Riktlinjer för urvalsmetoder för revisionsmyndigheter

ANSVARSFRIKRIVNING: "Detta är ett arbetsdokument från kommissionens avdelningar. Det bygger på tillämplig EU-lagstiftning och innehåller teknisk vägledning avsedd för myndigheter, jurister, stödmottagare och möjliga stödmottagare samt andra organ som medverkar i övervakning, kontroll eller genomförande av sammanhållningspolitiken och havspolitiken om hur EU:s bestämmelser på dessa områden ska tolkas och tillämpas. Syftet är att tillhandahålla förklaringar och tolkningar från kommissionens avdelningar för att underlätta genomförandet av programmen samt att uppmuntra god praxis. Arbetsdokumentet påverkar emellertid inte EU-domstolens och tribunalens tolkningar eller kommissionens framtida beslut på området.”
INNEHÅLLSFÖRTECKNING

1 INLEDNING .. 8

2 HÅNVISNINGAR TILL REGELVERK .. 9

3 MODELL FÖR REVISIONSRISK OCH REVISIONSFÖRFARANDEN 9

3.1 RISIKOMODELL ... 9

3.2 GARANTI- OCH KONFIDENSNIVÅ FÖR REVISION AV INSATSER 13

3.2.1 Inledning .. 13

3.2.2 Fastställande av tillämplig garantinivå vid gruppering av program 15

4 STATISTiska BegaRePP i SAMBAND MED REVISION AV INSATSER 16

4.1 URVALSMETOD ... 16

4.2 URVALSMETOD ... 17

4.3 BERÄKNING (SKATTNING) ... 18

4.4 PRECISION (URVALSFEL) ... 19

4.5 POPULATION .. 19

4.6 NEGATIVA URVALSENHETER .. 21

4.7 STRATIFIERING ... 25

4.8 URVALSENHET ... 25

4.9 VASENTLIGHEJT ... 26

4.10 GODTAGBARA FEL OCH PLANERAD PRECISION .. 26

4.11 VARIATION .. 27

4.12 KONFIDENSINTERVALL OCH ÖVRE FELGRÄNS .. 28

4.13 KONFIDENSNIVÅ ... 30

4.14 FELPROCENT .. 30

5 URVALSTEKNiker FÖR GRANSKNING AV INSATSER ... 31

5.1 ÖVERSIKT .. 31

5.2 VILLKOR FÖR VILKEN URVALSFORM SOM SKA ANVÄNdas 33

5.3 ANMÄRKNING .. 35

6 URVALSMETODER ... 37

6.1 ENKELT SLUMPMÄSSIGT URVAL ... 37

6.1.1 Standardmetod ... 37

6.1.1.1 Inledning ... 37

6.1.1.2 Urvalets storlek ... 37

6.1.1.3 Beräknat fel ... 38

6.1.1.4 Precision ... 39

6.1.1.5 Utvärdering .. 40

6.1.1.6 Exempel ... 41

6.1.2 Stratifierat enkelt slummpässigt urval ... 45

6.1.2.1 Inledning ... 45

6.1.2.2 Urvalets storlek ... 46

6.1.2.3 Beräknat fel .. 47

6.1.2.4 Precision ... 48

6.1.2.5 Utvärdering .. 49

6.1.2.6 Exempel ... 49

6.1.3 Enkelt slummpässigt urval – två perioder ... 56

6.1.3.1 Inledning .. 56
6.1.3.2 Urvalets storlek...56
6.1.3.3 Beräknat fel...59
6.1.3.4 Precision...59
6.1.3.5 Utvärdering...60
6.1.3.6 Exempel...60
6.2 SKATTNING AV SKILLNAD...66
6.2.1 Standardmetod..66
 6.2.1.1 Inledning...66
 6.2.1.2 Urvalets storlek...67
 6.2.1.3 Extrapolering..67
 6.2.1.4 Precision...68
 6.2.1.5 Utvärdering...68
 6.2.1.6 Exempel...69
6.2.2 Stratifierad skattning av skillnad.......................................72
 6.2.2.1 Inledning...72
 6.2.2.2 Urvalets storlek...72
 6.2.2.3 Extrapolering..73
 6.2.2.4 Precision...73
 6.2.2.5 Utvärdering...74
 6.2.2.6 Exempel...74
6.2.3 Skattning av skillnad – två perioder....................................78
 6.2.3.1 Inledning...78
 6.2.3.2 Urvalets storlek...79
 6.2.3.3 Extrapolering..79
 6.2.3.4 Precision...79
 6.2.3.5 Utvärdering...80
 6.2.3.6 Exempel...80
6.3 DEN STATISTiska URVALSMetoden MUS.................................85
6.3.1 Standardmetod..85
 6.3.1.1 Inledning...85
 6.3.1.2 Urval...86
 6.3.1.3 Urval...87
 6.3.1.4 Beräknat fel..88
 6.3.1.5 Precision...89
 6.3.1.6 Utvärdering...89
 6.3.1.7 Exempel...90
6.3.2 Den stratifierade urvalsmetoden MUS..................................95
 6.3.2.1 Inledning...95
 6.3.2.2 Urval...96
 6.3.2.3 Urval...97
 6.3.2.4 Beräknat fel..98
 6.3.2.5 Precision...99
 6.3.2.6 Utvärdering...100
 6.3.2.7 Exempel...100
6.3.3 MUS-urval – två perioder..105
 6.3.3.1 Inledning...105
 6.3.3.2 Urval...105
 6.3.3.3 Urval...108
 6.3.3.4 Beräknat fel..109
 6.3.3.5 Precision...110
 6.3.3.6 Utvärdering...110
 6.3.3.7 Exempel...111
6.3.4 Den stratifierade urvalsmetoden MUS i två perioder..................118
 6.3.4.1 Inledning...118
6.3.4.2 Urvalets storlek ... 119
6.3.4.3 Urval ... 122
6.3.4.4 Beräknat fel ... 123
6.3.4.5 Precision ... 124
6.3.4.6 Utvärdering ... 125
6.3.4.7 Exempel ... 125
6.3.5 Konservativ metod ... 137
6.3.5.1 Inledning ... 137
6.3.5.2 Urvalets storlek ... 138
6.3.5.3 Urval ... 139
6.3.5.4 Beräknat fel ... 139
6.3.5.5 Precision ... 140
6.3.5.6 Utvärdering ... 141
6.3.5.7 Exempel ... 142
6.4 Icke-statistiskt urval ... 147
6.4.1 Inledning .. 147
6.4.2 Stratifierat och icke-stratifierat icke-statistiskt urval 148
6.4.3 Urvalets storlek ... 149
6.4.4 Urval .. 151
6.4.5 Beräkning .. 151
6.4.5.1 Urval baserat på lika sannolikhet 152
6.4.5.2 Stratifierat urval baserat på lika sannolikhet 152
6.4.5.3 Urval baserat på sannolikhet i förhållande till utgifter 153
6.4.5.4 Stratifierat urval baserat på sannolikhet i förhållande till utgifter 154
6.4.6 Utvärdering ... 154
6.4.7 Exempel 1 – Urval baserat på sannolikhet i förhållande till storlek (PPS) ... 155
6.4.8 Exempel 2 – Urval baserat på lika sannolikhet 157
6.4.9 Icke-statistiskt urval – två perioder 159
6.4.9.1 Icke-statistiskt urval – två perioder– urval baserat på lika sannolikhet 161
6.4.9.2 Icke-statistiskt urval – två perioder – PPS-urval 164
6.4.10 Urval i två steg (delurval) i icke-statistiska urvalsmetoder 169
6.5 Urvalsmetoder för program för Europeiskt Territoriellt Samarbete (ETS) ... 170
6.5.1 Inledning .. 170
6.5.2 Urvalsenhet ... 170
6.5.3 Urvalsmetod ... 172
6.5.3.1 Urval i två och tre steg (delurval) 173
6.5.3.2 Viktigaste konfigurationer som är möjliga för urvalslenhet vid urval i två steg och tre steg...... 175
6.5.3.3 En möjlig strategi i urval i två steg (insats som urvalsenhet och delurval av projektpartner, där den samordnande partnern och ett urval av projektpartner väljs ut) ... 179

7 Utvalda teman .. 184
7.1 Hur fastställer man det förväntade felet? 184
7.2 Ytterligare urval ... 187
7.2.1 Kompletterande urval (på grund av bristande täckning av högriskområden) 187
7.2.2 Ytterligare urval (på grund av att det inte gör att dra några slutsatser av granskningen) 188
7.3 Urval som görs under året .. 189
7.3.1 Inledning .. 189
7.3.2 Ytterligare anmärkningar om urval i flera perioder 190
7.3.2.1 Klassificering .. 190
7.3.2.2 Exempel .. 192
7.4 Ändring av urvalsmetod under programperioden 200
7.5 FELPROCENT .. 200
7.6 URVAL I TVÅ STEG (DELURVAL) .. 200
 7.6.1 Inledning .. 200
 7.6.2 Urvalets storlek ... 203
 7.6.3 Beräkning .. 204
 7.6.4 Precision ... 205
 7.6.5 Exempel .. 205
7.7 OMBERÄKNING AV KONFIDENSNIVÅ .. 209
7.8 STRATEGIER FÖR ATT GRANSA GRUPPER AV PROGRAM OCH PROGRAM SOM
OMFATTAS AV FLERA FONDER ... 211
 7.8.1 Inledning .. 211
 7.8.2 Exempel .. 214
7.9 TILLÆMPLIG URVALSTEKNIK FÖR SYSTEMREVISIONER 220
 7.9.1 Inledning .. 220
 7.9.2 Urvalets storlek ... 222
 7.9.3 Extrapolering .. 223
 7.9.4 Precision ... 223
 7.9.5 Utvärdering ... 223
 7.9.6 Specialiserade metoder för attributmetoden ... 224
7.10 SYSTEM FÖR PROPORTIONELL KONTROLL UNDER PROGRAMPERIODEN
2014–2020 – FÖLJDER FÖR URVALET ... 224
 7.10.1 Begränsningar för urval till följd av artikel 148.1 i förordningen om
gemensamma bestämmelser ... 224
 7.10.2 Urvalsmetod i system för proportionell kontroll 227
 7.10.3 Exempel .. 232
 7.10.3.1 Exempel på ersättning av urvalsenheter i PPS-metoder (MUS och
icke-statistiskt PPS-urval) .. 232
 7.10.3.2 Exempel på uteslutning av insatser i urvalssteget enligt den
standardiserade MUS-metoden .. 236
 7.10.3.3 Exempel på uteslutning av insatser i urvalssteget enligt den
kon servativa MUS-metoden .. 240
 7.10.3.4 Exempel på uteslutning av insatser i urvalssteget i enkelt
slumpmässigt urval (skattning av genomsnitt per enhet och kvotskattning) ... 243

TILLÄGG 1 – BERÄKNING AV SLUMPMÄSSIGA FEL NÄR SYSTEMBETINGADE FEL HAR
UPPTÅCKTS ... 250
1. INLEDNING ... 250
2. ENKELT SLUMPMÄSSIGT URVAL .. 251
 2.2 Skattning av genomsnitt per enhet ... 251
 2.3 Kvotskattning .. 251
3. SKATTNING AV SKILLNAD .. 252
4. DEN STATISTISKA URVALSMETODEN MUS .. 253
 4.1 Standardiserad MUS-metod .. 254
 4.2 MUS-kvotskattning .. 255
 4.3 Konserverad MUS-metod .. 256
5. ICKE-STATISTISKT URVAL .. 256

TILLÄGG 2 – FORMLER FÖR URVAL I FLERA PERIODER 259
1. ENKELT SLUMPMÄSSIGT URVAL .. 259
 1.1 TRE PERIODER .. 259
 1.1.1 Urvalets storlek ... 259
 1.1.2 Beräkning och precision ... 260
1.2 FYRA PERIODER .. 261
 1.2.1 Urvalets storlek... 261
 1.2.2 Beräkning och precision .. 263

2. DEN STATISTISKA URVALSMETODEN MUS ... 264
 2.1 TRE PERIODER ... 264
 2.1.1 Urvalets storlek.. 264
 2.1.2 Beräkning och precision ... 265
 2.2 FYRA PERIODER .. 266
 2.2.1 Urvalets storlek.. 266
 2.2.2 Beräkning och precision ... 267

TILLÄGG 3 – TILLFÖRLITLIGHETSFAKTORER FÖR MUS.. 268

TILLÄGG 4 – VÄRDEN FÖR DEN STANDARDISERADE NORMalfÖRDELNINGEN (Z) 269

TILLÄGG 5 – FORMLER I MS EXCEL TILL STÖD FÖR URVALSMETODERNA 270

TILLÄGG 6 – ORDLISTA ... 271
Förkortningar

AE – Förväntat fel
AR – Revisionsrisk
BP – Grundprecision
BV – Bokfört värde (utgifter som deklarerats till kommissionen under referensperioden)
COCOF – Samordningskommittén för fonderna
CR – Kontrollrisk
DR – Upptäcktsrisk
E_i – Enskilda fel i urvalet
\bar{E} – Genomsnittligt fel i urvalet
EG – Europeiska gemenskapen
EE – Beräknat fel
EDR – Extrapolerad avvikelseprocent
EF – Expansionsfaktor
ETS – Europeiskt territoriellt samarbete
IA – Inkrementell marginal
IR – Inneboende risk
It – Informationsteknik
MUS – Den statistiska urvalsmetoden MUS (Monetary Unit Sampling)
PPS – Sannolikhet i förhållande till storlek (Probability Proportional to Size)
RF – Tillförlitlighetsfaktor
SE – (Faktiskt, dvs. efter granskning) urvalsfel (precision)
SI – Urvalsintervall
TE – Högsta godtagbara fel
TPE – Sammanlagt beräknat fel (motsvarar även akronymen TPER, som används för programperioden 2007–2013)
ULD – Övre avvikelsegräns
ULE – Övre felgräns
1 Inledning

Internationella revisionsstandarder och en uppdaterad provtagningsteori ger vägledning om användningen av urvalsmetoder och andra hjälpmedel för att välja ut poster för granskning när man utformar revisionsförfaranden.

Denna vägledning ersätter den tidigare vägledningen om samma ämne (ref. COCOF 08/0021/03-EN, 4.4.2013). Detta dokument påverkar inte tillämpningen av andra kompletterande vägledningar från kommissionen, dvs.

- Programperioden 2007–2013:
 - **Guidance note on annual control reports and opinions** (vägledning om årliga kontrollrapporter och yttranden) av den 18 februari 2009, ref. COCOF 09/0004/01-EN och EFFC/0037/2009-EN av den 23 februari 2009,
 - **Vägledning om behandling av fel som rapporterats i de årliga kontrollrapporterna**, ref. EGESIF_15-0007-01 av den 9 oktober 2015,
 - **Guidance on a common methodology for the assessment of management and control systems in the Member States** (vägledning om en gemensam metod för bedömning av förvaltnings- och kontrollsystem i medlemsstaterna) ref. COCOF 08/0019/01-EN och EFFC/27/2008 av den 12 september 2008.

- Programperioden 2014–2020:
 - **Guidance for the Commission and Member States on a common methodology for the assessment of management and control systems in the Member States** (vägledning för kommissionen och medlemsstaterna om en gemensam metod för bedömning av förvaltnings- och kontrollsystem i medlemsstaterna) (EGESIF_14-0010-final av den 18 december 2014).

Vi rekommenderar därför att ni även läser de dokumenten för att få en fullständig bild av riktlinjerna för att utarbeta de årliga kontrollrapporterna.
2 Hänvisningar till regelverk

<table>
<thead>
<tr>
<th>Förordning</th>
<th>Artiklar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programperioden 2007–2013</td>
<td></td>
</tr>
<tr>
<td>Förordning (EG) nr 1083/2006</td>
<td>Artikel 62 – Revisionsmyndighetens uppgifter</td>
</tr>
<tr>
<td>Förordning (EG) nr 1828/2006</td>
<td>Artikel 17 – Statistiskt urval</td>
</tr>
<tr>
<td></td>
<td>Bilaga IV – Tekniska parametrar för det slumpmässiga</td>
</tr>
<tr>
<td></td>
<td>statistiska urvalet enligt artikel 17</td>
</tr>
<tr>
<td>Förordning (EG) nr 1198/2006</td>
<td>Artikel 61 – Revisionsmyndighetens uppgifter</td>
</tr>
<tr>
<td>Förordning (EG) nr 498/2007</td>
<td>Artikel 43 – Statistiskt urval</td>
</tr>
<tr>
<td></td>
<td>Bilaga IV – Tekniska parametrar</td>
</tr>
<tr>
<td>Programperioden 2014–2020</td>
<td></td>
</tr>
<tr>
<td>Förordning (EU) nr 1303/2013</td>
<td>Artikel 127.5 – Revisionsmyndighetens uppgifter</td>
</tr>
<tr>
<td>Förordningen om gemensamma bestämmelser</td>
<td>Artikel 148.1 – Proportionell kontroll av operativa</td>
</tr>
<tr>
<td>(nedan kallad förordningen om gemensamma</td>
<td>program</td>
</tr>
<tr>
<td>bestämmelser)</td>
<td></td>
</tr>
<tr>
<td>Förordning (EU) nr 480/2014 Kommissionens</td>
<td>Artikel 28 – Metod för urval av insatser</td>
</tr>
<tr>
<td>delegerade förordning (nedan kallad kommissionens delegerade förordning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Modell för revisionsrisk och revisionsförfaranden

3.1 Riskmodell

Revisionsrisk är risken för att en revisor avger ett okvalificerat yttrande när utgiftsdeklarationen innehåller väsentliga fel.
Figur 1. Modell för revisionsrisk
Revisionsrisken består av följande tre beståndsdelar: inneboende risk (IR), kontrollrisk (CR) och upptäcktsrisk (DR). Detta ger en revisionsriskmodell

\[AR = IR \times CR \times DR \]

där:

- **IR**, inneboende risk, är den uppfattade risken för att ett väsentligt fel kan förekomma i utgiftsdeklarationer som lämnas in till kommissionen eller underliggande sammanställningar på grund av att det saknas förfaranden för internkontroll. Den inneboende risken är kopplad till typen av insatser hos den granskade enheten och beror på olika externa faktorer (kulturella, politiska och ekonomiska faktorer, typ av affärsverksamhet, kunder och leverantörer etc.) och interna faktorer (typ av organisation, förfaranden, personalens kompetens, nyligen genomförda förändringar av processer eller företagsledningsposter etc.). Den **inneboende risken** måste uppskattas innan detaljerade revisionsförfaranden inleds (intervjuer med ledningen och berörd personal, granskning av relaterad information såsom organisationsscheman, manualer och interna/externa dokument). För struktur- och fiskerifonderna fastställs nivåerna för den inneboende risken till en hög procent.

- **CR**, kontrollrisk, är den uppfattade risken för att ett väsentligt fel i utgiftsdeklarationer som lämnas in till kommissionen eller i underliggande sammanställningar inte kommer att förhindras, upptäckas och rättas till genom
ledningens förfaranden för internkontroll. Kontrollrisken beror följaktligen på hur väl de inneboende riskerna hanteras (kontrolleras) och på systemet för internkontroll, inklusive applikationskontroller, it-kontroller och organisatoriska kontroller, för att bara nämna några. Kontrollrisken kan bedömas genom **systemrevisioner** – detaljerade granskningar av kontroller och rapportering för att få fram belägg för att ett kontrollsystem är utformat och används effektivt för att förebygga eller upptäcka väsentliga fel och för organisationens förmåga att registrera, behandla, sammanfatta och rapportera uppgifter.

Resultatet av inneboende risker och kontrollrisken (dvs. \(IR \times CR \)) benämns **risken för väsentliga fel**. Risken för väsentliga fel är kopplad till resultatet av **systemrevisionerna**.

- **DR**, upptäcktsrisk, är den uppfattade risken för att ett väsentligt fel i utgiftsdeklarationer som lämnas in till kommissionen eller i underliggande sammanställningar inte kommer att upptäckas av revisorn. Upptäcktsrisken är beroende av hur väl revisionerna genomförs, inbegripet urvalsmetod, personalens kompetens, revisionstekniker, revisionsverktyg osv. Upptäcktsrisken är kopplade till granskningen av insatser. Detta omfattar substansgranskningar av detaljer eller transaktioner som berör insatser i ett program, vanligtvis baserade på urval av insatser.

![Diagram av revisionsrisk](image)

Figur 2. Illustration av revisionsrisk (anpassad efter okänd källa)

Garantimodellen är motsatsen till riskmodellen. Om revisionsrisken beräknas till 5 %, anses revisionsgarantin vara 95 %.
Användningen av revisionsrisk- och revisionsgarantimodellerna är kopplad till planeringen och den underliggande fördelningen av medel till ett eller flera operativa program och har två syften:

- Att ge en hög revisionsgaranti: garantin sätts till en viss nivå, för en revisionsgaranti på 95 % är revisionsrisken t.ex. 5 %.
- Att genomföra effektiva revisioner: med en given revisionsgaranti på t.ex. 95 % ska revisorn ta hänsyn till den inneboende risken och kontrollrisken vid utformningen av revisionsförfaranden. Detta ger revisorerna möjlighet att ägna mindre uppmärksamhet åt vissa områden för att i stället inriktas sig på att granska områden där risken är större.

Lägg märke till att inställningen för upptäcktsrisken, som i sin tur kontrollerar urvalets storlek vid stickprovetagning av insatser, är ett enkelt resultat, förutsatt att det tidigare har gjorts en bedömning av den inneboende risken och kontrollrisken. När

\[AR = IR \times CR \times DR \Rightarrow DR = \frac{AR}{IR \times CR} \]

där AR oftast är 5 %, IR och CR bedöms av revisorn.

Bild

Låg kontrollgaranti: Med en önskad och godtagen revisionsrisk på 5 %, och om den inneboende risken (= 100 %) och kontrollrisken (= 50 %) är hög, vilket innebär att det rör sig om en högriskenhet där förfarandena för internkontroll inte är lämpliga för att hantera risken, ska revisorn sträva efter en mycket låg upptäcktsrisk på 10 %. För att få en låg upptäcktsrisk måste substansgranskningen vara omfattande och följaktligen behöver även urvalet vara stort.

\[DR = \frac{AR}{IR \times CR} = \frac{0,05}{1 \times 0,5} = 0,1 \]

Hög kontrollgaranti: I en annorlunda situation, där den inneboende risken är hög (100 %) men där det finns lämpliga kontroller, kan man uppskatta kontrollrisken till 12,5 %. För att få en revisionsrisk på 5 % kan upptäcktsrisken sättas till 40 %, vilket innebär att revisorn kan ta större risker genom att minska urvalets storlek. I slutändan kommer detta att innebära en mindre detaljerad och kostnadskrävande revision.

\[DR = \frac{AR}{IR \times CR} = \frac{0,05}{1 \times 0,125} = 0,4 \]

Notera att båda exemplen ger samma revisionsrisk på 5 % i olika situationer.
De olika risknivåerna bör uppskattas i tur och ordning för att man ska kunna planera revisionsarbetet på lämpligt sätt. Först måste den inneboende risken analyseras och därefter måste kontrollrisken beräknas i förhållande till det resultat som fås. Baserat på dessa två faktorer kan revisorerna fastställa upptäcktsrisken för att välja de revisionsförfaranden som ska tillämpas under de detaljerade kontrollerna.

Revisionsriskmodellen fungerar som en ram för att utforma en revisionsplan och anslå medel, men i praktiken kan det vara svårt att beräkna den inneboende risken och kontrollrisken exakt.

Garanti- och konfidensnivåer för revisionen av insatser beror främst på kvaliteten i systemet för internkontroll. Revisorerna bedömer riskkomponenterna baserat på kunskap och erfarenhet och använder termer som LÅG, MÅTLIG/GENOMSNITTLIG eller HÖG, i stället för att beräkna exakt sannolikhet. Om stora brister påträffas under systemrevisionen är kontrollrisken hög och systemet ger därför en låg revisionsgaranti. Om inga större brister finns är kontrollrisken låg och om den inneboende risken också är låg ger systemet en hög revisionsgaranti.

Som tidigare nämnts kan man om stora brister påträffas under systemrevisionen säga att risken för väsentliga fel är hög (kontrollrisken i kombination med inneboende risker) och att systemet därmed ger en låg garanti. I bilaga IV till förordningarna anges att om systemet ger en låg garantinivå ska den konfidensnivå som tillämpas för urval av insatser inte vara mindre än 90 %.

Om det inte finns några större brister i systemet är risken för väsentliga fel låg, och den garanti som ges av systemet blir då hög, vilket innebär att konfidensnivån för urvalet av insatser ska vara minst 60 %.

I avsnitt 3.2 finns det en detaljerad ram för att välja garanti- och konfidensnivå för revision av insatser.

3.2 Garanti- och konfidensnivå för revision av insatser

3.2.1 Inledning

Substansgranskningar bör göras av urval vars storlek beror på den konfidensnivå som har fastställts enligt den garanti som systemrevisionen gett, dvs.

- minst 60 % om garantin är hög,
- genomsnittlig garanti (ingen procentenhets motsvarande denna garanti anges i kommissionens förordning, även om det rekommenderas en garanti på 70–80 %),
- minst 90 % om garantin är låg.
Revisionsmyndigheten bör fastställa kriterier för systemrevisionerna för att avgöra förvaltnings- och kontrollsystemens tillförlitlighet. Dessa kriterier ska innehålla en kvantifierad bedömning av systemets huvudelement (huvudkrav), omfattande de huvudsakliga myndigheterna och förmedlande organen som deltar i förvaltningen och kontrollen av det operativa programmet.

Kommissionen har tagit fram riktlinjer för metoden för utvärdering av förvaltnings- och kontrollsystemen\(^1\). Dessa riktlinjer gäller både för konventionella program och program för europeiskt territoriellt samarbete. Revisionsmyndigheten rekommenderas att beakta denna metod.

I metoden fastställs följande fyra tillförlitlighetsnivåer:
- Fungerar väl. Inga eller endast små förbättringar krävs.
- Fungerar. Vissa förbättringar krävs.
- Fungerar delvis. Avsevärda förbättringar krävs.
- Fungerar inte.

Konfidensnivån för urvalet fastställs enligt den tillförlitlighetsnivå som fås från systemrevisionerna.

Det finns tre garantinivåer för systemen: hög, genomsnittlig och låg. Den genomsnittliga nivån motsvarar alltså den andra och tredje kategorin i metoden för utvärdering av förvaltnings- och kontrollsystem, som ger en mer detaljerad differentiering mellan de två ytterligheterna hög/”fungerar väl” och låg/”fungerar inte”.

Det rekommenderade förhållandet visas i tabellen nedan:

<table>
<thead>
<tr>
<th>Revisionsgaranti från systemrevisioner</th>
<th>Motsvarande tillförlitlighet i förordningen/garantin från systemet</th>
<th>Konfidensnivå</th>
<th>Upptäcktsrisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fungerar väl. Inga eller endast små förbättringar krävs.</td>
<td>Hög</td>
<td>Minst 60 %</td>
<td>Högst 40 %</td>
</tr>
<tr>
<td>2. Fungerar. En del förbättringar krävs.</td>
<td>Genomsnittlig</td>
<td>70 %</td>
<td>30 %</td>
</tr>
<tr>
<td>3. Fungerar delvis. Avsevärda förbättringar krävs.</td>
<td>Genomsnittlig</td>
<td>80 %</td>
<td>20 %</td>
</tr>
</tbody>
</table>

\(^1\) COCOF 08/0019/01-EN av den 6 juni 2008, EGESIF_14-0010 av den 18 december 2014.
4. Fungerar inte.	Låg	Minst 90 %	Högst 10 %

Tabell 1. Konfidensnivå för revision av insatser beroende på garantin från systemet

Man räknar med att garantin är låg i början av progra-merperioden eftersom ingen eller endast ett begränsat antal systemrevisioner har genomförts. Den konfidensnivå som ska användas ska därför vara minst 90 %. Om systemen förblir oförändrade jämfört med den föregående programperioden och det finns ett tillförlitligt verifierande underlag för den garanti som systemen ger, kan medlemsstaten tillämpa en annan konfidensnivå (mellan 60 % och 90 %). Konfidensnivån kan också sänkas under en programperiod om det inte upptäcks några väsentliga fel eller det finns belägg för att systemen har förbättrats över tiden. Den metod som tillämpas för att fastställa konfidensnivån och det verifierande underlag som används för att fastställa konfidensnivån måste anges i revisionsstrategin.

Det är mycket viktigt att fastställa en lämplig konfidensnivå för revisioner av insatser, eftersom urvalets storlek i hög grad beror på denna nivå (ju högre konfidensnivå desto större urvalsstorlek). Därför är det enligt förordningarna möjligt att sänka konfidensnivån och därmed minska revisionsbelastningen för system med låg felpocent (och därmed hög garanti), samtidigt som man upprätthåller kravet på hög konfidensnivå (och därmed större urvalsstorlek) för system som har en potentiellt hög felpocent (och därmed låg garanti).

Revisionsmyndigheten uppmuntras att aktivt använda urvalsparametrar som motsvarar hur systemen fungerar i verkligheten och att undvika alltför stora urval med åtföljande arbetsbörda, förutsatt att de kan garantera tillräckligt stor precision.

3.2.2 Fastställande av tillämplig garantinivå vid gruppering av program

Revisionsmyndigheten bör endast tillämpa en garantinivå vid gruppering av program.

Om systemrevisionerna visar att det inom gruppen av program finns skillnader i slutsatserna om hur väl de olika programmen fungerar går det att använda följande alternativ:

- Att skapa två (eller flera) grupper, till exempel en grupp för program med en låg garantinivå (en konfidensnivå på 90 %), och en grupp för program med en hög garantinivå (en konfidensnivå på 60 %), etc. De två grupperna behandlas som två olika populationer. Antalet kontroller som ska utföras kommer följaktligen att bli högre, eftersom ett urval från varje separat grupp måste göras.
- Att tillämpa den lägsta garantinivån som fäts för enskilda program bland hela gruppen av program. Gruppen av program behandlas som en enda population. I detta fall dras slutsatser från granskningen för hela gruppen av program. Därför kommer det oftast inte att gå att dra slutsatser om varje enskilt program.
I det senare fallet är det möjligt att stratifiera stickprovstagningen efter program, vilket ofta gör det möjligt att använda ett mindre urval. Även när man använder stratifiering måste man använda en enda garantinivå och det går fortfarande bara att dra slutsatser för hela gruppen av program. I avsnitt 7.8 finns en mer detaljerad beskrivning av strategier för att granska grupper av program och program som omfattas av flera fonder.

4 Statistiska begrepp i samband med revision av insatser

4.1 Urvalsmetod

Urvalsmetoden består av två delar: utformning av urvalet (t.ex. urval med lika sannolikhet, urval med sannolikhet i förhållande till storlek) och beräkning (skattning). Tillsammans bildar dessa båda delar ramen för beräkningen av urvalets storlek.

De mest välkända urvalsmetoder som är lämpliga för revision av insatser presenteras i avsnitt 5.1. Tänk på att den viktigaste åtskillnaden mellan urvalsmetoder görs mellan statistiska och icke-statistiska urval.

En statistisk urvalsmetod har följande egenskaper:

- Varje post i populationen har en känd och positiv urvalssannolikhet.
- Slumpmässighet ska säkras genom att lämplig programvara används för slumpmässig generering av nummer, oavsett om den är specialiserad eller ej (MS Excel ger t.ex. slumpmässiga nummer).
- Urvalens storlek beräknas för att ge en viss nivå av önskvärd precision.

På liknande sätt anges följande i artikel 28.4 i förordning (EU) nr 480/2014: "När det gäller tillämpningen av artikel 127.1 i förordning (EU) nr 1303/2013 ska en urvalsmetod anses vara statistisk i följande fall: i) Urvalsenheterna väljs ut slumpmässigt. ii) Sannolikhetsteorin används för att bedöma resultatet av urvalet, och även för mätning och kontroll av urvalsrisken och av planerad och uppnådd precision.”

Med statistiska urvalsmetoder kan man göra ett urval som är ”representativt” för populationen (anledningen till att det är så viktigt med statistiskt urval). Det slutliga målet är att göra en beräkning (extrapolering eller skattning) för populationen av värden på en parameter (den s.k. variabeln) som observeras i ett urval för att avgöra om det förekommer väsentliga avvikelser eller inte och, om så är fallet, hur omfattande dessa är (felaktiga belopp).

Med icke-statistiska urval går det inte att beräkna precisionen, vilket innebär att det inte görs någon kontroll av revisionsrisken och att det inte går att försäkra sig om att urvalet är representativt för populationen. Därför måste det göras en empirisk bedömning av felen.

4.2 Urvalsmetod

Urvalsmetoden kan tillhöra en av följande två breda kategorier:

- Statistiskt urval.
- Icke-statistiskt urval.

Statistiskt urval omfattar två möjliga tekniker:

- Slumpmässigt urval.
- Systematiskt urval.

Vid slumpmässigt urval genereras slumpmässiga siffror för varje populationsenhet för att välja ut de enheter som ska ingå i urvalet.

Vid systematiskt urval används en slumpmässigt vald utgångspunkt och därefter tillämpas en systematisk regel för att välja de ytterligare posterna (t.ex. var tjugonde post efter den slumpmässigt valda utgångspunkten).

Metoderna som använder lika sannolikhet brukar baseras på slumpmässigt urval och urvalsmetoden MUS baseras på systematiskt urval.

Icke-statistiskt urval omfattar (bland annat) följande möjligheter:

- Tillfälligt urval.
- Blockurval.
- Bedömningsurval.
- Riskbaserat urval genom en kombination av element från de tre ovanstående alternativen.

 Tillfälligt urval ("haphazard selection") är ett "falskt slumpmässigt" urval, i den bemärkelsen att en individ "slumpmässigt" väljer posterna, vilket innebär att det kan finnas en ouppmått statistisk avvikelse i urvalet (t.ex. poster som är lättare att analysera, poster som det är lättare att få tillgång till, poster som väljs från en lista som visas särskilt på skärmen).
Blockurval liknar klusterurval (t.ex. grupper av populationsenheter), där klustret inte väljs slumpmässigt.

Bedömningsurval baseras endast på revisorns egna beslut, vilken den logiska grunden än är (t.ex. poster med liknande namn eller alla insatser inom ett visst forskningsområde).

Riskbaserat urval är ett icke-statistiskt urval av poster som bygger på flera olika avsiktliga element, som oftast hämtas från samtliga tre icke-statistiska urvalsmetoder.

4.3 Beräkning (skattning)

Det slutliga målet när man använder en urvalsmetod är att beräkna (extrapolera eller skatta) den felnivå (avvikelser) som observeras i urvalet för populationen som helhet. Med denna process kan man avgöra om det förekommer väsentliga avvikelse i en population och, om så är fallet, hur omfattande dessa är (felaktiga belopp). Den felnivå som upptäcks i urvalet är alltså inte intressant i sig utan är endast instrumentell, dvs. ett verktyg för att beräkna felen för populationen.

![Diagram urval och beräkning]

Urvalsstatistik som används för att beräkna felen för populationen kallas skattningsfunktioner. Konsten att göra en beräkning kallas skattning och det värde som beräknas från urvalet (beräknat värde) kallas skattningen. Denna skattning, som enbart bygger på en bråkdel av populationen, påverkas av ett fel som kallas urvalsfel.

2 Även om individuella fel i urvalet behöver korrigeras på ett lämpligt sätt.
4.4 Precision (urvalsfel)

![Diagram]

Figur 4. Urvalsfel

Det bör göras åtskillnad mellan planerad precision och verklig precision (SE i formlerna i avsnitt 6). Planerad precision är det högsta planerade urvalsfelet när urvalets storlek ska fastställas (brukar vara differensen mellan det högsta godtagbara felet och det förväntade felet och bör ha ett lägre värde än väsentlighetsnivån). Den verkliga precisionen är en indikation på skillnaden mellan beräkningen för urvalet (skattning) och den verkliga (okända) populationsparameter (felvärde) och representerar osäkerheten i beräkningen av resultaten i populationen.

4.5 Population

Populationen för urvalsändamål omfattar deklarerade utgifter till kommissionen för insatser inom ett program eller en grupp av program för referensperioden, med undantag för negativa urvalsheter, vilket förklaras i avsnitt 4.6. Alla insatser som ingår i de utgifterna ska finnas med i urvalspopulationen, utom när de system för proportionell kontroll som anges i artikel 148.1 i förordningen om gemensamma bestämmelser och artikel 28.8 i den delegerade förordningen (EU) nr 480/2014 ska tillämpas i samband

Revisionsmyndigheten kan besluta att bredda revisionen till att omfatta andra relaterade utgifter som har deklareras för de utvalda insatserna och som gäller den föregående referensperioden, för att öka revisionernas effektivitet. Resultaten från kontroller av ytterligare utgifter utanför referensperioden ska inte beaktas vid fastställandet av den totala felprocenten.

