,000 km/hour. Data is forwarded to ESOC, ESA’s Space Operations Centre, in Darmstadt, Germany.

Opened in January 2008, the Santa Maria station tracks Ariane and Soyuz launches – despatched from Kourou Spaceport in French Guiana – over much of the Atlantic Ocean. Activities have included three Automated Transfer Vehicles (ATV) resupply missions to the International Space Station. For these missions, the station calls on a core team of six plus technical support staff. With new X-band (8.025-8.400 MHz) reception capability, it can also relay scientific data from Earth observation satellites such as ESA’s ERS2 and Envisat, and Canada’s Radarsat.

‘It also supports Galileo launches, for the EU’s global positioning satellite system, plus several European environment-monitoring projects. The latter include CleanSeaNet, with satellite detection of oil spills, and Mariss, the Maritime Security Service’, explains José Contente, Regional Secretary for Science, Technology and Infrastructures, Azores Regional Government.

Find out more: www.proconvergencia.azores.gov.pt

CONTEXT

The Azores is an historic staging post for voyagers between Europe and other continents. It remains important today, thanks to a key location in the Atlantic Ocean, some 1,500 km west of Lisbon. The European Space Agency (ESA) had little hesitation in selecting Santa Maria, one of the archipelago’s nine islands, to host a new ground-based space-tracking station for its ESTRACK network of tracking stations. The station is operated locally under contract by a consortium of industrial partners from Portugal.
IN PURSUIT OF THE PERFECT PINEAPPLE

PROJECT PROFILE

PROJECT | Cultivation of the Azores Pineapple: Research, development and application of technologies and practices promoting competitiveness and quality of production

BENEFICIARY | INOVA – Instituto de Inovação Tecnológica dos Açores

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 1 658 900
EU co-funding: EUR 1 410 100

PERIOD | 01/02/2009 – 30/06/2013

CONTEXT

Pineapples were first grown in the Azores in the 1860s, as one of several new crops to replace the failing orange harvest. Famous for its flavour and sweetness, the local variety (Ananas comosus L. Merr) quickly became popular throughout Europe. It is grown in glass greenhouses, to maintain the right temperature and humidity, and without application of chemical fertilisers. However, production of this fruit has fallen in the islands over the past 20 years, due to increasing competition from cheaper pineapples grown elsewhere and difficulties finding local labour with the right expertise.

PROJECT DESCRIPTION

The Azores Pineapple project is led by INOVA, located on the island of São Miguel, and brings together partners from the Azores and mainland Portugal. They aim to help local producers grow more pineapples and achieve a higher fruit quality, through use of improved technologies and cultivation practices based on scientific knowledge. Studies cover the plant’s physiology, in vitro establishment and propagation of pineapple plantlets, testing of different organic substrates, plus the effect of adapting variables such as water, lighting and heating within the greenhouse climate.

Pineapple has a two-year production cycle, so the project’s early promising results have yet to be supported by the resulting fruit produced. However, partners already conclude that using richer organic substrates increases plant vegetative development, while raising temperatures before flowering can lead to bigger and sweeter pineapples.

‘By optimising growth conditions and cultivation practices, we hope to obtain the best fruit possible and reach a standard quality level’, says Professor Dr Duarte Ponte. Building on these research results will ensure the Azorean Pineapple remains a tourist attraction (it is not grown anywhere else in Europe) and keep the fruit as a key economic sector for the islands. The project is even looking at ways to add value, by creating new pineapple products such as juices and jams in times of excess production.

Find out more: www.inovacores.pt
CANARY ISLANDS

MEMBER STATE | Spain
LOCATION | The Canary Islands are an Atlantic archipelago of seven islands north-west of the Sahara. The Canaries are located 2,000 km from Madrid.
SURFACE AREA | 7,447 km²
POPULATION | 2,100,229 inhabitants
DENSITY | 282 inhab./km²
CAPITAL | Alternates between Santa Cruz de Tenerife and Las Palmas de Gran Canaria

TOPOGRAPHY/CLIMATE
The archipelago of the Canaries is composed of seven major islands and some islets and stretches for 450 km. Geographically, the archipelago is part of the Macaronesia, a volcanic zone situated north-west of the African coast.
The terrain is very varied. In Tenerife, Mount Teide (altitude of 3,718 m) is Spain’s highest peak.
The low rainfall and topography of these islands means there are some water points but no rivers. The islands most exposed to the influence of the ocean and rain are La Palma, La Gomera and El Hierro.

The average annual temperature is 20 °C (with small fluctuations) except for in the mountains, where it is lower.

ECONOMIC ACTIVITIES

The Canaries’ traditional activities are the growing of bananas, tomatoes and potatoes, livestock farming, fishing, fish farming, the growing of plants and flowers, viniculture, the agri-food industry as well as energy and the desalination of seawater.

Their more modern activities are research and development in biomedicine, astronomy and tourism.

POLITICAL AND ADMINISTRATIVE STATUS

The Canaries are part of the Spanish system of autonomous communities within the parliamentary monarchy. The Canaries have an independent government and their own Parliament with 60 seats.

They are divided into two provinces: Las Palmas and Santa Cruz de Tenerife.

UNIVERSITIES/SPECIALITIES

The university of Las Palmas de Gran Canaria (ULPGC) specialises in health, oceanography, aquaculture and information and communication technologies.

The university of La Laguna (ULL) specialises in human and social sciences, biomedical engineering, health, energy and the environment.
ENHANCING EMERGENCY MANAGEMENT AND SECURITY

PROJECT PROFILE

PROJECT | Red de Emergencias y Seguridad de Canarias (RESCAN)

BENEFICIARY | Public authorities in the Canary Islands involved in local security and emergencies (police, fire-fighters, ambulances, volcanic emergency, etc.)

FUNDING | European Regional Development Fund (ERDF)

TOTAL | 11 199 500 EUR
EU co-funding: EUR 7 448 000

PERIOD | 01/07/2010 – 30/10/2014

CONTEXT

In times of emergency or natural disaster, when assistance is urgent, the Canary Islands can suffer as a result of their relatively remote location. The population and infrastructure are also spread over six of the eight islands, potentially complicating the delivery of help by government organisations (state, regional or island) operating by air or sea. Project RESCAN aimed to boost the coordination of security and emergency services across the region by introducing a digital mobile radio network. Based on Europe’s TETRA (Terrestrial Trunk Radio) standard, it provides a single communication channel that is open to all the region’s emergency and security forces – over 30 in total. A joint venture company, formed by Teltronic, Técnicas Competitivas and Sampol, looks after the network’s supply, installation and maintenance.