I allmänhet bör alla utgifter som har deklareras till kommissionen för de insatser som ingår i urvalet granskas. När de utvalda insatserna omfattar ett stort antal ansökningar om utbetalning eller fakturor får revisionsmyndigheten göra ett urval i två steg, vilket förklaras närmare i avsnitt 7.6.

Som regel bör revisionsmyndigheten göra urvalet bland de totala deklarerade

utgifterna (dvs. offentliga och privata utgifter), i enlighet med artikel 17.3 i försiktig och artikel 127.1 i förr en gemenensamma

bestämmelser. Under alla omständigheter bör gransknings av insatser innefatta en

kontroll av de sammanlagda deklarerade utgifterna, i enlighet med artiklarna 16.2 och

17.4 förordning (EG) nr 1828/20066 och artikel 27.2 i den delegerade förordningen. Det

har dock hänt att en revisionsmyndighet gör sitt urval från deklarerade offentliga

utgifter med motiveringen att bidraget från fonden betalas på grundval av dem. Denna

metod kan ha uppstått till följd av en felaktig tolkning av den attesterande myndigheten

som innebär att ansökningar om ersättning för utgifter som lämnas in till kommissionen

enbart omfattar de offentliga utgifterna. Den korrekta metoden är dock att den

attesterande myndigheten alltid ska deklarera de totala utgifterna, även när

medfinansieringen beräknas med utgångspunkt i de offentliga utgifterna7.

3 Detta innebär att följande utgiftsposter verkligen ska ingå i den population som det slumpmässiga urvalet ska göras från och inte bör uteslutas vid urvalsfasen: i) Insatser som rör finansieringstekniska instrument. ii) Projekt som anses vara för små. iii) Projekt som har granskas tidigare år eller projekt med en stödmottagare som har granskas tidigare år. iv) Projekt som är föremål för schablonkorrigeringar.

4 Se avsnitt 7.6 i den uppdaterade vägledningen om behandling av fel (EGESIF_15-0007-01 av den 9 oktober 2015) i fråga om den metod revisionsmyndigheten bör använda om styrkande dokumentation för insatserna i urvalet försvinner eller skadas på grund av force majeure (t.ex. naturkatastrofer).

5 I artikel 43.3 i förordning (EG) nr 498/2007.

6 Artiklarna 42.2 och 43.4 i förordning (EG) nr 498/2007.

7 Detta behövs också för verifieringskedjans skull, eftersom de utgifter som ska granskas på plats hos stödmottagaren är de totala deklarerade utgifterna och inte enbart de offentliga utgifterna. Oftast medfinansieras utgiftsposten av offentliga och privata medel och i praktiken ska utgifterna granskas i sin helhet.
I denna situation och när revisionsmyndigheten använder urval baserat på sannolikhet i förhållande till storlek (dvs. den statistiska urvalsmetoden MUS) kan detta leda till två typer av problem:

a) Processen kan leda till en statistisk avvikelse i urvalsresultatet eftersom vissa urvalsenheter med en förhållandevis stor andel privata bidrag hade mindre chans att väljas ut.

b) Det faktum att revisionsmyndigheten granskar de sammanlagda utgifterna utifrån ett urval som enbart hämtas från de offentliga utgifterna kan leda till att den verkliga precisionen blir för stor.

När det gäller punkt a, där revisionsmyndigheten gör sitt urval utifrån offentliga utgifter, kan myndigheten ta hänsyn till behovet av att göra ett kompletterande urval från den delpopulationen – om det har funnits urvalsenheter av högt värde som inte kom med i urvalet (på grund av det problem som beskrivs ovan) och – om det finns risker associerade till de deklarerade utgifterna för de urvalsenheterna.

När det gäller punkt b, där revisionsmyndigheten för över felen till de totala utgifterna och den övre felgränsen ligger över gränsen för väsentlighet, där det mest sannolika felet är mindre än 2 %, tyder detta på låg precision. Detta kan innebära att urvalresultatet inte blir entydigt och
- att konfidensnivån måste räknas om, eller, om detta inte är möjligt,
- att det krävs ytterligare stickprovstagnings där den faktiska precisionen är större än två procentenheter.

Lägg märke till att om den faktiska precisionen (övre felgräns – mest sannolikt fel) är mindre än två procentenheter anser vi att det i princip och med hänsyn till all information om det berörda programmet, inte är nödvändigt att överväga ytterligare arbete.

4.6 Negativa urvalsenheter

Det kan hända att det finns negativa urvalsenheter (insatser eller ansökningar om utbetalning), framför allt på grund av finansiella korrigerings som de nationella myndigheterna har gjort.

I det fallet ska den negativa urvalsenheten ingå i en separat population och granskas separat. Syftet är att kontrollera om det korrigerade beloppet motsvarar det som

8 En tumregel för att definiera vad som är en ”post av högt värde” är att de respektive totala deklarerade utgifterna är större än tröskelvärdet 2 % av de totala utgifterna för programmet.
9 Se avsnitt 7.7 i denna vägledning.
10 Se avsnitt 7.2.2 i denna vägledning.
11 Se avsnitt 7.1 sista stycket i denna vägledning.
medlemsstaten eller kommissionen har beslutat. Om revisionsmyndigheten konstaterar att det korrigerade beloppet är lägre än vad som beslutats bör detta rapporteras i den årliga kontrollrapporten, särskilt om den bristande överensstämmelsen är en indikation på brister i medlemsstatens kapacitet att göra korrigeringsar.

När revisionsmyndigheten räknar ut det beräknade felet i detta sammanhang ska den endast beakta de fel som upptäckts i populationen av positiva belopp och detta är det bokförda värde som ska betraktas både i beräkningen av slumpmässiga fel och i den sammanlagda felprocenten. Innan revisionsmyndigheten beräknar den beräknade felprocenten bör den kontrollera att de upptäckta felen inte redan har korrigerats under referensperioden (dvs. ingår i populationen av negativa belopp som beskrivs ovan). Om så är fallet ska dessa fel inte tas med i den beräknade felprocenten\(^\text{13}\). Rent konkret ska revisionsmyndigheten i den totala populationen av urvalsenheter (dvs. insatser eller ansökningar om utbetalning) identifiera de enheter som har ett negativt saldo och granska dem som en separat population. Nedan illustrerar vi processen med insats som urvalsenhet (samma resonemang gäller för ansökningar om utbetalning, om de används som urvalsenhet):

- **Insats X:** 100 000 euro (inga korrigeringsar gjordes under referensperioden).
- **Insats Y:** 20 000 euro => om detta belopp är resultatet av 25 000 euro minus 5 000 euro (på grund av korrigeringsar/avdrag som har gjorts under referensperioden), behöver revisionsmyndigheten inte ta upp dessa 5 000 euro i den separata populationen av negativa belopp.
- **Insats Z:** – 5 000 euro (resultatet av 10 000 euro i nya utgifter under referensperioden minus 15 000 euro i korrigeringsar) => ska tas med i den separata populationen av negativa belopp.
- **Sammanlagda deklarerade utgifter för programmet (nettobelopp):** 115 000 euro (= 120 000 – 5 000).
- **Population från vilken det slumpmässiga urvalet ska göras:** alla insatser med positiva belopp = X + Y (i fallet ovan skulle detta vara 120 000 euro, om vi för enkelhetens skull antar att programmet består av de tre ovannämnda insatserna). Insats Z ska genomgå en separat revision.

Enligt denna metod måste revisionsmyndigheten inte identifiera de negativa beloppen **inom** urvalsenheten som en separat population. I de flesta fall skulle detta inte vara

\(^{12}\) Revisionsmyndigheten får naturligtvis göra stickprov i en sådan separat population om den innehåller alltför många enheter, vilket leder till en stor arbetsbörda.

\(^{13}\) Se även vägledningen om behandling av fel, där det finns exempel på andra fall där det kan vara motiverat att inte ta med vissa fel i den totala felprocenten.
kostnadseffektivt. I fråga om insats Y skulle revisionsmyndigheten kunna ta med beloppet på 5 000 euro i den negativa populationen (vilket innebär att 25 000 euro ska tas med i den positiva populationen) eller göra som i exemplet ovan och ta med 20 000 euro i den positiva populationen. En annan metod är att dra av finansiella korrigerings/andra negativa belopp som berör den aktuella urvalsperioden från den positiva populationen för att få fram nettobeloppet och att inkludera beloppet för korrigerings/andra negativa belopp som rör föregående urvalsperioder i populationen av negativa belopp.

Om insats Y motsvarar en urvalsenhet i den nuvarande urvalsperioden och det negativa belopp på 5 000 euro som dras av under den nuvarande urvalsperioden från de deklarerade utgifterna omfattar
– 4 000 euro i finansiella korrigerings för utgifter som har deklarerats under föregående urvalsperioder,
– 700 euro i finansiella korrigerings för utgifter som har deklarerats under den nuvarande urvalsperioden,
– 300 euro för att korrigerat bokföringsfel som har lett till att för stora utgifter har deklarerats under de föregående urvalsperioderna,
kan revisionsmyndigheten inkludera 24 300 euro (= 25 000 euro − 700 euro) i den positiva populationen, medan belippet på 4 300 euro (som motsvarar finansiella korrigerings/andrad negativa urvalsenheter som avser de föregående urvalsperioderna) inkluderas i den negativa populationen.

Sammanfattningsvis finns det tre metoder för att separera positiva och negativa urvalsenheter:
1) Negativa belopp inkluderas i den positiva populationen om summan av de negativa och positiva beloppen inom urvalsenheten är positiv.
2) Alla positiva belopp inkluderas i den positiva populationen och alla negativa belopp inkluderas i den negativa populationen.
3) Negativa belopp som rör de föregående urvalsperioderna (t.ex. korrigerings av belopp som har deklarerats under föregående år) inkluderas i den negativa populationen, medan negativa belopp som korrigera/justerar de positiva beloppen i den positiva populationen i den nuvarande urvalsperioden inkluderas i den positiva populationen.

Kommissionen anser att alternativ 2 och 3 är att föredra. Alternativ 1 kan godtas, men kan innebära en risk för att chansen minskar för att insatser eller ansökningar om utbetalningar som är föremål för korrigerings under referensperioden men som rör utgifter som har deklarerats under föregående år tas med i urvalet.

14 Det är ännu mindre lämpligt att identifiera de negativa beloppen inom urvalsenheten när man gör delurval (eller urval i två steg) eftersom detta skulle innebära att man måste identifiera samtliga negativa belopp i samtliga urvalsenheter i varje delurval.
När medlemsstaternas it-system är utformade så att de tillhandahåller uppgifter om negativa belopp inom urvalsenheten får revisionsmyndigheten själv avgöra om det är lämpligt att använda denna detaljnivå för urvalsmetoden för att minska den risk som vi beskriver ovan.

Om revisionsmyndigheten anser att den ovannämnda metoden innebär att risken blir högre än bör detta anges i den årliga kontrollrapporten. Denna risk kan bedömas när man vid granskningen av de negativa beloppen konstaterar att ett betydande antal poster med positiva utgifter har inkluderats i de negativa urvalsenheterna. Revisionsmyndigheten bör använda sitt yrkesmässiga kunnande och avgöra om det behövs ett kompletterande urval (av de positiva utgifterna) för att minska den risken.

I den tabell över deklarerade utgifter och granskade urval som ska ingå i den årliga kontrollrapporten ska revisionsmyndigheten redovisa populationen av positiva belopp i kolumnen ”Deklarerade utgifter under referensperioden”. Revisionsmyndigheten ska i den årliga kontrollrapporten redovisa en avstämning av de deklarerade utgifterna (netto) mot den population från vilken det slumpmässiga urvalet av positiva belopp har gjorts.

4.7 Stratifiering

Stratifiering är när populationen delas in i delpopulationer som kallas stratum och oberoende urval görs i varje stratum.

Stratifieringen har två syften: å ena sidan går det vanligt att förbättra precisionen (för urvalets storlek) eller minska urvalets storlek (för att nå samma precision), å andra sidan garanterar stratifieringen att de delpopulationer som motsvarar varje stratum blir representerade i urvalet.

När vi förväntar oss att felnivån (avvikelserna) kommer att variera mellan olika grupper inom populationen (t.ex. efter program, region, förmedlande organ, insatsens risk) är den populationen en bra kandidat för stratifiering.

Olika urvalsmetoder kan användas för olika stratum. Det är t.ex. vanligt att göra en 100-procentig granskning av posterna med ett högt värde och att tillämpa en statistisk urvalsmetod för att granska ett urval av de återstående poster med lägre värde som ingår i övriga stratum. Detta är användbart när populationen innehåller ett fåtal poster med ett högt värde, eftersom det minskar variationen i varje stratum och därför gör det möjligt att förbättra precisionen (eller minska urvalets storlek).

4.8 Urvalsenhet

För programpериoden 2014–2020 ska urvalsenheten fastställas i enlighet med kommissionens delegerade förordning (EU) nr 480/2013. I artikel 28 i den förordningen anges följande:

"Urvalsenheten ska fastställas av revisionsmyndigheten efter en yrkesmässig bedömning. Urvalsenheten kan vara en insats, ett projekt inom en insats eller en betalningsansökan från en stödmottagare ..."

Om revisionsmyndigheten beslutar sig för att använda en insats som urvalsenhet och antalet insatser för en referensperiod inte är tillräckligt stort för att det ska gå att använda en statistisk metod (detta tröskelvärde ligger på mellan 50 och 150 populationssenheter), kan ansökningar om utbetalning användas som urvalsenhet för att öka populationen till tröskelvärdet, så att det går att använda en statistisk urvalsmetod.

4.9 Väsentlighet

En väsentlighetsnivå på högst 2 % är tillämplig för de utgifter som deklarerats till kommissionen under (positiv population). Revisionsmyndigheten kan överväga att minska väsentligheten av planeringsskäl (godtagbara fel). Väsentlighet används

- som ett tröskelvärde för att jämföra det beräknade felet i utgifterna,
- för att fastställa det godtagbara fel som används för att bestämma urvalets storlek.

4.10 Godtagbara fel och planerad precision

Det godtagbara felet är den högsta acceptabla felprocent som kan upptäckas i populationen för en viss referensperiod. Med en väsentlighetsnivå på 2 % är den högsta acceptabla felprocenten därför 2 % av de utgifter som deklarerats för kommissionen för den referensperioden.

Den planerade precisionen är det högsta maximala urvalsfel som accepteras för beräkningen av fel för en viss referensperiod, dvs. den högsta avvikelsen mellan det verkliga populationsfelet och den beräkning som gjorts utifrån urvalsdata. Revisorn bör fastställa detta till ett värde som är lägre än det godtagbara felet, eftersom det annars är stor risk för att resultatet från urvalet av insatser inte blir entydigt och att det kan komma att krävas ett kompletterande eller ytterligare urval.

För en population med ett sammanlagt bokfört värde på 10 000 000 euro är t.ex. det motsvarande godtagbara felet 200 000 euro (2 % av det sammanlagda bokförda värdet). Om det beräknade felet är 5 000 euro och revisorn anger precisionen till exakt 200 000 euro (detta fel uppstår på grund av att revisorn endast observerar en liten del av populationen, dvs. urvalet) kommer den övre felgränsen (övre gräns för konfidentsintervallet) att vara ungefär 205 000 euro. Detta är inte ett entydigt resultat eftersom vi har ett mycket litet beräknat fel, men en övre gräns som överskrider tröskelvärdet för väsentlighet.

Det lämpligaste sättet att fastställa den planerade precisionen är att beräkna den så att den blir lika med skillnaden mellan det godtagbara felet och det förväntade felet (det beräknade fel som revisorn förväntar sig när revisionen är slutförd). Detta förväntade fel baseras naturligtvis på revisorns yrkesmässiga bedömning med stöd av de bevis som inhämtats under tidigare års granskningar av samma eller liknande populationer eller i ett preliminärt urval/piloturval.
Tänk på att det är viktigt att välja ett realistiskt förväntat fel, eftersom urvalets storlek i hög grad beror på vilket värde man väljer för detta fel. Se även avsnitt 7.1.

Avsnitt 6 innehåller detaljerade formler för att fastställa urvalets storlek.

4.11 Variation

Variationen inom populationen är en mycket viktig parameter för urvalets storlek. Variation mäts oftast med en parameter som kallas standardavvikelse\(^{15}\) och anges vanligtvis med \(\sigma\). För en population med exempelvis 100 insatser, där alla insatser har samma felnivå på 1 000 000 euro (genomsnittligt fel på \(\mu = 1 000 000\) euro) finns det ingen variation (dvs. standardavvikelsen för fel är noll). För en population på 100 insatser där 50 har ett fel på 0 euro och de återstående 50 har ett fel på 2 000 000 euro (samma genomsnittliga fel på \(\mu = 1 000 000\) euro) är standardavvikelsen för fel däremot stor (1 000 000 euro).

Det krävs ett mindre urval för att granska en population med liten variation än för en population med stor variation. I det extrema fallet med det första exemplet (med en varians på 0) skulle det räcka med ett urval på en insats för att beräkna felet för populationen korrekt.

Standardavvikelse är det vanligaste måttet på variation eftersom det är lättare att förstå än varians (\(s^2\)). Standardavvikelsen uttrycks i samma enheter som den variabel för vilken vi vill mäta variationen. Variansen uttrycks däremot som kvadraten av enheterna för den variabel som man vill mäta variationen för och är ett enkelt genomsnitt av kvadraten på variabelns avvikelsevärden runt medelvärdet\(^{16}\):

\[
\text{Varians: } s^2 = \frac{1}{\text{antal enheter}} \sum_{i=1}^{\text{antal enheter}} (V_i - \bar{V})^2
\]

där \(V_i\) motsvarar de individuella värdena för variabeln \(V\) och \(\bar{V} = \frac{\sum_{i=1}^{\text{antal enheter}} V_i}{\text{antal enheter}}\) är det genomsnittliga felet.

\(^{16}\) När variansen beräknas med urvalsdata ska den inkludera den alternativa formeln \(s^2 = \frac{1}{\text{antal enheter} - 1} \sum_{i=1}^{\text{antal enheter}} (V_i - \bar{V})^2\) som ska användas för att kompensera för den grad av frihet som går förlorad i skattningen.
Standardavvikelsen är helt enkelt roten ur variansen:

\[s = \sqrt{s^2} \]

Standardavvikelsen för felen i exemplen ovan kan beräknas enligt följande:

a) Fall 1
 a. N=100
 b. Alla insatser har samma felnivå på 1 000 000 euro
 c. Genomsnittligt fel
 \[\frac{\sum_{i=1}^{100} 1 000 000}{100} = \frac{100 \times 1 000 000}{100} = 1 000,000 \]
 d. Standardfelavvikelse
 \[s = \sqrt{\frac{1}{100} \sum_{i=1}^{100} (1 000 000 - 1 000 000)^2} = 0 \]

b) Fall 2
 a. N=100
 b. 50 insatser har 0 fel och 50 insatser har fel på 2 000 000 euro
 c. Genomsnittligt fel
 \[\frac{\sum_{i=1}^{50} 0 + \sum_{i=1}^{50} 2 000 000}{100} = \frac{50 \times 2 000 000}{100} = 1 000 000 \]
 d. Standardfelavvikelse
 \[s = \sqrt{\frac{1}{100} \left(\sum_{i=1}^{50} (0 - 1 000 000)^2 + \sum_{i=1}^{50} (2 000 000 - 1 000 000)^2 \right)} \]
 \[= \sqrt{\frac{50 \times 1 000 000^2 + 50 \times 1 000 000^2}{100}} \]
 \[= \sqrt{1 000 000^2} = 1 000 000 \]

4.12 Konfidensintervall och övre felgräns

Konfidensintervallet är det intervall som med viss sannolikhet (som kallas konfidensnivå) innehåller det verkliga (okända) populationsvärdet (fel). Den generella formeln för konfidensintervall ser ut på följande sätt:

\[[EE - SE; EE + SE] \]

där
- EE motsvarar det beräknade eller extrapolerade felet, motsvarar även det mest sannolika felet (MLE – Most Likely Error) i MUS-terminologi;

28
SE är precisionen (urvalsfel).

När man använder statistiskt urval kan följande situationer uppstå:

- Om det beräknade felet är större än tröskelvärdet för väsentlighet (i fortsättningen 2 %, för enkelhetens skull) konstaterar revisionsmyndigheten att det förekommer väsentliga avvikelser.
- Om det beräknade felet är lägre än 2 % och den övre felgränsen är lägre än 2 % konstaterar revisionsmyndigheten att avvikelserna i populationen inte är större än 2 % vid den angivna urvalsrisken.
- Om det beräknade felet är lägre än 2 % men den övre felgränsen är högre än 2 % konstaterar revisionsmyndigheten att det krävs ytterligare undersökningar. Enligt Intosais riktlinje nr 2318 kan dessa ytterligare undersökningar innebära att
 - "uppmanna revisionsobjektet att undersöka de fel/undantag som upptäckts och risken för ytterligare fel/undantag, vilket kan leda till att man kommer överens om att göra justeringar i årsredovisningen,
 - göra fler tester för att minska urvalsrisken och därigenom den tillåtna marginal som man måste ta hänsyn till vid bedömningen av resultaten,
 - använda sig av alternativa revisionsåtgärder för att få ytterligare säkerhet."

Revisionsmyndigheten bör använda sitt yrkesmässiga omdöme för att välja ett av ovanstående alternativ och rapportera om detta i den årliga kontrollrapporten.

Lägg märke till att i de flesta fall när en övre felgräns ligger betydligt högre än 2 % kan detta förhindras eller minimeras om revisionsmyndigheten använder ett realistiskt förväntat fel när den beräknar den ursprungliga urvalsstorleken (se avsnitten 7.1 och 7.2.2 för mer information).

När revisionsmyndigheten gör en uppföljning enligt det tredje fallet (det beräknade felet är lägre än 2 %, men den övre felgränsen är högre än 2 %) är det möjligt att den upptäcker att resultaten visar att det går att använda en lägre konfidensnivå än den planerade. **Om denna nya beräknade konfidensnivå fortfarande går att använda**

17 Med statistiska metoder går det också att beräkna den nedre felgränsen, vilket har mindre betydelse för värderingen av resultatet. Detta är orsaken till att andra statistiska modeller kan vara mer specifikt inriktade på det beräknade (mest sannolika felet) och på den övre felgränsen.

för att bedöma kvaliteten i förvaltnings- och kontrollsystemen skulle man utan risk kunna utgå från att det inte förekommer väsentliga avvikelser i populationen, även utan den ytterligare granskningen. I avsnitt 7.7 förklaras hur man gör en ny beräkning av konfidensnivåer.

4.13 Konfidensnivå

Konfidensnivån fastställs i förordningen i syfte att definiera urvalets storlek för substansgranskning.

Eftersom urvalets storlek påverkas direkt av konfidensnivån är syftet med förordningen att göra det möjligt att minska arbetsbörjan vid revisioner av system med en fastställd låg felprocent (och därför en hög garanti), samtidigt som man upprätthåller kravet att granska ett stort antal poster om systemet har en potentiellt hög felprocent (och därför en låg garanti).

Det lättaste sättet att tolka innebörden av konfidensnivån är sannolikheten för att ett konfidensintervall som framställs av urvalsdata innehåller det verkliga populationsfelet (okänd). Om felet i populationen t.ex. beräknas till 6 000 000 euro och det 90-procentiga konfidensintervallet är

\[[5 000 000 \text{€}; 7 000 000 \text{€}] \]

betyder detta att det finns en sannolikhet på 90 % för att det verkliga (men okända) populationsfelet ligger inom dessa båda gränser. Följderna av dessa strategiska val för revisionsplaneringen och urvalet av insatser förklaras i följande kapitel.

4.14 Felprocent

Urvalets felprocent beräknas som kvoten mellan det sammanlagda felet i urvalet och det sammanlagda bokförda värdet för posterna i urvalet. Den beräknade felprocenten beräknas som kvoten mellan det beräknade populationsfelet och det sammanlagda bokförda värdet. Även här är det viktigt att notera att urvalsfelet inte är intressant i sig, eftersom det bara bör ses som ett verktyg för att räkna ut det beräknade felet\(^\text{19}\).

\(^{19}\) I vissa urvalsmetoder, dvs. de som baseras på lika sannolikhet, kan urvalsfelet användas för att beräkna felprocenten för populationen.
5 Urvalstekniker för granskning av insatser

5.1 Översikt

Inom ramen för granskning av insatser är syftet med urvalet att välja ut de insatser som ska granskas genom en substansgranskning. Populationen består av de utgifter som har deklarerats till kommissionen för insatser inom ett program eller en grupp av program under referensperioden.

I figur 5 visas en sammanfattning av de vanligaste urvalsmetoderna för granskning.

Figur 5. Urvalsmetoder för granskning av insatser

Tänk på att den första åtskillnaden mellan urvalsmetoder görs mellan statistiska och icke-statistiska urval.

I avsnitt 5.2 beskriver vi under vilka omständigheter olika former av urval ska användas och de ovanliga och extrema situationer då det är tillåtet att använda icke-statistiska urval.

Vid statistiska urval bygger skillnaden mellan metoderna framför allt på urvalssannolikhet: metoder som baseras på lika sannolikhet (inbegripet enkelt
slumpmässigt urval och skattning av skillnad) och metoder som baseras på sannolikhet i förhållande till storlek, där den välkända statistiska urvalsmetoden MUS utmärker sig.

Oavsett vilken urvals metod som väljs bör granskning av insatser genom urval alltid följa en gemensam grundläggande struktur:

1. **Fastställa målsättningarna för substansgranskningar:** detta innebär vanligen att man fastställer felprocenten för de utgifter som har deklarerats till kommissionen för ett visst år för ett program (eller en grupp av program), baserat på överföring från ett urval.

2. **Definiera populationen:** utgifter som deklarerats till kommissionen under ett givet år för ett program eller en grupp av program och urvalsenheten, som är den post som ska granskas (vanligtvis insatsen, men det finns även andra möjligheter, t.ex. ansökan om utbetalning).

3. **Definiera populationsparametrarna:** häri ingår att fastställa det godtagbara felet (2% av de utgifter som har deklarerats till kommissionen), det förväntade felet (förväntat av revisorn), konfidensnivån (med hänsyn till revisionsriskmodellen) och (vanligtvis) ett mått på populationens variation.

4. **Fastställa storleken på urvalet** enligt den urvals metod som tillämpas. Det är viktigt att tänka på att urvalets slutliga storlek alltid avrundas uppåt till närmaste heltal.

5. **Gör urvalet och genomföra revisionen.**

6. **Överföra resultat, beräkna precision och dra slutsatser:** i detta steg beräknas precisionen och det beräknade felet och därefter jämförs dessa resultat med tröskelvärdet för väsentlighet.

Valet av en viss urvalsmetod kan bidra till att denna grundstruktur preciseras ytterligare, genom att man får en formel för att beräkna urvalets storlek och en ram för att överföra resultaten.

Lägg också märke till att de specifika formlerna för att bestämma urvalets storlek varierar beroende på vilken urvals metod som valts. Oavsett metod beror urvalets storlek på tre parametrar:

- Konfidensnivån (ju högre konfidensnivå desto större urvalsstorlek).

20 Om urvalets storlek beräknas för olika stratum och perioder går det bra att inte avrunda urvalens storlek uppåt för vissa stratum/perioder, förutsatt att den generella urvalsstorleken avrudnas uppåt.
• Populationens variation\(^{21}\) (dvs. hur kraftigt värdena varierar inom populationen; om alla insatser i populationen har liknande felvärde anses populationen ha lägre variation än en population där alla insatser har mycket olika felvärden). Ju högre variation populationen har, desto större urvalsstorlek.

• Den planerade precision som revisorn har fastställt. Denna planerade precision utgörs vanligtvis av differensen mellan det godtagbara felet på 2\% av utgifterna och det förväntade felet. Ju större det förväntade felet är (eller ju mindre den planerade precisionen är), desto större urvalsstorlek, förutsatt att det förväntade felet är mindre än 2\%.

5.2 Villkor för vilken urvalsform som ska användas

Valet av metod för att välja vilka insatser som ska granskas är ur statistisk synvinkel främst baserat på förväntningarna på variationen i felvärdena och deras förhållande till utgifterna, trots att många kriterier ligger till grund för beslutet.

I tabellen nedan ges indikationer på de lämpligaste metoderna beroende på kriterierna.

\(^{21}\) Beräkningen av urvalets storlek i den konservativa MUS-metoden är inte beroende av parametrar som rör populationens variation.
<table>
<thead>
<tr>
<th>Urvalsmetod</th>
<th>Gynnsamma förhållanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardiserad MUS-metod</td>
<td>Felvärdena har hög variation och står ungefär i proportion till utgiftsnivån (dvs. felprocenten har låg variation). Värdena för utgifter per insats har hög variation.</td>
</tr>
<tr>
<td>Konservativ MUS-metod</td>
<td>Felvärdena har hög variation och står ungefär i proportion till utgiftsnivån. Värdena för utgifter per insats har hög variation. Felproportionen väntas vara låg. Det förväntade felet måste vara mindre än 2 %.</td>
</tr>
<tr>
<td>Skattning av skillnad</td>
<td>Felvärdena är förhållandevis konstanta eller har låg variation. Det behövs en skattning av de sammanlagda korrigerade utgifterna i populationen.</td>
</tr>
<tr>
<td>Enkelt slumpmässigt urval</td>
<td>Generellt föreslagn metod som kan tillämpas när de tidigare nämnda förutsättningarna inte föreligger. Kan tillämpas med skattning av genomsnitt per enhet eller kvotskattning (se avsnitt 6.1.1.3 för vägledning om valet mellan dessa båda skattningstekniker).</td>
</tr>
<tr>
<td>Icke-statistiska metoder</td>
<td>Om det inte är möjligt att använda en statistisk metod (se diskussion nedan).</td>
</tr>
<tr>
<td>Stratifiering</td>
<td>Kan användas i kombination med någon av metoderna ovan. Detta är särskilt användbart när felnivån väntas variera avsevärt mellan populationsgrupper (delpopulationer).</td>
</tr>
</tbody>
</table>

Tabell 2. Gynnsamma förutsättningar för att välja urvalsmetod

Även om råden ovan bör följas går det inte att ange en enda metod som skulle vara den enda lämpliga i alla situationer, eller ens vara den ”bästa metoden”. Generellt kan alla metoder tillämpas. Följden av att välja en metod som inte är den lämpligaste för en viss situation är att urvalets storlek behöver vara större än vad som krävs när en mer ändamålsenlig metod används. Det går dock alltid att välja ett representativt urval med vilken av metoderna som helst, förutsatt att urvalets storlek är ändamålsenlig.

22 Hög variation innebär att felvärdena inte är likartade mellan insatserna, dvs. det finns små och stora fel – i kontrast till fallet där alla fel har mer eller mindre likartade värden (se avsnitt 4.11).
23 Eftersom den konservativa MUS-metoden baseras på en fördelning för sällsynta händelser är den särskilt lämplig när kvoten mellan antalet fel och det sammanlagda antalet insatser i populationen (felproportionen) väntas vara liten.
Lägg också märke till att det går att använda stratifiering tillsammans med alla urvalsmetoder. Syftet med stratifiering är att dela in populationen i grupper (stratum) som är mer homogena (med mindre variation) än populationen i sin helhet. I stället för att ha en population med hög variation är det möjligt att ha två eller fler delpopulationer med lägre variation. Stratifiering bör användas för att antingen minimera variationen eller isolera felgenererande delmängder i populationen. I båda fallen betyder stratifieringen att det kommer att krävas ett mindre urval.

Statistiskt urval bör också användas för att dra slutsatser om mängden fel i en population. Det finns dock särskilt motiverade fall där en icke-statistisk urvalsmetod får användas på grundval av revisionsmyndighetens yrkesmässiga bedömning i enlighet med internationellt erkända revisionsstandarder.

I praktiken brukar de särskilda situationer där det kan vara motiverat att använda ett icke-statistiskt urval gälla populationens storlek. Det kan t.ex. fungera för en mycket liten population, som inte är tillräckligt stor för att det ska gå att använda statistiska metoder (populationen är mindre än eller mycket nära det rekommenderade urvalets storlek)24.

Revisionsmyndigheten måste använda alla medel som står till buds för att åstadkomma en tillräcklig stor population: genom att gruppera program när de ingår i ett gemensamt system, och/eller genom att använda stödmottagarnas periodiska ansökningar om utbetalning som enhet. Revisionsmyndigheten bör också ta hänsyn till att även i en extrem situation där det inte är möjligt att använda en statistisk metod i början av en programperiod, bör den tillämpas så snart det är möjligt.

\textbf{5.3 Anmärkning}

Innan vi går in på de viktigaste urvalsmetoderna för att granska insatser är det lämpligt att definiera en uppsättning begrepp som berör urval och som är gemensamma för alla metoder. Dessa är följande:

\begin{itemize}
\item z är en parameter från normalfördelningen som berör den konfidensnivå som avgörs via systemgranskningar. De möjliga värdena för z visas i följande tabell. En fullständig tabell med värden för normalfördelningen finns i bilaga 3.
\end{itemize}

\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
Konfidensnivå & 60 \% & 70 \% & 80 \% & 90 \% & 95 \% \\
\hline
Systemets garantinivå & Hög & Måttlig & Måttlig & Låg & Ingen garanti \\
\hline
z & 0,842 & 1,036 & 1,282 & 1,645 & 1,960 \\
\hline
\end{tabular}
\end{center}

24 Se avsnitt 6.4.1.
Tabell 3. Värden på z efter konfidensnivå

- N är populationens storlek (t.ex. antalet insatser i ett program eller ansökningar om utbetalningar). Om populationen är stratifierad används ett index h för att beteckna respektive stratum $N_h, h = 1, 2, ..., H$ och H är antalet stratum.
- n är urvalets storlek. Om populationen är stratifierad används ett index h för att beteckna respektive stratum $n_h, h = 1, 2, ..., H$ och H är antalet stratum.
- TE är det högsta godtagbara fel som tillåts enligt förordningen, dvs. 2% av de sammanlagda utgifter som deklarerats till kommissionen (det bokförda värdet BV).
- $BV_i, i = 1, 2, ..., N$ är det bokförda värdet (de utgifter som deklarerats till kommissionen) för en post (insats/ansökan om utbetalning).
- $CBV_i, i = 1, 2, ..., N$ är det korrigerade bokförda värdet, de utgifter som fastställts efter granskning av en post (insats/ansökan om utbetalning).
- $E_i = BV_i - CBV_i, i = 1, 2, ..., N$ är felbeloppet för en post och definieras som skillnaden mellan det bokförda värdet på den i:e posten som ingår i urvalet och det berörda korrigerade bokförda värdet. Om populationen är stratifierad används ett index h för att beteckna respektive stratum $E_{hi} = BV_{hi} - CBV_{hi}, i = 1, 2, ..., N_h, h = 1, 2, ..., H$ och H är antalet stratum.
- AE är det förväntade fel som revisorn fastställt baserat på den förväntade felnivån på insatsnivån (t.ex. en förväntad felprocent gånger de sammanlagda utgifterna på populationsnivå). AE kan tas fram ur historiska data (beräknat fel under förra perioden) eller ur ett litet preliminärt urval/piloturval (samma som används för att fastställa standardavvikelsen).

I denna vägledning åtföljs ovannämnda parametrar ofta av särskilda index som kan röra egenskapen hos parametern eller hos ett stratum som den parametern avser. I synnerhet gäller följande:

- r används tillsammans med standardavvikelse när den avser standardavvikelse för felprocent.
- e avser ett uttömnande stratum/stratum med poster av högt värde. Om indexet används tillsammans med standardavvikelse kan det också avse standardavvikelsen för fel (i motsats till standardavvikelse för felprocent).
- w används tillsammans med standardavvikelse när ett viktat värde används.
- s avser ett icke-uttömnande stratum.
- t används tillsammans med stratifierade urvalsformler med två eller flera perioder, för att hänvisa till specifika perioder.
- q används tillsammans med standardavvikelse för att hänvisa till variabeln q i slumpmässigt urval (kvotsskattning).
- h hänvisar till ett stratum.

Om en parameter åtföljs av flera index kan de användas i olika ordning utan att noteringens betydelse ändras.
6 Urvalsmetoder

6.1 Enkelt slumpmässigt urval

6.1.1 Standardmetod

6.1.1.1 Inledning

Enkelt slumpmässigt urval är en statistisk urvalsmetod. Det är den mest välkända av de urvalsmetoder som baseras på lika sannolikhet. Syftet är att beräkna den felnivå som observerats i urvalet i populationen som helhet.

Den statistiska enhet som ska ingå i urvalet är insatsen (eller ansökan om utbetalning). Enheter i urvalet väljs slumpmässigt med lika sannolikhet. Enkelt slumpmässigt urval är en generisk metod som passar olika typer av populationer, även om det oftast kräver större urval än MUS (när utgiftsnivån varierar avsevärt mellan insatser och det finns en positiv koppling mellan utgifter och fel), eftersom den inte använder ytterligare information. Beräkningen av fel kan baseras på två delmetoder: skattning av genomsnitt per enhet eller kvotskattning (se avsnitt 6.1.1.3).

I likhet med alla andra metoder kan denna metod kombineras med stratifiering (gynnsamma förutsättningar för stratifiering diskuteras i avsnitt 5.2).

6.1.1.2 Urvalets storlek

Beräkningen av urvalets storlek \(n \) för enkelt slumpmässigt urval bygger på följande information:

- Populationens storlek \(N \)
- Konfidensnivå som fastställts utifrån systemgranskningar och åtföljande koefficient \(z \) från en normalfördelning (se avsnitt 5.3).
- Högsta godtagbara fel \(TE \) (vanligtvis 2 % av de sammanlagda utgifterna).
- Förväntat fel \(AE \), valt av revisorn utifrån yrkesmässig erfarenhet och tidigare information.
- Standardavvikelsen \(\sigma_e \) för felen.

Urvalets storlek beräknas på följande sätt:\(^{25}\):

\[n = \frac{N \times z \times \sigma_e}{TE - AE} \left(1 + \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2 \right). \]

\(^{25}\) När det handlar om en liten population, dvs. om det slutliga urvalet motsvarar en stor andel av populationen (som regel mer än 10 % av populationen) går det att använda en mer exakt formel som ger

\[n = \frac{N \times z \times \sigma_e}{TE - AE} \left(1 + \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2 \right). \]

Denna korrigering är giltig för enkelt slumpmässigt urval och för skattning av skillnad. Den kan också införas i två steg genom att urvalsstorleken \(n \) beräknas med den vanliga formeln och sedan korrigeras sekventiellt med

\[n' = \frac{n \times N}{n + N - 1}. \]
\[
\begin{align*}
n &= \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2
\end{align*}
\]
där \(\sigma_e \) är standardavvikelsen för fel i populationen. Notera att denna standardavvikelse för felen för den totala populationen antas vara känd i ovanstående beräkningar. I praktiken kommer detta nästan aldrig att bli fallet och revisionsmyndigheterna kommer att behöva förlita sig på historiska data (standardavvikelsen för fel i populationen under den förra perioden) eller på ett litet preliminärt urval/piloturval (vi rekommenderar ett urval på minst 20–30 enheter). I det senare fallet görs ett preliminärt urval med storleken \(n^P \) och en preliminär skattning av felvariansen (standardavvikelsen i kvadrat) räknas fram med

\[
\sigma_e^2 = \frac{1}{n^P - 1} \sum_{i=1}^{n^P} (E_i - \bar{E})^2,
\]
där \(E_i \) motsvarar de individuella felen för enheter i urvalet och \(\bar{E} = \frac{\sum_{i=1}^{n^P} E_i}{n^P} \) motsvarar det genomsnittliga felet i urvalet.

Observera att detta piloturval därefter kan användas som en del av det urval som valts för granskning.

6.1.1.3 Beräknat fel

Det finns två alternativa metoder för att beräkna urvalsfelet i populationen. Den första baseras på en skattning av genomsnitt per enhet (absoluta fel) och den andra baseras på kvotskattning (felprocent).

Skattning av genomsnitt per enhet (absoluta fel)

Det genomsnittliga felet per observerad insats i urvalet multiplices per antalet insatser i populationen, vilket ger det beräknade felet

\[
EE_1 = N \times \frac{\sum_{i=1}^{n} E_i}{n}.
\]

Kvotskattning (felprocent)

Den genomsnittliga felprocent som har observerats i urvalet multiplices med det bokförda värdet på populationsnivå:

\[
EE_2 = BV \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i}.
\]
Felprocenten för urvalet i formeln ovan räknas helt enkelt ut genom att det
sammanlagda felet i urvalet divideras med de sammanlagda utgifterna för enheterna i
urvalet (granskade utgifter).

Det går inte att i förhand känna till vilken extrapoleringsmetod som är bäst, eftersom de
olika metodernas relativa fördelar beror på nivån av samband mellan fel och utgifter.
Som grundregel bör den andra metoden endast användas när man förväntar sig ett starkt
samband mellan fel och utgifter (poster av högre värde tenderar att ha högre felvärden) och
den första metoden (genomsnitt per enhet) bör användas när man förväntar sig att
heten är förhållandevis oberoende av utgiftsnivån (större fel kan finnas i enheter med
både stora och små utgifter). Denna bedömning kan i praktiken göras med urvalsdata
eftersom beslutet om extrapoleringsmetod kan fattas efter det att urvalet har gjorts och
granskats. För att välja den lämpligaste extrapoleringsmetoden bör man använda
urvalsdata för att beräkna variationen i urvalsenheternas bokförda värde (VARBV) och
kovariansen mellan felen och de bokförda värdena för samma enheter (COVE,BV).
Formellt bör kvotskattning väljas när \(\frac{COVE,BV}{VARBV} > ER/2 \), där ER är urvalets felprocent,
dvs. kvoten mellan summan av felen i urvalet och de granskade utgifterna. När detta
villkor inte verifieras bör en beräkning av genomsnitt per enhet användas för att beräkna
felen i populationen.

6.1.1.4 \textit{Precision}

Tänk på att precision (urvalsfel) är ett mått på osäkerheten i beräkningen
(extrapolering). Den beräknas på olika sätt beroende på vilken metod som används för
extrapoleringen.

\textbf{Skattning av genomsnitt per enhet (absoluta fel)}

Precisionen räknas fram med följande formel:

\[
SE_1 = N \times z \times \frac{s_e}{\sqrt{n}}
\]

där \(s_e \) är standardavvikelsen för felen i urvalet (beräknas nu ur samma urval som
användes för att beräkna felen i populationen).

\[
s_e^2 = \frac{1}{n-1} \sum_{i=1}^{n} (E_i - \bar{E})^2
\]

\textbf{Kvotskattning (felprocent)}

Precisionen räknas fram med följande formel:
\[SE_2 = N \times z \times \frac{s_q}{\sqrt{n}} \]
där \(s_q \) är urvalets standardavvikelse för variabeln \(q \):

\[q_i = E_i - \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i} \times BV_i. \]

Denna variabel beräknas för varje enhet i urvalet som differensen mellan felet och produkten av dess bokförda värde och felprocenten i urvalet.

6.1.1.5 Utvärdering

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i extrapoleringen

\[ULE = EE + SE \]

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser:

- Om det beräknade felet är större än det högsta godtagbara felet betyder detta att revisorn drar slutsatsen att det finns tillräckliga bevis för att felen i populationen ligger över tröskelvärdet för väsentlighet.

- Om den övre felgränsen är lägre än det högsta godtagbara felet bör revisorn dra slutsatsen att felen i populationen ligger under tröskelvärdet för väsentlighet.

- Om det beräknade felet är lägre än det högsta godtagbara felet, men den övre felgränsen ligger högre än det högsta godtagbara felet kan detta leda till att resultatet från urvalet inte blir entydigt. Läs mer om detta i avsnitt 4.12.
6.1.1.6 Exempel

Antag att populationen består av utgifter deklarerade till kommissionen under ett givet år för insatser i ett program eller en grupp av program. De systemrevisioner som har genomförts av revisionsmyndigheten har gett en måttlig garantinivå. En konfidentsnivå på 80 % verkar därför vara lämplig för granskning av insatser. I följande tabell visas de viktigaste egenskaperna för populationen.

<table>
<thead>
<tr>
<th>Populationstorlek (antal insatser)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>46 501 186 euro</td>
</tr>
</tbody>
</table>

Ett preliminärt urval på 20 insatser gav en preliminär skattning av felens standardavvikelse på 518 euro (beräknad i MS Excel som ":=STDEV(D2:D21)\):
Det första steget är att beräkna hur stort urvalet måste vara med hjälp av följande formel:

\[n = \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2 \]

där \(z \) är 1,282 (koefficient som motsvarar en konfidensnivå på 80 %), \(\sigma_e \) är 518 euro och det godtagbara felet \(TE \) är 2 % (högsta väsentlighetsnivå enligt förordningen) av det bokförda värdet, dvs. 2 % x 46 501 186 euro = 930 024 euro. Detta preliminär urval ger en fe procent för urvalet på 1,24 %. Utifrån erfarenheterna från föregående år eller slutsatserna i rapporten om förvaltnings- och kontrollsystem förväntar sig revisionsmyndigheten dessutom en fe procent på högst 1,24 %, varför det förväntade felet \(AE \) är 1,24 % av de sammanlagda utgifterna, dvs. 1,24 % x 46 501 186 euro = 576 615 euro:

\[n = \left(\frac{3 852 \times 1,282 \times 518}{930 024 - 576 615} \right)^2 \approx 53 \]

Minsta urvalsstorlek är följaktligen 53 insatser.

Det preliminära urvalet på 20 insatser används som en del av huvudurvalet. Därför behöver revisorn endast slumpmässigt välja ytterligare 33 insatser. I följande tabell visas resultatet för hela urvalet på 53 insatser:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operation</td>
<td>Book Value (BV)</td>
<td>Correct Value (AV)</td>
<td>Error</td>
<td>Error rate</td>
<td>q.l.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>9,093 €</td>
<td>9,093 €</td>
<td>- €</td>
<td>0,00%</td>
<td>107,17 €</td>
</tr>
<tr>
<td>4</td>
<td>98</td>
<td>13,054 €</td>
<td>13,054 €</td>
<td>- €</td>
<td>0,00%</td>
<td>153,85 €</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>10,758 €</td>
<td>10,758 €</td>
<td>- €</td>
<td>0,00%</td>
<td>126,79 €</td>
</tr>
<tr>
<td>6</td>
<td>153</td>
<td>16,194 €</td>
<td>16,194 €</td>
<td>- €</td>
<td>0,00%</td>
<td>190,86 €</td>
</tr>
<tr>
<td>7</td>
<td>223</td>
<td>11,662 €</td>
<td>11,662 €</td>
<td>- €</td>
<td>0,00%</td>
<td>137,45 €</td>
</tr>
<tr>
<td>8</td>
<td>246</td>
<td>16,331 €</td>
<td>16,331 €</td>
<td>- €</td>
<td>0,00%</td>
<td>192,48 €</td>
</tr>
<tr>
<td>9</td>
<td>542</td>
<td>8,714 €</td>
<td>8,264 €</td>
<td>450 €</td>
<td>5,17%</td>
<td>347,61 €</td>
</tr>
<tr>
<td>10</td>
<td>554</td>
<td>8,645 €</td>
<td>8,645 €</td>
<td>- €</td>
<td>0,00%</td>
<td>101,89 €</td>
</tr>
<tr>
<td>11</td>
<td>587</td>
<td>9,297 €</td>
<td>9,297 €</td>
<td>- €</td>
<td>0,00%</td>
<td>109,57 €</td>
</tr>
<tr>
<td>12</td>
<td>915</td>
<td>7,999 €</td>
<td>7,999 €</td>
<td>- €</td>
<td>0,00%</td>
<td>94,28 €</td>
</tr>
<tr>
<td>13</td>
<td>1014</td>
<td>11,906 €</td>
<td>11,906 €</td>
<td>- €</td>
<td>0,00%</td>
<td>140,32 €</td>
</tr>
<tr>
<td>14</td>
<td>1134</td>
<td>15,505 €</td>
<td>15,505 €</td>
<td>- €</td>
<td>0,00%</td>
<td>182,74 €</td>
</tr>
<tr>
<td>15</td>
<td>1156</td>
<td>7,908 €</td>
<td>7,908 €</td>
<td>- €</td>
<td>0,00%</td>
<td>93,20 €</td>
</tr>
<tr>
<td>16</td>
<td>1325</td>
<td>6,717 €</td>
<td>6,717 €</td>
<td>- €</td>
<td>0,00%</td>
<td>79,17 €</td>
</tr>
<tr>
<td>17</td>
<td>1403</td>
<td>9,730 €</td>
<td>9,730 €</td>
<td>- €</td>
<td>0,00%</td>
<td>114,68 €</td>
</tr>
<tr>
<td>18</td>
<td>1453</td>
<td>16,585 €</td>
<td>16,585 €</td>
<td>- €</td>
<td>0,00%</td>
<td>194,88 €</td>
</tr>
<tr>
<td>19</td>
<td>1577</td>
<td>17,723 €</td>
<td>17,723 €</td>
<td>- €</td>
<td>0,00%</td>
<td>208,88 €</td>
</tr>
<tr>
<td>20</td>
<td>1621</td>
<td>16,095 €</td>
<td>16,095 €</td>
<td>- €</td>
<td>0,00%</td>
<td>189,69 €</td>
</tr>
<tr>
<td>21</td>
<td>1624</td>
<td>15,171 €</td>
<td>15,171 €</td>
<td>- €</td>
<td>0,00%</td>
<td>178,80 €</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>3749</td>
<td>9971 €</td>
<td>9971 €</td>
<td>- €</td>
<td>0,00%</td>
<td>117,52 €</td>
</tr>
<tr>
<td>56</td>
<td>Total</td>
<td>661,580 €</td>
<td>653,783 €</td>
<td>7,797 €</td>
<td>0,00%</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Sample standard deviation of errors:</td>
<td>STDEV.S([D3:D55])</td>
<td>758 €</td>
<td></td>
<td>755 €</td>
<td></td>
</tr>
</tbody>
</table>
Det totala bokförda värdet på de 53 insatserna i urvalet är 661 580 euro (beräknat i MS Excel som \(\text{"=SUM(B3:B55)"} \)). Det totala felbeloppet i urvalet är 7 797 euro (beräknat i MS Excel som \(\text{"=SUM(D3:D55)"} \)). Detta belopp dividerat med urvalets storlek är urvalets genomsnittliga insatsfel.

För att avgöra om genomsnitt per enhet eller kvotskattning är den bästa beräkningsmetoden ska revisionsmyndigheten beräkna kvoten av kovariansen mellan felen och de bokförda värdena och variationen i de bokförda värdena i insatserna i urvalet, som är lika med 0,02078. Eftersom kvoten är större än hälften av urvalets felprocent \((7 797 \text{ euro}/661 580)/2 = 0,0059\) kan revisionsmyndigheten vara säker på att kvotskattning är den mest tillförlitliga beräkningsmetoden. Av pedagogiska skäl visar vi båda beräkningsmetoderna nedan.

Om vi använder skattning av genomsnitt per enhet beräknas det beräknade felet i populationen genom att detta genomsnittliga fel multipliceras med populationens storlek (3 852 i detta exempel). Denna siffra är det beräknade felet på programnivå.

\[
EE_1 = N \times \frac{\sum_{i=1}^{53} E_i}{n} = 3 852 \times \frac{7 797}{53} = 566 703
\]

Om vi använder kvotskattning kan felet beräknas i populationen genom att den genomsnittliga felprocent som konstaterats i urvalet multipliceras med det bokförda värdet på populationsnivå:

\[
EE_2 = BV \times \frac{\sum_{i=1}^{53} E_i}{\sum_{i=1}^{53} BV_i} = 46 501 186 \times \frac{7 797}{661 580} = 548 058
\]

Felprocenten för urvalet i formeln ovan räknas helt enkelt ut genom att det sammanlagda felet i urvalet divideras med de sammanlagda granskade utgifterna.

Den beräknade felprocenten beräknas som kvoten mellan det beräknade felet och det bokförda värdet för populationen (sammanlagda utgifter). Om skattning av genomsnitt per enhet används blir den beräknade felprocenten

\[
r_1 = \frac{566 703}{46 501 186} = 1,22 \%
\]

och med kvotskattning blir den

\[
r_2 = \frac{548 058}{46 501 186} = 1,18 \%
\]
I båda fallen är det beräknade felet mindre än väsentlighetsnivån. Man kan emellertid inte dra några slutliga slutsatser innan man har räknat med urvalsfelet (precision).

Det första steget för att få fram precisionen är att räkna ut felens standardavvikelse i urvalet (beräknas i MS Excel som ":=STDEV(D3:D55)"):

\[s_e = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (E_i - \bar{E})^2} = \sqrt{\frac{1}{52} \sum_{i=1}^{53} (E_i - \bar{E})^2} = 758 \]

Precisionen i skattningen med genomsnitt per enhet beräknas alltså med

\[SE_1 = N \times z \times \frac{s_e}{\sqrt{n}} = 3 \, 852 \times 1 \, 282 \times \frac{758}{\sqrt{53}} = 514 \, 169 \]

Om kvotskattning används måste man först skapa variabeln

\[q_i = E_i - \frac{\sum_{i=1}^{53} E_i}{\sum_{i=1}^{53} BV_i} \times BV_i \]

Denna variabel finns i tabellens sista kolumn (kolumn F). Värdet i cell F3 beräknas t.ex. med felvärdet för den första insatsen (0 euro) minus summan av urvalsfelen i kolumn D, 7 797 euro (":=SUM(D3:D55)") dividerat med de granskade utgifterna i kolumn B, 661 580 euro (":=SUM(B3:B55)") och multiplicerat med insatsens bokförda värde (9 093 euro):

\[q_1 = 0 - \frac{7 \, 797}{661 \, 580} \times 9 \, 093 = -107,17 \]

Om standardavvikelsen för denna variabel är \(s_q = 755 \) (beräknad i MS Excel som ":=STDEV(F3:F55)"), beräknas kvotskattningens precision med följande formel:

\[SE_2 = N \times z \times \frac{s_q}{\sqrt{n}} = 3 \, 852 \times 1 \, 282 \times \frac{755}{\sqrt{53}} = 512 \, 134 \]

För att avgöra om felen är väsentliga bör den övre felgransen (ULE) beräknas. Den övre gransen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i beräkningen

\[ULE = EE + SE \]
Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionssltsatser:

\[
ULE_1 = EE_1 + SE_1 = 566703 + 514169 = 1080871
\]

eller

\[
ULE_2 = EE_2 + SE_2 = 548058 + 512134 = 1060192
\]

När tröskelvärdet för väsentlighet på 2 % av programmets sammanlagda bokförda värde (2 % x 46 501 186 euro = 930 024 euro) ämförs med det beräknade felet och den övre felgränsen (eftersom detta var den valda beräkningsmetoden) kan man dra slutsatsen att det beräknade felet är lägre än det högsta godtagbara felet, men att den övre felgränsen är högre än det högsta godtagbara felet. Revisorn kan dra slutsatsen att det krävs ytterligare undersökningar eftersom det inte finns tillräckliga bevis för att det inte förekommer väsentliga avvikelser i populationen. Vilka ytterligare undersökningar som krävs diskuteras i avsnitt 5.11.

6.1.2 Stratifierat enkelt slumpmässigt urval

6.1.2.1 Inledning

I stratifierade enkla slumpmässiga urval delas populationen in i delpopulationer som kallas stratum och oberoende stickprov tas ur varje stratum med hjälp av standardmetoden för enkelt slumpmässigt urval.

Kandidatkriterier för att använda stratifiering bör ta hänsyn till att syftet med stratifieringen är att hitta grupper (stratum) med lägre variation än populationen som helhet. Tillsammans med enkelt slumpmässigt urval är stratifiering efter utgiftsnivå per insats ofta en bra metod när felnivån förväntas ha ett samband med utgiftsnivån. Andra variabler som vi antar kan förklara felnivån i insatserna är också bra kandidater för stratifiering. Det kan t.ex. gälla program, regioner, förmedlande organ, klasser baserade på insatsens risk osv.
Om man gör en stratifiering efter utgiftsnivå bör man överväga att identifiera ett stratum med poster av högt värde\(^{26}\), göra en 100-procentig granskning av de posterna och sedan göra ett enkelt slumpmässigt urval för granskningen av de återstående posterna av lågt värde som ingår i resterande stratum. Detta är användbart om populationen endast innehåller ett fåtal poster av högt värde. I så fall bör de poster som ingår i det 100-procentiga stratumet plockas ut ur populationen och de steg som behandlas i avsnitten nedan ska endast tillämpas på populationen med poster av lågt värde. Lägg märke till att det inte är obligatoriskt att granska 100 % av enheterna med högt värde i stratumet. Revisionsmyndigheten får utveckla en strategi som bygger på flera stratum och som motsvarar olika utgiftsnivåer och sedan gransa alla stratum genom stickprovstagnning. Om det finns ett stratum som är granskat till 100 % måste det emellertid betonas att den planerade precisionen för fastställande av urvalsstorlek bör baseras på populationens sammanlagda bokförda värde. Eftersom den enda felkällan är stratumet med poster av lågt värde, men den planerade precisionen avser populationsnivå, bör det godtagbara felet och det förväntade felet också beräknas på populationsnivå.

6.1.2.2 Urvalets storlek

Urvalets storlek beräknas på följande sätt:

\[
 n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2
\]

där \(\sigma_w^2 \) är det viktade medelvärdet av varianserna i felen för hela uppsättningen av stratum

\[
\sigma_w^2 = \sum_{i=1}^{H} \frac{N_h}{N} \sigma_{eh}^2, h = 1, 2, ..., H
\]

och \(\sigma_{eh}^2 \) är felvariansen i varje stratum. Felvariansen beräknas för varje stratum som en oberoende population i form av

\[
\sigma_{eh}^2 = \frac{1}{n_h^p - 1} \sum_{i=1}^{n_h^p} (E_{hi} - \bar{E}_h)^2, h = 1, 2, ..., H
\]

\(^{26}\) Det finns ingen generell regel för var gränsen ska dras för stratum med poster med högt värde. En tumregel kan vara att ta med alla insatser vars utgifter är högre än väsentlighetsnivån (2 %) gånger de sammanlagda utgifterna för populationen. I mer konservativa metoder används ett lägre gränsvärde, vanligtvis genom att väsentlighetsnivån divideras med två eller tre, men gränsvärdet beror på populationens egenskaper och bör baseras på yrkesmässig bedömning.
där \(E_{ht} \) motsvarar de individuella felet för enheter i stratum \(h \) och \(\bar{E}_h \) motsvarar det genomsnittliga felet i urvalet i stratum \(h \).

Dessa värden kan baseras på historiska kunskaper eller på ett litet preliminärt urval/piloturval enligt beskrivningen ovan av den standardiserade metoden för enkelt slumpmässigt urval. I det senare fallet kan piloturval som vanligt därefter användas som en del av det urval som valts för granskning. Om det inte finns några historiska uppgifter i början av en programperiod och det inte är möjligt att få fram ett piloturval kan urvalets storlek beräknas med standardmetoden (för periodens första år). De uppgifter som samlas in i granskningsurvalet för detta första år kan användas för att finjustera beräkningen av urvalets storlek under efterföljande år. Priset man får betala för bristen på information är att urvalets storlek sannolikt behöver vara större för det första året än om det hade funnits mer information om stratum.

När den totala urvalsstorleken \(n \) har beräknats görs urvalets fördelning efter stratum på följande sätt:

\[
n_h = \frac{N_h}{N} \times n
\]

6.1.2.3 Beräknat fel

Baserat på \(H \) slumpmässigt utvalda insatser, där storleken på var och en har beräknats enligt formeln ovan kan det beräknade felet på populationsnivå beräknas med de två vanliga metoderna: skattning av genomsnitt per enhet och kvotskattning.

Skattning av genomsnitt per enhet

I varje populationsgrupp (stratum) ska det genomsnittliga fel per insats som har observerats i urvalet multiplikeras med antalet insatser i urvalet (\(N_h \)). Sedan summeras de resultat som har erhållits för varje stratum, vilket ger det beräknade felet

\[
EE_1 = \sum_{h=1}^{H} N_h \times \frac{\sum_{i=1}^{n_h} E_i}{n_h}
\]
Kvotskattning

I varje populationsgrupp (stratum) ska den genomsnittliga felprocent som har observerats i urvalet multipliceras med populationens bokförda värde på stratumnivå (BV_h):

$$EE_2 = \sum_{h=1}^{H} BV_h \times \frac{\sum_{i=1}^{n_h} E_i}{\sum_{i=1}^{n_h} BV_i}$$

Felprocenten för urvalet i varje stratum räknas helt enkelt ut genom att det sammanlagda felet i stratumurvalet divideras med de sammanlagda utgifterna för insatserna i samma urval.

Valet mellan de båda metoderna bör baseras på de överväganden som beskrivs för den standardiserade metoden för enkelt slumpmässigt urval.

Om ett 100-procentigt stratum har övervägts och tidigare tagits ut ur populationen, bör det sammanlagda felbelopp som konstaterats i det uttömmande stratumet läggas till skattningen ovan (EE_1 eller EE_2) för att få fram en slutlig beräkning av felbeloppet för hela populationen.

6.1.2.4 Precision

Precis som för standardmetoden är precision (urvalsfel) ett mått på osäkerheten i beräkningen (extrapolering). Den beräknas på olika sätt beroende på vilken metod som används för extrapoleringen.

Skattning av genomsnitt per enhet (absoluta fel)

Precisionen räknas fram med följande formel:

$$SE_1 = N \times z \times \frac{s_w}{\sqrt{n}}$$

där s_w^2 är det viktade medelvärdet av felvariansen för hela uppsättningen stratum (beräknas nu ur samma urval som användes för att beräkna felen i populationen)

$$s_w^2 = \sum_{h=1}^{H} \frac{N_h}{N} s_{eh}^2, h = 1, 2, ..., H$$

och s_{eh}^2 är den skattade felvariansen för urvalet i stratum h

$$s_{eh}^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (E_{hi} - \bar{E}_h)^2, h = 1, 2, ..., H$$
Kvotskattning (felprocent)

Precisionen räknas fram med följande formel:

\[
SE_2 = N \times z \times \frac{s_{qw}}{\sqrt{n}}
\]

där

\[
s_{qw}^2 = \sum_{h=1}^{H} \frac{N_h}{N} s_{qh}^2
\]

är ett viktat genomsnitt av urvalsvarianserna av variabeln \(q_h \), med

\[
q_{ih} = E_{ih} - \frac{\sum_{i=1}^{n_h} E_{ih} \times BV_{ih}}{\sum_{i=1}^{n_h} BV_{ih}}
\]

Denna variabel beräknas för varje enhet i urvalet som differensen mellan felet och produkten av dess bokförda värde och felprocenten i urvalet.

6.1.2.5 Utvärdering

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i extrapoleringen

\[
ULE = EE + SE
\]

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutater med exakt samma metod som beskrivs i avsnitt 6.1.1.5.

6.1.2.6 Exempel

Antag att populationen utgörs av utgifter som har deklarerats för kommissionen under ett givet år för insatser i en grupp av program. Förvaltnings- och kontrollsystemet är gemensamt för programgruppen och de systemgranskningar som har genomförts av revisionsmyndigheten har gett en måttlig garantinivå. Därför har revisionsmyndigheten beslutat att granska en insats med en konfidensnivå på 80 %.
Revisionsmyndigheten har anledning att anta att det finns en avsevärd risk för fel i insatser med höga värden, oavsett vilket program de tillhör. Vidare finns det skäl att anta att felprocenten varierar mellan de olika programmen. Därför beslutar revisionsmyndigheten att stratifiera populationen efter program och efter utgifter (och att samla alla insatser med ett bokfört värde över väsentlighetsnivån i ett 100-procentigt urvalsstratum).

I följande tabell sammanfattas den tillgängliga informationen:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>4 807</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populationsstorlek – stratum 1 (antal insatser i program 1)</td>
<td>3 582</td>
</tr>
<tr>
<td>Populationsstorlek – stratum 2 (antal insatser i program 2)</td>
<td>1 225</td>
</tr>
<tr>
<td>Populationsstorlek – stratum 3 (antal insatser vars bokförda värde > väsentlighetsnivån)</td>
<td>5</td>
</tr>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>1 396 535 319 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 1 (summan av utgifter i program 1)</td>
<td>43 226 801 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 2 (summan av utgifter i program 2)</td>
<td>1 348 417 361 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 3 (summan av utgifter för insatser vars bokförda värde > väsentlighetsnivån)</td>
<td>4 891 156 euro</td>
</tr>
</tbody>
</table>

Det 100-procentiga urvalsstratumet med de fem insatserna av högt värde bör behandlas separat enligt beskrivningen i avsnitt 6.1.2.1. I fortsättningen motsvarar alltså värdet på \(N \) det totala antalet insatser i populationen, med avdrag för antalet insatser som ingår i det 100-procentiga urvalsstratumet, dvs. 4 802 (= 4 807 – 5) insatser.

Det första steget är att beräkna hur stort urvalet måste vara med hjälp av följande formel:

\[
n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2
\]

där \(z \) är 1,282 (koefficient som motsvarar en konfidensnivå på 80 %) och det godtagbara felet \(TE \) är 2 % (högsta väsentlighetsnivå enligt förordningen) av det bokförda värdet, dvs. 2 % x 1 396 535 319 euro = 27 930 706 euro. Baserat på erfarenheterna från föregående år eller slutsatserna i rapporten om förvaltnings- och kontrollsystem förväntar sig revisionsmyndigheten dessutom en felprocent på högst 1,8 %, varför det förväntade felet \(AE \) är 1,8 % av de sammanlagda utgifterna, dvs. 1,8 % x 1 396 535 319 euro = 25 137 636 euro.

Eftersom det tredje stratumet är ett 100-procentigt urvalsstratum är urvalets storlek fast för detta stratum och är lika med populationens storlek, dvs. de fem insatserna av högt värde. Urvalsstorleken för de två återstående stratumen beräknas med formeln ovan, där \(\sigma_w^2 \) är det viktade medelvärdet av felvarianserna i de två återstående stratumen.
\[\sigma_w^2 = \sum_{i=1}^{N} \frac{N}{N} \sigma_{e_i}^2, h = 1, 2 \]

och \(\sigma_{e_h}^2\) är felvariansen i varje stratum. Felvariansen beräknas för varje stratum som en oberoende population i form av

\[\sigma_{e_h}^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (E_{h_i} - \bar{E}_h)^2, h = 1, 2, ..., H \]

där \(E_{h_i}\) motsvarar de individuella felen för enheter i stratum \(h\) och \(\bar{E}_h\) motsvarar det genomsnittliga felet i urvalet i stratum \(h\).

Ett preliminärt urval på 20 insatser i stratum 1 gav en skattning av standardavvikelsen för fel på 444 euro:

<table>
<thead>
<tr>
<th></th>
<th>Operation</th>
<th>Book Value (BV)</th>
<th>Correct Value (AV)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>708</td>
<td>6,533 €</td>
<td>4,549 €</td>
<td>1,984 €</td>
</tr>
<tr>
<td>3</td>
<td>3084</td>
<td>7,009 €</td>
<td>7,009 €</td>
<td>- €</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>7,948 €</td>
<td>7,948 €</td>
<td>- €</td>
</tr>
<tr>
<td>5</td>
<td>878</td>
<td>8,910 €</td>
<td>8,910 €</td>
<td>- €</td>
</tr>
<tr>
<td>6</td>
<td>2101</td>
<td>8,937 €</td>
<td>8,937 €</td>
<td>- €</td>
</tr>
<tr>
<td>7</td>
<td>3117</td>
<td>9,708 €</td>
<td>9,708 €</td>
<td>- €</td>
</tr>
<tr>
<td>8</td>
<td>1856</td>
<td>9,728 €</td>
<td>9,728 €</td>
<td>- €</td>
</tr>
<tr>
<td>9</td>
<td>734</td>
<td>9,985 €</td>
<td>9,985 €</td>
<td>- €</td>
</tr>
<tr>
<td>10</td>
<td>1333</td>
<td>10,160 €</td>
<td>10,160 €</td>
<td>- €</td>
</tr>
<tr>
<td>11</td>
<td>668</td>
<td>11,008 €</td>
<td>11,008 €</td>
<td>- €</td>
</tr>
<tr>
<td>12</td>
<td>3394</td>
<td>12,116 €</td>
<td>12,116 €</td>
<td>- €</td>
</tr>
<tr>
<td>13</td>
<td>1307</td>
<td>12,515 €</td>
<td>12,515 €</td>
<td>- €</td>
</tr>
<tr>
<td>14</td>
<td>189</td>
<td>12,553 €</td>
<td>12,553 €</td>
<td>- €</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>12,798 €</td>
<td>12,798 €</td>
<td>- €</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>16,414 €</td>
<td>16,414 €</td>
<td>- €</td>
</tr>
<tr>
<td>17</td>
<td>2621</td>
<td>16,420 €</td>
<td>16,420 €</td>
<td>- €</td>
</tr>
<tr>
<td>18</td>
<td>2118</td>
<td>16,729 €</td>
<td>16,729 €</td>
<td>- €</td>
</tr>
<tr>
<td>19</td>
<td>3344</td>
<td>16,798 €</td>
<td>16,798 €</td>
<td>- €</td>
</tr>
<tr>
<td>20</td>
<td>1551</td>
<td>17,330 €</td>
<td>17,330 €</td>
<td>- €</td>
</tr>
<tr>
<td>21</td>
<td>1243</td>
<td>17,592 €</td>
<td>17,592 €</td>
<td>- €</td>
</tr>
<tr>
<td>22</td>
<td>Total</td>
<td>241,191 €</td>
<td>239,207 €</td>
<td>1,984 €</td>
</tr>
</tbody>
</table>

Samma förfarande följes för populationen i stratum 2.
Ett preliminärt urval på 20 insatser i stratum 2 gav en skattning av standardavvikelsen för felen på 9 818 euro:

<table>
<thead>
<tr>
<th>Stratum 1 – preliminär skattning av standardavvikelse för felen</th>
<th>444 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratum 2 – preliminär skattning av standardavvikelse för felen</td>
<td>9 818 euro</td>
</tr>
</tbody>
</table>

Det viktade medelvärdet för felvariansen i dessa båda stratum är alltså

\[
\sigma_w^2 = \frac{3 582}{4 802} + \frac{1 225}{4 802} \cdot 9 818^2 = 24 737 134
\]

Urvalets storlek beräknas med

\[
n = \left(\frac{4 802 \times 1 282 \times \sqrt{24 734 134}}{27 930 706 - 25 137 636}\right)^2 \approx 121
\]

Den sammanlagda urvalsstorleken blir alltså dessa 121 insatser plus de fem insatserna i det 100-procentiga urvalsstratumet, dvs. 126 insatser.

Urvalets fördelning efter stratum blir

\[
n_1 = \frac{N_1}{N_1 + N_2} \times n = \frac{3 582}{4 802} \times 121 \approx 90
\]

\[
n_2 = n - n_1 = 31
\]

och

\[
n_3 = N_3 = 5
\]

En granskning av 90 insatser i stratum 1, 31 insatser i stratum 2 och 5 insatser i stratum 3 ger revisorn ett sammanlagt fel för insatserna i urvalet. De tidigare preliminära urvalen på 20 insatser i stratum 1 och 2 används som en del av huvudurvalet. Därför behöver revisorn endast slumpmässigt välja ytterligare 70 insatser i stratum 1 och 11 i stratum 2. I följande tabell visas urvalsresultatet för de granskade insatserna:

<table>
<thead>
<tr>
<th>Urvalsresultat – stratum 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>------------------</td>
</tr>
</tbody>
</table>

Urvalsresultat – stratum 2

<table>
<thead>
<tr>
<th>E</th>
<th>Bokfört värde för urvalet</th>
<th>35 377 240 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Sammanlagt fel för urvalet</td>
<td>102 899 euro</td>
</tr>
<tr>
<td>G</td>
<td>Genomsnittligt fel i urvalet (G = F / 31)</td>
<td>3 319 euro</td>
</tr>
<tr>
<td>H</td>
<td>Felens standardavvikelse i urvalet</td>
<td>13 012 euro</td>
</tr>
</tbody>
</table>

Urvalsresultat – stratum 3

<table>
<thead>
<tr>
<th>I</th>
<th>Bokfört värde för urvalet</th>
<th>4 891 156 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Sammanlagt fel för urvalet</td>
<td>889 euro</td>
</tr>
<tr>
<td>K</td>
<td>Genomsnittligt fel i urvalet (K = J / 5)</td>
<td>178 euro</td>
</tr>
</tbody>
</table>

I följande figur illustreras resultatet för stratum 1:

![Excel diagram](image)

För att avgöra om genomsnitt per enhet eller kvotsskattning är den bästa beräkningsmetoden ska revisionsmyndigheten beräkna kvoten av kovariansen mellan felen och de bokförda värdena och variationen i de bokförda värdena i insatserna i urvalet. Eftersom kvoten är större än hälften av urvalets felprocent kan
revisionsmyndigheten vara säker på att kvotskattning är den mest tillförlitliga beräkningsmetoden. Av pedagogiska skäl visar vi båda beräkningsmetoderna nedan.