PROJECT DESCRIPTION

Essentially a virtual private network, the new system offers voice telephony and data to all authorised users in their daily activities and emergency situations. It works seamlessly alongside existing public communication networks, both national and European, yet is faster and fully fail-safe. Enhanced communication and coordination benefit the archipelago’s citizens as well as police, fire, ambulance and related services. Messages over the network may also be encrypted. The mobile radio network serves more than 7 000 terminals spread over 10 000 communication groups. It also covers 96% of the territory, 90% of the Canary Islands’ inland waters and 98% of the population. A Communications Control Centre and two call centres keep the network up and running round the clock, all year round. Service centres also operate on seven islands.

‘The RESCAN system is vital for the cohesion of the Canary Islands’, notes the project manager Telesforo Martín. ‘It improves communication to all regional services, boosts their capacity to interact with citizens across the archipelago, and enhances local technological capabilities.’ For example, new features of the system allow emergency and security services to access digital maps and real-time applications that can help to save lives.

Find out more: www.gobcan.es/dgse/temas/rescan.html
PROMOTING EXCELLENCE IN MARINE RESEARCH

PROJECT PROFILE

PROJECT | Structuring Project in Marine Sciences (EXMAR)

BENEFICIARY | Canary Islands Marine Institute, University of La Laguna, University of Las Palmas de Gran Canaria

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 973 200
EU co-funding: EUR 827 200

PERIOD | 01/11/2008 – 30/04/2013

CONTEXT

The economy of the Canary Islands is highly dependent on the sea, both directly and indirectly. Key sectors include shipping, aquaculture and fisheries, tourism and agriculture. To help them grow successfully and sustainably, this Spanish autonomous community and EU outermost region launched the EXMAR project. It aims to create a comprehensive space for research excellence in marine science – particularly for research, technological development, and innovation among research groups. This should bring local scientific, environmental and socio-economic benefits. The project is one of several Structuring Projects (Projectos Estructurantes) focused on building the Canary Islands’ knowledge-based economy.

PROJECT DESCRIPTION

Under the project, marine science teams have been working in four main areas: aquaculture, biodiversity and marine resources, pollution, and oceanography. Major challenges include finding new or better ways to tackle the impact of tourism development in the islands, fighting pollution such as toxic algae, and ensuring sustainable fisheries and other ocean resources. This they hope to do for example by developing and achieving scientific goals, building more effective and productive research capacity, and through technology and innovation transfer.

According to Andrea Brito, project coordinator, ‘In the past two years we have achieved one of our main goals: promoting in the Canary Islands a synergistic system between the marine research groups and highlighting their capabilities to enterprises, so as to facilitate knowledge and technology transfer. Twenty-six research groups from four institutions have joined the project already.’

The project is busy procuring a marine research vessel, plus oceanography equipment and laboratories, for use by all four participating institutions. New staff with marine expertise are being brought on board to plug existing gaps in the project. Enhanced coordination among the partners will also boost marine science research in the islands, while promoting exchange and cooperation with institutions further afield.

Find out more: http://agencia.itccanarias.org/es/actuaciones/2010/actuacion_proyectos_estructurantes/sub_pe_exmar.jsp
MEMBER STATE | France
LOCATION | Archipelago located in the Lesser Antilles arc between the Atlantic Ocean and the Caribbean Sea. Guadeloupe is 6,800 km from Paris.
SURFACE AREA | 1,705 km²
POPULATION | 448,961 inhabitants
DENSITY | 263.3 inhab./km²
CAPITAL | Basse-Terre

TOPOGRAPHY/CLIMATE
Located in the heart of the Caribbean-Antilles arc, in between the Caribbean Sea and the Atlantic Ocean, Guadeloupe is the largest of the French Antilles islands. The Guadeloupian archipelago is formed of five groups of islands. Together, Basse-Terre to the west and Grande-Terre to the east form ‘mainland’ Guadeloupe, although they are separated by
a narrow channel (the ‘Rivière Salée’). Around this ‘butterfly’ of land lying on the sea, the archipelago of the Saintes (Terre-de-Haut and Terre-de-Bas) and its neighbours, the islands of La Désirade and Marie-Galante, can be found.

Guadeloupe is one of the Caribbean’s most popular tourist destinations. It is characterised by rugged terrain offering diverse landscapes (mountains, rivers and white and black sandy beaches etc) despite its small area. Basse-Terre is higher and covered by a very dense forest dominated by the active volcano of Soufrière (1 467 metres high). It is home to the 7th largest French national park. However, Grande-Terre is a low-altitude limestone plateau with diametrically opposed vegetation.

The archipelago has a tropical climate tempered by maritime influences and trade winds. It has an average annual temperature of 26 °C.

Due to its geographical characteristics, Guadeloupe is classed in seismic zone 5 according to France’s seismic zoning map.

ECONOMIC ACTIVITIES

Guadeloupe’s economy is principally focused on agriculture, industry and tourism.

Its traditional activities include the export of bananas, sugar, rum and melons. Melon production is a good example of successful diversification.

In addition to the agri-food industry, tourism and services are two of Guadeloupe’s other main sectors of activity. Renewable energies and applied research (CIRAD, INRA and UAG etc) are recognised as future sectors.

POLITICAL AND ADMINISTRATIVE STATUS

An overseas department since the law of 19 March 1946, Guadeloupe is divided into two arrondissements (Basse-Terre and Pointe-à-Pitre). A mono-departmental region since 1982, it is distinguished by the existence of a double executive (a general council and a regional council).