I skattningen med genomsnitt per enhet extrapoleras felet för de båda urvalsstratumen genom att det genomsnittliga felet i urvalet multipliceras med populationsstorleken. Summan av dessa båda siffror måste läggas till det fel som observerats i det 100-procentiga urvalsstratumet för att felet ska beräknas i populationen:

\[
EE_1 = \sum_{h=1}^{3} \frac{1}{N_h} \sum_{i=1}^{n_h} E_i = 3582 \times 126 + 1225 \times 3319 + 889 = 4519900
\]

Det går att räkna fram ett alternativt skattat resultat med kvotskattning genom att den genomsnittliga felprocenten som observerats i stratumurvalet multipliceras med det bokförda värde på stratumnivå (för de båda urvalsstratumen). Därefter måste summan av dessa båda siffror läggas till det fel som observerats i det 100-procentiga urvalsstratumet för att felet ska beräknas i populationen:

\[
EE_2 = \sum_{h=1}^{3} BV_h \times \frac{1}{\sum_{i=1}^{n_h} BV_i} \sum_{i=1}^{n_h} E_i
\]

\[
= 43226802 \times \frac{11378}{1055043} + 1348417361 \times \frac{102899}{35377240} + 889 = 4389095
\]

Den beräknade felprocenten beräknas som kvoten mellan det beräknade felet och det bokförda värde för populationen (sammanlagda utgifter). Om skattning av genomsnitt per enhet används blir den beräknade felprocenten

\[
r_1 = \frac{4519900}{1396535319} = 0,32 \%
\]

och med kvotskattning blir den

\[
r_2 = \frac{4389095}{1396535319} = 0,31 \%
\]

I båda fallen är det beräknade felet mindre än väsentlighetsnivån. Man kan emellertid inte dra några slutliga slutsatser innan man har räknat med urvalsfel (precision). Lägg märke till att de enda källorna till urvalsfel är stratum 1 och 2 eftersom stratumet med poster av högt värde omfattas av ett 100-procentigt urval. I det följande behandlas endast de två urvalsstratumen.

Med tanke på standardavvikelsen för felen i de båda stratumens urval (tabell med urvalsresultat) blir det viktade genomsnittet av felvariansen för hela uppsättningen stratum

54
\[
\begin{align*}
s_w^2 &= \sum_{i=1}^{2} \frac{N_h}{N} s_{eih}^2 = \frac{3\ 582}{4\ 802} \times 698^2 + \frac{1\ 225}{4\ 802} \times 13\ 012^2 = 43\ 507\ 225 \\

\text{Precisionen för det absoluta felet beräknas därför med följande formel:} \\
SE_1 &= N \times z \times \frac{s_w}{\sqrt{n}} = 4\ 802 \times 1,282 \times \frac{\sqrt{43\ 507\ 225}}{\sqrt{121}} = 3\ 695\ 304
\end{align*}
\]

Om kvotskattning används måste man först skapa variabeln
\[
q_{ih} = E_{ih} - \frac{\sum_{i=1}^{n_h} E_{ih}}{\sum_{i=1}^{n_h} BV_{ih}} \times BV_{ih}.
\]

Stratum 1 illustreras i tabellens sista kolumn (kolumn F). Värdet i cell F3 beräknas t.ex. med felvärdet för den första insatsen (0 euro) minus summan av urvalsfelen i kolumn D, 11 378 euro (":=SUM(D3:D92)") dividerat med summan av de bokförda värdena för urvalet i kolumn B, 1 055 043 euro (":=SUM(B3:B92)") och multiplicerat med insatsen bokförda värden (6 106 euro):
\[
q_{11} = 0 - \frac{11\ 378}{1\ 055\ 043} \times 6\ 106 = -65,85
\]

Standardavvikelsen för denna variabel för stratum 1 är \(s_{q1} = 695\) (beräknas i MS Excel som ":=STDEV(F3:F92)"). Med den ovan beskrivna metoden blir standardavvikelsen för stratum 2 \(s_{q2} = 13,148\). Den viktade summan av varianserna av \(q_{ih}\) blir alltså
\[
s_{qw}^2 = \sum_{h=1}^{3} \frac{N_h}{N} s_{qh}^2 = \frac{3\ 582}{4\ 802} \times 695^2 + \frac{1\ 225}{4\ 802} \times 13\ 148^2 = 44\ 412\ 784
\]

Precisionen för kvotskattning beräknas med
\[
SE_2 = N \times z \times \frac{s_{qw}}{\sqrt{n}} = 4\ 802 \times 1,282 \times \frac{\sqrt{44\ 412\ 784}}{\sqrt{59}} = 3\ 733\ 563
\]

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE\) i sig och precisionen i extrapoleringen
\[
ULE = EE + SE
\]
Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser:

\[
ULE_1 = EE_1 + SE_1 = 4519900 + 3695304 = 8215204
\]

eller

\[
ULE_2 = EE_2 + SE_2 = 4389095 + 3733563 = 8122658
\]

När tröskelvärdet för väsentlighet på 2% av populationens sammanlagda bokförda värde (2% \(\times\) 1 396 535 319 euro = 27 930 706 euro) slutligen jämförs med det beräknade resultatet av kvotskattningen (den valda beräkningsmetoden) konstaterar vi att både det beräknade felet och den övre felgränsen är mindre än det högsta godtagbara felet. Därför konstaterar vi att det finns tillräckliga bevis för att det inte förekommer väsentliga avvikelse i populationen.

6.1.3 Enkelt slumpmässigt urval – två perioder

6.1.3.1 Inledning

Revisionsmyndigheten kan besluta sig för att genomföra urvalsprocessen under flera perioder under året (vanligtvis två halvår). Den största fördelen med denna metod ligger inte i att urvalet blir mindre, utan framför allt i att arbetsbörjan för granskningen kan spridas ut över året och därmed minska arbetsbelastningen vid årets slut för endast en observation.

Med denna metod delas årspopulationen in i två delpopulationer där var och en motsvarar insatserna och utgifterna för varje halvår. Obberoende urval görs för varje halvår med standardmetoden för enkelt slumpmässigt urval.

6.1.3.2 Urvalets storlek

Första halvåret

56
För den första granskningstiden (t.ex. ett halvår) beräknar den totala urvalsstorleken (för de båda halvåren tillsammans) enligt följande:

\[n = \left(\frac{N \times z \times \sigma_{ew}}{TE - AE} \right)^2 \]

där \(\sigma_{ew}^2 \) är det viktade medelvärdet av varianserna i felen för varje halvår:

\[\sigma_{ew}^2 = \frac{N_1}{N} \sigma_{e1}^2 + \frac{N_2}{N} \sigma_{e2}^2 \]

och \(\sigma_{et}^2 \) är felvariansen i varje period \(t \) (halvår). Felvariansen beräknas för varje halvår som en oberoende population i form av

\[\sigma_{et}^2 = \frac{1}{n_t - 1} \sum_{i=1}^{n_t^p} (E_{ti} - \bar{E}_t)^2, t = 1,2 \]

där \(E_{ti} \) motsvarar de individuella felen för enheter i halvår \(t \) och \(\bar{E}_t \) motsvarar det genomsnittliga felet i urvalet i halvår \(t \).

Observera att man måste använda sitt yrkesmässiga omdöme och utgå från historiska kunskaper för att fastställa värdena för de förväntade varianserna i båda halvårsperioderna. Det går fortfarande att göra ett preliminärt urval/piloturval precis som beskrivs tidigare för standardmetoden för enkelt slumpmässigt urval, men endast för det första halvåret. Vid den första observationen har utgifterna för det andra halvåret inte uppstått än och det finns inga objektiva data (utom de historiska) att tillgå. Om piloturval används, kan de som vanligt därefter användas som en del av det urval som valts för granskning.

Revisorn kan anse att den förväntade felvariansen för det andra halvåret är densamma som för det första halvåret. Då går det att använda en förenklad metod för att beräkna den sammanlagda urvalsstorleken som

\[n = \left(\frac{N \times z \times \sigma_{e1}}{TE - AE} \right)^2 \]

Med denna förenklade metod behövs det endast information om variationen i felen under den första observationsperioden. Det underliggande antagandet är att variationen bland felen kommer att vara ungefär lika stor under båda halvåren.

Tänk också på att för att kunna använda formlerna för att beräkna urvalsstorleken måste man ha värden för \(N_1 \) och \(N_2 \), dvs. antalet insatser i populationen för det första och andra halvåret. När urvalets storlek beräknas kommer värdet för \(N_1 \) att vara känt, men värdet på \(N_2 \) kommer att vara okänt och måste tillräknas enligt revisorns förväntningar.
(och även utifrån historisk information). Det är oftast inte något problem eftersom alla insatser som är aktiva under det andra halvåret redan finns under det första halvåret och alltså är $N_1 = N_2$.

När den totala urvalsstorleken n har beräknats fördelas urvalet per halvår på följande sätt:

$$n_1 = \frac{N_1}{N} n$$

och

$$n_2 = \frac{N_2}{N} n$$

Andra halvåret

Vid första observationsperioden gjordes vissa antaganden om den efterföljande observationsperioden (vanligtvis det efterföljande halvåret). Om populationens egenskaper under de efterföljande perioderna skiljer sig avsevärt från antagandena kan urvalets storlek för den efterföljande perioden behöva justeras.

Vid den andra granskningsperioden (t.ex. halvåret) kommer mer information att finnas tillgänglig.

- Det korrekta antalet insatser som är aktiva under halvår N_2 är känt.
- Felens standardavvikelse i urvalet s_{e1}, som beräknades på urvalet för det första halvåret, finns redan tillgänglig.
- Det går nu att göra en mer tillförlitlig bedömning av standardavvikelsen för felen under det andra halvåret σ_{e2} med verkliga data.

Om dessa parametrar inte skiljer sig dramatiskt från dem som beräknades för det första halvåret med utgångspunkt i analytikerns förväntningar behöver den ursprungligen planerade urvalsstorleken för det andra halvåret (n_2) inte justeras. Om revisorn emellertid upptäcker att de ursprungliga förväntningarna skiljer sig avsevärt från populationens faktiska egenskaper kan urvalets storlek behöva anpassas för att ta hänsyn till dessa felaktiga skattningar. I så fall bör urvalets storlek för det andra halvåret räknas om med

$$n_2 = \frac{(z \cdot N_2 \cdot \sigma_{e2})^2}{(TE - AE)^2 - z^2 \frac{N_1^2}{n_1} \cdot s_{e1}^2}$$

där s_{e1} är standardavvikelsen för de fel som beräknats utifrån urvalet för det första halvåret och σ_{e2} är en skattning av standardavvikelsen för felen under det andra halvåret baserad på historiska kunskaper (eventuellt justerade med information från det första halvåret) eller ett preliminärt urval/piloturval från det andra halvåret.
6.1.3.3 Beräknat fel

Med utgångspunkt i de två delurvalen för varje halvår kan det beräknade felet på populationsnivå beräknas med de två vanliga metoderna: skattning av genomsnitt per enhet och kvotskattning.

Skattning av genomsnitt per enhet

För varje halvår ska det genomsnittliga felet per insats som har observerats i urvalet multipliceras med antalet insatser i urvalet (N_i). Sedan summeras de resultat som har erhållits för de två halvåren, vilket ger det beräknade felet

$$EE_1 = \frac{N_1}{n_1} \sum_{i=1}^{n_1} E_{1i} + \frac{N_2}{n_2} \sum_{i=1}^{n_2} E_{2i}$$

Kvotskattning

För varje halvår ska den genomsnittliga felprocent som har observerats i urvalet multipliceras med populationens bokförda värde för respektive halvår (BV_t):

$$EE_2 = BV_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{\sum_{i=1}^{n_1} BV_{1i}} + BV_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{\sum_{i=1}^{n_2} BV_{2i}}$$

Felprocenten för urvalet i varje halvår räknas helt enkelt ut genom att det sammanlagda felet i urvalet för halvåret divideras med de sammanlagda utgifterna för insatserna i samma urval.

Valet mellan de båda metoderna bör baseras på de överväganden som beskrivs för den standardiserade metoden för enkelt slumpmässigt urval.

6.1.3.4 Precision

Precis som för standardmetoden är precision (urvalsfel) ett mått på osäkerheten i beräkningen (extrapolering). Den beräknas på olika sätt beroende på vilken metod som används för extrapoleringen.

Skattning av genomsnitt per enhet (absoluta fel)

Precisionen räknas fram med följande formel:

$$SE = z \times \sqrt{\frac{N_1^2 \times s_{e1}^2}{n_1} + \frac{N_2^2 \times s_{e2}^2}{n_2}}$$
där \(s_{et} \) är standardavvikelsen för felen i urvalet för halvår \(t \) (beräknas nu ur samma urval som användes för att beräkna felen i populationen).

\[
s_{et}^2 = \frac{1}{n_t - 1} \sum_{i=1}^{n_t} (E_{ti} - \bar{E}_t)^2
\]

Kvotskattning (felprocent)

Precisionen räknas fram med följande formel:

\[
SE = z \times \sqrt{\left(N_1^2 \times \frac{s_{q1}^2}{n_1} + N_2^2 \times \frac{s_{q2}^2}{n_2} \right) / n_t}
\]

där \(s_{qt} \) är standardavvikelsen för variabeln \(q \) i urvalet för halvår \(t \), där

\[
q_{ti} = E_{ti} - \frac{\sum_{i=1}^{n_t} E_{ti}}{\sum_{i=1}^{n_t} BV_{ti}} \times BV_{ti}.
\]

6.1.3.5 Utvärdering

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i extrapoleringen

\[
ULE = EE + SE
\]

därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser med exakt samma metod som beskrivs i avsnitt 6.1.1.5.

6.1.3.6 Exempel

En revisionsmyndighet har bestämt sig för att fördela arbetsbördan med granskningen över två perioder. I slutet av det första halvåret delar revisionsmyndigheten in populationen i två grupper som motsvarar båda halvåren. I slutet av första halvåret har populationen följande egenskaper:

| Deklarerade utgifter vid utgången av första halvåret | 1 237 952 015 euro |
Revisionsmyndigheten vet av erfarenhet att alla insatser som ingår i programmen vid utgången av referensperioden redan brukar vara aktiva i populationen för det första halvåret. Dessutom väntas de deklarerade utgifterna vid utgången av det första halvåret motsvara ungefär 30 % av de sammanlagda deklarerade utgifterna vid referensperiodens utgång. Utifrån dessa antaganden görs en sammanfattning av populationen i följande tabell:

Deklarerade utgifter för första halvåret	1 237 952 015 euro
Deklarerade utgifter för andra halvåret (förväntade)	2 888 554 702 euro
Populationens storlek (insatser – period 1)	3 852
Populationens storlek (insatser – period 2, förväntade)	3 852

De systemrevisioner som genomförts av revisionsmyndigheten har gett en hög garantinivå. Urvalet för detta program kan följaktligen göras med en konfidensnivå på 60 %.

För den första perioden beräknas den totala urvalsstorleken (för de båda halvåren tillsammans) enligt följande:

\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 \]

där \(\sigma_w^2 \) är det viktade medelvärdet av varianserna i felen för varje halvår:

\[\sigma_w^2 = \frac{N_1}{N} \sigma_{e1}^2 + \frac{N_2}{N} \sigma_{e2}^2 \]

och \(\sigma_{et}^2 \) är felvariansen i varje period t (halvår). Felvariansen beräknas för varje halvår som en oberoende population i form av

\[\sigma_{et}^2 = \frac{1}{n_t^p - 1} \sum_{i=1}^{n_t^p} (E_{ti} - \bar{E}_t)^2, t = 1,2 \]

där \(E_{ti} \) motsvarar de individuella felen för enheter under halvår t och \(\bar{E}_t \) motsvarar det genomsnittliga felet i urvalet för halvår t.

Eftersom värdet på \(\sigma_{et}^2 \) är okänt beslutade revisionsmyndigheten att göra ett preliminärt urval på 20 insatser vid utgången av första halvåret under det innevarande året. Standardavvikelsen för felen i detta preliminära urval för det första halvåret är 72 091 euro. Revisionsmyndigheten har utifrån sin yrkesmässiga erfarenhet och kännedom om att utgifterna brukar vara större under andra halvåret än det första gjort ett preliminärt antagande om att standardavvikelsen för felen under det andra halvåret
kommer att vara 40 % större än under det första, dvs. 100 927,4 euro. Det viktade medelvärdet för felvariansen är alltså

\[
\sigma_w^2 = \frac{N_1}{N_1 + N_2} \sigma_1^2 + \frac{N_2}{N_1 + N_2} \sigma_2^2
\]

\[
= \frac{3852}{3852 + 3852} \times \frac{3852}{72091^2} + \frac{3852}{3852 + 3852} \times 100 927,4^2
\]

Lägg märke till att populationens storlek för varje halvår är lika med antalet aktiva insatser (med utgifter) under varje halvår.

Under det första halvåret planeras urvalets totala storlek för hela året till

\[
N = \left(\frac{(N_1 + N_2) \times z \times \sigma_w}{TE - AE} \right)^2
\]

där \(z \) är 0,842 (koefficient som motsvarar en konfidensnivå på 60 %) och det godtagbara felet \(TE \) är 2 % (högsta väsentlighetsnivå enligt förordningen) av det bokförda värdet. Det totala bokförda värdet omfattar det verkliga bokförda värdet vid utgången av det första halvåret plus det förväntade bokförda värdet för andra halvåret (1 237 952 015 euro + 2 888 554 702 euro = 4 126 506 717 euro), vilket betyder att det godtagbara felet är 2 % x 4 126 506 718 euro = 82 530 134 euro. Det preliminära urvalet för populationen under det första halvåret ger en felprocent för urvalet på 0,6 %. Revisionsmyndigheten förväntar sig att felprocenten kommer att vara konstant över året. Det förväntade felet \(AE \) blir alltså 0,6 % x 4 126 506 718 euro = 24 759 040 euro. Den planerade urvalsstorleken för hela året är

\[
n = \left(\frac{(3852 + 3852) \times 0,842 \times \sqrt{7 691 726 176}}{82 530 134 - 24 759 040} \right)^2 \approx 97
\]

Urvalets fördelning efter halvår blir

\[
n_1 = \frac{N_1}{N_1 + N_2} \ n \approx 49
\]

och

\[
n_2 = n - n_1 = 49
\]
Urvalet för det första halvåret gav följande resultat:

<table>
<thead>
<tr>
<th>Bokfört värde för urvalet – första halvåret</th>
<th>13 039 581 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanlagt fel för urvalet – första halvåret</td>
<td>199 185 euro</td>
</tr>
<tr>
<td>Standardavvikelse för fel i urvalet – första halvåret</td>
<td>69 815 euro</td>
</tr>
</tbody>
</table>

Framför allt känner man till det korrektta antalet aktiva insatser under det andra halvåret. Urvalets felvarians s_{e1} beräknad från urvalet för det första halvåret är redan tillgänglig och det går nu att göra en mer korrekt bedömning av standardavvikelsen för felen i det andra halvåret s_{e2} med ett preliminärt urval av verkliga data.

Revisionsmyndigheten konstaterar att det antagande om det totala antalet insatser som gjordes vid utgången av första halvåret fortfarande är korrekt. Det finns dock två parametrar där man bör använda uppdaterade siffror.

Det förväntade sammanlagda bokförda värdet för populationen i det andra halvåret bör dessutom ersättas med det verkliga bokförda värdet, dvs. 2 961 930 008 euro i stället för det förväntade värdet på 2 888 554 703 euro.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Utgången av första halvåret</th>
<th>Utgången av andra halvåret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvikelse för fel under första halvåret</td>
<td>72 091 euro</td>
<td>69 815 euro</td>
</tr>
<tr>
<td>Standardavvikelse för fel under andra halvåret</td>
<td>100 475 euro</td>
<td>108 369 euro</td>
</tr>
<tr>
<td>Sammanlagda utgifter under andra halvåret</td>
<td>2 888 554 703 euro</td>
<td>2 961 930 008 euro</td>
</tr>
</tbody>
</table>
Med hänsyn till dessa justeringar beräknas urvalets storlek för andra halvåret till

\[
n_2 = \frac{(z \times N_2 \times \sigma_{e2})^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2}
\]

\[
= \frac{(0,842 \times 3852 \times 108369)^2}{(83997640 - 25199292)^2 - 0,842^2 \times \frac{3852^2}{49} \times 69815^2} = 52
\]

En granskning av 49 insatser för första halvåret och dessa 52 insatser för andra halvåret kommer att ge revisorn information om det sammanlagda felet för insatserna i urvalet. Det preliminära urvalet på 20 insatser används som en del av huvudurvalet. Därför behöver revisorn endast välja ytterligare 32 insatser för andra halvåret.

Urvalet för det andra halvåret gav följande resultat:

Bokfört värde för urvalet – andra halvåret	34 323 574 euro
Sammanlagt fel för urvalet – andra halvåret	374 790 euro
Standardavvikelse för fel i urvalet – andra halvåret	59 489 euro

Med utgångspunkt i de två urvalen kan det beräknade felet på populationsnivå beräknas med de två vanliga metoderna: skattning av genomsnitt per enhet och kvotskattning. För att avgöra om genomsnitt per enhet eller kvotskattning är den bästa beräkningsmetoden ska revisionsmyndigheten beräkna kvoten av kovariansen mellan felen och de bokförda värdena och variationen i de bokförda värdena i insatserna i urvalet. Eftersom denna kvot är större än hälften av urvalets felprocent kan revisionsmyndigheten vara säker på att kvotskattning är den mest tillförlitliga beräkningsmetoden. Av pedagogiska skäl visar vi båda beräkningsmetoderna nedan.

Enligt den första metoden ska det genomsnittliga fel per insats som har observerats i urvalet multipliceras med antalet insatser i urvalet (\(N_t\)). Sedan summeras de resultat som har erhållits för de två halvåren, vilket ger det beräknade felet

\[
EE_1 = \frac{N_1}{n_1} \sum_{i=1}^{49} E_{1i} + \frac{N_2}{n_2} \sum_{i=1}^{52} E_{2i} = \frac{3852}{49} \times 199185 + \frac{3852}{52} \times 374790
\]

\[
= 43 421 670
\]
Kvotskattning innebär att den genomsnittliga felprocent som har observerats i urvalet ska multipliceras med populationens bokförda värde för respektive halvår (BV_t):

$$EE_2 = BV_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{\sum_{i=1}^{n_1} BV_{1i}} + BV_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{\sum_{i=1}^{n_2} BV_{2i}}$$

$$= 1 237 952 015 \times \frac{199 185}{13 039 581} + 2 961 930 008 \times \frac{374 790}{34 323 574}$$

$$= 51 252 484$$

Om skattning av genomsnitt per enhet används blir den beräknade felprocenten

$$r_1 = \frac{43 421 670}{1 237 952 015 + 2 961 930 008} = 1,03 \%$$

och med kvotskattning blir den

$$r_2 = \frac{51 252 451}{1 237 952 015 + 2 961 930 008} = 1,22 \%$$

Precisionen beräknas på olika sätt beroende på vilken metod som används för beräkningen. För skattning av genomsnitt per enhet beräknas precisionen med följande formel:

$$SE_1 = z \times \sqrt{\left(\frac{N_1^2 \times s_{e1}^2}{n_1} + N_2^2 \times s_{e2}^2 \right)\left(\frac{N_1^2}{n_1} + \frac{N_2^2}{n_2}\right)}$$

$$= 0,842 \times \sqrt{3 852^2 \times \frac{69 815^2}{49} + 3 852^2 \times \frac{59 489^2}{52}} = 41 980 051$$

För kvotskattning måste standardavvikelsen för variabeln q beräknas (avsnitt 6.1.3.4):

$$q_{ti} = E_{ti} - \frac{\sum_{i=1}^{n_t} E_{ti}}{\sum_{i=1}^{n_t} BV_{ti}} \times BV_{ti}.$$

Standardavvikelsen är 54 897 euro respektive 57 659 euro för de olika halvåren. Precisionen beräknas alltså med

$$SE_2 = z \times \sqrt{\left(\frac{N_1^2 \times s_{q1}^2}{n_1} + N_2^2 \times s_{q2}^2 \right)\left(\frac{N_1^2}{n_1} + \frac{N_2^2}{n_2}\right)}$$

$$= 0,842 \times \sqrt{3 852^2 \times \frac{54 897^2}{49} + 3 852^2 \times \frac{57 659^2}{52}} = 36 325 544$$
Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser:

\[ULE_1 = EE_1 + SE_1 = 43421670 + 41980051 = 85401721 \]

eller

\[ULE_2 = EE_2 + SE_2 = 51252484 + 36325544 = 87578028 \]

När tröskelvärde för väsentlighet på 2% av populationens sammanlagda bokförda värde (2 % x 4 199 882 023 euro = 83 997 640 euro) slutligen jämförs med de beräknade resultaten från kvotskattningen (den valda beräkningsmetoden) kan vi konstatera att det högsta godtagbara felet är större än det beräknade felet, men lägre än den övre gränsen. Se avsnitt 4.12 för en mer ingående beskrivning av den analys som ska göras.

6.2 Skattning av skillnad

6.2.1 Standardmetod

6.2.1.1 Inledning

Skattning av skillnad är också en statistisk metod som baseras på urval med lika sannolikhet. Metoden bygger på att felen i urvalet extrapoleras och att det beräknade felet subtraheras från de sammanlagda deklarerade utgifterna i populationen för att bedöma de korrekta utgifterna i populationen (dvs. de utgifter som skulle ha erhållits om alla insatser i populationen hade granskats).

Denna metod är mycket lik enkelt slumpmässigt urval och den största skillnaden är att man använder ett mer sofistikerat extrapoleringssverktyg.

Denna metod är särskilt användbar om man vill beräkna de korrekta utgifterna för populationen, om felnivån är relativt konstant i populationen och om det bokförda värdet för olika insatser tenderar att vara likartat (låg variation). Den tenderar att vara
bättre än MUS när felens variation är lätt eller har ett svagt eller negativt samband med bokförda värden. Å andra sidan tenderar denna metod att vara sämre än MUS när felens variation är stor eller posistativt samband med bokförda värden.

I likhet med alla andra metoder kan denna metod kombineras med stratifiering (gynnsamma förutsättningar för stratifiering diskuteras i avsnitt 5.2).

6.2.1.2 Urvalets storlek

Beräkningen av urvalets storlek \(n \) i samband med skattning av skillnad bygger på exakt samma information och formler som används för enkelt slumpmässigt urval:

- Populationsstorlek \(N \).
- Konfidensnivå som fastställts utifrån systemgranskningar och åtställande koefficient \(z \) från en normalfördelning (se avsnitt 5.3).
- Högsta godtagbara fel \(TE \) (vanligtvis 2% av de sammanlagda utgifterna).
- Förväntat fel \(AE \), valt av revisorn utifrån yrkesmässig erfarenhet och tidigare information.
- Standardavvikelsen \(\sigma_e \) för felens.

Urvalets storlek beräknas på följande sätt:

\[
n = \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2
\]

där \(\sigma_e \) är standardavvikelsen för fel i populationen. Kom ihåg att i likhet med enkelt slumpmässigt urval är standardavvikelsen nästan aldrig känd i förväg och revisionsmyndigheterna kommer att behöva basera detta på historiska data eller på ett litet preliminärt urval/piloturval (vi rekommenderar ett urval på minst 20–30 enheter). Tänk också på att detta piloturval därefter kan användas som en del av det urval som valts för granskning. Mer information om hur standardavvikelsen beräknas finns i avsnitt 6.1.1.2.

6.2.1.3 Extrapolering

Det beräknade felet på populationsnivå kan räknas fram med utgångspunkt i slumpmässigt urval av insatserna, vars storlek har beräknats enligt ovanstående formel, genom att det genomsnittliga fel som har observerats per insats i urvalet multipliceras med antalet insatser i populationen, vilket ger det beräknade felet

\[
EE = N \times \frac{\sum_{i=1}^{n} E_i}{n}
\]
där \(E_i \) motsvarar de individuella felen för enheter i urvalet och \(\bar{E} \) motsvarar det genomsnittliga felet i urvalet.

I ett andra steg kan det korrekta bokförda värdet (de korrekta utgifter som skulle ha konstaterats om alla insatser i populationen hade granskats) beräknas genom att det beräknade felet (EE) subtraheras från det bokförda värdet (BV) i populationen (deklarerade utgifter). Det beräknade korrekta bokförda värdet (CBV) är

\[
CBV = BV - EE
\]

6.2.1.4 Precision

Precisionen i beräkningen (mått på osäkerheten i samband med beräkningen) räknas ut genom

\[
SE = N \times z \times \frac{s_e}{\sqrt{n}}
\]

där \(s_e \) är standardavvikelsen för felen i urvalet (beräknas nu ur samma urval som användes för att beräkna felen i populationen).

\[
s_e^2 = \frac{1}{n-1} \sum_{i=1}^{n} (E_i - \bar{E})^2
\]

6.2.1.5 Utvärdering

För att kunna dra någon slutsats om huruvida felen är väsentliga bör man först beräkna den lägre gränsen för det korrigerade bokförda värdet. Den lägre gränsen är lika med

\[
LL = CBV - SE
\]

Både beräkningen för det korrekta bokförda värdet och den lägre gränsen bör jämföras med differensen mellan det bokförda värdet (deklarerade utgifter) och det högsta godtagbara felet (TE), vilket motsvarar väsentlighetsnivån gånger det bokförda värdet:

\[
BV - TE = BV - 2\% \times BV = 98\% \times BV
\]
• Om $BV - TE$ är större än CBV bör revisorn dra slutsatsen att det finns tillräckliga bevis för att felen i programmet ligger över tröskelvärdet för väsentlighet:

![Diagram](image)

• Om $BV - TE$ ligger under den lägsta gränsen $CBV - SE$ finns det tillräckliga bevis för att felen i programmet ligger under tröskelvärdet för väsentlighet.

![Diagram](image)

Om $BV - TE$ ligger mellan den nedre gränsen $CBV - SE$ och CBV, se avsnitt 4.12 för en mer ingående beskrivning av den analys som ska göras.

![Diagram](image)

6.2.1.6 Exempel

Vi tänker oss att en population utgörs av utgifter som har deklarerats till kommissionen under ett givet år för insatser i ett program. De systemrevisioner som genomförts av revisionsmyndigheten har gett en hög garantinivå. Urvälet för detta program kan följaktligen göras med en konfidensnivå på 60%.

I följande tabell sammanfattas detaljerna för populationen:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>4 199 882 024 euro</td>
</tr>
</tbody>
</table>

Utifrån förra årets granskning förväntar sig revisionsmyndigheten en felprocent på 0,7 % (förra årets felprocent) och uppskattar standardavvikelsen för felen till 168 397 euro.
Det första steget är att beräkna hur stort urvalet måste vara med hjälp av följande formel:

\[
n = \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2
\]

där \(z \) är 0,842 (koefficient som motsvarar en konfidensnivå på 60 %), \(\sigma_e \) är 168 397 euro, \(TE \) det godtagbara felet är 2 % av det bokförda värdet (högsta väsentlighetsnivå enligt förordningen), dvs. 2 % \(\times \) 4 199 882 024 euro = 83 997 640 euro och \(AE \) det förväntade felet är 0,7 %, dvs. 0,7 % \(\times \) 4 199 882 024 euro = 29 399 174 euro:

\[
n = \left(\frac{3 \, 852 \times 0,842 \times 168 \, 397}{83 \, 997 \, 640 - 29 \, 399 \, 174} \right)^2 \approx 101
\]

Minsta urvalsstorlek är följaktligen 101 insatser.

En granskning av dessa 101 insatser kommer att ge revisorn det sammanlagda felet för insatserna i urvalet.

Resultatet för urvalet sammanfattas i följande tabell:

<table>
<thead>
<tr>
<th>Bokfört värde för urvalet</th>
<th>124 944 535 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanlagt fel för urvalet</td>
<td>1 339 765 euro</td>
</tr>
<tr>
<td>Felens standardavvikelse i urvalet</td>
<td>162 976 euro</td>
</tr>
</tbody>
</table>

Det beräknade felet på populationsnivå är

\[
EE = N \times \frac{\sum_{i=1}^{101} E_i}{n} = 3 \, 852 \times \frac{1 \, 339 \, 765}{101} = 51 \, 096 \, 780
\]

vilket motsvarar en beräknad felprocent på

\[
r = \frac{51 \, 096 \, 780}{4 \, 199 \, 882 \, 024} = 1,22 \%
\]

Det korrekta bokförda värdet (de korrekta utgifter som skulle ha konstaterats om alla insatser i populationen hade granskats) beräknas genom att det beräknade felet (\(EE \))
subtraheras från det bokförda värdet \((BV)\) i populationen (deklarerade utgifter). Det beräknade korrekta bokförda värdet \((CBV)\) är

\[CBV = 4\,199\,882\,024 - 51\,096\,780 = 4\,148\,785\,244 \]

Precisionen i beräkningen beräknas med

\[SE = N \times z \times \frac{s_e}{\sqrt{n}} = 3\,852 \times 0,842 \times \frac{162\,976}{\sqrt{101}} = 52\,597\,044 \]

Med det beräknade felet i kombination med precisionen går det att räkna fram en övre gräns för felprocenten. Denna övre gräns utgörs av kvoten mellan den övre felgränsen och det bokförda värdet för populationen. Den övre gränsen för felprocenten är alltså

\[r_{UL} = \frac{EE + SE}{BV} = \frac{51\,096\,780 + 52\,597\,044}{4\,199\,882\,024} = 2,47\% \]

För att kunna dra någon slutsats om huruvida felen är väsentliga bör man först beräkna den lägre gränsen för det korrekta bokförda värdet. Den lägre gränsen är lika med

\[LL = CBV - SE = 4\,148\,785\,244 - 52\,597\,044 = 4\,096\,188\,200 \]

Både beräkningen för det korrekta bokförda värdet och den lägre gränsen bör jämföras med differensen mellan det bokförda värdet (deklarerade utgifter) och det högsta godtagbara felet \((TE)\):

\[BV - TE = 4\,199\,882\,024 - 83\,997\,640 = 4\,115\,884\,384 \]

Eftersom \(BV - TE\) ligger mellan den nedre gränsen \(LL = CBV - SE\) och \(CBV\), se avsnitt 4.12 för en mer ingående beskrivning av den analys som ska göras.
6.2.2 **Stratifierad skattning av skillnad**

6.2.2.1 **Inledning**

I stratifierade skattningar av skillnad delas populationen in i delpopulationer som kallas stratum och oberoende stickprov tas ur varje stratum med hjälp av standardmetoden för skattning av skillnad.

Skälen till och kandidatkriterier för att använda stratifiering är desamma som för enkelt slumpmässigt urval (se avsnitt 6.1.2.1). Precis som för enkelt slumpmässigt urval är stratifiering efter utgiftsnivå per insats ofta en bra metod när felnivån förväntas ha ett samband med utgiftsnivån.

Om stratifieringen görs efter utgiftsnivå, och om det går att hitta ett fåtal insatser av mycket högt värde, rekommenderar vi att de tas med i ett stratum med poster av högt värde, som ska granskas till 100%. I så fall bör de poster som ingår i det 100-procentiga stratumet behandlas separat och urvalsstegen ska endast tillämpas på populationen med poster av lågt värde. Tänk på att den planerade precisionen för fastställande av urvalsstorlek emellertid bör baseras på populationens sammanlagda bokförda värde. Eftersom felkällan är stratumet med poster av lågt värde, men den planerade precisionen ska beräknas på populationsnivå, bör det godtagbara felet och det förväntade felet också beräknas på populationsnivå.

6.2.2.2 **Urvalets storlek**

Urvalets storlek beräknas med samma metod som för enkelt slumpmässigt urval

\[
n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2
\]

där \(\sigma_w^2 \) är det viktade medelvärde av varianserna i felen för hela uppsättningen av stratum (se avsnitt 6.1.2.2 för närmare detaljer).

Som vanligt kan varianserna baseras på historiska kunskaper eller på ett litet preliminärt urval/piloturval. Observera att detta piloturval därefter kan användas som en del av det urval som valts för granskning.

När den totala urvalsstorleken \(n \) har beräknats görs urvalets fördelning efter stratum på följande sätt:

\[
n_h = \frac{N_h}{N} \times n
\]
Detta är samma generella fördelningsmetod som också används för enkelt slumpmässigt urval och som kallas proportionell fördelning. Även här finns det andra fördelningsmetoder som kan användas.

6.2.2.3 Extrapolering

Baserat på H slumpmässigt utvalda insatser, där storleken på var och en har beräknats enligt formeln ovan, kan det beräknade felet på populationsnivå beräknas som

$$EE = \sum_{h=1}^{H} N_h \sum_{i=1}^{n_h} \frac{E_i}{n_h}$$

För varje populationsgrupp (stratum) ska i praktiken det genomsnittliga fel som har observerats i urvalet multipliceras med antalet insatser i urvalet (N_h). Sedan summeras de resultat som har erhållits för varje stratum, vilket ger det beräknade felet.