UNIVERSITIES/SPECIALITIES

Guadeloupe is home to the university of the Antilles and Guyana (UAG – Fouillole and Saint-Claude campus). The Guadeloupe centre includes the faculties of science and medicine.
FROM TRADITIONAL MEDICINE TO GREEN CHEMISTRY

PROJECT PROFILE

PROJECT | Phytobôkaz

BENEFICIARY | Phytobôkaz

FUNDING | European Agricultural Guidance and Guarantee Fund (EAGGF) and European Agricultural Fund for Rural Development (EAFRD)

TOTAL | EAGGF: EUR 233,866
EAFRD: EUR 260,264

PERIOD | 2007-2008 (EAGGF) and 2010-2012 (EAFRD)

CONTEXT

Phytochemist Paul Bourgeois and pharmacist and doctor of pharmacognosy Henry Joseph founded Phytobôkaz in 2005. Their goal was to develop, manufacture and market well-being and healthcare products derived from plants used in Guadeloupian traditional medicine. As well as catering for the general public’s interest in natural medicine, the company is also part of the growing trend towards green chemistry. Green chemistry is based on plant resources, which of course are especially abundant and diverse in tropical regions.

The medicinal and aromatic plant supply line consists of growers selected as part of an agreement between the Guadeloupe Association for the Promotion and Development of Aromatic and Medicinal Plants and the Guadeloupe Chamber of Agriculture. A distribution agreement has been signed with the Guadeloupe Pharmaceutical Consortium, which distributes the company’s products to pharmacies in the French Overseas Départements.

PROJECT DESCRIPTION

Phytobôkaz has received funding from European cohesion funds for the following projects: setting up the production unit (2007); feasibility study on the use of sugar cane wax (2008) and creating a unit to develop and promote health-care products derived from banana (2010-2012).

This work helped the company develop its current range of six products: Banuline (a digestive prebiotic); Bioven (heavy legs and circulation), Galba oil (skin and hair), Rumago (joint and muscle pain), Ti-Trezo (cellulite) and Virapic (natural immunity).

Henry Joseph explains: ‘We want to do something different by recognising the value of our region’s biodiversity. Our business relies heavily on research and development and one of the ways we do this is to fund doctoral theses, as they are the basis for our future work.’

Find out more: www.phytobokaz.fr
POWER APLENTY FROM DEEP UNDERGROUND

PROJECT PROFILE

PROJECT | Geothermal project in Guadeloupe
BENEFICIARY | Géothermie Bouillante
FUNDING | European Regional Development Fund (ERDF)
TOTAL | EUR 3,644,300
EU co-funding: EUR 620,000
PERIOD | 08/10/2008 – 28/02/2011

CONTEXT

Guadeloupe lacks fossil-energy resources of its own, resulting in expensive fuel imports. However, since 1986 this Caribbean island has successfully generated electricity from water heated by volcanic rocks between 320 and 340 metres below ground on Basse-Terre Island. Bouillante, a small commune in the west of the island, is today home to four wells tapping into this valuable energy source. However, only hot water flowing out of wells one and two is used to power the geothermal plants on the surface. The second one came into service in 2005. Together they produce 15 MW, covering six percent of the island’s electricity needs.

PROJECT DESCRIPTION

The goal now is to increase the plants’ total energy production. This could involve drilling new wells, re-injecting water into the ground and/or making use of other water sources. However, over-exploitation at the second plant recently led to a gradual drop in pressure in the geothermal reservoir. A new project part-funded by the EU, and managed by the company Géothermie Bouillante, aims to address these challenges. After studies in 2009, work began the next year to re-inject some of the geothermal water underground. This should for example enable both electricity production plants to operate again, following the forced shut down of plant number one. Aging equipment in the latter is also being renovated, so that the plant can keep operating until around 2018 to 2020.

Geothermal energy has numerous benefits for the island, especially a degree of energy independence. It is also a low-carbon energy source with little associated pollution, produces cheaper electricity than diesel-powered plants, and creates local jobs in construction and maintenance. Other nearby Caribbean islands with similar geology are also looking to emulate Guadeloupe’s geothermal success.

‘Besides the challenges of achieving energy independence and sustainable development, the geothermal project in Guadeloupe also aims to be a platform of excellence for European geothermal energy in the Caribbean’, says Lucile Rossin, Head of the Europe Department in Guadeloupe’s Regional Affairs General Secretariat. Find out more: www.brgm.fr/AgendaNews/dcenewsFile?ID=99
FRENCH GUIANA

MEMBER STATE | France

LOCATION | French Guiana is located to the north-east of the south-American continent, bordered by the Atlantic Ocean to the north, Suriname to the west and Brazil to the south and east. It is part of the Guyana plateau, which stretches from Venezuela to Brazil.

French Guiana is 7 500 km from Paris.

SURFACE AREA | 83 846 km²

POPULATION | 236 250 inhabitants

DENSITY | 2.81 inhab./km²

SPECIAL FEATURES | Most of the population lives by the coast and along the main rivers whilst the inland area of the territory is under populated and landlocked.

CAPITAL | Cayenne

TOPOGRAPHY/CLIMATE

Globally, the region is part of a former continental plateau extending from the State of Amapá (Brazil) to Venezuela, taking in Suriname and Guyana.

A low-altitude coastal band, formed by recent sediments, runs along the coast, with a variable width. This area was originally occupied by savannas, forests and occasionally by mangroves by the sea.

Further inland, the plateaux result in the formation of waterfalls and rapids, and terrain generally composed of small hills. With the exception of the coastline, the country is covered with thick jungle (94 %). The plateau is traversed by large rivers punctuating the Guianese coastline.

Its location close to the equator gives French Guiana a humid equatorial climate: two dry seasons (February/March and August/November) alternate with two rainy seasons (December/January and April/July).
ECONOMIC ACTIVITIES

French Guiana’s economic activity is focused along the coastline where the largest towns are located (Cayenne, Kourou, Saint-Laurent-du-Maroni, Remire-Montjoly and Matoury). Today, it is still structured around traditional sectors (agriculture and fishing etc), along with significant tertiary activity. In addition, since the 1970s, Guiana’s Space Centre has been carrying out research and development activities using the latest technologies.

Today, French Guiana’s economic development challenges revolve around the development and structuring of several major fields including the development of biodiversity, the emergence of the wood-energy sector and the strengthening of the mining sector (gold mining and off-shore oil exploration).

POLITICAL AND ADMINISTRATIVE STATUS

French Guiana has been a French overseas department since the law of 19 March 1946.

To date, this mono-departmental region has two major communities (region and Departement) in the same geographical area.