I ett andra steg kan det korrekta bokförda värdet (de korrekta utgifter som hade konstaterats om samtliga insatser i populationen hade granskats) beräknas med följande formel:

$$CBV = BV - \sum_{h=1}^{H} N_h \sum_{i=1}^{n_h} \frac{E_i}{n_h}$$

I formeln ovan ska 1) det genomsnittliga fel som har observerats i urvalet beräknas i varje stratum, 2) det genomsnittliga felet multipliceras med stratumets storlek (N_h) i varje stratum, 3) resultaten för samtliga stratum summeras, 4) detta värde dras av från det totala bokförda värdet för populationen (BV). Summan är en beräkning av det korrekta bokförda värdet (CBV) i populationen.

6.2.2.4 Precision

Tänk på att precision (urvalsfel) är ett mätt på osäkerheten i beräkningen (extrapolering). Den stratifierade skillnadsskatningen räknas fram med följande formel:

$$SE = N \times z \times \frac{S_w}{\sqrt{n}}$$
där s^2_ω är det viktade medelvärdet av felvariansen för hela uppsättningen stratum beräknas ur samma urval som användes för att beräkna fel i populationen:

$$s^2_\omega = \sum_{i = 1}^{H} \frac{N_h}{N} s^2_{e_h}, h = 1, 2, ..., H$$

och $s^2_{e_h}$ är den skattade felvariansen för urvalet i stratum h

$$s^2_{e_h} = \frac{1}{n_h - 1} \sum_{i = 1}^{n_h} (E_{hi} - \bar{E}_h)^2, h = 1, 2, ..., H$$

6.2.2.5 Utvärdering

För att kunna dra någon slutsats om huruvida felen är väsentliga bör man först beräkna den lägre gränsen för det korrigerade bokförda värdet. Den lägre gränsen är lika med $LL = CBV - SE$

Både beräkningen för det korrekta bokförda värdet och den lägre gränsen bör jämföras med differensen mellan det bokförda värdet (deklarerade utgifter) och det högsta godtagbara felet (TE):

$$BV - TE = BV - 2 \% \times BV = 98 \% \times BV$$

Slutligen bör det dras slutsatser från revisionen med exakt samma metod som beskrivs i avsnitt 6.2.1.5 för skattning av skillnad enligt standardmetoden.

6.2.2.6 Exempel

Antag att populationen utgörs av utgifter som har deklarerats för kommissionen under ett givet år för insatser i en grupp av program. Förvaltnings- och kontrollsystemet är gemensamt för programgruppen och de systemgranskningar som har genomförts av revisionsmyndigheten har gett en hög garantinivå. Urvalet för detta program kan följaktligen göras med en konfidensnivå på 60 %.

Revisionsmyndigheten har anledning att anta att det finns en avsevärd risk för fel i insatser med höga värden, oavsett vilket program de tillhör. Vidare finns det skäl att anta att felprocenten varierar mellan de olika programmen. Därför beslutar
revisionsmyndigheten att stratifiera populationen efter program och efter utgifter (och att samla alla insatser med ett bokfört värde över väsentlighetsnivån i ett 100-procentigt urvalsstratum).

I följande tabell sammanfattas den tillgängliga informationen:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>4 872</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populationsstorlek – stratum 1 (antal insatser i program 1)</td>
<td>1 520</td>
</tr>
<tr>
<td>Populationsstorlek – stratum 2 (antal insatser i program 2)</td>
<td>3 347</td>
</tr>
<tr>
<td>Populationsstorlek – stratum 3 (antal insatser vars bokförda värde > väsentlighetsnivån)</td>
<td>5</td>
</tr>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>6 440 727 190 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 1 (summan av utgifter i program 1)</td>
<td>3 023 598 442 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 2 (summan av utgifter i program 2)</td>
<td>2 832 769 525 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 3 (summan av utgifter för insatser vars bokförda värde > väsentlighetsnivån)</td>
<td>584 359 223 euro</td>
</tr>
</tbody>
</table>

Det 100-procentiga urvalsstratetet med de fem insatserna av högt värde bör behandlas separat enligt beskrivningen i avsnitt 6.2.2.1. I fortsättningen motsvarar alltså värdet på N det totala antalet insatser i population, med avdrag för antalet insatser som ingår i det 100-procentiga urvalsstratetet, dvs. 4 867 (= 4 872 – 5) insatser.

Det första steget är att beräkna hur stort urvalet måste vara med hjälp av följande formel:

$$n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2$$

där z är 1,282 (koefficient som motsvarar en konfidensnivå på 60 %) och det godtagbara felet TE är 2 % (högsta väsentlighetsnivå enligt förordningen) av det bokförda värdet, dvs. 2 % x 6 440 727 190 euro = 128 814 544 euro. Med utgångspunkt i erfarenheterna från föregående år och slutsatsen i rapporten om förvaltnings- och kontrollsystem förväntar sig revisionsmyndigheten en felprocent på högst 0,4 %, Därmed blir det förväntade felet AE 0,4 %, dvs. 0,4 % x 6 440 727 190 euro = 25 762 909 euro.

Eftersom det tredje stratumet är ett 100-procentigt urvalsstratum är urvalets storlek fast för detta stratum och är lika med populationens storlek, dvs. de fem insatserna av högt
värde. Urvalsstorleken för de två återstående stratumen beräknas med formeln ovan, där σ_w^2 är det viktade medelvärdet av felvarianserna i de två återstående stratumen

$$\sigma_w^2 = \sum_{i=1}^{2} \frac{N_h N}{N} \sigma_{e_h}^2, h = 1,2$$

och $\sigma_{e_h}^2$ är felvariansen i varje stratum. Felvariansen beräknas för varje stratum som en oberoende population i form av

$$\sigma_{e_h}^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (E_{hi} - \bar{E}_{h})^2, h = 1,2, ..., H$$

där E_{hi} motsvarar de individuella felen för enheter i stratum h och \bar{E}_{h} motsvarar det genomsnittliga felet i urvalet i stratum h. Ett preliminärt urval på 20 insatser i stratum 1 gav en skattning av standardavvikelsen för felen på 21 312 euro.

Samma förfarande följdes för populationen i stratum 2. Ett preliminärt urval på 20 insatser i stratum 2 gav en skattning av standardavvikelsen för felen på 215 546 euro:

| Stratum 1 – preliminär skattning av standardavvikelse för felen | 21 312 euro |
| Stratum 2 – preliminär skattning av standardavvikelse för felen | 215 546 euro |

Det viktade medelvärdet för felvariansen i dessa båda stratum är alltså

$$\sigma_w^2 = \frac{1 520}{4 867} \times 21 312^2 + \frac{3 347}{4 867} 215 546^2 = 32 092 103 451$$

Den minsta urvalsstorleken beräknas med

$$n = \left(\frac{4 867 \times 0,845 \times \sqrt{32 092 103 451}}{128 814 544 - 25 762 909} \right)^2 \approx 51$$

Dessa 51 insatser fördelas efter stratum enligt följande:

$$n_1 = \frac{1 520}{4 867} \times 51 \approx 16$$

$$n_2 = n - n_1 = 35$$

och

$$n_3 = N_3 = 5$$
Det sammanlagda urvalet omfattar alltså 60 insatser,

- 20 insatser i det preliminära urvalet för stratum 1, plus
- 35 insatser i stratum 2 (de 20 insatserna i det preliminära urvalet plus ett ytterligare urval på 15 insatser), plus
- 5 insatser av högt värde.

I följande tabell visas resultatet för hela urvalet på 60 insatser:

<table>
<thead>
<tr>
<th>Urvalresultat – stratum 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bokfört värde för urvalet</td>
</tr>
<tr>
<td>B</td>
<td>Sammanlagt fel för urvalet</td>
</tr>
<tr>
<td>C</td>
<td>Genomsnittligt fel i urvalet (C = B / 16)</td>
</tr>
<tr>
<td>D</td>
<td>Felens standardavvikelse i urvalet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urvalresultat – stratum 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Bokfört värde för urvalet</td>
</tr>
<tr>
<td>F</td>
<td>Sammanlagt fel för urvalet</td>
</tr>
<tr>
<td>G</td>
<td>Genomsnittligt fel i urvalet (G = F / 35)</td>
</tr>
<tr>
<td>H</td>
<td>Felens standardavvikelse i urvalet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urvalresultat – stratum med 100-procentig granskning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Bokfört värde för urvalet</td>
</tr>
<tr>
<td>J</td>
<td>Sammanlagt fel för urvalet</td>
</tr>
<tr>
<td>K</td>
<td>Genomsnittligt fel i urvalet (I = J / 5)</td>
</tr>
</tbody>
</table>

Beräkningen av felet för de båda urvalsstratumen beräknas genom att det genomsnittliga felet i urvalet multipliceras med populationsstorleken. Det förväntade felet på populationsnivån är summan av dessa båda siffror, adderad till det fel som observerats i det 100-procentiga urvalsstratumet:

\[
EE = \sum_{h=1}^{3} 1 520 \times 3 869 + 3 347 \times 7 564 + 7 240 855 = 38 438 139
\]

Den beräknade felprocenten beräknas som kvoten mellan det extrapolerade felet och det bokföra värde för populationen (sammanlagda utgifter).

\[
r_1 = \frac{39 908 283}{6 440 727 190} = 0,60 \%
\]

Det korrekt bokföra värden (de korrekta utgifter som hade konstaterats om samtliga insatser i populationen hade granskats) kan beräknas med följande formel:

\[
CBV = BV - EE = 6 440 727 190 - 39 908 283 = 6 402 289 051
\]
Med tanke på standardavvikelsen för felen i de båda stratumens urval (tabell med urvalsresultat) blir det viktade medelvärde av felvariansen för hela uppsättningen stratum

\[s_w^2 = \sum_{h=1}^{2} \frac{N_h}{N} s_{eh}^2 = \frac{1520}{4867} \times 16783^2 + \frac{3347}{4867} \times 117335^2 = 9555777062 \]

Precisionen i beräkningen beräknas med

\[SE = N \times z \times \frac{s_w}{\sqrt{n}} = 4867 \times 0,842 \times \frac{\sqrt{9555777062}}{\sqrt{55}} = 54016333 \]

För att kunna dra någon slutsats om huruvida felen är väsentliga bör man först beräkna den lägre gränsen för det korrigerade bokförda värdet. Den lägre gränsen är lika med

\[LL = CBV - SE = 6402289051 - 54016333 = 6348272718 \]

Både beräkningen för det korrekta bokförda värdet och den lägre gränsen bör jämföras med differensen mellan det bokförda värdet (deklarerade utgifter) och det högsta godtagbara felet (TE):

\[BV - TE = 6440727190 - 128814544 = 6311912646 \]

Eftersom \[BV - TE \] ligger under den lägsta gränsen \[CBV - SE \] finns det tillräckliga bevis för att felen i programmet ligger under tröskelvärdet för väsentlighet.

6.2.3 Skattning av skillnad – två perioder

6.2.3.1 Inledning
Revisionsmyndigheten kan besluta sig för att genomföra urvalsprocessen under flera perioder under året (vanligtvis två halvår). Den största fördelen med denna metod ligger inte i att urvalet blir mindre, utan framför allt i att arbetsbörдан för granskningen kan spridas ut över året och därmed minska arbetsbelastningen vid årets slut för endast en observation.

Med denna metod delas årspopulationen in i två delpopulationer där var och en motsvarar insatserna och utgifterna för varje halvår. Oberoende urval görs för varje halvår med standardmetoden för enkelt slumpmässigt urval.

6.2.3.2 Urvalets storlek

Urvalets storlek beräknas med samma metod som för enkelt slumpmässigt urval för två halvår. Se avsnitt 6.1.3.2 för en mer ingående beskrivning.

6.2.3.3 Extrapolering

Med utgångspunkt i de två delurvalen för varje halvår kan det beräknade felet på populationsnivå beräknas som

\[EE = N_1 \frac{\sum_{i=1}^{n_1} E_{1i}}{n_1} + N_2 \frac{\sum_{i=1}^{n_2} E_{2i}}{n_2} \]

För varje halvår ska i praktiken det genomsnittliga fel som har observerats i populationen multipliceras med antalet insatser i urvalet (\(N_i \)). Sedan summeras de resultat som har erhållits för båda halvåren.

I ett andra steg kan det korrekta bokförda värdet (de korrekta utgifter som hade konstaterats om samtliga insatser i populationen hade granskats) beräknas med följande formel:

\[CBV = BV - EE \]

där \(BV \) är det bokförda värdet för året (inklusive de båda halvåren) och \(EE \) är det beräknade felet ovan.

6.2.3.4 Precision

Tänk på att precision (urvalsfel) är ett mått på osäkerheten i beräkningen (extrapolering). Precisionen räknas fram med följande formel:
\[SE = z \times \sqrt{N_1^2 \times \frac{s_{e1}^2}{n_1} + N_2^2 \times \frac{s_{e2}^2}{n_2}} \]

där \(s_e \) är standardavvikelsen för felen i urvalet för halvår \(t \) (beräknas nu ur samma urval som användes för att beräkna felen i populationen).

\[s_{et}^2 = \frac{1}{n_t - 1} \sum_{i=1}^{n_t} (E_{ti} - \bar{E}_t)^2 \]

6.2.3.5 **Utvärdering**

För att kunna dra någon slutsats om huruvida felen är väsentliga bör man först beräkna den lägre gränsen för det korrigerade bokförda värdet. Den lägre gränsen är lika med

\[LL = CBV - SE \]

Både beräkningen för det korrekt bokförda värdet och den lägre gränsen bör jämföras med differensen mellan det bokförda värdet (deklarerade utgifter) och det högsta godtagbara felet (\(TE \))

\[BV - TE = BV - 2 \% \times BV = 98 \% \times BV \]

Slutligen bör det dras slutsatser från revisionen med exakt samma metod som beskrivs i avsnitt 6.2.1.5 för skattning av skillnad enligt standardmetoden.

6.2.3.6 **Exempel**

En revisionsmyndighet har bestämt sig för att fördela arbetsbelastningen för granskningen över två halvår. I slutet av första halvåret har populationen följande egenskaper:

| Deklarerade utgifter (DE) vid utgången av första halvåret | 1 237 952 015 euro |
| Populationens storlek (insatser – första halvåret) | 3 852 |

Revisionsmyndigheten vet av tidigare erfarenhet att alla insatser som ingår i programmen vid utgången av referensperioden redan brukar vara aktiva i populationen för det första halvåret. Dessutom väntas de deklarerade utgifterna vid utgången av det första halvåret motsvara ungefär 30 % av de sammanlagda deklarerade utgifterna vid referensperiodens utgång. Utifrån dessa antaganden görs en sammanfattning av populationen i följande tabell:
De systemrevisioner som genomförts av revisionsmyndigheten har gett en låg garantinivå. Urvalet för detta program bör därför göras med en konfidensnivå på 90 %.

Vid utgången av det första halvåret beräknas den totala urvalsstorleken (för de båda halvåren tillsammans) enligt följande:

\[
n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2
\]

där \(\sigma_w^2 \) är det viktade medelvärdet av varianserna i felen för varje halvår:

\[
\sigma_w^2 = \frac{N_1}{N} \sigma_{e1}^2 + \frac{N_2}{N} \sigma_{e2}^2
\]

och \(\sigma_{et}^2 \) är felvariansen i varje period \(t \) (halvår). Felvariansen beräknas för varje halvår som en oberoende population i form av

\[
\sigma_{et}^2 = \frac{1}{n_t^p - 1} \sum_{i=1}^{n_t^p} (E_{t_i} - \bar{E}_t)^2, t = 1, 2
\]

där \(E_{t_i} \) motsvarar de individuella felen för enheter under halvår \(t \) och \(\bar{E}_t \) motsvarar det genomsnittliga felet i urvalet för halvår \(t \).

Eftersom värdet på \(\sigma_{et}^2 \) är okänt beslutade revisionsmyndigheten att göra ett preliminärt urval på 20 insatser vid utgången av första halvåret under det innevarande året. Standardavvikelsen för felen i detta preliminära urval för det första halvåret är 49 534 euro. Revisionsmyndigheten har utifrån sin yrkesmässiga erfarenhet och kännedom om att utgifterna brukar vara större under andra halvåret än det första gjort ett preliminärt antagande om att standardavvikelsen för felen under det andra halvåret kommer att vara 20 % större än under det första, dvs. 59 441 euro. Det viktade medelvärdet för felvariansen är alltså

\[
\sigma_w^2 = \frac{N_1}{N_1 + N_2} \sigma_{e1}^2 + \frac{N_2}{N_1 + N_2} \sigma_{e2}^2 = 0,5 \times 69 534^2 + 0,5 \times 59 441^2 = 2 993 412 930
\]

Lägg märke till att populationens storlek för varje halvår är lika med antalet aktiva insatser (med utgifter) under varje halvår.
Vid utgången av det första halvåret planeras urvalets totala storlek för hela året till

\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 \]

där \(\sigma_w^2 \) är det viktade medelvärdet av variansen för felen för hela uppsättningen av stratum (se avsnitt 7.1.2.2 för mer information), \(z \) är 1,645 (koefficient som motsvarar en konfidensnivå 90) och det godtagbara felet \(TE \) är 2% (den högsta väsentlighetsnivån enligt förordningen) av det bokförda värdet. Det totala bokförda värdet omfattar det verkliga bokförda värdet vid utgången av det första halvåret plus det förväntade bokförda värdet för andra halvåret (4 126 506 717 euro), vilket betyder att det godtagbara felet är 2% x 4 126 506 717 euro = 82 530 134 euro. Det preliminära urvalet för populationen under det första halvåret ger en felprocent för urvalet på 0,6%. Revisionsmyndigheten förväntar sig att denna felprocent kommer att vara konstant över året. Det förväntade felet \(AE \) blir alltså 0,6% x 4 126 506 717 euro = 24 759 040 euro. Urvalsstorleken för hela året är

\[n = \left(\frac{3 852 \times 2 \times 1,645 \times \sqrt{5 898 672 130}}{82 530 134 - 24 759 040} \right)^2 \approx 145 \]

Urvallets fördelning efter halvår blir

\[n_1 = \frac{N_1}{N_1 + N_2} \approx 73 \]

och

\[n_2 = n - n_1 = 72 \]

Urvalet för det första halvåret gav följande resultat:

<table>
<thead>
<tr>
<th>Bokfört värde för urvalet – första halvåret</th>
<th>41 009 806 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammanlagt fel för urvalet – första halvåret</td>
<td>577 230 euro</td>
</tr>
<tr>
<td>Standardavvikelse för fel i urvalet – första halvåret</td>
<td>52 815 euro</td>
</tr>
</tbody>
</table>

Framför allt känner man till det korrecta antalet aktiva insatser under det andra halvåret. Urvalets felvarians \(s_{e1} \) beräknad från urvalet för det första halvåret är redan tillgänglig och det går nu att göra en mer korrekt bedömning av standardavvikelsen för felen i det andra halvåret \(s_{e2} \) med ett preliminärt urval av verkliga data.

Revisionsmyndigheten konstaterar att det antagande om det totala antalet insatser som gjordes vid utgången av första halvåret fortfarande är korrekt. Det finns dock två parametrar där man bör använda uppdaterade siffror.
För det första gav skattningen av standardavvikelsen för felen utifrån det första halvårets urval på 73 insatser ett värde på 52 815 euro. Detta nya värde bör nu användas för att göra en ny bedömning av den planerade urvalsstorleken. För det andra gör revisionsmyndigheten utifrån ett nytt preliminär urval på 20 insatser i populationen för det andra halvåret en skattning av standardavvikelsen för felen i det andra halvåret och får ett värde på 87 369 euro (långt ifrån det förväntade värdet vid utgången av den första perioden, men mer korrekt). Vi konstaterar att standardavvikelsen för felen för det första halvåret, som användes för att planera urvalsstorleken, ligger nära det värde som räknades fram vid utgången av det första halvåret. De standardavvikelser för fel under andra halvåret som användes för att planera urvalsstorleken ligger emellertid långt ifrån den siffra som blir resultatet av det nya preliminära urvalet. Därför bör urvalet revideras för det andra halvåret.

Det förväntade sammanlagda bokförda värdet för populationen i det andra halvåret bör dessutom ersättas med det verkliga bokförda värdet, dvs. 5 202 775 175 euro i stället för det förväntade värdet på 2 888 554 702 euro.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Utgången av första halvåret</th>
<th>Utgången av andra halvåret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvikelse för fel under första halvåret</td>
<td>49 534 euro</td>
<td>52 815 euro</td>
</tr>
<tr>
<td>Standardavvikelse för fel under andra halvåret</td>
<td>59 441 euro</td>
<td>87 369 euro</td>
</tr>
<tr>
<td>Sammanlagda utgifter under andra halvåret</td>
<td>2 888 554 702 euro</td>
<td>5 202 775 175 euro</td>
</tr>
</tbody>
</table>

Med hänsyn till dessa båda justeringar beräknas urvalets storlek för andra halvåret till

\[
\begin{align*}
n_2 &= \frac{(z \times N_2 \times \sigma_e^2)^2}{(TE - AE)^2 - z^2 \times \frac{N_4^2}{n_1} \times s_e^2} \\
&= \frac{(1,645 \times 3 \, 852 \times 107 \, 369)^2}{(128 \, 814 \, 544 - 38 \, 644 \, 363)^2 - 1,645^2 \times \frac{3 \, 852^2}{142} \times 65 \, 815^2} \\
&\approx 47
\end{align*}
\]

En granskning av 73 insatser för första halvåret och dessa 47 insatser för andra halvåret kommer att ge revisorn information om det sammanlagda felet för insatserna i urvalet. Det preliminära urvalet på 20 insatser används som en del av huvudurvalet. Därför behöver revisorn endast välja ytterligare 27 insatser för andra halvåret.

Urvalet för det andra halvåret gav följande resultat:

| Bokfört värd för urvalet – andra halvåret | 59 312 212 euro |
Sammanlagt fel för urvalet – andra halvåret
588 336 euro
Standardavvikelse för fel i urvalet – första halvåret
78 489 euro

Med utgångspunkt i de båda urvalen kan det beräknade felet på populationsnivå beräknas som

\[EE = N_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{n_1} + N_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{n_2} = 3 852 \times \frac{577 230}{142} + 3 852 \times \frac{588 336}{68} = 78 677 283 \]

vilket motsvarar en beräknad felprocent på 1,22%

I ett andra steg kan det korrekta bokförda värdet (de korrekta utgifter som hade konstataterats om samtliga insatser i populationen hade granskats) beräknas med följande formel:

\[CBV = BV - EE = 6 440 727 190 - 78 677 283 = 6 362 049 907 \]

där \(BV \) är det bokförda värdet för året (inklusive de båda halvåren) och \(EE \) är det beräknade felet ovan.

Precisionen (urvalsfel) är ett mått på den osäkerhet som är förknippad med beräkningen (extrapoleringen) och räknas fram med följande formel:

\[SE = z \times \sqrt{N_1^2 \times \frac{s_{E1}^2}{n_1} + N_2^2 \times \frac{s_{E2}^2}{n_2}} = 1,645 \times \sqrt{\left(3 852^2 \times \frac{52 815^2}{73} + 3 852^2 \times \frac{78 849^2}{47}\right)} = 82 444 754 \]

För att kunna dra någon slutsats om huruvida felen är väsentliga bör man först beräkna den lägre gränsen för det korrigerade bokförda värdet. Den lägre gränsen är lika med

\[LL = CBV - SE = 6 362 049 907 - 82 444 754 = 6 279 605 153 \]

Både beräkningen för det korreka bokförda värdet och den lägre gränsen bör jämföras med differensen mellan det bokförda värdet (deklarerade utgifter) och det högsta godtagbara felet (\(TE \)):

\[BV - TE = 6 440 727 190 - 128 814 544 = 6 311 912 646 \]

Eftersom \(BV - TE \) ligger mellan den nedre gränsen \(LL = CBV - SE \) och \(CBV \), se avsnitt 4.12 för en mer ingående beskrivning av den analys som ska göras.
6.3 Den statistiska urvalsmetoden MUS

6.3.1 Standardmetod

6.3.1.1 Inledning

I den statistiska urvalsmetoden MUS används beloppshitelsar som hjälpvariabel för urval. Denna metod baseras vanligtvis på systematiskt urval med sannolikhet i förhållande till storlek (probability proportional to size, PPS-urval), dvs. i förhållande till urvalshitelsens monetära värde (det är större sannolikhet för att poster av högre värde väljs ut).

Detta är sannolikt den populäraste urvalsmetoden för revisioner och den är särskilt användbar om de bokförda värdena varierar kraftigt och det finns en positiv korrelation (samband) mellan fel och bokförda värden, dvs. när man förväntar sig att poster av högre värde tenderar att ha större fel, något som är vanligt i revisionssammanhang.

Under sådana förutsättningar, dvs. när bokförda värden varierar kraftigt och felen är positivt korrelerade (har ett samband) med bokförda värden, brukar MUS innebära att det krävs ett mindre urval än metoder som baseras på lika sannolikhet för att nå samma precision.

Det bör också påpekas att poster av högt värde brukar vara överrepresenterade i urval som tas fram med denna metod, medan poster med lågt värde brukar vara underrepresenterade. Detta är inte något problem i sig eftersom metoden tar hänsyn till detta i extrapoleringssprocessen, men det gör att urvalresultaten (t.ex. felprocent i urvalet) inte går att tolka (enbart extrapolerade resultat går att tolka).

I likhet med metoder som baseras på lika sannolikhet kan denna metod kombineras med stratifiering (gynnsamma förutsättningar för stratifiering diskuteras i avsnitt 5.2).
6.3.1.2 Urvalets storlek

Beräkningen av urvalsstorleken \(n \) inom ramen för MUS bygger på följande information:

- Populationens bokförda värde (sammanlagda deklarerade utgifter) \(BV \).
- Konfidensnivå som fastställts utifrån systemgranskningar och åtföljande koeficient \(z \) från en normalfördelnings (se avsnitt 5.3).
- Högsta godtagbara fel \(TE \) (vanligtvis 2% av de sammanlagda utgifterna).
- Förväntat fel \(AE \), valt av revisorn utifrån yrkesmässig erfarenhet och tidigare information.
- Standardavvikelsen \(\sigma_r \) för felprocenten (framtaget ur ett MUS-urval).

Urvalets storlek beräknas på följande sätt:

\[
n = \left(\frac{z \times BV \times \sigma_r}{TE - AE} \right)^2
\]

där \(\sigma_r \) är standardavvikelsen för felprocentvärden är framtagna ur ett MUS-urval. För att göra en approximering av denna standardavvikelse före granskningen måste medlemsstaterna använda sig av historiska kunskaper (variansen i felprocentvärden i ett urval från den föregående perioden) eller på ett litet preliminärt urval/piloturval \(n^P \) (vi rekommenderar att det preliminära urvalet omfattar minst 20–30 insatser). I vilket fall som helst beräknas variansen i felprocenten (standardavvikelsen i kvadrat) med

\[
\sigma^2_r = \frac{1}{n^p - 1} \sum_{i=1}^{n^p} (r_i - \bar{r})^2
\]

där \(r_i = \frac{E_i}{BV_i} \) är felprocenten i en insats\(^{27}\) och definieras som kvoten mellan \(E_i \) och det bokförda värdet (de utgifter som attesterats till kommissionen, \(BV_i \)) i den i:e insatsen som ingår i urvalet och \(\bar{r} \) motsvarar medelvärde för felprocenten i urvalet, dvs.:

\[
\bar{r} = \frac{1}{n^p} \sum_{i=1}^{n^p} E_i
\]

som vanligt gäller att om standardavvikelsen baseras på ett preliminärt urval kan det urvalet därefter användas som en del i det fullständiga urval som väljs för granskningen. Det är dock betydligt mer komplicerat att välja och observera ett preliminärt urval när

\(^{27}\) När det bokförda värdet för enhet \(i \) (\(BV_i \)) är större än gränsvärden \(\frac{BV}{n} \) bör kvoten \(\frac{E_i}{BV_i} \) ersättas med \(\frac{E_i}{BV/n} \), där BV motsvarar det bokförda värdet för den nuvarande populationen om ett preliminärt urval används eller det bokförda värdet för den historiska populationen om ett historiskt urval används. Dessutom motsvarar \(n \) urvalsstorleken för det preliminära urvalet (om ett sådant används) eller urvalstorleken för det historiska urvalet.
MUS används, än vid enkelt slumpmässigt urval eller skattning av skillnad, eftersom poster av högt värde ofta väljs till urvalet. Därför blir det ofta ett tungt arbete att observera ett urval på 20–30 insatser. Av den anledningen rekommenderar vi starkt när det gäller MUS att skattningen av standardavvikelsen σ_r baseras på historiska data, så att man inte behöver göra ett preliminärt urval.

6.3.1.3 Urval

När urvalets storlek har bestämts, måste man identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförda värdet (BV) och den planerade urvalsstorleken (n). Alla poster vars bokförda värde är högre än detta gränsvärde (om $BV_i > BV/n$) kommer att placeras i det 100-procentiga granskingsstratumet.

Storleken på det urval som ska ingå i det icke uttömmande stratumet n_s beräknas som skillnaden mellan n och antalet urvalsenheter (t.ex. insatser) i det uttömmande stratumet (n_e).

Slutligen ska urvalet i det icke uttömmande stratumet göras med PPS-metoden, dvs. i förhållande till posternas bokförda värde BV_i. Ett populärt sätt att välja poster är att göra ett systematiskt urval, med ett urvalsintervall som är lika med de sammanlagda utgifterna i det icke-uttömmande stratumet (BV'_s) dividerat med urvalsstorleken (n_s), dvs.:

$$SI = \frac{BV'_s}{n_s}$$

I praktiken väljs urvalet från en slumpmässig förteckning över poster (vanligtvis insatser) där varje post som innehåller den x:e beloppsenhet som är lika med urvalsintervallet och har en slumpmässig startpunkt mellan 1 och SI väljs. Om en population t.ex. har ett bokfört värde på 10 000 000 euro och vi väljer ett urval på 40 insatser kommer varje insats som innehåller den 250 000:e euron att väljas.

Efter det att urvalsintervallet har beräknats på grundval av urvalstratums utgifter och urvalsstorleken kan det i praktiken hända att vissa populationsenheter fortfarande uppvisar utgifter som är större än detta urvalsintervall BV'_s/n_s (trots att de tidigare inte uppvissade utgifter som var större än gränsvärdet (BV/n)). Alla poster vars bokförda värde

28 Detta kan man göra med särskild programvara, statistikprogram eller grundläggande programvara som Excel. Tänk på att i vissa program är det inte nödvändigt att göra en uppdelning mellan det uttömmande stratumet med poster av högt värde och det icke-uttömmande stratumet eftersom programvaran automatiskt väljer enheter med 100-procentig sannolikhet för att väljas.
fortfarande är större än detta intervall \((BV_i > BV_s/n_s)\) måste också läggas till stratumen med poster av högt värde. Om detta inträffar måste de nya posterna flyttas till stratumen med poster av högt värde och sedan måste urvalsintervallet räknas ut på nytt för urvalsstratumen, med hänsyn till de nya värdena för kvoten \(BV_s/n_s\). Denna iterativa process kan behöva utföras flera gånger, till dess att inga ytterligare enheter uppvisar utgifter som är större än urvalsintervallet.

6.3.1.4 Beräknat fel

Beräkningen av fel i populationen bör göras på ett annat sätt för enheter i det uttömmande stratumen jämfört med för posterna i det icke uttömmande stratumen.

För det uttömmande stratumen, dvs. det stratum som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärde \(BV_i > BV/n\), är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i stratumen:

\[
EE_e = \sum_{i=1}^{n_e} E_i
\]

För det icke uttömmande stratumen, dvs. det stratum som innehåller urvalsenheter med ett bokfört värde som inte överstiger gränsvärde \(BV_i \leq BV/n\), är det beräknade felet

\[
EE_s = SI \sum_{i=1}^{n_s} E_i/BV_i
\]

Vid beräkningen av det beräknade felet ska
1) felprocenten beräknas för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, \(E_i/BV_i\)
2) dessa felprocentvärden summeras för samtliga enheter i urvalet,
3) ovanstående resultat multipliceras med urvalsintervallet (SI).
Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

\[EE = EE_e + EE_s \]

6.3.1.5 Precision

Precision är ett mått på osäkerheten i extrapoleringen. Precisionen motsvarar urvalsfelet och bör beräknas så att man sedan kan ta fram ett konfidensintervall.

Precisionen räknas fram med formeln

\[SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r \]

där \(s_r \) är standardavvikelsen för felprocentvärdena i urvalet för det icke uttömmande stratumen (beräknas ur samma urval som användes för att beräkna felen i populationen)

\[s_r^2 = \frac{1}{n_s - 1} \sum_{i=1}^{n_s} (r_i - \bar{r}_s)^2 \]

och \(\bar{r}_s \) är lika med det enkla genomsnittet av felprocentvärdena i urvalet för stratumen

\[\bar{r}_s = \frac{\sum_{i=1}^{n_s} \frac{E_i}{BV_i}}{n_s} \]

Tänk på att urvalsfelet endast beräknas för det icke uttömmande stratumen eftersom det inte finns något urvalsfel att ha hänsyn till i det uttömmande urvalet.

6.3.1.6 Utvärdering

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i extrapoleringen

\[ULE = EE + SE \]

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutatser:

- Om det beräknade felet är större än det högsta godtagbara felet betyder detta att revisorn drar slutsatsen att det finns tillräckliga bevis för att felen i populationen ligger över tröskelvärdet för väsentlighet.
Om den övre felgränsen är lägre än det högsta godtagbara felet bör revisorn dra slutsatsen att felen i populationen ligger under tröskelvärdet för väsentlighet.

Om det beräknade felet är lägre än det högsta godtagbara felet, men den övre felgränsen ligger högre än det högsta godtagbara felet, se avsnitt 4.12 för en närmare beskrivning av den analys som ska göras.

6.3.1.7 Exempel

Vi tänker oss att en population utgörs av utgifter som har deklarerats till kommissionen under ett givet år för insatser i ett program. De systemrevisioner som genomförts av revisionsmyndigheten har gett en låg garanti. Urvalet för detta program bör därför göras med en konfidensnivå på 90 %.

Populationen sammanfattas i följande tabell:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>4 199 882 024 euro</td>
</tr>
</tbody>
</table>

Urvalets storlek beräknas på följande sätt:

\[n = \left(\frac{z \times BV \times \sigma_r}{TE - AE} \right)^2 \]
där σ_r är standardavvikelsen för felprocentvärdet framtagna ur ett MUS-urval. För att göra en approximering för denna standardavvikelse beslutade sig revisionsmyndigheten för att använda standardavvikelsen för det föregående året. Urvalet för det föregående året bestod av 50 insatser, varav fem har ett bokfört värde som är större än urvalsintervallen.

I följande tabell visas resultatet av det föregående årets granskning av de fem insatserna.

<table>
<thead>
<tr>
<th>Insats-nr</th>
<th>Bokfört värde (BV)</th>
<th>Korrekt bokfört värde (CBV)</th>
<th>Fel</th>
<th>Felprocent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 850</td>
<td>115 382 867 euro</td>
<td>115 382 867 euro</td>
<td>− euro</td>
<td>−</td>
</tr>
<tr>
<td>4327</td>
<td>129 228 811 euro</td>
<td>129 228 811 euro</td>
<td>− euro</td>
<td>−</td>
</tr>
<tr>
<td>4390</td>
<td>142 151 692 euro</td>
<td>138 029 293 euro</td>
<td>4 122 399 euro</td>
<td>0,0491</td>
</tr>
<tr>
<td>1 065</td>
<td>93 647 323 euro</td>
<td>93 647 323 euro</td>
<td>− euro</td>
<td>−</td>
</tr>
<tr>
<td>1817</td>
<td>103 948 529 euro</td>
<td>100 830 073 euro</td>
<td>3 118 456 euro</td>
<td>0,0371</td>
</tr>
</tbody>
</table>

Observera att felprocenten (sista kolumnen) beräknas som $r_i = \frac{E_i}{BV/n}$ kvoten mellan felet i insatsen och det bokförda värdet dividerat med den ursprungliga urvalsstorleken, dvs. 50, eftersom dessa insatser har ett bokfört värde som är högre än urvalsintervallet (mer information finns i avsnitt 6.3.1.2).

I följande tabeller sammanfattas resultatet av förra årets granskning av urvalet av de 45 insatserna med ett bokfört värde under gränsvärdet.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operation ID</td>
<td>Book Value (BV)</td>
<td>Audit Value (AV)</td>
<td>Error</td>
</tr>
<tr>
<td>2</td>
<td>239</td>
<td>10,173,875 €</td>
<td>9,962,918 €</td>
<td>210,956 €</td>
</tr>
<tr>
<td>3</td>
<td>424</td>
<td>23,014,045 €</td>
<td>23,014,045 €</td>
<td>− €</td>
</tr>
<tr>
<td>4</td>
<td>2327</td>
<td>32,886,198 €</td>
<td>32,886,198 €</td>
<td>− €</td>
</tr>
<tr>
<td>5</td>
<td>5009</td>
<td>34,595,201 €</td>
<td>34,595,201 €</td>
<td>− €</td>
</tr>
<tr>
<td>6</td>
<td>1491</td>
<td>78,695,230 €</td>
<td>78,695,230 €</td>
<td>− €</td>
</tr>
<tr>
<td>7</td>
<td>(…</td>
<td>(…</td>
<td>(…</td>
<td>(…</td>
</tr>
<tr>
<td>39</td>
<td>2596</td>
<td>8,912,999 €</td>
<td>8,909,491 €</td>
<td>3,508 €</td>
</tr>
<tr>
<td>40</td>
<td>779</td>
<td>26,009,790 €</td>
<td>26,009,790 €</td>
<td>− €</td>
</tr>
<tr>
<td>41</td>
<td>1250</td>
<td>264,950 €</td>
<td>264,950 €</td>
<td>− €</td>
</tr>
<tr>
<td>42</td>
<td>3895</td>
<td>30,949,004 €</td>
<td>30,949,004 €</td>
<td>− €</td>
</tr>
<tr>
<td>43</td>
<td>2011</td>
<td>617,668 €</td>
<td>617,668 €</td>
<td>− €</td>
</tr>
<tr>
<td>44</td>
<td>4796</td>
<td>335,916 €</td>
<td>335,916 €</td>
<td>− €</td>
</tr>
<tr>
<td>45</td>
<td>3632</td>
<td>7,971,113 €</td>
<td>7,971,113 €</td>
<td>− €</td>
</tr>
<tr>
<td>46</td>
<td>2451</td>
<td>17,470,048 €</td>
<td>17,470,048 €</td>
<td>− €</td>
</tr>
</tbody>
</table>

Sample standard deviation:=STDEV.S(E2:E46;0;0.0491;0;0.0371) ---------> 0.085
Utifrån detta preliminära urval blir standardavvikelsen för felprocentvärdena, \(\sigma_r \), 0,085 (beräknas i MS Excel som \(=\text{STDEV(E2:E46;0;0;0.0491;0;0.0371)} \)).

Med denna skattning av standardavvikelsen för felprocentvärden, det högsta godtagbara felet och det förväntade felet kan vi nu beräkna urvalets storlek. Om vi förutsätter ett godtagbart fel på 2 % av det sammanlagda bokförda värdet, dvs. \(2 \% \times 4\,199\,882\,024 = 83\,997\,640 \) (väsentlighetsgränsen enligt förordningen) och en förväntad felprocent på 0,4 \%, dvs. 0,4 \% \times 4\,199\,882\,024 = 16\,799\,528 (vilket motsvarar en stark övertygelse hos revisionsmyndighet baserad på information från föregående år och resultatet i rapporten om bedömningen av förvaltnings- och kontrollsystem), får vi

\[
\hat{n} = \left(\frac{1,645 \times 4\,199\,882\,024 \times 0,085}{83\,997\,640 - 16\,799\,528} \right)^2 \approx 77
\]

Först måste man identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförda värdet (\(BV \)) och den planerade urvalsstorleken (\(n \)). Alla poster vars bokförda värde är högre än detta gränsvärde (om \(BV_i > BV/n \)) kommer att placeras i det 100-procentiga granskningsstratumen. I detta fall är gränsvärdet för beaktande \(4\,199\,882\,024 / 77 = 54\,593\,922 \) euro.

Revisionsmyndigheten placerade alla insatser med ett bokfört värde på mer än 54\,593\,922 euro i ett isolerat stratum, dvs. åtta insatser till ett värde av 786\,837\,081 euro.

Urvalsintervallet för den återstående populationen är lika med det bokförda värdet i det icke uttömmande stratumet (\(BV_s \)) (differensen mellan det sammanlagda bokförda värdet och det bokförda värdet för de åtta insatserna i det översta stratumet) dividerat med antalet insatser som ska väljas ut (77 minus de åtta insatserna i det översta stratumet).

\[
\text{Urvalsintervallet} = \frac{BV_s}{n_s} = \frac{4\,199\,882\,024 - 786\,837\,081}{69} = 49\,464\,419
\]

Revisionsmyndigheten har kontrollerat att det inte fanns några insatser vars bokförda värde var större än intervallet. Det högsta stratumen innehåller därför endast de åtta insatser vars bokförda värde var högre än gränsvärdet. Stickprovet väljs ur en slumpmässig förteckning insatser, där varje post som innehåller den 49\,464\,419:e beloppsheten väljs.

En fil som innehåller de återstående 3\,844 insatserna (3\,852 – 8 insatser med högt värde) i populationen sorteras slumpmässigt och en stegvis kumulativ variabel för
bokfört värde skapas. Ett urvalsvärde på 69 insatser (77 minus 8 insatser med högt värde) tas fram med exakt följande förfarande.

Ett slumpmässigt värde mellan 1 och urvalsintervallet 49 464 419 har genererats (22 006 651). Det första valet motsvarar den första insatsen i filen med ett ackumulerat bokförda värde på minst 22 006 651.

Det andra valet motsvarar den första insatsen som innehåller den 71 471 070:e beloppsheten (22 006 651 + 49 464 419 = 71 471 070; dvs. startpunkten plus urvalsintervallet). Den tredje insatsen som ska väljas motsvarar den första insatsen som innehåller den 120 935 489:e beloppsheten (71 471 070 + 49 464 419 = 120 935 489, dvs. föregående beloppsheten plus urvalsintervallet) osv.

<table>
<thead>
<tr>
<th>Insats-nr</th>
<th>Bokfört värde (BV)</th>
<th>Ackumulerat BV</th>
<th>Urval</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>10 173 875 euro</td>
<td>10 173 875 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>424</td>
<td>23 014 045 euro</td>
<td>33 187 920 euro</td>
<td>Ja</td>
</tr>
<tr>
<td>2327</td>
<td>32 886 198 euro</td>
<td>66 074 118 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>5009</td>
<td>34 595 201 euro</td>
<td>100 669 319 euro</td>
<td>Ja</td>
</tr>
<tr>
<td>1491</td>
<td>78 695 230 euro</td>
<td>179 364 549 euro</td>
<td>Ja</td>
</tr>
<tr>
<td>(…)</td>
<td>(…)</td>
<td>(…)</td>
<td>…</td>
</tr>
<tr>
<td>2596</td>
<td>8 912 999 euro</td>
<td>307 654 321 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>779</td>
<td>26 009 790 euro</td>
<td>333 664 111 euro</td>
<td>Ja</td>
</tr>
<tr>
<td>1250</td>
<td>264 950 euro</td>
<td>333 929 061 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>3895</td>
<td>30 949 004 euro</td>
<td>364 878 065 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>2011</td>
<td>617 668 euro</td>
<td>365 495 733 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>4796</td>
<td>335 916 euro</td>
<td>365 831 649 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>3632</td>
<td>7 971 113 euro</td>
<td>373 802 762 euro</td>
<td>Ja</td>
</tr>
<tr>
<td>2451</td>
<td>17 470 048 euro</td>
<td>391 272 810 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>(…)</td>
<td>(…)</td>
<td>(…)</td>
<td>…</td>
</tr>
</tbody>
</table>

Efter att ha granskat de 77 insatserna kan revisionsmyndigheten beräkna felet.

Av de åtta insatserna av högt värde (sammanlagt bokfört värde på 786 837 081 euro) innehåller tre insatser fel som motsvarar ett felbelopp på 7 616 805 euro.

För det återstående urvalet behandlas felet på ett annat sätt. För dessa insatser använder vi följande förfarande:
1) felprocenten beräknas för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, \(\frac{E_i}{BV_i} \).
2) Dessa felprocentvärden summeras för alla enheter i urvalet (beräknas i MS Excel som ”:=SUM(E2:E70)”).
3) ovanstående resultat multipliceras med urvalsintervallet (SI),
\[EE_s = S \sum_{i=1}^{n_s} \frac{E_i}{BV_i} \]

\[EE_s = 49\,464\,419 \times 1,096 = 54\,213\,004 \]

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

\[EE = 7\,616\,805 + 54\,213\,004 = 61\,829\,809 \]

Den beräknade felprocenten är kvoten mellan det beräknade felet och de sammanlagda utgifterna.

\[r = \frac{61\,829\,809}{4\,199\,882\,024} = 1,47 \% \]

Standardavvikelsen för felprocentvärdena i urvalsstratumet är 0,09 (beräknas i MS Excel som "=STDEV(E2:E70)").

Precisionen beräknas alltså med

\[SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r = 1,645 \times \frac{4\,199\,882\,024 - 786\,837\,081}{\sqrt{69}} \times 0,09 = 60\,831\,129 \]
Tänk på att urvalsfelet endast beräknas för det icke uttömmande stratumet eftersom det inte finns något urvalsfel att ta hänsyn till i det uttömmande urvalet.

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet EE i sig och precisionen i extrapoleringen

$$ULE = 61\,829\,809 + 60\,831\,129 = 122\,660\,937$$

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet (83 997 640 euro) för att det ska gå att dra revisionsslutatser.

Eftersom det beräknade felet är större än det högsta godtagbara felet, men mindre än den övre felgransen, se avsnitt 4.12 för en närmare beskrivning av den analys som ska göras.

\[
EE = 61\,829\,809
\]

\[
TE = 83\,997\,640
\]

\[
ULE = 122\,660\,937
\]

6.3.2 Den stratifierade urvalsmetoden MUS

6.3.2.1 Inledning

I den stratifierade urvalsmetoden MUS delas populationen in i delpopulationer som kallas stratum och oberoende stickprov tas ur varje stratum med hjälp av standardmetoden för beloppsbaserat urval.

Som vanligt bör kandidatkriterier för att använda stratifiering ta hänsyn till att syftet med stratifieringen är att hitta grupper (stratum) med lägre variation än populationen som helhet. Därför är alla variabler som vi antar kan förklara felnivån i insatserna också bra kandidater för stratifiering. Det kan t.ex. gälla program, regioner, ansvariga organ, klasser baserade på insatsens risk osv.

I stratifierad MUS är det inte relevant att göra en stratifiering efter utgiftsnivå, eftersom MUS redan tar hänsyn till utgiftsnivån när urvalsenheterna väljs ut.
6.3.2.2 Urvalets storlek

Urvalets storlek beräknas på följande sätt:

\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

där \(\sigma_{rw}^2 \) är ett viktat medelvärde av varianserna i felprocentvärdena för hela uppsättningen stratum, där vikten för varje stratum är lika med kvoten mellan det bokförda värdet för stratumet \((BV_h)\) och det bokförda värdet för hela populationen \((BV)\)

\[\sigma_{rw}^2 = \sum_{i=1}^{H} \frac{BV_h}{BV} \sigma_{r,h}^2, h = 1,2, \ldots, H \]

och \(\sigma_{r,h}^2 \) är variansen i felprocentvärdena i varje stratum. Variansen i felprocentvärdena beräknas för varje stratum som en oberoende population i form av

\[\sigma_{r,h}^2 = \frac{1}{n_h^p - 1} \sum_{i=1}^{n_h^p} (r_{h,i} - \bar{r}_h)^2, h = 1,2, \ldots, H \]

där \(r_{h,i} = \frac{E_i}{BV_i} \) motsvarar de individuella felprocentvärdena för enheter i stratum \(h \) och \(\bar{r}_h \) motsvarar den genomsnittliga felprocenten i urvalet i stratum \(h \). \(^{29}\)

\(^{29}\) När det bokförda värdet för enhet \(i \) \((BV_i)\) är större än gränsvärdet \(BV_h/n_h \) bör kvoten \(\frac{E_i}{BV_i} \) ersättas med kvoterna \(\frac{E_i}{BV_h/n_h} \).
När den totala urvalsstorleken n har beräknats görs urvalets fördelning efter stratum på följande sätt:

$$n_h = \frac{BV_h}{BV} n$$

Detta är en generell fördelningsmetod där urvalet fördelas på stratum proportionellt efter utgifterna (det bokförda värdet) i stratumet. Det finns även andra fördelningsmetoder. I vissa fall går det att få större precision eller minska urvalets storlek genom att använda en mer skräddarsydd fördelning. För att avgöra om andra fördelningsmetoder är lämpliga för varje specifik population krävs vissa tekniska kunskaper i urvalsteori.

6.3.2.3 Urval

Varje stratum h kommer att ha två komponenter: den uttömmande gruppen i stratum h (dvs. den grupp som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet $BV_{hi} > \frac{BV_h}{n_h}$), och urvalsgruppen i stratum h (dvs. den grupp som innehåller urvalsenheter med ett bokfört värde som är mindre än eller lika med gränsvärdet $BV_{hi} \leq \frac{BV_h}{n_h}$).

När urvalets storlek har bestämts, måste man i vart och ett av de ursprungliga stratumen (h) identifiera de (eventuella) populationsenheter av högt värde som ska ingå i en grupp med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för denna toppgrupp är lika med kvoten mellan det bokförda värdet (BV_h) och den planerade urvalsstorleken (n_h). Alla poster vars bokförda värde är högre än detta gränsvärde (om $BV_{hi} > \frac{BV_h}{n_h}$) kommer att placeras i den 100-procentiga granskningsgruppen.

Storleken på det urval som ska ingå i den icke uttömmande gruppen, n_{hs}, beräknas som skillnaden mellan n_h och antalet urvalsenheter (t.ex. insatser) i den uttömmande gruppen i stratumet (n_{he}).

Slutligen ska urvalen i den icke uttömmande gruppen av varje stratum göras med PPS-metoden, dvs. i proportion till posternas bokförda värde BV_i. Ett vanligt sätt att välja poster är att göra ett systematiskt urval, med ett urvalsintervall som är lika med de
sammanlagda utgifterna i den icke-uttömmande gruppen i stratumet \((BV_{hs}) \) dividerat med urvalsstorleken \((n_{hs}) \)^30 dvs.

\[
SI_h = \frac{BV_{hs}}{n_{hs}}
\]

Observera att flera oberoende stickprov kommer att väljas, ett för varje ursprungligt stratum.

6.3.2.4 Beräknat fel

Beräkningen av fel i populationen görs på olika sätt för enheter som tillhör de uttömmande grupperna och för posterna i de icke uttömmande grupperna.

För de uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet \(BV_{hi} > \frac{BV_h}{n_h} \), är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i de grupperna:

\[
EE_e = \sum_{h=1}^{H} \sum_{i=1}^{n_{hi}} E_{hi}
\]

I praktiken betyder det följande:
1) Identifiera för varje stratum \(h \) de enheter som tillhör den uttömmande gruppen och summa deras fel.
2) Summera föregående resultat för hela uppsättningen \(H \)-stratum.

För de icke uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde \(BV_{hi} \leq \frac{BV_h}{n_h} \) som inte overstiger gränsvärdet, är det beräknade felet

\[
EE_s = \sum_{h=1}^{H} \frac{BV_{hs}}{n_{hs}} \sum_{i=1}^{n_{hs}} \frac{E_{hi}}{BV_{hi}}
\]

Vid beräkningen av det beräknade felet ska
1) felprocenten beräknas i varje stratum \(h \) för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, \(\frac{E_{hi}}{BV_{hi}} \)
2) dessa felprocentvärden summeras i varje stratum \(h \) för samtliga enheter i urvalet,

^30 Om vissa populationsenheter fortfarande har utgifter som är större än detta urvalsintervall ska det förfarande som beskrivs i avsnitt 6.3.1.3 tillämpas.
3) det ovanstående resultatet för varje stratum \(h \) multipliceras med de sammanlagda utgifterna i populationen i den icke uttömmande gruppen \((BV_{hs}) \), dessa utgifter är också lika med de sammanlagda utgifterna i stratumet minus utgifterna för poster som tillhör den uttömmande gruppen,

4) det ovanstående resultatet för varje stratum \(h \) divideras med storleken på urvalet i den icke uttömmande gruppen \((n_{hs}) \),

5) det ovanstående resultatet summeras för hela uppsättningen \(H \)-stratum.

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

\[
EE = EE_e + EE_s
\]

6.3.2.5 Precision

Precisionen räknas fram med formeln

\[
SE = z \times \sqrt{\sum_{h=1}^{H} \frac{BV_{hs}^2}{n_{hs}} \cdot s_{rhs}^2}
\]

där \(s_{rhs} \) är standardavvikelsen för felprocentvärdena i urvalet för den icke uttömmande gruppen i stratum \(h \) (beräknas ur samma urval som användes för att beräkna felen i populationen)

\[
s_{rhs}^2 = \frac{1}{n_{hs} - 1} \sum_{i=1}^{n_{hs}} (r_{hi} - \bar{r}_{hs})^2, h = 1, 2, ..., H
\]

och \(\bar{r}_{hs} \) är lika med det enkla genomsnittet av felprocentvärdena i urvalet för den icke uttömmande gruppen i stratum \(h \).

Urvalsfelet beräknas endast för de icke uttömmande grupperna eftersom det inte finns något urvalsfel att ta hänsyn till i den uttömmande gruppen.
6.3.2.6 Utvärdering

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet EE i sig och precisionen i extrapoleringen

$$ULE = EE + SE$$

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser med exakt samma metod som beskrivs i avsnitt 6.3.1.6.

6.3.2.7 Exempel

Antag att populationen utgör utgifter som har deklarerats till kommissionen under ett givet år för insatser i en grupp av två program. De systemrevisioner som genomförts av revisionsmyndigheten har gett en låg garanti. Urvalet för detta program bör därför göras med en konfidensnivå på 90%.

Revisionsmyndigheten har skäl att anta att det finns olika felprocentvärden i de olika programmen. Därför har revisionsmyndigheten beslutat att stratifiera populationen efter program.

I följande tabell sammanfattas den tillgängliga informationen:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>6 252</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populationsstorlek – stratum 1</td>
<td>4 520</td>
</tr>
<tr>
<td>Populationsstorlek – stratum 2</td>
<td>1 732</td>
</tr>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>4 199 882 024 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 1</td>
<td>2 506 626 292 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 2</td>
<td>1 693 255 732 euro</td>
</tr>
</tbody>
</table>

Det första steget är att beräkna hur stort urvalet måste vara med hjälp av följande formel:

$$n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2$$
där σ_{rw}^2 är ett viktat medelvärde av varianserna i felprocentvärdena för hela uppsättningen stratum, där vikten för varje stratum är lika med kvoten mellan det bokförda värdet för stratumet (BV_h) och det bokförda värdet för hela populationen (BV)

$$\sigma_{rw}^2 = \sum_{i=1}^{H} \frac{BV_h}{BV} \sigma_{rh}^2, h = 1,2,\ldots,H$$

där σ_{rh} är standardavvikelsen för felprocentvärden framtagna ur ett MUS-urval. För att göra en approximering för denna standardavvikelse beslutade sig revisionsmyndigheten för att använda standardavvikelsen för det föregående året. Urvalet för föregående år bestod av 110 insatser, varav 70 insatser från det första programmet (stratumet) och 40 från det andra programmet.

Utifrån detta urval från förra året beräknar vi variansen för felprocentvärdena till (se avsnitt 7.3.1.7 för mer information)

$$\sigma_{r1}^2 = \frac{1}{70-1} \sum_{i=1}^{70} (r_{1i} - \bar{r}_1)^2 = 0,000045$$

och

$$\sigma_{r2}^2 = \frac{1}{40-1} \sum_{i=1}^{40} (r_{2i} - \bar{r}_2)^2 = 0,010909$$

Detta ger följande resultat

$$\sigma_{rw}^2 = \frac{2506626292}{4199882024} \times 0,000045 + \frac{1693255732}{4199882024} \times 0,010909 = 0,004425$$

Med denna skattning av variansen i felprocentvärdena kan vi nu beräkna urvalets storlek. Revisionsmyndigheten förväntar sig som sagt avsevärd skillnader mellan de båda stratumen. Dessutom förväntar sig revisionsmyndigheten en felprocent på cirka 1,1 % mot bakgrund av rapporten om förvaltnings- och kontrollsystemets funktion. Förutsatt ett godtagbart fel på 2 % av det sammanlagda bokförda värdet (väsentlighetsnivån enligt förordningen), dvs. $TE = 2 \% \times 4199882024 = 83997640$, och det förväntade felet, dvs. $AE = 1,1 \% \times 4199882024 = 46198702$, blir urvalets storlek:

$$n = \left(\frac{1,645 \times 4199882024 \times \sqrt{0,004425}}{83997640 - 46198702}\right)^2 \approx 148$$
Urvallets fördelning efter stratum blir

\[n_1 = \frac{BV_1}{BV} \times n = \frac{2 \, 506 \, 626 \, 292}{4 \, 199 \, 882 \, 024} \times 148 \approx 89 \]

\[n_2 = n - n_1 = 148 - 89 = 59 \]

Dessa båda urvalsstorlekar ger följande gränsvärden för beaktande för stratum med poster av högt värde:

\[Gränsvärde_1 = \frac{BV_1}{n_1} = \frac{2 \, 506 \, 626 \, 292}{89} = 28 \, 164 \, 340 \]

och

\[Gränsvärde_2 = \frac{BV_2}{n_2} = \frac{1 \, 693 \, 255 \, 731}{59} = 28 \, 699 \, 250 \]

När dessa båda gränsvärden för beaktande används, upptäcks 16 respektive 12 insatser av högt värde i stratum 1 och stratum 2.

Urvalst瞿leken för den del av stratum 1 som omfattas av stickprovstagnig räknas fram ur den totala urvalst瞿leken (89), med avdrag för de 16 insatserna av högt värde, dvs. 73 insatser. Samma metod används för stratum 2, vilket innebär att urvalst瞿leken för den del av stratum 2 som omfattas av stickprovstagnig är 59 – 12 = 47 insatser.

Nästa steg är att beräkna urvalsintervallet för urvalstratumen. Urvalsintervallen beräknas med

\[SI_1 = \frac{BV_{1s}}{n_{1s}} = \frac{1 \, 643 \, 963 \, 924}{73} = 22 \, 520 \, 054 \]

och

\[SI_2 = \frac{BV_{2s}}{n_{2s}} = \frac{1 \, 059 \, 467 \, 667}{47} = 22 \, 541 \, 865 \]

I följande tabell sammanfattas ovanstående resultat:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>6 252</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populationsstorlek – stratum 1</td>
<td>4 520</td>
</tr>
<tr>
<td>Populationsstorlek – stratum 2</td>
<td>1 732</td>
</tr>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>4 199 882 024 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 1</td>
<td>2 506 626 292 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 2</td>
<td>1 693 255 732 euro</td>
</tr>
<tr>
<td>Urvalsresultat – stratum 1</td>
<td></td>
</tr>
<tr>
<td>Gränsvärde</td>
<td>28 164 340 euro</td>
</tr>
</tbody>
</table>
Bokfört värde för insatserna ovanför gränsvärden för beaktande & 16
16

<table>
<thead>
<tr>
<th>Antal insatser ovanför gränsvärden för beaktande</th>
<th>862 662 369 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde för insatserna (icke uttömmande population)</td>
<td>1 643 963 923 euro</td>
</tr>
<tr>
<td>Urvalsintervall (icke uttömmande population)</td>
<td>22 520 054 euro</td>
</tr>
<tr>
<td>Antal insatser (icke uttömmande population)</td>
<td>4 504</td>
</tr>
</tbody>
</table>

Urvalsresultat – stratum 2

<table>
<thead>
<tr>
<th>Gränsvärde</th>
<th>28 699 250 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde för insatserna ovanför gränsvärden för beaktande</td>
<td>12</td>
</tr>
<tr>
<td>Antal insatser ovanför gränsvärden för beaktande</td>
<td>633 788 064 euro</td>
</tr>
<tr>
<td>Bokfört värde för insatserna (icke uttömmande population)</td>
<td>1 059 467 668 euro</td>
</tr>
<tr>
<td>Urvalsintervall (icke uttömmande population)</td>
<td>22 541 865 euro</td>
</tr>
<tr>
<td>Antal insatser (icke uttömmande population)</td>
<td>1 720</td>
</tr>
</tbody>
</table>

För stratum 1 görs en slumpmässig sortering av en fil som innehåller de återstående 4 504 insatserna (4 520 – 16 insatser med högt värde) i populationen och en stegvis kumulativ variabel för bokfört värde skapas. Ett urval på 73 insatser (89 – 16 insatser med högt värde) tas fram med exakt samma förfarande som beskrivs i avsnitt 7.3.1.7.

För stratum 2 görs en slumpmässig sortering av en fil som innehåller de återstående 1 720 insatserna (1 732 – 12 insatser med högt värde) i populationen och en stegvis kumulativ variabel för bokfört värde skapas. Ett urvalsårde på 47 insatser (59 – 12 insatser med högt värde) tas fram såsom beskrivs i stycket ovan.

I stratum 1 upptäcktes inga fel i de 16 insatserna med högt värde.

I stratum 2 upptäcktes fel på sammanlagt 15 460 340 i 6 av de 12 insatserna med högt värde.

För det återstående urvalet behandlas felet på ett annat sätt. För dessa insatser använder vi följande förfarande:
1) felprocenten beräknas för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, $\frac{E_i}{BV_i}$
2) dessa felprocentvärden summeras för samtliga enheter i urvalet,
3) ovanstående resultat multipliceras med urvalsintervallet (SI),

$$EE_{hs} = SI_{hs} \sum_{i=1}^{n_{hs}} \frac{E_{hi}}{BV_{hi}}$$
Summan av felprocentvärdena för den icke uttömmande populationen i stratum 1 är 1,0234,

\[EE_{1s} = 22\,520\,054 \times 1,0234 = 23\,047\,023 \]

och för stratum 2 är den 1,176.

\[EE_{2s} = 22\,541\,865 \times 1,176 = 26\,509\,234 \]

Det beräknade felet på populationsnivån är summan av alla komponenter, dvs. det felbelopp som upptäckts i de uttömmande delarna av båda stratumen (15 460 340 euro) och det beräknade felet för båda stratumen

\[EE = 15\,460\,340 + 23\,047\,023 + 26\,509\,234 = 65\,016\,597 \]

vilket motsvarar en beräknad felprocent på 1,55 %.

För att beräkna precisionen måste man ta fram varianserna för felprocentvärdena i båda urvalsstratumen med samma förfarande som beskrivs i avsnitt 7.3.1.7:

\[s_{r1}^2 = \frac{1}{72 - 1} \sum_{i=1}^{72} (r_{1i} - \bar{r}_{1s})^2 = 0,000036 \]

och

\[s_{r2}^2 = \frac{1}{48 - 1} \sum_{i=1}^{48} (r_{2i} - \bar{r}_{2s})^2 = 0,0081 \]

Precisionen beräknas alltså med

\[SE = z \times \sqrt{\sum_{h=1}^{H} \frac{BV_{hs}^2}{n_{hs}} \times s_{r_{hs}}^2} \]

\[SE = 1,645 \times \sqrt{\frac{1\,643\,963\,923^2}{73} \times 0,000036 + \frac{1\,059\,467\,668^2}{47} \times 0,0081} = 22\,958\,216 \]

Tänk på att urvalsfellet endast beräknas för de icke uttömmande delarna av populationen eftersom det inte finns något urvalsfel att ta hänsyn till i det uttömmande stratumet.
För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet EE i sig och precisionen i extrapoleringen

$$ULE = 65\,016\,597 + 22\,958\,216 = 87\,974\,813$$

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser:

När vi jämför tröskelvärdet för väsentlighet på 2% av populationens sammanlagda bokförda värde (2% x 4 199 882 024 euro = 83 997 640 euro) med de beräknade resultaten kan vi konstatera att det högsta godtagbara felet är större än det beräknade felet (enligt båda metoderna), men lägre än den övre gränsen. Se avsnitt 4.12 för en mer ingående beskrivning av den analys som ska göras.

6.3.3 MUS-urval – två perioder

6.3.3.1 Inledning

6.3.3.2 Urvalets storlek

Första halvåret

För den första granskningsperioden (t.ex. ett halvår) beräknas den totala urvalsstorleken (för de båda halvåren tillsammans) enligt följande:
n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2

där \sigma_{rw}^2 är ett viktat medelvärde av varianserna i felprocentvärdena under varje halvår, där vikten för varje halvår är lika med kvoten mellan det bokförda värdet för halvåret (BV_t) och det bokförda värdet för hela populationen (BV):

\sigma_{rw}^2 = \frac{BV_1}{BV} \sigma_{r1}^2 + \frac{BV_2}{BV} \sigma_{r2}^2

och \sigma_{rt}^2 är variansen i felprocentvärdena under varje halvår. Variansen i felprocentvärdena beräknas för varje halvår som

\sigma_{rt}^2 = \frac{1}{n_t - 1} \sum_{i=1}^{n_t^p} (r_{ti} - \bar{r}_t)^2, t = 1, 2

där r_{ti} = \frac{E_{ti}}{BV_{ti}} motsvarar de individuella felprocentvärdena för enheter i halvår t \bar{r}_t och motsvarar det genomsnittliga felet i urvalet i halvår t.

värdena för de förväntade varianserna i båda halvårsvärdena måste fastställas med utgångspunkt i yrkesmässigt omdöme och vara baserade på historiska kunskaper. Det går fortfarande att göra ett preliminärt urval/piloturval precis som beskrivs tidigare för standardmetoden för enkelt beloppsbaserat urval, men endast för det första halvåret. Vid den första observationen har utgifterna för det andra halvåret inte uppstått än och det finns inga objektiva data (utöver de historiska) att tillgå. Om piloturval används, kan de som vanligt därefter användas som en del av det urval som valts för granskning.

Om det inte finns några historiska data eller kunskaper att tillgå för att bedöma variationen i data under det halvåret går det att använda en förenklad metod där den sammanlagda urvalsstorleken beräknas som

n = \left(\frac{z \times BV \times \sigma_{r1}}{TE - AE} \right)^2

Med denna förenklade metod behövs det endast information om variationen i felprocentvärdena under den första observationsperioden. Det underliggande antagandet

31 När det bokförda värdet för enhet i (BV_i) är större än BV_i/n, bör kvoten \frac{E_{ti}}{BV_{ti}} ersättas med kvoterna \frac{E_{ti}}{BV_{ti}/n_t}.
är att variationen bland felprocentvärdena kommer att vara ungefär lika stor under båda
halvåren.

Lägg märke till att problem som hänger samman med historisk information vanligtvis
brukar vara begränsade till programperiodens första år. Den information som samlas in
under det första granskningsåret kan användas under efterföljande år för att bestämma
urvalets storlek.

Tänk också på att för att kunna använda formlerna för att beräkna urvalsstorleken måste
man ha värden för BV_1 och BV_2, dvs. det sammanlagda bokförda värdet (deklarerade
utgifter) för det första och andra halvåret. När urvalets storlek beräknas kommer värdet
för BV_1 att vara känt, men värdet på BV_2 kommer att vara okänt och måste tillräknas
enligt revisorns förväntningar (och även utifrån historisk information).

När den totala urvalsstorleken n har beräknats fördelas urvalet per halvår på följande
sätt:

$$n_1 = \frac{BV_1}{BV} n$$

och

$$n_2 = \frac{BV_2}{BV} n$$

Andra halvåret

Vid första observationsperioden gjordes vissa antaganden om den efterföljande
observationsperioden (vanligtvis det efterföljande halvåret). Om populationens
egenskaper under de efterföljande perioderna skiljer sig avsevärt från antagandena kan
urvalets storlek för den efterföljande perioden behöva justeras.

Vid den andra granskningsperioden (t.ex. halvåret) kommer mer information att finnas
tillgänglig.

- Det korrepta sammanlagda bokförda värdet för andra halvåret BV_2 är känt.
- Standardavvikelsen för felprocentvärdena i urvalet s_{r1}, som beräknades på
 urvalet för det första halvåret, finns redan tillgänglig.
- Det går nu att göra en mer tillförlitlig bedömning av standardavvikelsen för
 felprocentvärdena under det andra halvåret σ_{r2} med verkliga data.

Om dessa parametrar inte skiljer sig dramatiskt från dem som beräknades för det första
halvåret med utgångspunkt i revisorns förväntningar behöver den ursprungligen
planerade urvalsstorleken för det andra halvåret (n_2) inte justeras. Om revisorn
emellertid anser att de ursprungliga förväntningarna skiljer sig avsevärt från
populationens faktiska egenskaper kan urvalets storlek behöva anpassas för att ta
hänvisning till dessa felaktiga skattningar. I så fall bör urvalets storlek för det andra halvåret räknas om med

\[n_2 = \frac{(z \times BV_2 \times \sigma_{r2})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times \sigma_{r1}^2} \]

där \(\sigma_{r1} \) är standardavvikelsen för de felprocentvärden som beräknats utifrån det urvalet för det första halvåret och \(\sigma_{r2} \) är en skattning av standardavvikelsen för felen under det andra halvåret baserat på historiska kunskaper (eventuellt justerade med information från det första halvåret) eller ett preliminärt urval/piloturval från det andra halvåret.

6.3.3.3 Urval

För varje halvår ska urvalet göras enligt exakt det förfarande som beskrivs för den standardiserade metoden för beloppsbaserat urval. Förfarandet återges här för läsarens skull.

När urvalets storlek har bestämts för varje halvår måste man identifiera de (eventuella) populationseheter av högt värde som ska ingå i en grupp med poster av högt värde och som ska genomgå 100-procentig granskning. Gränsvärde för denna toppgrupp är lika med kvoten mellan det bokförda värdet för halvåret (\(BV_t \)) och den planerade urvalsstorleken (\(n_t \)). Alla poster vars bokförda värde är högre än detta gränsvärde (om \(BV_{ti} > \frac{BV_t}{n_t} \)) kommer att placeras i den 100-procentiga granskningsgruppen.

Storleken på det urval som ska ingå i den icke uttömmande gruppen \(n_{ts} \) beräknas som skillnaden mellan \(n_t \) och antalet urvalsenheter (t.ex. insatser) i den uttömmande gruppen (\(n_{te} \)).

För varje halvår ska slutligen urvalen i de icke uttömmande grupperna göras med PPS-metoden, dvs. i förhållande till posternas bokförda värde \(BV_{ti} \). Ett populärt sätt att välja poster är att göra ett systematiskt urval, med ett urvalsintervall som är lika med de sammanlagda utgifterna i den icke uttömmande gruppen (\(BV_{ts} \)) dividerade med urvalsstorleken (\(n_{ts} \))

\[SI_t = \frac{BV_{ts}}{n_{ts}} \]

32 Om vissa populationsenheter fortsatte har utgifter som är större än detta urvalsintervall ska det förfarande som beskrivs i avsnitt 6.3.1.3 tillämpas.
6.3.3.4 Beräknat fel

Beräkningen av fel i populationen görs på olika sätt för enheter som tillhör de uttömmande grupperna och för posterna i de icke uttömmande grupperna.

För de uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet \(BV_{ti} > \frac{BV_t}{n_t} \), är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i de grupperna:

\[
EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i}
\]

I praktiken betyder det följande:

1) Identifiera för varje halvår \(t \) de enheter som tillhör den uttömmande gruppen och summera deras fel.
2) Summera de föregående resultaten för de båda halvåren.

För de icke uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde \(BV_{ti} \leq \frac{BV_t}{n_t} \) som inte överstiger gränsvärdet, är det beräknade felet

\[
EE_s = \frac{BV_{1s}}{n_{1s}} \times \sum_{i=1}^{n_{1s}} E_{1i} + \frac{BV_{2s}}{n_{2s}} \times \sum_{i=1}^{n_{2s}} E_{2i}
\]

Vid beräkningen av det beräknade felet ska

1) felprocenten beräknas för varje halvår \(t \) för varje enhet i urvalet, dvs. kvoten mellan fel och motsvarande utgift, \(\frac{E_{ti}}{BV_{ti}} \)
2) dessa felprocentvärden summeras för varje halvår \(t \) för samtliga enheter i urvalet,
3) det ovanstående resultatet för varje halvår \(t \) multipliceras med de sammanlagda utgifterna i populationen i den icke uttömmande gruppen (\(BV_{ts} \)), dessa utgifter är också lika med de sammanlagda utgifterna i stratumen minus utgifterna för poster som tillhör den uttömmande gruppen,
4) det ovanstående resultatet för varje halvår \(t \) divideras med storleken på urvalet i den icke uttömmande gruppen (\(n_{ts} \)),
5) de föregående resultaten summeras för de båda halvåren.
Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

\[EE = EE_e + EE_s \]

6.3.3.5 Precision

Precisionen räknas fram med formeln

\[SE = z \times \sqrt{\frac{BV_{1s}^2}{n_{1s}} \times s_{r1s}^2 + \frac{BV_{2s}^2}{n_{2s}} \times s_{r2s}^2} \]

där \(s_{r2s} \) är standardavvikelsen för felprocentvärdena i urvalet för den icke uttömmande gruppen för halvår \(t \) (beräknas ur samma urval som användes för att beräkna felen i populationen)

\[s_{rts}^2 = \frac{1}{n_{ts} - 1} \sum_{i=1}^{n_{ts}} (\bar{r}_{ti} - \bar{r}_{ts})^2, t = 1, 2 \]

och \(\bar{r}_{ts} \) är lika med det enkla genomsnittet av felprocentvärdena i urvalet för den icke uttömmande gruppen för halvår \(t \).