The implementation of a single assembly (resulting from the merger of the general council and the regional council) was voted for on 24 January 2010 following a local referendum. The reform will come into effect in 2014.

UNIVERSITIES/SPECIALITIES

The Guianese section of the university of the Antilles and Guiana provides most of French Guiana’s higher education (IESG-IUT) and, in terms of research, is a member of the region’s main mixed research units.

French Guiana hosts research teams from the majority of national organisations (CNRS-IRD-CIRAD-BRGM-IFREMER).

In the context of the Regional Innovation Strategy (RIS), the territory’s main actors in this field consult each other and work on concrete action plans around two major topics: bioresources and teletechnologies. The RIS’s main partners are the Guiana Space Centre for the business sector and Guyane Technopole in the field of support.
SIMULATING THE IMPACT OF DEVELOPMENT SCENARIOS ON THE RAINFOREST

PROJECT PROFILE

PROJECT | Simulation tool to explore the environmental impact of development scenarios in French Guiana (GUYASIM)

BENEFICIARY | Centre international de recherche agronomique pour le développement – CIRAD (International Centre for Agricultural Research for Development), ‘Guianese Forest Ecology’ Research Unit

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 853 506
EU co-funding: EUR 495 033

PERIOD | 30/04/2011 – 31/12/2013

CONTEXT

How can we preserve the Amazonian forest and at the same time meet the needs of one of the EU’s fastest growing populations? Guianese policy-makers need, in effect, to combine the two basically opposed objectives of allowing growth in the region by developing the forest, and preserving the environmental services that the forest provides, particularly in terms of mitigating climate change. In order to find the right balance between these two activities, the Guianese authorities need a tool that will test the various development options with which they are faced.

PROJECT DESCRIPTION

GUYASIM is a simulation software programme that will help policy makers base their planning and development decisions on an objective, quantified system. Depending on the different development scenarios considered, it will provide a means of quantifying changes in the environmental services provided by the forest ecosystem, such as: carbon storage, the erosion or preservation of biodiversity and soil functioning.

Research findings and knowledge in the areas of spatial plotting of Guianese forest ecosystem services, socioeconomic development options and the impact of climate change on the Guianese forest ecosystem will all be built into the programme.

Project manager Vivien Rossi, a researcher at CIRAD and head of the project, explains: ‘To obtain this knowledge input, we set up collaboration with students from the University of the Caribbean and Guiana, working primarily with students on the new Masters Degree course in rainforest ecology.’ It is worth pointing out that in the context of the REDD+ system set up to compensate countries whose forests contribute to mitigating climate change, GUYASIM will provide a way of quantifying the services provided by the Guianese ecosystem and hence serve as a basis for assessing the financial compensation owed to French Guiana.

Find out more: www.ecofog.gf/spip.php?article429
MORE EFFECTIVE MANAGEMENT OF THE AMAZONIAN ENVIRONMENT THROUGH SATELLITE IMAGING

PROJECT PROFILE

PROJECT | Dynamic mapping of the Amazonian region – from satellites to stakeholders (CARTAM-SAT)

BENEFICIARY | Institut de recherche pour le développement (Institute for Development Research), ‘ESPACE-DEV’ Research Unit

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 593 883
EU co-funding: EUR 365 238

CONTEXT

French Guiana has a number of environmental problems, such as silting and shoreline erosion, rampant urbanisation, intensification of farming practices, growth of mining (both legal and clandestine), climate change, etc. It is vital to obtain a clearer understanding of these problems in order to anticipate how they will develop. A programme of satellite monitoring of the Amazonian environment was set up to do this (http://www.seas-guyane.org). This programme generates a large number of images (around one hundred images per day across the reception radius), which overcomes the problem of hazy tropical conditions in particular. However, due to a lack of suitable methods and technology for processing large quantities of images, the data has been largely unusable.

PROJECT DESCRIPTION

The purpose of CARTAM-SAT is to develop automated methods for storing, cataloguing, processing and interpreting satellite images, with a view to creating a dynamic mapping system for Guianese territory that will be automated and intelligent. It is a multidisciplinary programme combining information technology, applied mathematics and environmental science.

As project manager Frédérique Seyler explains, ‘In particular, it has allowed us to recruit and train young engineers and doctoral and post-doctoral researchers.’ The end purpose of the project is to create and update themed maps for use by the managers of the land.

MEMBER STATE | Portugal

LOCATION | Atlantic archipelago located 900 km south-west of Portugal (1 000 km from Lisbon) and 550 km west of the African coast (Agadir).

SURFACE AREA | 801 km²

POPULATION | 247 568 inhabitants

DENSITY | 309 inhab/km²

CAPITAL | Funchal

TOPOGRAPHY/CLIMATE

The archipelago is formed of two main islands – Madeira and Porto Santo – and two groups of uninhabited islands: The Desertas islands (which have been protected since 1990 and are a nature reserve) and the Selvagens islands (listed as a world heritage site by UNESCO).

The archipelago has a very diverse terrain.

The island of Madeira has very rugged terrain with its highest point being Pico Ruivo (1 861 m high).

However, the island of Porto Santo has a very different topography. It is very flat, has 9 km of golden sandy beaches and remains relatively unspoilt by tourism.

The Desertas islands have a steep topography in contrast to the Selvagens islands.

In terms of its climate, Madeira has average annual temperatures of between 17 and 22 °C. There is often significant rainfall, particularly on the north coast.
Porto Santo escapes this cloud belt and therefore its rainfall is far less than that of Madeira. The Desertas islands and the Selvagens islands have an arid climate.

ECONOMIC ACTIVITIES

Madeira’s traditional activities include agriculture (bananas for the local and national market, flowers and wine), artisan fishing, embroidery, tapestry and basket-making. Finally, tourism is the biggest source of income for Madeira’s economy.

Madeira’s free zone plays an important role in the diversification and modernisation of Madeira’s economy.

POLITICAL AND ADMINISTRATIVE STATUS

Since 1976, Madeira has been an autonomous region of the Republic of Portugal, with its own Parliament and Government. The Government’s regional office is located in Funchal. The region is divided into eleven municipalities.

UNIVERSITIES/SPECIALITIES

The archipelago has one university, the university of Madeira. It is also home to an astronomy observatory and the Centre for Biological and Geological Sciences (the Macronesia Study Centre) and the Centre for Mathematical Sciences.
NEAT SOLUTION TO A MOUNTING WASTE PROBLEM

PROJECT PROFILE
PROJECT | Solid Waste Treatment Station (SWTS) of Meia Serra
BENEFICIARY | Valor Ambiente, S.A.
FUNDING | EU Cohesion Fund
TOTAL | EUR 153 000 000
EU co-funding: EUR 102 100 000
PERIOD | 01/03/2007 – 01/10/2008

CONTEXT
Disposing of municipal solid waste (MSW) can be a major problem, especially on islands with limited landfill capacity. Over the past decade, Madeira has built three new stations (one on Porto Santo island), aimed at creating an integrated solution to manage waste generated on both islands – from collection to sorting, recycling and treatment. The largest component of this scheme was a project to develop an existing waste treatment station at Meia Serra. Located in Santa Cruz municipality, in the central eastern part of the island, the site was the country’s first integrated system for treatment and disposal of MSW when completed in 1991.

PROJECT DESCRIPTION
The Solid Waste Treatment Station (SWTS) of Meia Serra develops and extends existing facilities at the site. The waste treatment station was enlarged to include an Urban Waste Incinerator (Instalação de Incineração de Resíduos Sólidos Urbanos – IIRSU) and a composting system was installed for MSW. An incinerator for hospital waste and slaughterhouse waste (Instalação de Incineração de Resíduos Hospitalares e de Matadouro – IIRHM) was also added. Further new facilities include a wastewater treatment station and a new landfill site (Aterros Sanitários – AS).

Contractors also sealed the old waste tip, built networks to monitor environmental quality, added transfer stations (in the east and west of Madeira and also in Porto Santo), installed equipment for sorting recyclable waste, and launched environmental-awareness campaigns.

Thanks to the new SWTS, Madeira and Porto Santo have tackled the challenges of dealing with MSW and fully comply with national and EU guidelines on its safe disposal. The incinerator plant can handle up to 128 000 tonnes/year of MSW and through energy recovery produces up to eight megawatts of electricity – covering over 4% of the region’s electricity needs and 15% of domestic consumption. ‘The project’s solution for waste recovery and disposal, in a single place, is well integrated with the sorting of waste and its transportation to recycling facilities in mainland Portugal’, says a Member of the Board at Valor Ambiente. ‘This benefits the environment, public health, and the quality of life for people in the Autonomous Region of Madeira.’

Find out more: www.valorambiente.pt/etrs-meia-serra
SPOTLIGHT ON WHALING TRADITION AND CETACEAN CONSERVATION

PROJECT PROFILE

PROJECT | 3D Whale project in Madeira
BENEFICIARY | Machico Municipality
FUNDING | European Regional Development Fund (ERDF)
TOTAL | EUR 2 300 000
EU co-funding: EUR 1 800 000
PERIOD | 2009-2013

CONTEXT

Whaling once played a key role in Madeira’s economy, but was stopped for international conservation reasons in 1981. Today thousands of people visit the island to admire these magnificent and protected creatures swimming freely in their natural environment. They can also learn more about cetaceans – marine mammals – and associated local history at the Madeira Whale Museum, in the fishing village of Caniçal. The museum has moved into new and larger premises, and its infrastructure, displays and science are benefiting from the four-year 3D Whale project.

PROJECT DESCRIPTION

3D Whale aims to enhance all four major aspects of the museum: the exhibits; scientific research; education; and the commercial side. Most notable is the digital content being developed – in five languages – to create an innovative route through the museum for visitors. This content includes 11 new films, screened in the Whaling Room or Cetaceans Room. Calling on high-tech projectors, the films focus on everything from Madeiran whaling’s history to the study of cetaceans. Seven films are in stereoscopic 3D, to reveal compelling details of the animals’ evolution, anatomy and life underwater.

The project has also installed more than 10 digital kiosks, offering a further insight into whales and dolphins, plus an audioguide system (covering exhibits and their background) for visitors in Portuguese, English, German, French and Spanish. Staff members are also continuing to acquire, conserve and restore more historical objects linked to local whaling and the sea. These will go on display in the permanent exhibition or a temporary one that will tour nationally and internationally.

‘The 3D Whale project creates the necessary technological conditions for the whale museum to be an open door to knowledge and a window to the sea’, says Dr Luís Freitas, Museum Director. The project respectfully spotlights the island’s past, whilst raising people’s awareness of cetaceans and current conservation efforts. These results are expected to boost the museum’s cultural and economic impact, as well as pave the way for fruitful international scientific research partnerships on cetaceans.

Find out more: www.museudabaleia.org
MARTINIQUE

MEMBER STATE | France
LOCATION | Caribbean Sea (Atlantic Ocean)
Martinique is 6,850 km from Paris
SURFACE AREA | 1,128 km²
POPULATION | 395,953 inhabitants
DENSITY | 351 inhab./km²
CAPITAL | Fort-de-France

TOPOGRAPHY/CLIMATE
With its varied and rugged terrain, Martinique is a land of contrasts.
Its more mountainous and wetter northern part is dominated by Mount Pelée (1,400 m high).
In the south, the terrain is less rugged and has alternating plains and rounded hills. The jagged coastline boasts many bays and inlets. Martinique has 48 islets, fragile ecosystems and reservoirs for plant species.
It has a tropical, warm and humid climate, tempered by the trade winds. The archipelago’s average annual temperature is 26 °C.
Martinique, like the other islands of the Lesser Antilles, is exposed to cyclonic and seismic phenomena.
Tourism, hospitality and the cruise industry, after a crisis, have been modernised to cope better with the global flows of tourists from the EU and North America.

For now, the economic strategy is focused on the relaunch of some sectors, particularly agri-food, from new infrastructures (business parks, ports and airports etc) and research.

POLITICAL AND ADMINISTRATIVE STATUS

Like in mainland France, Martinique has four management levels: 1) Region, 2) Department, 3) agglomeration communities and municipalities, and 4) municipalities. This monodepartmental region has 4 arrondissements: Saint Pierre (North Caribbean); Trinité (North Atlantic); Fort-de-France (centre) and Le Marin (south).