Urvalsfelet beräknas endast för de icke uttömmande grupperna eftersom det inte finns något urvalsfel att ta hänsyn till i den uttömmande gruppen.

6.3.3.6 Utvärdering

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i extrapoleringen

\[ULE = EE + SE \]
Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser med exakt samma metod som beskrivs i avsnitt 6.3.1.6.

6.3.3.7 Exempel

För att ta hänsyn till att arbetsbördan för revisioner oftast är koncentrerad till utgången av revisionsåret beslutade revisionsmyndigheten att fördela revisionsarbetet på två perioder. Vid utgången av det första halvåret delade revisionsmyndigheten in populationen i två grupper som motsvarade de båda halvåren. I slutet av första halvåret har populationen följande egenskaper:

| Deklarerade utgifter vid utgången av första halvåret | 1 827 930 259 euro |
| Populationens storlek (insatser – första halvåret) | 2 344 |

Revisionsmyndigheten vet av tidigare erfarenhet att alla insatser som ingår i programmen vid utgången av referensperioden redan brukar vara aktiva i populationen för det första halvåret. Dessutom väntas de deklarerade utgifterna vid utgången av det första halvåret motsvara ungefär 35 % av de sammanlagda deklarerade utgifterna vid referensperiodens utgång. Utifrån dessa antaganden görs en sammanfattning av populationen i följande tabell:

Deklarerade utgifter (DE) vid utgången av första halvåret	1 827 930 259 euro
Deklarerade utgifter (DE) vid utgången av andra halvåret (förväntade)	3 394 727 624 euro
1 827 930 259 euro / 35 % – 1 827 930 259 euro = 3 394 727 624 euro	
Summa beräknat totalresultat för året	5 222 657 883 euro
Populationens storlek (insatser – första halvåret)	2 344
Populationens storlek (insatser – andra halvåret, förväntad)	2 344

För den första perioden beräknas den totala urvalsstorleken (för de båda halvåren tillsammans) enligt följande:

\[n = \left(\frac{2 \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

där \(\sigma_{rw}^2 \) är ett viktat medelvärde av varianserna i felprocentvärdena under varje halvår, där vikten för varje halvår är lika med kvoten mellan det bokförda värdet för halvåret (\(BV_t \)) och det bokförda värdet för hela populationen (\(BV \)):

\[\sigma_{rw}^2 = \frac{BV_1}{BV} \sigma_{r1}^2 + \frac{BV_2}{BV} \sigma_{r2}^2 \]
och \(\sigma^2_{rt} \) är variansen i felprocentvärdena under varje halvår. Variansen i felprocentvärdena beräknas för varje halvår som

\[
\sigma^2_{rt} = \frac{1}{n^p_t - 1} \sum_{i=1}^{n^p_t} (r_{ti} - \bar{r}_t)^2, t = 1, 2, ..., T
\]

Eftersom dessa varianser är okända beslutade revisionsmyndigheten att göra ett preliminärt urval på 20 insatser vid utgången av första halvåret under det innevarande året. Standardavvikelsen för felprocentvärdena i detta preliminära urval för det första halvåret är 0,12. Revisionsmyndigheten har utifrån sin yrkesmässiga erfarenhet och kändedom om att utgifterna brukar vara större under andra halvåret än det första gjort ett preliminärt antagande om att standardavvikelsen för felprocentvärdena för det andra halvåret kommer att vara 110\% större än under det första, dvs. 0,25. Det viktade genomsnittet för variansen i felprocentvärdena är alltså

\[
\sigma^2_{rw} = \frac{1}{1827930259 + 3394727624} \times 0,12^2 + \frac{3394727624}{1827930259 + 3394727624} \times 0,25^2 = 0,0457
\]

För det första halvåret anser revisionsmyndigheten att en konfidensnivå på 60\% är lämplig med hänsyn till hur förvaltnings- och kontrollsystemet fungerar. Den totala urvalsstorleken för hela året är

\[
n = \left(\frac{0,842 \times (1827930259 + 3394727624) \times \sqrt{0,0457}}{104453158 - 20890632} \right)^2 \approx 127
\]

där \(z \) är 0,842 (koefficient som motsvarar en konfidensnivå på 60\%) och det godtagbara felet \(TE \) är 2\% (högsta väsentlighetsnivå enligt förordningen) av det bokförda värdet. Det totala bokförda värdet omfattar det verkliga bokförda värdet vid utgången av det första halvåret plus det förväntade bokförda värdet för andra halvåret 3394727624 euro, vilket betyder att det godtagbara felet är 2\% x 5222657883 euro = 104,453,158 euro. Förra årets granskning gav en beräknad felprocent på 0,4\%. Det förväntade felet blir alltså \(AE \) 0,4\% x 5222657883 euro = 20890632 euro.

Urvalets fördelning efter halvår blir

\[
n_1 = \frac{BV_1}{BV_1 + BV_2} = \frac{1827930259}{1827930259 + 3394727624} \times 127 \approx 45
\]

och

\[
n_2 = n - n_1 = 82
\]
För det första halvåret måste man identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförda värdet (BV_1) och den planerade urvalsstorleken (n_1). Alla poster vars bokförda värde är högre än detta gränsvärde (om $BV_1 > BV_1/n_1$) kommer att placeras i det 100-procentiga granskningsstratumet. I detta fall är gränsvärdet för beaktande 40 620 672 euro. Det finns elva insatser vars bokförda värde ligger över detta gränsvärde. Det totala bokförda värdet för dessa insatser är 891 767 519 euro.

Storleken på det urval som ska ingå i det icke uttömmande stratumet (n_{s1}) beräknas som skillnaden mellan n_1 och antalet urvalsenheter (t.ex. insatser) i det uttömmande stratumet (n_e), dvs. 34 insatser.

Urvalet i det icke uttömmande stratumet ska göras baserat på sannolikhet i förhållande till storlek, dvs. i förhållande till posternas bokförda värde BV_{s1}, genom systematiskt urval, med ett urvalsintervall som är lika med de sammanlagda utgifterna i det icke uttömmande stratumet (BV_{s1}) dividerat med urvalets storlek (n_{s1}), dvs.

$$SI_{s1} = \frac{BV_{s1}}{n_{s1}} = \frac{1 827 930 259 - 891 767 519}{34} = 27 534 198$$

Det bokförda värdet i det icke uttömmande stratumet (BV_{s1}) är helt enkelt skillnaden mellan det sammanlagda bokförda värdet och det bokförda värdet för de elva insatser som tillhör toppstratumet.

I följande tabell sammanfattas ovanstående resultat:

<table>
<thead>
<tr>
<th>Gränsvärde för beaktande – första halvåret</th>
<th>40 620 672 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal insatser med ett bokfört värde som är högre än gränsvärdet – första halvåret</td>
<td>11</td>
</tr>
<tr>
<td>Antal insatser med ett bokfört värde som är högre än gränsvärdet för beaktande – första halvåret</td>
<td>891 767 519 euro</td>
</tr>
<tr>
<td>BV_{s1} – första halvåret</td>
<td>936 162 740 euro</td>
</tr>
<tr>
<td>n_{s1} – första halvåret</td>
<td>34</td>
</tr>
<tr>
<td>SI_{s1} – första halvåret</td>
<td>27 534 198 euro</td>
</tr>
</tbody>
</table>

Av de elva insatser vars bokförda värde är högre än urvalsintervallet, innehåller sex insatser fel. De sammanlagda felen i detta stratum uppgår till 19 240 855 euro.

En fil som innehåller de återstående 2 333 insatserna i populationen sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas. Ett urval på 34 insatser tas ut med hjälp av det systematiska förfarandet för ett urval i förhållande till storlek.
Värdet på de 34 insatserna granskas. Summan av felprocentvärdena för det första halvåret är

\[
\sum_{i=1}^{34} \frac{E_{1i}}{BV_{1i}} = 1,4256
\]

Standardavvikelsen för felprocentvärdena i urvalet för den icke uttömmande populationen för det första halvåret är (se avsnitt 6.3.1.7 för mer information)

\[
s_{r_{1s}} = \sqrt{\frac{1}{34-1} \sum_{i=1}^{34} (r_{1s} - \bar{r}_{1s})^2} = 0,085
\]

och \(\bar{r}_{1s}\) är lika med det enkla genomsnittet av felprocentvärdena i urvalet för den icke uttömmande gruppen för det första halvåret.

Vid utgången av andra halvåret finns mer information att tillgå. Framför allt känner man till de sammanlagda utgifterna för aktiva insatser under det andra halvåret. Varianserna i urvalets felprocentvärden \(s_{r_1}\) beräknade från urvalet för det första halvåret är redan tillgängliga och det går nu att göra en mer korrekt bedömning av standardavvikelsen för felprocentvärdena för det andra halvåret \(\sigma_{r_2}\) med ett preliminärt urval av verkliga data.

Revisionsmyndigheten konstaterar att det antagande om de sammanlagda utgifterna som gjordes vid utgången av första halvåret 3 394 727 624 euro överstiger det verkliga värdet på 2 961 930 008 euro. Det finns också ytterligare två parametrar där man bör använda uppdaterade siffror.

För det första gav skattningen av standardavvikelsen för felprocent utifrån det första halvårets urval på 34 insatser ett värde på 0,085. Detta nya värde bör nu användas för att göra en ny bedömning av den planerade urvalsstorleken. För det andra anser revisionsmyndigheten med hänsyn till de högre utgifterna för det andra halvåret i förhållande till den ursprungliga skattningen, att det är lämpligare att skatta standardavvikelsen för felprocentvärdena för det andra halvåret till 0,30 i stället för det ursprungliga värdet på 0,25. De uppdaterade siffrorna för standardavvikelsen för felprocentvärdena för båda halvåren ligger långt ifrån de ursprungliga skattningarna. Därför bör urvalet revideras för det andra halvåret.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prognos gjord under första halvåret</th>
<th>Utgången av andra halvåret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvikelse för felprocent under första halvåret</td>
<td>0,12</td>
<td>0,085</td>
</tr>
<tr>
<td>Standardavvikelse för felprocent under andra halvåret</td>
<td>0,25</td>
<td>0,30</td>
</tr>
</tbody>
</table>
Med hänsyn till dessa tre justeringar beräknas urvalets storlek för andra halvåret till

\[n_2 = \frac{(z \times BV_2 \times \sigma_{r2})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2} \]

där \(s_{r1} \) är standardavvikelsen för felprocentvärdena beräknad utifrån urvalet för det första halvåret (detta urval användes också för att ta fram det beräknade felet) och \(\sigma_{r2} \) är en skattning av standardavvikelsen för felprocentvärdena under det andra halvåret:

\[n_2 = \frac{(0,842 \times 2 \times 961 \times 394 \times 727 \times 624 \times 0,30)^2}{(95 \times 797 \times 205 - 19 \times 159 \times 441)^2 - 0,842^2 \times \frac{1 \times 827 \times 930 \times 259^2}{45} \times 0,085^2} \approx 102 \]

där:
- \(TE = (1 \times 827 \times 930 \times 259 \text{ euro} + 2 \times 961 \times 394 \times 727 \times 624 \text{ euro}) \times 2 \% = 95,797,205 \text{ euro} \)
- \(AE = (1 \times 827 \times 930 \times 259 \text{ euro} + 2 \times 961 \times 394 \times 727 \times 624 \text{ euro}) \times 0,4 \% = 19,159,441 \text{ euro} \)

Man måste identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärde för detta toppstratum är lika med kvoten mellan det bokförda värdet (\(BV_2 \)) och den planerade urvalsstorleken (\(n_2 \)). Alla poster vars bokförda värde är högre än detta gränsvärde (om \(BV_{12} > BV_2/n_2 \)) kommer att placeras i det 100-procentiga granskningstratetum. I detta fall är gränsvärde för beaktande 29 038 529 euro. Det finns sex insatser vars bokförda värde ligger över detta gränsvärde. Det totala bokförda värdet för dessa insatser är 415 238 983 euro.

Storleken på det urval som ska ingå i det icke uttömmande stratumet, \(n_{2s} \), beräknas som skillnaden mellan \(n_2 \) och antalet urvalsenheter (t.e.x. insatser) i det uttömmande stratumet (\(n_{2e} \)), dvs. 96 insatser (urvalet på 102 insatser minus de sex insatserna av högt värde). Därför måste revisorn göra urvalet med urvalsintervallet

\[SI_{2s} = \frac{BV_{2s}}{n_{2s}} = \frac{2 \times 961 \times 394 \times 727 \times 624 - 415 \times 238 \times 983}{96} = 26 528 032 \]

Det bokförda värdet i det icke uttömmande stratumet (\(BV_{2s} \)) är helt enkelt skillnaden mellan det sammanlagda bokförda värdet och det bokförda värdet för de sex insatser som tillhör toppstratumet.

I följande tabell sammanfattas ovanstående resultat:

<table>
<thead>
<tr>
<th>Gränsvärde – andra halvåret</th>
<th>29 038 529 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal insatser med ett bokfört värde som är högre än gränsvärde – andra halvåret</td>
<td>6</td>
</tr>
<tr>
<td>Bokfört värde för insatser med ett bokfört värde som är högre</td>
<td>415 238 983 euro</td>
</tr>
</tbody>
</table>
Av de sex insatser vars bokförda värde är högre än gränsvärdet, innehåller fyra insatser fel. De sammanlagda felen i detta stratum uppgår till 9 340 755 euro.

En fil som innehåller de återstående 2 338 insatserna i populationen för det andra halvåret sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas. Ett urval på 96 insatser tas ut med hjälp av det systematiska förfarandet för ett urval i förhållande till storlek.

Värdet på de 96 insatserna granskas. Summan av felprocentvärdena för det andra halvåret är

\[\sum_{i=1}^{96} \frac{E_{2i}}{BV_{2i}} = 1,1875 \]

Standardavvikelsen för felprocentvärdena i urvalet för den icke uttömmande populationen för det andra halvåret är

\[s_{r2s} = \sqrt{\frac{1}{96-1} \sum_{i=1}^{96} (\bar{r}_{2s} - \bar{r}_{2s})^2} = 0,29 \]

och \(\bar{r}_{2s} \) är lika med det enkla genomsnittet av felprocentvärdena i urvalet för den icke uttömmande gruppen för det andra halvåret.

Beräkningen av fel i populationen görs på olika sätt för enheter som tillhör de uttömmande stratumen och för posterna i de icke uttömmande stratumen.

För de uttömmande stratumen, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet \(BV_{ti} > \frac{BV_t}{n_t} \), är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i de stratumen:

\[EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} = 19 240 855 + 9 340 755 = 28 581 610 \]

I praktiken betyder det följande:
1) Identifiera för varje halvår \(t \) de enheter som tillhör den uttömmande gruppen och summera deras fel.
2) Summera de föregående resultaten för de båda halvåren.
För den icke uttömmande gruppen, dvs. de stratum som innehåller urvalsenheter med ett bokfört värde som inte överstiger gränsvärdet $BV_{ti} \leq \frac{BV_{t}}{n_t}$, är det beräknade felet

$$EE_s = \frac{BV_{1s}}{n_{1s}} \times \sum_{i=1}^{n_{1s}} \frac{E_{1i}}{BV_{1i}} + \frac{BV_{2s}}{n_{2s}} \times \sum_{i=1}^{n_{2s}} \frac{E_{2i}}{BV_{2i}}$$

$$= \frac{936 162 740}{34} \times 1,4256 + \frac{2 546 691 025}{96} \times 1,1875 = 70 754 790$$

Vid beräkningen av det beräknade felet ska
1) felprocenten beräknas för varje halvår t för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, $\frac{E_{ti}}{BV_{ti}}$
2) dessa felprocentvärden summeras för varje halvår t för samtliga enheter i urvalet,
3) det ovanstående resultatet för varje halvår t multipliceras med de sammanlagda utgifterna i populationen i den icke uttömmande gruppen (BV_{ts}), dessa utgifter är också lika med de sammanlagda utgifterna i stratumet minus utgifterna för poster som tillhör den uttömmande gruppen,
4) det ovanstående resultatet för varje halvår t dividers med storleken på urvalet i den icke uttömmande gruppen (n_{ts}),
5) de föregående resultaten summeras för de båda halvåren.

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

$$EE = EE_e + EE_s = 28 581 610 + 70 754 790 = 99 336 400$$

vilket motsvarar en beräknad felprocent på 2,07%.

Precision är ett mått på osäkerheten i beräkningen. Precisionen räknas fram med formeln

$$SE = z \times \sqrt{\frac{BV_{1s}^2}{n_{1s}} \times s_{r1s}^2 + \frac{BV_{2s}^2}{n_{2s}} \times s_{r2s}^2}$$

$$= 0,842 \times \sqrt{\frac{936 162 740^2}{34} \times 0,085^2 + \frac{2 546 691 025^2}{96} \times 0,29^2}$$

$$= 64 499 188$$

där s_{rts} är den standardavvikelse för felprocentvärden som redan har beräknats.

Urvalsfelet beräknas endast för de icke uttömmande stratumen eftersom det inte finns något urvalsfel att ta hänsyn till i den uttömmande gruppen.
 För att avgöra om felen är väsentliga bör den övre felgränsen (ULE) beräknas. Den övre gränsen är lika med summan av det beräknade felet EE i sig och precisionen i beräkningen

\[ULE = EE + SE = 99\,336\,400 + 64\,499\,188 = 163\,835\,589 \]

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser.

I just detta fall är det beräknade felet större än det högsta godtagbara felet. Det betyder att revisorn drar slutsatsen att det finns tillräckliga bevis för att felen i populationen ligger över tröskelvärdet för väsentlighet.

6.3.4 Den stratifierade urvalsmetoden MUS i två perioder

6.3.4.1 Inledning

Revisionsmyndigheten kan välja att använda en stratifierad urvalsform och samtidigt sprida ut granskningsarbetet på flera perioder under året (vanligtvis två halvår, men samma resonemang kan tillämpas på flera perioder). Formellt sett är detta en ny urvalsform som innehåller särdrag från den stratifierade urvalsmetoden MUS och MUS med två perioder. I detta avsnitt beskriver vi en metod för att slå ihop dessa båda egenskaper i en enda urvalsform.

Med denna metod delas referensperiodens population in i två delpopulationer där var och en motsvarar insatserna och utgifterna för varje halvår. Oberoende urval görs för varje halvår med den stratifierade metoden för beloppsbaserat urval (MUS). Det är inte nödvändigt att använda exakt samma stratifiering i varje granskningsperiod. Typen av stratifiering och till och med antalet stratum kan variera från en granskningsperiod till en annan.

6.3.4.2 Urvalets storlek

Första halvåret

För den första granskingsperioden (t.ex. ett halvår) beräknas den totala urvalsstorleken (för de båda halvåren tillsammans) enligt följande:

\[
n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2
\]

där \(\sigma_{rw}^2 \) är ett viktat medelvärde av varianserna i felprocentvärdena för hela uppsättningen av stratum och för båda perioderna. Vikten för varje stratum under varje halvår är lika med kvoten av stratumets bokförda värde (\(BV_h \)) och det bokförda värdet för hela populationen, \(BV = BV_1 + BV_2 \) (inklusive båda halvåren).

\[
\sigma_{rw}^2 = \sigma_{rw1}^2 + \sigma_{rw2}^2
\]

\[
\sigma_{rw1}^2 = \sum_{i=1}^{H_1} \frac{BV_{h1}}{BV} \sigma_{r_{h1}}^2, h = 1, 2, ..., H_1;
\]

\[
\sigma_{rw2}^2 = \sum_{i=1}^{H_2} \frac{BV_{h2}}{BV} \sigma_{r_{h2}}^2, h = 1, 2, ..., H_2;
\]

\(BV_{ht} \) \(BV_{ht} \) motsvarar utgifterna i stratum \(h \) under perioden \(t \), \(H_t \) är antalet stratum i perioden \(t \) och \(\sigma_{rht}^2 \) är variansen i felprocentvärdena i varje halvår. Variansen i felprocentvärdena beräknas för varje stratum i varje halvår som

\[
\sigma_{rht}^2 = \frac{1}{n_{ht}^p - 1} \sum_{i=1}^{n_{ht}^p} (r_{hti} - \bar{r}_{ht})^2, h = 1, 2, ..., H_t, t = 1, 2
\]
där \(r_{hti} = \frac{E_{hti}}{BV_{hti}} \) motsvarar de individuella felprocentvärdena för enheter i stratum \(h \) i halvår \(t \) och \(\bar{r}_{ht} \) motsvarar den genomsnittliga felprocenten i urvalet i stratum \(h \) och halvår \(t \)\(^{33}\).

Värdena för de förväntade varianserna i båda halvårsvärdena måste fastställas med utgångspunkt i yrkesmässigt omdöme och vara baserade på historiska kunskaper. Det går fortfarande att välja att göra ett litet preliminärt urval/piloturval för att få fram approximeringar av parametrarna för det första halvåret, enligt beskrivningen av den vanliga MUS-metoden med två perioder. Även i detta fall gäller att utgifterna för det andra halvåret ännu inte har uppstått vid den första observationen och det finns inga objektiva data (utöver de historiska) att tillgå. Om piloturval används, kan de som vanligt därefter användas som en del av det urval som valts för granskning.

Om det inte finns några historiska data eller kunskaper att tillgå för att bedöma variationen i data under det halvåret går det att använda en förenklad metod där den sammanlagda urvalsstorleken beräknas som

\[
\eta = \left(\frac{z \times BV \times \sigma_{rw1}}{TE - AE} \right)^2
\]

Med denna förenklade metod behövs det endast information om variationen i felprocentvärdena under den första observationsperioden. Det underliggande antagandet är att variationen bland felprocentvärdena kommer att vara ungefär lika stor under båda halvåren.

Lägg märke till att problem som hänger samman med historisk information vanligtvis brukar vara begränsade till programpериодens första år. Den information som samlas in under det första granskningsåret kan användas under efterföljande år för att bestämma urvalets storlek.

Tänk också på att för att kunna använda formlerna för att beräkna urvalsstorleken måste man ha värden för \(BV_{h1} \) \((h = 1, 2, \ldots, H_1)\) och \(BV_{h2} \) \((h = 1, 2, \ldots, H_2)\) dvs. det sammanlagda bokförda värdet (deklarerade utgifter) i varje stratum för det första och andra halvåret. När urvalets storlek beräknas kommer värdena för \(BV_{h1} \) \((h = 1, 2, \ldots, H_1)\) att vara kända, men värdena på \(BV_{h2} \) \((h = 1, 2, \ldots, H_2)\) kommer att vara okända och måste tillräcknas enligt revisorns förväntningar (och även utifrån historisk information och/eller prognoser från programmens förvaltningsmyndigheter eller attesterande myndigheter).

\(^{33}\)När det bokförda värdet för enhet \(i \) \((BV_i)\) är större än \(BV_{ht}/n_{ht} \) bör kvoten \(\frac{E_{ht}}{BV_{hti}} \) ersättas med kvoten \(\frac{E_{ht}}{BV_{ht}/n_{ht}} \).
När den totala urvalsstorleken \(n \) har beräknats fördelas urvalet per stratum och halvår på följande sätt:

\[
n_{h1} = \frac{BV_{h1}}{BV} n
\]

och

\[
n_{h2} = \frac{BV_{h2}}{BV} n
\]

där \(BV = BV_1 + BV_2 \) är de totala förväntade utgifterna för referensperioden.

Precis som tidigare bör du tänka på att detta är en generell fördelningsmetod där urvalet fördelas på stratum proportionellt efter utgifterna (det bokförda värdet) i stratumen, men att det även finns andra fördelningsmetoder. I vissa fall går det att få större precision eller minskas urvalets storlek genom att använda en mer skräddarsydd fördelning. För att avgöra om andra fördelningsmetoder är lämpliga för varje specifik population krävs vissa tekniska kunskaper i urvalsteori, vilket inte ryms inom denna vägledning.

Andra halvåret

Vid första observationsperioden gjordes vissa antaganden om den efterföljande observationsperioden (vanligtvis det efterföljande halvåret). Om populationens egenskaper under de efterföljande perioderna skiljer sig avsevärt från antagandena kan urvalets storlek för den efterföljande perioden behöva justeras.

Vid den andra granskningsperioden (t.ex. halvåret) kommer mer information att finnas tillgänglig.

- Det korrekta sammanlagda bokförda värdet för varje stratum i det andra halvåret \(BV_{h2} (h = 1, 2, ..., H_2) \) är känt.
- Standardavvikelserna för felprocentvärdena i urvalet \(s_{rh1} (h = 1, 2, ..., H_1) \) som beräknades på urvalet för det första halvåret, finns redan tillgängliga.
- Det går nu att göra en mer tillförlitlig bedömning av standardavvikelserna för felprocentvärdena under det andra halvåret \(\sigma_{rh2} (h = 1, 2, ..., H_2) \) med verkliga data (t.ex. baserat på piloturval).

Om de ursprungliga prognoserna över dessa populationsparametrar skiljer sig väsentligt från populationens verkliga egenskaper kan urvalets storlek behöva justeras för det andra halvåret, för att ta hänsyn till de felaktiga beräkningarna. I så fall bör urvalets storlek för det andra halvåret räknas om med

\[
n_2 = \frac{z^2 \times BV_2 \times \sum_{h=1}^{H_2} (BV_{h2} \cdot \sigma_{rh2}^2)}{(TE - AE)^2 - z^2 \times \sum_{h=1}^{H_2} \left(\frac{BV_{h1}^2}{n_{h1}} \cdot s_{rh1}^2 \right)}
\]
där s_{rh1} är standardavvikelserna för de felprocentvärden som beräknats utifrån delurvalen för det första halvåret för varje stratum h (om de redan finns tillgängliga) och σ_{rh2} är en skattning av standardavvikelserna för felprocentvärdena för varje stratum under det andra halvåret baserad på historiska kunskaper (eventuellt justerade med information från det första halvåret) eller ett preliminärt urval/piloturval från det andra halvåret.

När den sammanlagda urvalsstorleken för andra halvåret har beräknats på nytt görs fördelningen per stratum helt enkelt som:

$$n_{h2} = \frac{BV_{h2}}{BV_2} n_2, (h = 1, 2, \ldots, H_2)$$

6.3.4.3 Urval

För varje halvår ska urvalet göras enligt exakt det förfarande som beskrivs för den stratifierade metoden för beloppbaserat urval (MUS). Förfarandet återges här för enkelhetens skull.

Varje halvår och varje stratum h kommer att ha två komponenter: den uttömmande gruppen i stratum h (dvs. den grupp som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärde $BV_{hti} > \frac{BV_{ht}}{n_{ht}}$), och urvalsgruppen inom stratumet h (dvs. den grupp som innehåller de urvalsenheter vars bokförda värde är mindre än gränsvärden, $BV_{hti} \leq \frac{BV_{ht}}{n_{ht}}$, eller ett annat nytt gränsvärde om det finns poster vars bokförda värden är högre än intervallet och lägre än gränsvärdena).

När urvalsstorleken har fastställts för vart och ett av de ursprungliga stratumen (h) ska alla (eventuella) populationsenheter av högt värde granskas för varje halvår. Gränsvärde för denna toppgrupp är lika med kvoten mellan det bokförda värdet (BV_{ht}) och den planerade urvalsstorleken (n_{ht}). I varje stratum h kommer alla poster vars bokförda värde är högre än detta gränsvärde (om $BV_{hti} > \frac{BV_{ht}}{n_{ht}}$) att placeras i den 100-procentiga granskningsgruppen.

Storleken på det urval som ska ingå i den icke uttömmande gruppen, n_{hts}, beräknas som skillnaden mellan n_{ht} och antalet urvalsenheter (t.ex. insatser) i den uttömmande gruppen i stratumet (n_{hte}).

För varje halvår ska slutligen urvalen i de icke uttömmande grupperna i varje stratum göras med PPS-metoden, dvs. i förhållande till posternas bokförda värde BV_{hti}. Ett populärt sätt att välja poster är att göra ett systematiskt urval, med ett urvalsintervall
som är lika med de sammanlagda utgifterna i den icke-uttömmande gruppen i stratumet \((BV_{hts})\) dividerat med urvalsstorleken \((n_{hts})^{34}\) dvs.

\[
SI_{hts} = \frac{BV_{hts}}{n_{hts}}
\]

Observera att flera oberoende stickprov kommer att väljas för varje halvår, ett för varje ursprungligt stratum.

6.3.4.4 Beräknat fel

Beräkningen av fel i populationen görs på olika sätt för enheter som tillhör de uttömmande grupperna och för posterna i de icke uttömmande grupperna.

För de uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdena \(BV_{hti} > \frac{BV_{ht}}{n_{ht}}\), är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i de grupperna:

\[
EE_e = \sum_{h=1}^{H_1} \sum_{i=1}^{n_{h1}} E_{h1i} + \sum_{h=1}^{H_2} \sum_{i=1}^{n_{h2}} E_{h2i}
\]

I praktiken betyder det följande:

1) Identifiera för varje halvår \(t\) och i varje stratum \(h\) de enheter som tillhör den uttömmande gruppen och summera deras fel.
2) Summera föregående resultat för hela uppsättningen \(H_1 + H_2\)-stratum.

För de icke uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde \(BV_{hti} \leq \frac{BV_{ht}}{n_{ht}}\) som inte överstiger gränsvärdena, är det beräknade felet

\[
EE_e = \sum_{h=1}^{H_1} \left(\frac{BV_{h1s}}{n_{h1s}} \cdot \sum_{i=1}^{n_{h1s}} E_{h1i} \right) + \sum_{h=1}^{H_2} \left(\frac{BV_{h2s}}{n_{h2s}} \cdot \sum_{i=1}^{n_{h2s}} E_{h2i} \right)
\]

34 Om vissa populationsenheter fortfarande har utgifter som är större än detta urvalsim intervall ska det förfarande som beskrivs i avsnitt 6.3.1.3 tillämpas.
Vid beräkningen av det beräknade felet ska

1) Felprocenten beräknas i varje stratum h och varje halvårs t för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift $\frac{E_{hti}}{BV_{hti}}$.

2) Dessa felprocentvärden summeras i varje stratum h och varje halvår t för samtliga enheter i urvalet, dvs. kvoten mellan felet och motsvarande utgifter.

3) Det ovanstående resultatet för varje stratum h i halvår t multipliceras med de sammanlagda utgifterna i populationen i den icke uttömmande gruppen (BV_{hts}). Dessa utgifter är också lika med de sammanlagda utgifterna i stratumet minus utgifterna för poster som tillhör den uttömmande gruppen i stratumet.

4) Det ovanstående resultatet för varje stratum h i varje halvår t divideras med storleken på urvalet i den icke uttömmande gruppen (n_{hts}).

5) Summera föregående resultat för hela uppsättningen $H_1 + H_2$-stratum.

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

$$EE = EE_e + EE_s$$

6.3.4.5 Precision

När det gäller den standardiserade MUS-metoden med två perioder är precision ett mått på osäkerheten i (projektion) extrapoleringen. Precisionen motsvarar urvalsfelet och bör beräknas så att man sedan kan ta fram ett konfidensintervall.

Precisionen räknas fram med formeln

$$SE = z \times \sqrt{H_1 \left(\sum_{h=1}^{H_1} \left(\frac{BV_{h1s}^2}{n_{h1s}} \cdot s_{rht1s}^2 \right) \right) + H_2 \left(\sum_{h=1}^{H_2} \left(\frac{BV_{h2s}^2}{n_{h2s}} \cdot s_{rht2s}^2 \right) \right)}$$

där s_{rhts} är standardavvikelsen för felprocentvärdena i urvalet för den icke uttömmande gruppen i stratum h i halvår t (beräknas ur samma urval som användes för att beräkna felen i populationen)

$$s_{rhts}^2 = \frac{1}{n_{hts} - 1} \sum_{i=1}^{n_{hts}} (r_{hti} - \bar{r}_{hts})^2$$
och \(\tilde{r}_{hts} \) är lika med det enkla genomsnittet av felprocentvärdena i urvalet för den icke uttömmande gruppen i stratum \(h \) i halvår \(t \).

Urvalsfelet beräknas endast för de icke uttömmande grupperna eftersom det inte finns något urvalsfel att ta hänsyn till i den uttömmande gruppen.

6.3.4.6 Utvärdering

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i extrapoleringen

\[
ULE = EE + SE
\]

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser med exakt samma metod som beskrivs i avsnitt 6.3.3.6.

6.3.4.7 Exempel

För att ta hänsyn till att arbetsbörдан för revisioner oftast är koncentrerad till utgången av revisionsåret beslutade revisionsmyndigheten att fördela revisionsarbetet på två perioder. Vid utgången av det första halvåret delar revisionsmyndigheten in populationen i två grupper som motsvarade de båda halvåren. Dessutom omfattar populationen två olika program och revisionsmyndigheten har skäl att anta att det finns olika felprocentvärden i de olika programmen. Därför har revisionsmyndigheten beslutat att den utöver att dela upp arbetsbörдан på två perioder ska stratifiera populationen efter program.

I slutet av första halvåret har populationen följande egenskaper:

<table>
<thead>
<tr>
<th>Deklarerade utgifter vid utgången av första halvåret</th>
<th>42 610 732 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>27 623 498 euro</td>
</tr>
<tr>
<td>Program 2</td>
<td>14 987 234 euro</td>
</tr>
<tr>
<td>Populationens storlek (insatser – första halvåret)</td>
<td>5 603</td>
</tr>
<tr>
<td>Program 1</td>
<td>3 257</td>
</tr>
<tr>
<td>Program 2</td>
<td>2 346</td>
</tr>
</tbody>
</table>

Revisionsmyndigheten vet av tidigare erfarenhet att alla insatser som ingår i programmen vid utgången av referensperioden redan brukar vara aktiva i populationen
för det första halvåret. Mot bakgrund av tidigare erfarenheter väntar sig revisionsmyndigheten dessutom att de utgifter som deklareras under det andra halvåret kommer att öka för de båda programmen, men i olika takt. De deklarerade utgifterna för andra halvåret vänster öka med 40 % respektive 10 % för programmen 1 och 2. Utifrån dessa antaganden görs en sammanfattning av populationen i följande tabell:

<table>
<thead>
<tr>
<th>Deklarerade utgifter vid utgången av första halvåret</th>
<th>42 610 732 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>27 623 498 euro</td>
</tr>
<tr>
<td>Program 2</td>
<td>14 987 234 euro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deklarerade utgifter vid utgången av andra halvåret (förväntade)</th>
<th>55 158 855 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1 (27 623 498 euro x 1,4)</td>
<td>38 672 897 euro</td>
</tr>
<tr>
<td>Program 2 (14 987 234 euro x 1,1)</td>
<td>16 485 957 euro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summa beräknat totalresultat för året</th>
<th>97 769 587 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>66 296 395 euro</td>
</tr>
<tr>
<td>Program 2</td>
<td>31 473 191 euro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Populationens storlek (insatser – första halvåret)</th>
<th>5 603</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>3 257</td>
</tr>
<tr>
<td>Program 2</td>
<td>2 346</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Populationens storlek (insatser – andra halvåret, förväntad)</th>
<th>5 603</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>3 257</td>
</tr>
<tr>
<td>Program 2</td>
<td>2 346</td>
</tr>
</tbody>
</table>

För det första halvåret som granskas beräknas den totala urvalsstorleken (för de båda halvåren tillsammans) enligt följande:

\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

där \(\sigma_{rw}^2 \) är ett viktat medelvärde av varianserna i felprocentvärdena för hela uppsättningen av stratum och för båda perioderna Vikten för varje stratum under varje halvår är lika med kvoten av stratums bokförda värde (\(BV_{ht} \)) och det bokförda värdet för hela populationen, \(BV = BV_1 + BV_2 \) (inklusive båda halvåren).

\[\sigma_{rw}^2 = \sigma_{rw1}^2 + \sigma_{rw2}^2 \]

\[\sigma_{rw1}^2 = \sum_{i=1}^{2} \frac{BV_{h1}}{BV} \sigma_{r1h1}, h = 1,2 \]

\[\sigma_{rw2}^2 = \sum_{i=1}^{2} \frac{BV_{h2}}{BV} \sigma_{r2h2}, h = 1,2 \]
BV_{ht} motsvarar utgifterna i stratum h, $h = 1, 2$, under perioden t och σ_{rht}^2 är variansen i felprocentvärdena i varje stratum för varje halvår. Variansen i felprocentvärdena beräknas för varje stratum i varje halvår som

$$\sigma_{rht}^2 = \frac{1}{n_{ht}^p - 1} \sum_{i=1}^{n_p} (r_{hti} - \bar{r}_{ht})^2, h = 1, 2, t = 1, 2$$

där $r_{hti} = \frac{E_{hti}}{BV_{hti}}$ motsvarar de individuella felprocentvärdena för enheter i stratum h i halvår t och \bar{r}_{ht} motsvarar den genomsnittliga felprocenten i urvalet i stratum h och halvår t^{35}.