Due to the dynamic created by decentralisation in 1981, the Martinique population wanted institutional change so they could play a bigger part in regional development and the development of their identity. The process was initiated by the overseas framework law adopted in 2000. The development was finally confirmed after the referenda in 2010, with the law of 27 July 2011. Like Guyana, it sets out plans for a single institution in 2014, which would replace the general and regional councils, whilst taking over their responsibilities.

UNIVERSITIES/SPECIALITIES

Martinique is home to the Antilles-Guiana university campus, which includes the faculties of law and economy; the International Research, Exchange and Cooperation Centre for the Caribbean and Americas (CIRECCA), as well as Study and Research Groups in Creole and Francophone Areas (GEREC-F). There is also a university hospital.
A FACTORY FOR RECYCLING LOCAL PLASTIC WASTE

PROJECT PROFILE

PROJECT | Recycling of plastic from separate waste collection

BENEFICIARY | Société industrielle de recyclage et production (SIDREP)

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 8,960,233.40
EU co-funding: EUR 4,480,116.70

PERIOD | 2012

CONTEXT

The main obstacle to the industrialisation of the outermost regions is well known: their remoteness. This is mainly in relation to sources of raw materials, but also in relation to outlets for finished products, since local demand is limited and demand from immediate neighbours is often non-existent for economic reasons. By its nature, a project designed to recycle plastic waste could tackle these two problems. Currently, in the absence of a way of putting it to good use, less than 10% of the existing volume of polyethylene terephthalate (PET) products in Martinique are collected and, overall, the Caribbean area is in need of channels through which to dispose of this source of pollution. The resource is therefore significant, close and readily useable. As for selling the end product, local and worldwide demand by industrial firms for packaging is considerable.

PROJECT DESCRIPTION

The project aims to help SIDREP to install a unit for processing plastic materials deriving from waste collections. Its function is to convert PET bottles into by-products of two different quality levels. The higher-quality products (pellets) can be used in the manufacture of new bottles. The lower-quality products (flakes) are to be used for the manufacture of non-food containers.

The production line’s capacity is 600 kg per hour and annual capacity is 4,000 tonnes. ‘The project meets three needs’, explains Christian Torres, head of the project: ‘The recovery and recycling of unused plastic, the reduction of urban pollution and the creation of jobs, including eight direct jobs.’ Some Caribbean and European purchasers of flakes and pellets have already shown their interest, including the company ‘Matières plastiques martiniquaises’, a local manufacturer of preforms.

Find out more: www.SIDREP.com
(Internet site under construction)
INCREASING LOCAL PRODUCTION OF FRUIT JUICE

PROJECT PROFILE

PROJECT | Establishment of a modern workshop for fruit processing
BENEFICIARY | Denel sas and Vergers et Jardins Tropicaux asbl
FUNDING | European Agricultural Fund for Rural Development (EAFRD)
TOTAL | EUR 793,300
EU co-funding | EUR 402,986
PERIOD | 2011-2014

CONTEXT

A subsidiary of the Antilles-Glaces group, the Denel factory, in Gros-Morne, processes tropical fruit to produce juice, jams and purées. It has been operating since 1932, employs 48 people and processes 900 tonnes of fruit per year. It produces products under its own brands and also for third parties, particularly European distributors.

Local fruit is supplied by the Ananas Martinique cooperative (for pineapples) and the Vergers et Jardins Tropicaux association (mainly for guava). The association comprises 22 growers with 100 hectares planted with fruit trees, mainly guava. But this production is not enough to meet the needs of the island and the factory, since only 38% of the market is covered by local production.

PROJECT DESCRIPTION

The project to modernise the factory aims to double its production capacity, enabling it to process 1,800 tonnes of fruit per year. However, this increase can only take place if the productivity of the local industry is improved upstream.

Therefore, the project aims to help the growers in Vergers et Jardins Tropicaux to increase and diversify their fruit production, so as to meet the growing demand of Martinique’s market in general and the Denel factory in particular. This is being achieved through an increase in the area under cultivation and through the acquisition by growers of technical expertise on fruit other than guava, including passion fruit, ambarellas, starfruit, kumquats, etc.

‘This project will enable us to gradually decrease imports of fruit purées,’ explains Philippe Vourch, site director at Denel and in charge of the project. ‘Also, it will have the benefit of helping to keep agricultural holdings viable and promoting the establishment of new areas dedicated to fruit growing.’

Find out more: www.denelmartinique.com
RÉUNION

MEMBER STATE	France
LOCATION | Located in the Indian Ocean, approx. 800 km east of Madagascar and 200 km west of Mauritius, the island of Réunion, along with the island of Mauritius and Rodrigues, forms the Mascareignes archipelago.
Réunion is 9,400 km from Paris.
SURFACE AREA | 2,503.7 km²
POPULATION (2011) | 839,480 inhabitants
DENSITY | 335 inhab/km²
CAPITAL | Saint-Denis

TOPOGRAPHY/CLIMATE
Réunion has 210 kilometres of mainly rocky and alluvial coastline. There are only 25 kilometres of white sandy coral beach and 14 kilometres of black sand, located to the west and south.

Characterised by steep terrain, the island is home to one of the world’s most active volcanoes: the Piton de la Fournaise (2,631 m high).

Réunion has a tropical climate tempered by the trade winds. The presence of high mountains causes significant microclimatic differences in terms of precipitation between the rainy wind-exposed eastern coast and a relatively dry western coast (protected by the terrain) on the one hand; and in terms of temperatures between warm coastal areas and relatively cool areas of higher altitude on the other.

Average annual temperatures are 21 to 32 °C on the coast and 12 to 22 °C in the mountains.
Réunion is located on the cyclone belt (the most active period is January-March).
ECONOMIC ACTIVITIES

Réunion’s traditional activities are agriculture (mainly sugar cane, meat and milk), fishing, the import-substitution industry and the building and public works sector.

Its more modern activities include tourism, the agri-food industry, biomedical research, technologies concerned with the growing of micro-algae and the solar energy industry.

POLITICAL AND ADMINISTRATIVE STATUS

Réunion is an overseas region. The territory comprises 4 arrondissements: Saint-Denis, Saint-Benoît, Saint-Paul and Saint-Pierre.

This mono-departmental region has a general council and a regional council.

UNIVERSITIES/SPECIALITIES

Its main university disciplines are law, economy and management, humanities and human sciences and science, technology and health.

In 2009, 15,321 students were enrolled in higher education.
SATELLITE TO HELP IN REGIONAL PLANNING AND REGIONAL COOPERATION

PROJECT PROFILE

PROJECT | Remote sensing station for satellite-assisted environmental monitoring in the Indian Ocean (SEAS-OI)

BENEFICIARY | Regional Council of Réunion

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 10 190 000
EU co-funding: EUR 6 000 000

PERIOD | 2008-2014

CONTEXT

As in all island territories, the management of space and regional planning are crucially important in the face of demographic growth, agricultural development, urbanisation, natural disasters, etc. Satellite observation and monitoring have become vital tools in helping decision-making and in the daily management of land and ocean territories. It is against this background that the Réunion region has undertaken the construction of a satellite image receiving and processing station.

PROJECT DESCRIPTION

SEAS-OI aims to put in place a centre of excellence in remote sensing using a station to receive and process high-resolution satellite images covering the entire south-west area of the Indian Ocean. Two types of image need to be processed: radar images (RADARSAT-2 and ENVISAT) and optical images (SPOT-4 and SPOT-5). Radar images are particularly well suited to the monitoring of maritime areas. Optical images offer resolutions that can be accurate to 2.5 m and which make many applications in terms of land imaging and mapping possible. These will be useful in relation to regional problems concerning land planning, the management of natural land environments, maritime monitoring, epidemiological monitoring, the preservation of biodiversity, monitoring of climate indicators and the management of natural hazards.

Find out more: http://teledetection.univ-reunion.fr/tcc/

‘The station is located within TECHSUD on the site of the Saint-Pierre technological university institute’, explains Pierre Tessier, head of the project in the Réunion region. ‘The University of Réunion has also launched an international master’s programme in “remote sensing and natural hazards,” which is designed to train high-level executives in Réunion and countries in the Indian Ocean area. ’SEAS-OI represents an opportunity to develop regional cooperation with the ACP countries in this area of the Indian Ocean.'
SOPHISTICATED CYCLOTRON SAVES LIVES AND SUPPORTS RESEARCH

PROJECT PROFILE

PROJECT | Research Cyclotron Réunion Océan Indien (CYROI)

BENEFICIARY | Groupement d’Intérêt Publique Cyclotron Réunion Océan Indien (CYROI)

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 20,000,000
EU co-funding: EUR 12,000,000

PERIOD | 01/01/2005 – 31/12/2008

CONTEXT

France launched a national cancer plan in 2003. This foresaw the rollout of 60 PET (positron emission tomography) scanners, to detect early stages of cancer. The Réunion/Mayotte health region (population of 900,000) did not qualify for such a scanner, as it fell below the official threshold of one million. Réunion University therefore joined forces with the Centre Hospitalier Régional to create the Cyclotron Réunion Indian Ocean (CYROI). This public interest grouping (GIP), with EU co-funding, purchased a cyclotron for use in medical imaging as well as high-tech research.

PROJECT DESCRIPTION

The CYROI is a technology platform comprising buildings and equipment, available to businesses or public laboratories in Réunion and the Indian Ocean, as well as those in Europe and the rest of the world. Its centrepiece is a cyclotron, a compact machine that produces accelerated ion beams for use in nuclear medicine and research.

Opened in 2008 in St-Denis, the CYROI hosts four types of activity: radiopharmaceutical production, medical fundamental research, biotechnology economic development of start-ups, and training and scientific cooperation.

The cyclotron produces 18-FDG, a radiotracer that is injected into patients to detect malignant tumours. As a result, as many as 1,500 people from Réunion or Mayotte can be diagnosed for cancer locally, rather than being evacuated to mainland France for healthcare.

The platform is also harnessed for a wide variety of biomedical research, including metabolic, infectious and emerging diseases, and the promotion of land and marine biodiversity – diversity for which this region is famous worldwide. The Centre for Research and Scientific Monitoring of Infectious Diseases in the Indian Ocean (CRVOI) is also linked to it. "This tool has highlighted the biomedical research expertise and skills of Réunion, as well as of France and Europe, in the Indian Ocean," says Maya Cesari, Scientific Director of CYROI.

Find out more: www.cyroi.fr
Saint Martin

Member State | France
Location | Caribbean Sea (Atlantic Ocean)
Saint-Martin is 6,700 km from Paris.
Surface Area | 51 km²
Population | 37,461 inhabitants
Density | 734 inhab./km²
Capital | Marigot

Topography/Climate

The north of the island is the largest and the most mountainous (small hillocks). The peninsula of the Terres-Basses, formed of a plateau and three Mornes Rouges, is linked by the spit of Sandy Ground.

The Pointe des Canonniers is the most westerly point of the European Union’s territories.

The climate is tropical and tempered by maritime influences and the trade winds. The average annual temperature is 26°C. Like the rest of the area, Saint-Martin is exposed to significant seismic activity.

French part of the island
ECONOMIC ACTIVITIES
Saint Martin’s economy relies on:
• traditional activities such as commerce, the building and public works sector and the services sector;
• more modern activities, including luxury tourism, leisure tourism and gastronomic tourism.

POLITICAL AND ADMINISTRATIVE STATUS
This island’s political administration is divided between the French area in the north (Saint Martin) and the Dutch area in the south (Sint Maarten).

Saint Martin has been a French overseas collectivity since 15 July 2007. It previously depended, administratively, on the overseas department of Guadeloupe, of which it formed the 3rd arrondissement with Saint-Barthélemy, which also became an overseas collectivity.

UNIVERSITIES/SPECIALITIES
The education system is limited to kindergarten and primary and secondary schools.
INFRASTRUCTURE FOR CULTURE

PROJECT PROFILE

PROJECT | Construction of a public building for the territorial archives, an auditorium and a media library

BENEFICIARY | Overseas community of Saint Martin

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 9,845,698
EU co-funding: EUR 3,151,351

PERIOD | 2011-2012

CONTEXT

Saint Martin's current library is located in old premises that are too small for the 20,000 + visitors it receives per year, over 80% of whom are primary and secondary school pupils. In these circumstances, it is difficult for the infrastructure to fulfil the other parts of its cultural and educational remit, particularly to enable young people to discover and become familiar with new information technologies, as required by national education and teaching policy.

PROJECT DESCRIPTION

The project consists of completing a huge piece of infrastructure wholly dedicated to culture and the conservation of heritage. The building has three levels, each with an area of approximately 1,600 m². It has been designed to host the territorial archives, an auditorium and, on the top floor, a media library. This will allow the former library to go beyond its previous role and to offer other media to its users.

The new building has been designed with energy efficiency in mind: there are solar panels on the roof and the frontage includes protective systems to reduce the impact of sunshine and therefore the cost of air conditioning.

‘The location has not been chosen randomly’, points out Afif Lazrak, secretary-general of the prefecture and head of the project. ‘The media library is destined to become a centre of activity and a focal point in a disadvantaged district that has a significant level of social housing.’

Find out more: www.saint-barth-saint-martin.pref.gouv.fr
SAINT MARTIN

A LANGUAGE LABORATORY CONNECTED TO THE REST OF THE WORLD

PROJECT PROFILE

PROJECT | Multimedia space (Saint Martin and Saint Barthélemy GRETA)

BENEFICIARY | Overseas community of Saint Martin

FUNDING | European Regional Development Fund (ERDF)

TOTAL | EUR 169,213
EU co-funding: EUR 152,292

PERIOD | 2012

CONTEXT

From its turbulent history, Saint Martin has inherited many communities speaking different languages: French, English, Spanish, Dutch, Creole, etc. This situation, and its focus on tourism, mean that multilingualism is a necessity on the island of Saint Martin. Language learning, as part of secondary and higher education, is therefore a key element in education policy. In order to carry out this training successfully, a language laboratory is proving increasingly necessary. The laboratory must be able to mitigate another disadvantage linked to the island nature and small size of the community: the lack of teachers, particularly for higher-level education requiring specialist skills. It is therefore necessary for the laboratory to have an effective connection to the rest of the world, to allow students to find their teachers wherever they are.

PROJECT DESCRIPTION

The GRETA project aims to install a language laboratory equipped with high-performance information and communication technology equipment. It involves setting up and putting into operation a multimedia space dedicated to language learning: 30 work stations (including two accessible to disabled people), an interactive white-board, two cameras, two video projectors, priority Internet access and, of course, all the learning software in the language laboratory.

It is vital to employ a specialised technician to supervise the maintenance and smooth operation of this equipment. The space will not be solely used for higher education: ‘GRETA has entered into an agreement with the northern islands secondary school for the space to be used by the school’s students’, explains Afif Lazrak, secretary-general of the prefecture and head of the project.

Find out more: www.saint-barth-saint-martin.pref.gouv.fr
THE OUTERMOST REGIONS IN FIGURES

SOCIO-ECONOMIC STATISTICS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Azores</td>
<td>245 811</td>
<td>75.2</td>
<td>6.9</td>
<td>17.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Canary Islands</td>
<td>2 100 229</td>
<td>87.3</td>
<td>28.7</td>
<td>51.7</td>
<td>28.1</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>448 961</td>
<td>65.9</td>
<td>23.8</td>
<td>55.1</td>
<td>26</td>
</tr>
<tr>
<td>French Guiana</td>
<td>236 250</td>
<td>52.8</td>
<td>21</td>
<td>42.6</td>
<td>24.9</td>
</tr>
<tr>
<td>Madeira</td>
<td>247 568</td>
<td>104.9</td>
<td>7.4</td>
<td>17.3</td>
<td>6.2</td>
</tr>
<tr>
<td>Martinique</td>
<td>395 953</td>
<td>71.8</td>
<td>21</td>
<td>59</td>
<td>22.2</td>
</tr>
<tr>
<td>Réunion</td>
<td>839 480</td>
<td>66.8</td>
<td>28.9</td>
<td>54.7</td>
<td>30</td>
</tr>
<tr>
<td>Saint Martin*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: Eurostat (2009-2011)

EUROPEAN SUBSIDIES (2007-2013) IN THOUSANDS OF EUROS

<table>
<thead>
<tr>
<th></th>
<th>ERDF (European Regional Development Fund)</th>
<th>ESF (European Social Fund)</th>
<th>EAFRD (European Agricultural Fund for Rural Development)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azores</td>
<td>966 300</td>
<td>190 000</td>
<td>294 000</td>
</tr>
<tr>
<td>Canary Islands</td>
<td>1 019 300</td>
<td>117 300</td>
<td>154 000</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>542 700</td>
<td>185 200</td>
<td>142 000</td>
</tr>
<tr>
<td>French Guiana</td>
<td>305 100</td>
<td>100 000</td>
<td>76 500</td>
</tr>
<tr>
<td>Madeira</td>
<td>320 500</td>
<td>125 400</td>
<td>179 000</td>
</tr>
<tr>
<td>Martinique</td>
<td>417 100</td>
<td>97 800</td>
<td>103 200</td>
</tr>
<tr>
<td>Réunion</td>
<td>1 014 300</td>
<td>516 900</td>
<td>329 400</td>
</tr>
<tr>
<td>Totals</td>
<td>4 585 300</td>
<td>1 332 600</td>
<td>1 278 100</td>
</tr>
</tbody>
</table>

Because Saint Martin only became a separate outermost region on 1 December 2009, it does not yet have Eurostat socio-economic statistics separated out from those of Guadeloupe (of which it was previously part).

For 2007-2013 the POSEI (Programme of Options Specifically Relating to Remoteness and Insularity) amount of EUR 4 162 million and a total amount of EUR 100.8 million under the EFF** (European Fisheries Fund) have been added, distributed to the outermost regions through the Member States.

**Indicative amount.
HOW TO OBTAIN EU PUBLICATIONS

Free publications:
• via EU Bookshop (http://bookshop.europa.eu);
• at the European Commission’s representations or delegations. You can obtain their contact details on the Internet (http://ec.europa.eu) or by sending a fax to +352 2929-42758.

Priced publications:
• via EU Bookshop (http://bookshop.europa.eu);

Priced subscriptions (e.g. annual series of the Official Journal of the European Union and reports of cases before the Court of Justice of the European Union):
• via one of the sales agents of the Publications Office of the European Union (http://publications.europa.eu/others/agents/index_en.htm).