Eftersom dessa varianser är okända beslutade revisionsmyndigheten att i varje stratum (program) göra ett preliminärt urval på 20 insatser vid utgången av första halvåret under den innevarande referensperioden. Standardavvikelsen för felprocentvärdena i detta preliminära urval för det första halvåret är 0,0924 respektive 0,0515 för programmen 1 respektive 2. Efter en yrkesmässig bedömning förväntar sig revisionsmyndigheten att standardfelavvikelsen för felprocentvärdena för andra halvåret kommer att öka med 40% och 10%, dvs. till 0,1294 och 0,0567. Det viktade genomsnittet för variansen i felprocentvärdena är alltså

$$\sigma_{rw}^2 = 0,0028188 + 0,0071654 = 0,009984$$

förutsatt att det viktade medelvärdet för båda halvåren är

$$\sigma_{rw1}^2 = \frac{27 623 498}{97 769 587} \times 0,0924^2 + \frac{14 987 234}{97 769 587} \times 0,0515^2 = 0,0028188$$

$$\sigma_{rw2}^2 = \frac{38 672 897}{97 769 587} \times 0,1294^2 + \frac{16 485 957}{97 769 587} \times 0,0567^2 = 0,0071654$$

För det första halvåret anser revisionsmyndigheten att en konfidensnivå på 90% är lämplig med hänsyn till hur förvaltnings- och kontrollsystemet fungerar. Den totala urvalsstorleken för hela året är

$$n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2$$

35 När det bokförda värdet för enhet i (BV_i) är större än BV_{ht}/n_{ht} bör kvoten $\frac{E_{hti}}{BV_{hti}}$ ersättas med kvoten $\frac{E_{hti}}{BV_{hti}/n_{ht}}$.

127
\[n = \left(\frac{1,645 \times 97,769,587 \times \sqrt{0.009984}}{1,955,392 - 391,078} \right)^2 \approx 106 \]

där \(z \) är 1,645 (koefficient som motsvarar en konfidensnivå på 90 \%) och det godtagbara felet \(TE \) är 2 \% (högsta väsentlighetsnivå enligt förordningen) av det bokförda värdet. Det totala bokförda värdet omfattar det verkliga bokförda värdet vid utgången av det första halvåret plus det förväntade bokförda värdet för andra halvåret, vilket betyder att det godtagbara felet är 2 \% \times 97,769,587 euro = 1,955,392 euro. Förra årets granskning gav en beräknad felprocent på 0,4 \%. Det \(AE \) förväntade felet blir alltså 0,4 \% \times 97,769,587 euro = 391,078 euro.

Urvalets fördelning efter halvår och stratum blir

\[
n_{h1} = \frac{BV_{h1}}{BV} n_{h1} = \frac{27,623,498}{97,769,587} \times 106 \approx 30; n_{21} = \frac{14,987,234}{97,769,587} \times 106 \approx 17
\]

och

\[
n_{h2} = \frac{BV_{h2}}{BV} n_{h2} = \frac{38,672,897}{97,769,587} \times 106 \approx 42; n_{22} = \frac{16,485,957}{97,769,587} \times 106 \approx 18
\]

För det första halvåret måste man identifiera de (eventuella) populationsenheter av högt värde i de båda programmen som ska ingå i ett stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförda värdet \((BV_{h1}) \) och den planerade urvalsstorleken \((n_{h1}) \). Alla poster vars bokförda värde är högre än detta gränsvärde \((om BV_{ih1} > BV_{h1}/n_{h1}) \) kommer att placeras i det 100-procentiga granskingsstratumet.

Dessa båda urvalsstorlekar för det första halvåret (30 och 17) ger följande gränsvärden för beaktande för stratum med poster av högt värde för båda programmen:

\[
Gränsvärde_{11} = \frac{BV_{11}}{n_{11}} = \frac{27,623,498}{30} = 920,783
\]

och

\[
Gränsvärde_{21} = \frac{BV_{21}}{n_{21}} = \frac{14,987,234}{17} = 881,602
\]

När dessa båda gränsvärden används upptäcks tre respektive fyra insatser av högt värde i programmen 1 och 2 till ett sammanlagt bokfört värde på 3,475,552 euro respektive 4,289,673 euro.
Storleken på det urval som ska ingå i det icke uttömmande stratumet \((n_{h1s})\) beräknas som skillnaden mellan \(n_h\) och antalet urvalsenheter i det uttömmande stratumet). Urvalsstorleken för den del av program 1 som omfattas av stickprovstagnings räknas fram ur den totala urvalsstorleken (30), med avdrag för de tre insatserna av högt värde, dvs. 27 insatser. Samma metod används för program 2, vilket innebär att urvalsstorleken för den del av som omfattas av stickprovstagnings är \(17 - 4 = 13\) insatser.

Nästa steg är att beräkna urvalsintervallet för urvalsstratumen. Urvalsintervallen beräknas med

\[
SI_{11} = \frac{BV_{11s}}{n_{11s}} = \frac{27 \, 623 \, 498 - 3 \, 475 \, 552}{27} = 894 \, 368
\]

och

\[
SI_{21} = \frac{BV_{21s}}{n_{21s}} = \frac{14 \, 987 \, 234 - 4 \, 289 \, 673}{13} = 822 \, 889
\]

I följande tabell sammanfattas ovanstående resultat:

<table>
<thead>
<tr>
<th>Urvalsresultat – program 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (summan av utgifter vid utgången av första halvåret)</td>
<td>42 610 732 euro</td>
</tr>
<tr>
<td>Bokfört värde – program 1</td>
<td>27 623 498 euro</td>
</tr>
<tr>
<td>Bokfört värde – program 2</td>
<td>14 987 234 euro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urvalsresultat – program 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gränsvärde</td>
<td>920 783 euro</td>
</tr>
<tr>
<td>Bokfört värde för insatserna ovanför gränsvärdet för beaktande</td>
<td>3</td>
</tr>
<tr>
<td>Antal insatser ovanför gränsvärdet för beaktande</td>
<td>3 475 552 euro</td>
</tr>
<tr>
<td>Bokfört värde för insatserna (icke uttömmande population)</td>
<td>24 147 946 euro</td>
</tr>
<tr>
<td>Urvalsintervall (icke uttömmande population)</td>
<td>894 368 euro</td>
</tr>
<tr>
<td>Antal insatser (icke uttömmande population)</td>
<td>3 254</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urvalsresultat – program 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gränsvärde</td>
<td>881 602 euro</td>
</tr>
<tr>
<td>Bokfört värde för insatserna ovanför gränsvärdet för beaktande</td>
<td>4</td>
</tr>
<tr>
<td>Antal insatser ovanför gränsvärdet för beaktande</td>
<td>4 289 673 euro</td>
</tr>
<tr>
<td>Bokfört värde för insatserna (icke uttömmande population)</td>
<td>10 697 561 euro</td>
</tr>
<tr>
<td>Urvalsintervall (icke uttömmande population)</td>
<td>822 889 euro</td>
</tr>
<tr>
<td>Antal insatser (icke uttömmande population)</td>
<td>2 342</td>
</tr>
</tbody>
</table>
Urvalet i det icke uttömmande stratumet ska göras med PPS-metoden, dvs. i förhållande till posternas bokförda värde BV_{ih1s} med ett systematiskt urval.

 För program 1 görs vid utgången av första halvåret en slumpmässig sortering av en fil som innehåller de återstående 3 254 insatserna (3 257 – 3 insatser med högt värde) i populationen och en stegvis kumulativ variabel för bokfört värde skapas. Ett urval på 27 insatser (30 – 3 insatser med högt värde) tas fram med exakt samma förfarande som beskrivs i avsnitt 6.3.1.7.

 För program 2 görs vid utgången av första halvåret en slumpmässig sortering av en fil som innehåller de återstående 2 342 insatserna (2 346 – 4 insatser med högt värde) i populationen och en stegvis kumulativ variabel för bokfört värde skapas. Ett urvalsvarde på 13 insatser (17 – 4 insatser med högt värde) tas fram såsom beskrivs i stycket ovan.

 För program 1 upptäcktes ett sammanlagt fel på 13 768 euro i de tre insatserna med högt värde. För program 2 upptäcktes inga fel i stratumet med högt värde.

 Utgifterna i de 40 insatserna i urvalet (27 + 13) granskas. Summan av felprocentvärdena för program 1 vid utgången av det första halvåret är:

$$\sum_{i=1}^{27} \frac{E_{i11s}}{BV_{i11s}} = 0,0823$$

Summan av felprocentvärdena för program 2 vid utgången av det första halvåret är:

$$\sum_{i=1}^{13} \frac{E_{i21s}}{BV_{i21s}} = 0,1145$$

Standardavvikelsen för felprocentvärdena i urvalet för den icke uttömmande populationen för det första halvåret är för båda programmen:

$$s_{r_{11s}} = \sqrt{\frac{1}{27-1} \sum_{i=1}^{27} (r'_{i11s} - \bar{r}_{11s})^2} = 0,0868$$

$$s_{r_{21s}} = \sqrt{\frac{1}{13-1} \sum_{i=1}^{13} (r'_{i21s} - \bar{r}_{21s})^2} = 0,0696$$
och \(\tilde{r}_{h1r} = 1,2 \), är lika med det enkla genomsnittet av felprocentvärdena i urvalet för den icke uttömmande gruppen för det första halvåret.

Vid utgången av andra halvåret finns mer information att tillgå. Framför allt känner man till de sammanlagda utgifterna för aktiva insatser under det andra halvåret. Varianserna i urvalets felprocentvärden för båda programmen, \(s_{r11} \) och \(s_{r21} \), beräknade från urvalet i stratumet för det första halvåret är redan tillgängliga och det går nu att göra en mer korrekt bedömning av standardavvikelsen för felprocentvärdena för det andra halvåret för båda programmen, \(\sigma_{r12} \) och \(\sigma_{r22} \), med ett preliminärt urval av verkliga data.

Revisionsmyndigheten konstaterar att det antagande om de sammanlagda utgifterna för det andra halvåret som gjordes vid utgången av första halvåret, 55 158 855 euro, överstiger det verkliga värdet på 49 211 269 euro. Det finns också ytterligare två parametrar där man bör använda uppdaterade siffror.

För det första gav skattningen av standardavvikelsen för felprocent utifrån det första halvårets programurval på 27 och 13 insatser ett värde på 0,0868 respektive 0,0696. Dessa nya värden bör nu användas för att göra en ny bedömning av den planerade urvalsstorleken. För det andra anser revisionsmyndigheten med hänsyn till de båda preliminära urvalen för det andra programmen för det andra halvåret att det är lämpligare att skatta standardavvikelsen för felprocentvärdena för det andra halvåret till 0,0943 respektive 0,0497 i stället för de ursprungliga värdena på 0,1294 och 0,0567. De uppdaterade siffrorna för standardavvikelsen för felprocentvärdena för de båda programmen och halvåren ligger långt ifrån de ursprungliga skattningarna. Därför bör urvalet revideras för det andra halvåret.

I följande tabell sammanfattas ovanstående resultat

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prognos gjord vid utgången av första halvåret</th>
<th>Utgången av andra halvåret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvikelse för felprocent under första halvåret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 1</td>
<td>0,0924</td>
<td>0,0868</td>
</tr>
<tr>
<td>Program 2</td>
<td>0,0515</td>
<td>0,0696</td>
</tr>
<tr>
<td>Standardavvikelse för felprocent under andra halvåret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 1</td>
<td>0,1294</td>
<td>0,0943</td>
</tr>
<tr>
<td>Program 2</td>
<td>0,0567</td>
<td>0,0497</td>
</tr>
<tr>
<td>Sammanlagda utgifter under andra halvåret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 1</td>
<td>38 672 897 euro</td>
<td>32 976 342 euro</td>
</tr>
<tr>
<td>Program 2</td>
<td>16 485 957 euro</td>
<td>16 234 927 euro</td>
</tr>
</tbody>
</table>
Med hänsyn till dessa tre typer av justeringar beräknas urvalets storlek för andra halvåret till

\[
 n_2 = \frac{z^2 \times BV_2 \times \sum_{h=1}^{2} (BV_{h2} \cdot \sigma_{rh2}^2)}{(TE - AE)^2 - z^2 \times \sum_{h=1}^{2} \left(\frac{BV_{h1}^2}{n_{h1}} \cdot s_{rh1}^2 \right)}
\]

där \(s_{rh1} \) är standardavvikelsorna för de felprocentvärden som beräknats utifrån delurvalen för det första halvåret för varje stratum \(h, h = 1,2 \), och \(\sigma_{rh2} \) är skattningar av standardavvikelserna för felprocentvärdena för varje stratum under det andra halvåret baserade på preliminära urvalet.

\[
 n_2 = \frac{1,645^2 \times 49,211,269 \times (32,976,342 \times 0,0943^2 + 16,234,927 \times 0,0497^2)}{(1,836,440 - 367,288)^2 - 1,645^2 \times \left(\frac{27,623,498^2}{30} \times 0,0868^2 + \frac{14,987,234^2}{17} \times 0,0696^2 \right)} \approx 31
\]

Baserat på dessa uppdaterade siffror behöver urvalets storlek för att uppnå den önskade precisionen vara 31 insatser i stället för de 60 som planerades vid utgången av det första halvåret. Nu är det enkelt att göra fördelningen per program:

\[
 n_{12} = \frac{BV_{12}}{BV_2} n_2 = \frac{32,976,342}{49,211,269} \times 31 \approx 21
\]

\[
 n_{22} = 31 - 21 = 10
\]

Man måste identifiera de (eventuella) populationsenheter av högt värde som ska ingå i de stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdena för dessa toppstratum är lika med kvoten mellan det bokförda värdet (\(BV_{h2} \)) och den planerade urvalsstorleken (\(n_{h2} \)). Alla poster vars bokförda värde är större än dessa gränsvärden (om \(BV_{ih2} > BV_{h2}/n_{h2}, h = 1,2 \)) kommer att placeras i det 100-procentiga granskningstratumet. I dessa fall är gränsvärdena för beaktande:

De uppdaterade urvalsstörlekarna för det andra halvåret (21 och 10) ger följande gränsvärden för beaktande för stratum med poster av högt värde för båda programmen:

\[
 Gränsvärde_{12} = \frac{BV_{12}}{n_{12}} = \frac{32,976,342}{21} = 1,570,302
\]

och

\[
 Gränsvärde_{22} = \frac{BV_{22}}{n_{22}} = \frac{16,243,927}{10} = 1,624,393
\]
Det finns tre insatser i program 1 och två insatser i program 2 vars bokförda värden är större än de respektive gränsvärdena för beaktande. Det sammanlagda bokförda värden för dessa insatser är 7 235 619 euro i program 1 och 4 329 527 euro i program 2.

De urvalsstörlekar som ska fördelas på de icke-uttömmande stratumen, n_{12s} och n_{22s}, beräknas som skillnaden mellan $n_{h2}, h = 1,2$ och antalet urvalsenheter (t.ex. insatser) i respektive uttömmande stratum, dvs. 14 insatser för program 1 (21, den uppdaterade urvalsstörleken för program 1 under det andra halvåret minus de sju insatserna med poster av högt värde) och sex insatser för program 2 (tio den uppdaterade urvalsstörleken för program 2 under det andra halvåret minus fyra insatser med poster av högt värde). Därför måste revisorn göra det återstående urvalet med urvalsintervallen.

$SI_{12s} = \frac{BV_{12s}}{n_{12s}} = \frac{32 976 342 - 7 235 619}{18} = 1 430 040$

$SI_{22s} = \frac{BV_{22s}}{n_{22s}} = \frac{16 234 927 - 4 329 527}{8} = 1 489 300$

Det bokförda värdet i de icke-uttömmande stratumen (BV_{12s} och BV_{22s}) är helt enkelt skillnaden mellan det sammanlagda bokförda värden för stratumet och det bokförda värdet för respektive insats av högt värde.

I följande tabell sammanfattas ovanstående resultat:

<table>
<thead>
<tr>
<th>Bokfört värde (deklarerade utgifter under det andra kvartalet)</th>
<th>49 211 269 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde – program 1</td>
<td>32 976 342 euro</td>
</tr>
<tr>
<td>Bokfört värde – program 2</td>
<td>16 234 927 euro</td>
</tr>
</tbody>
</table>

Urvalsstörlekar – program 1

<table>
<thead>
<tr>
<th>Gränsvärde</th>
<th>1 570 302 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde för insatserna ovanför gränsvärdet för beaktande</td>
<td>3</td>
</tr>
<tr>
<td>Antal insatser ovanför gränsvärdet för beaktande</td>
<td>7 235 619 euro</td>
</tr>
<tr>
<td>Bokfört värde för insatserna (icke uttömmande population)</td>
<td>25 740 723 euro</td>
</tr>
<tr>
<td>Urvalsintervall (icke uttömmande population)</td>
<td>1 430 040 euro</td>
</tr>
<tr>
<td>Antal insatser (icke uttömmande population)</td>
<td>3 254</td>
</tr>
</tbody>
</table>

Urvalsstörlekar – program 2

<table>
<thead>
<tr>
<th>Gränsvärde</th>
<th>1 623 493 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde för insatserna ovanför gränsvärdet för beaktande</td>
<td>2</td>
</tr>
<tr>
<td>Antal insatser ovanför gränsvärdet för beaktande</td>
<td>4 329 527 euro</td>
</tr>
<tr>
<td>Bokfört värde för insatserna (icke uttömmande)</td>
<td>11 914 400 euro</td>
</tr>
</tbody>
</table>
Inga fel upptäcktes i utgifterna för de båda programmens insatser med högt värde.

För program 1 görs en slumpmässig sortering av en fil som innehåller de 3 254 insatserna (3 257 minus tre insatser med högt värde) och motsvarande utgifter som har deklarerats under det andra halvåret och en stegvis kumulativ variabel för bokfört värde skapas. Ett urval på 18 insatser (21 minus 3 insatser med högt värde) tas fram med exakt samma förfarande som förut.

För program 2 görs en slumpmässig sortering av en fil som innehåller de 2 344 insatserna (2 346 minus två insatser med högt värde) och motsvarande utgifter som har deklarerats under det andra halvåret och en stegvis kumulativ variabel för bokfört värde skapas. Ett urvalsvärde på åtta insatser (tio minus två insatser med högt värde) tas fram baserat på sannolikhet i förhållande till storlek.

Utgifterna för de 26 (18 + 8) insatserna granskas. Summan av felprocentvärdena för program 1 vid utgången av det andra halvåret är

$$\sum_{i=1}^{18} \frac{E_{i12s}}{BV_{i12s}} = 0,1345$$

Summan av felprocentvärdena för program 2 vid utgången av det första halvåret är

$$\sum_{i=1}^{8} \frac{E_{i22s}}{BV_{i22s}} = 0,0934$$

Standardavvikelsen för felprocentvärdena i urvalet för den icke yttömmande populationen för det första halvåret är för båda programmen

$$s_{r12s} = \sqrt{\frac{1}{18 - 1} \sum_{i=1}^{18} (r_{i12s} - \bar{r}_{12s})^2} = 0,0737$$

$$s_{r22s} = \sqrt{\frac{1}{8 - 1} \sum_{i=1}^{8} (r_{i22s} - \bar{r}_{22s})^2} = 0,0401$$
och $\bar{r}_{hts}, h = 1,2,$ är lika med det enkla genomsnittet av felprocentvärdena i urvalet för den icke uttömmande gruppen för det andra halvåret.

Beräkningen av fel i populationen görs på olika sätt för enheter som tillhör de uttömmande grupperna och för posterna i de icke uttömmande grupperna.

För stratumen med högt värde, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdena, $BV_{hti} > \frac{BV_{ht}}{n_{ht}}$, är det beräknade felet

$$EE_e = \frac{2}{\sum_{h=1}^{2} \sum_{i=1}^{n_{h1}} E_{h1i} + \sum_{h=1}^{2} \sum_{i=1}^{n_{h2}} E_{h2i} = 13\ 768}$$

I praktiken betyder det följande:

1) Identifiera för varje halvår och i varje stratum h de enheter som tillhör den uttömmande gruppen och summera deras fel.
2) Summera föregående resultat för hela uppsättningen stratum.

För de icke uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde $BV_{hti} \leq \frac{BV_{ht}}{n_{ht}}$ som inte överstiger gränsvärdena, är det beräknade felet

$$EE_s = \frac{2}{\sum_{h=1}^{2} \left(\frac{BV_{h1s}}{n_{h1s}} \cdot \sum_{i=1}^{n_{h1s}} E_{h1i} \right) + \sum_{h=1}^{2} \left(\frac{BV_{h2s}}{n_{h2s}} \cdot \sum_{i=1}^{n_{h2s}} E_{h2i} \right)}$$

$$= 894\ 368 \times 0,0823 + 822\ 889 \times 0,1145 + 1\ 430\ 040 \times 0,1345 + 1\ 489\ 300 \times 0,0934 = 499\ 268$$

Vid beräkningen av det beräknade felet ska

1) felprocenten beräknas i varje stratum h och varje halvår t för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, $\frac{E_{hti}}{BV_{hti}}$
2) dessa felprocentvärden summeras i varje stratum h och varje halvår t för samtliga enheter i urvalet,
3) det ovanstående resultatet för varje stratum h i halvår t multipliceras med de sammanlagda utgifterna i populationen i den icke uttömmande gruppen (BV_{hts}), dessa utgifter är också lika med de sammanlagda utgifterna i stratumet minus utgifterna för poster som tillhör den uttömmande gruppen i stratumet,
4) det ovanstående resultatet för varje stratum h i varje halvår t divideras med storleken på urvalet i den icke uttömmande gruppen (n_{hts}).
5) det ovanstående resultatet summeras för hela uppsättningen stratum.

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

\[EE = 13\,768 + 499\,268 = 513\,036 \]

vilket motsvarar en beräknad felprocent på 0,56 %.

Precision är ett mått på osäkerheten i beräkningen. Precisionen räknas fram med formeln

\[SE = z \times \sqrt{\sum_{h=1}^{2} \left(\frac{BV_{h1s}^2}{n_{h1s}} \cdot s_{rh1s}^2 \right) + \sum_{h=1}^{2} \left(\frac{BV_{h2s}^2}{n_{h2s}} \cdot s_{rh2s}^2 \right)} \]

\[= 1,645 \times \sqrt{24\,147\,946^2 \cdot 0,0823^2 + 10\,697\,561^2 \cdot 0,0696^2 + 25\,740\,723^2 \cdot 0,0737^2 + 11\,914\,400^2 \cdot 0,0401^2} \]

\[= 1\,062\,778 \]

där \(s_{rh} \) är den standardfelavvikelse för felprocentvärdena i den icke-uttömmande gruppen i stratum \(h \) för halvår \(t \) som redan har beräknats.

Urvalsfelet beräknas endast för de icke uttömmande grupperna eftersom det inte finns något urvalsfel att ta hänsyn till i de uttömmande grupperna.

För att avgöra om felen är väsentliga bör den övre gränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i beräkningen

\[ULE = EE + SE = 513\,036 + 1\,062\,778 = 1\,575\,814 \]

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser.

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser.

I detta specifika fall är både det beräknade felet och den övre gränsen lägre än det högsta godtagbara felet. Det betyder att revisorn drar slutsatsen att det inte finns tillräckliga bevis för att felen i populationen ligger över tröskelvärdet för väsentlighet:
6.3.5 Konservativ metod

6.3.5.1 Inledning

Denna metod går inte att kombinera med stratifiering eller fördelning av revisionsarbetet över två eller flera perioder under referensperioden, eftersom det skulle

36 Det går framför allt inte att beräkna urvalets storlek om det förväntade felet ligger över eller nära tröskelvärdet för väsentlighet.
leda till oanvändbara formler för att fastställa precisionen. Därför uppmuntras revisionsmyndigheterna att använda standardmetoden för de ändamålen.

6.3.5.2 Urvalets storlek

Beräkningen av urvalsstorleken n inom ramen för beloppsbaserat urval enligt den konservativa metoden bygger på följande information:

- Populationens bokförda värde (sammanlagda deklarerade utgifter) BV.
- En konstant som kallas tillförlitlighetsfaktor (RF) avgörs av konfidensnivån.
- Högsta godtagbara fel TE (vanligtvis 2 % av de sammanlagda utgifterna).
- Förväntat fel AE, valt av revisorn utifrån yrkesmässig erfarenhet och tidigare information.
- Expansionsfaktorn EF, som också är en konstant som är förknippad med konfidensnivån och som används när man förväntar sig fel.

Urvalets storlek beräknas på följande sätt:

$$n = \frac{BV \times RF}{TE - (AE \times EF)}$$

Tillförlitlighetsfaktorn RF är en konstant från Poisson-fördelningen för ett förväntat noll-fel. Den beror på konfidensnivån och de värden som ska tillämpas i varje situation anges i följande tabell.

<table>
<thead>
<tr>
<th>Konfidensnivå</th>
<th>99 %</th>
<th>95 %</th>
<th>90 %</th>
<th>85 %</th>
<th>80 %</th>
<th>75 %</th>
<th>70 %</th>
<th>60 %</th>
<th>50 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tillförlitlighetsfaktor (RF)</td>
<td>4,61</td>
<td>3,00</td>
<td>2,31</td>
<td>1,90</td>
<td>1,61</td>
<td>1,39</td>
<td>1,21</td>
<td>0,92</td>
<td>0,70</td>
</tr>
</tbody>
</table>

Tabell 4. Tillförlitlighetsfaktorer efter konfidensnivå

<table>
<thead>
<tr>
<th>Konfidensnivå</th>
<th>99 %</th>
<th>95 %</th>
<th>90 %</th>
<th>85 %</th>
<th>80 %</th>
<th>75 %</th>
<th>70 %</th>
<th>60 %</th>
<th>50 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansionsfaktor (EF)</td>
<td>1,9</td>
<td>1,6</td>
<td>1,5</td>
<td>1,4</td>
<td>1,3</td>
<td>1,25</td>
<td>1,2</td>
<td>1,1</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Tabell 5. Expansionsfaktorer efter konfidensnivå
Av formeln för att avgöra urvalets storlek framgår varför denna metod kallas konservativ. Urvalets storlek beror i själva verket varken på populationens storlek eller på variationen i populationen. Det betyder att formeln är avsedd att passa alla slags populationer, oavsett deras specifika egenskaper, och därför brukar ge större urval än vad som krävs i praktiken.

6.3.5.3 Urval

Efter att urvalets storlek har fastställts görs urvalet med PPS-metoden, dvs. i förhållande till posternas bokförda värde BV_i. Ett populärt sätt att välja poster är att göra ett systematiskt urval, med ett urvalsintervall som är lika med de sammanlagda utgifterna (BV) dividerat med urvalets storlek (n), dvs.

$$SI = \frac{BV}{n}$$

Vanligtvis dras stickprovet från en slumpmässigt utvald förteckning över alla poster, och varje post som innehåller den x:te valutaenheten väljs ut, där **x är det steg som motsvarar det bokförda värdet dividerat med urvalets storlek**, dvs. urvalsintervallet.

Vissa poster kan väljas flera gånger (om deras värde är större än urvalsintervallet). I så fall bör granskaren skapa ett uttömmande stratum där alla poster med ett bokfört värde som är högre än urvalsintervallet bör placeras. Detta stratum kommer som vanligt att behandlas på ett annat sätt för beräkningen av felet.

6.3.5.4 Beräknat fel

Beräkningen av feilen i populationen följer det förfarande som beskrivs för den standardiserade MUS-metoden. Återigen görs extrapoleringen på ett annat sätt för enheter i det uttömmande stratumet jämfört med för posterna i det icke uttömmande stratumet.

För det uttömmande stratumet, dvs. det stratum som innehåller urvalsenheter med ett bokfört värde som är högre än urvalsintervallet, $BV_i > \frac{BV}{n}$, är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i stratumet:

$$EE_e = \sum_{i=1}^{n_e} E_i$$
För det icke uttömmande stratumet, dvs. det stratum som innehåller urvalsenheter med ett bokfört värde på högst urvalsintervallet, är $BV_i \leq \frac{BV}{n}$ det beräknade felet.

$$EE_s = SI \sum_{i=1}^{n_s} \frac{E_i}{BV_i}$$

Vid beräkningen av det beräknade felet ska
1) felprocenten beräknas för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, $\frac{E_i}{BV_i}$
2) dessa felprocentvärden summeras för samtliga enheter i urvalet,
3) ovanstående resultat multipliceras med urvalsintervallet (SI).

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

$$EE = EE_e + EE_s$$

6.3.5.5 Precision

Precisionen, som är ett mått på urvalsfelet, har två komponenter: grundprecisionen BP, och den inkrementella marginalen IA.

Grundprecisionen är produkten av urvalsintervallet och tillförlitlighetsfaktorn (som redan använts för att beräkna urvalets storlek):

$$BP = SI \times RF$$

Den inkrementella marginalen beräknas för varje urvalsenhet som tillhör det icke uttömmande stratum som innehåller ett fel.

För det första bör poster med fel ordnas i minskande värdeordning för det beräknade felet.

För det andra ska en inkrementell marginal beräknas för var och en av dessa poster (med fel) enligt formeln

$$IA_i = (RF(n) - RF(n - 1) - 1) \times SI \times \frac{E_i}{BV_i}$$
där $RF(n)$ är den tillförlitlighetsfaktor för felet i n^{th} ordningen vid en viss konfidensnivå (vanligtvis samma som använts vid beräkningen av urvalets storlek) och $RF(n−1)$ är tillförlitlighetsfaktorn för felet $(n−1)^{th}$ ordningen vid en viss konfidensnivå. Med en konfidensnivå på 90% blir t.ex. motsvarande tabell över tillförlitlighetsfaktorer följande:

<table>
<thead>
<tr>
<th>Felets ordning</th>
<th>Tillförlitlighetsfaktor (RF)</th>
<th>$RF(n) − RF(n − 1) − 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordning noll</td>
<td>2,31</td>
<td></td>
</tr>
<tr>
<td>1:a</td>
<td>3,89</td>
<td>0,58</td>
</tr>
<tr>
<td>2:a</td>
<td>5,33</td>
<td>0,44</td>
</tr>
<tr>
<td>3:e</td>
<td>6,69</td>
<td>0,36</td>
</tr>
<tr>
<td>4:e</td>
<td>8,00</td>
<td>0,31</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 7. Exempel:

Om det större beräknade felet i urvalet är lika med 10 000 euro (25% av utgifterna på 40 000 euro) och vi har ett urvalsintervall på 200 000 euro blir den individuella inkrementella marginalen för detta fel lika med $0,58 \times 0,25 \times 200\,000 = 29\,000$ euro.

I tillägget finns en tabell över tillförlitlighetsfaktorer för flera konfidensnivåer och olika antal fel i urvalet.

Slutligen är den inkrementella marginalen summan av alla posternas inkrementella marginaler:

$$IA = \sum_{i=1}^{n_x} IA_i$$

Den totala precisionen (SE) är lika med summan av de båda komponenterna: grundprecision (BP) och inkrementell marginal (IA).

$$SE = BP + IA$$

6.3.5.6 Utvärdering

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet i sig EE och den totala precisionen i extrapoleringen
Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser:

- Om det beräknade felet är större än det högsta godtagbara felet betyder detta att revisorn drar slutsatsen att det finns tillräckliga bevis för att felen i populationen ligger över tröskelvärdet för väsentlighet.

- Om den övre felgränsen är lägre än det högsta godtagbara felet bör revisorn dra slutsatsen att felen i populationen ligger under tröskelvärdet för väsentlighet.

Om det beräknade felet är lägre än det högsta godtagbara felet, men den övre felgränsen ligger högre än det högsta godtagbara felet, se avsnitt 4.12 för en närmare beskrivning av den analys som ska göras.

6.3.5.7 Exempel

Antag att populationen utgörs av utgifter som har deklarerats till kommissionen under ett givet år för insatser i ett program. De systemrevisioner som genomförts av revisionsmyndigheten har gett en låg garanti. Urvalet för detta program bör därför göras med en konfidensnivå på 90%.

Populationen sammanfattas i tabellen nedan:

| Populationsstorlek (antal insatser) | 3 852 |
Urvalets storlek beräknas på följande sätt:

\[n = \frac{BV \times RF}{TE - (AE \times EF)} \]

där \(BV \) är det sammanlagda bokförda värdet för populationen, dvs. de sammanlagda utgifter som har deklarats till kommissionen under referensåret, \(RF \) är den tillförlitlighetsfaktor som motsvarar konfidensnivån 90%, 2,31, \(EF \), är den expansionsfaktor som motsvarar konfidensnivån om man förväntar sig fel, 1,5. När det gäller just denna population har revisionsmyndigheten mot bakgrund av erfarenheterna från tidigare år och kännedom om förbättringar i förvaltnings- och kontrollsystemet beslutat att det är rimligt med en förväntad felprocent på 0,2 %.

\[n = \frac{4199882024 \times 2,31}{0,02 \times 4199882024 - (0,002 \times 4199882024 \times 1,5)} \approx 136 \]

Urvalet ska göras baserat på sannolikhet i förhållande till storlek, dvs. i förhållande till posternas bokförda värde, \(BV_i \) genom systematiskt urval, med ett urvalsintervall som är lika med de sammanlagda utgifterna (\(BV \)) dividerat med urvalets storlek (\(n \)), dvs.

\[SI = \frac{BV}{n} = \frac{4199882024}{136} = 30881485 \]

En fil som innehåller de 3 852 insatserna i populationen sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas.

Stickprovet väljs ur denna slumpmässiga förteckning över samtliga insatser, där varje post som innehåller den 30 881 485:e beloppstenheten väljs.

<table>
<thead>
<tr>
<th>Insats</th>
<th>Bokfört värde (BV)</th>
<th>Ackumulerat BV</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>10 173 875 euro</td>
<td>10 173 875 euro</td>
</tr>
<tr>
<td>424</td>
<td>23 014 045 euro</td>
<td>33 187 920 euro</td>
</tr>
<tr>
<td>2327</td>
<td>32 886 198 euro</td>
<td>66 074 118 euro</td>
</tr>
<tr>
<td>5009</td>
<td>34 595 201 euro</td>
<td>100 669 319 euro</td>
</tr>
<tr>
<td>1491</td>
<td>78 695 230 euro</td>
<td>179 364 549 euro</td>
</tr>
<tr>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
</tr>
</tbody>
</table>

Ett slumpmässigt värde mellan 0 och urvalsintervallet 30 881 485 genereras (16 385 476). Den första post som ska väljas är den som innehåller den 16 385 476:e
beloppsheten. Det andra valet motsvarar den första insatsen i filen med ett ackumulerat bokfört värde på minst $16\,385\,476 + 30\,881\,485$ osv.

<table>
<thead>
<tr>
<th>Insats</th>
<th>Bokfört värde (BV)</th>
<th>Ackumulerat BV</th>
<th>Urval</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>10,173,875 euro</td>
<td>10,173,875 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>424</td>
<td>23,014,045 euro</td>
<td>33,187,920 euro</td>
<td>Ja</td>
</tr>
<tr>
<td>1250</td>
<td>264,950 euro</td>
<td>333,929,061 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>3895</td>
<td>30,949,004 euro</td>
<td>364,878,065 euro</td>
<td>Ja</td>
</tr>
<tr>
<td>2011</td>
<td>617,668 euro</td>
<td>365,495,733 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>4796</td>
<td>335,916 euro</td>
<td>365,831,649 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>3632</td>
<td>7,971,113 euro</td>
<td>373,802,762 euro</td>
<td>Nej</td>
</tr>
<tr>
<td>2451</td>
<td>17,470,048 euro</td>
<td>391,272,810 euro</td>
<td>Ja</td>
</tr>
</tbody>
</table>

Det finns 24 insatser vars bokförda värde är större än urvalsintervallet, vilket innebär att var och en av dem väljs minst en gång (insats 1491 väljs t.ex. tre gånger, se tabellen ovan). Det bokförda värdet för dessa 24 insatser är 1\,375\,130\,377 euro. Fyra av dessa 24 insatser innehåller fel som sammanlagt motsvarar 7\,843\,574 euro.

För det återstående urvalet behandlas felet på ett annat sätt. För dessa insatser använder vi följande förfarande:
1) Felprocenten beräknas för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, $\frac{E_i}{BV_i}$
2) Dessa felprocentvärden summeras för samtliga enheter i urvalet.
3) Ovanstående resultat multipliceras med urvalsintervallet (SI).

$$ EE_s = SI \sum_{i=1}^{n_s} \frac{E_i}{BV_i} $$

<table>
<thead>
<tr>
<th>Insats</th>
<th>Bokfört värde (BV)</th>
<th>Korrekt bokfört värde (CBV)</th>
<th>Fel</th>
<th>Felprocent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2596</td>
<td>8,912,999 euro</td>
<td>8,912,999 euro</td>
<td>– euro</td>
<td>–</td>
</tr>
<tr>
<td>459</td>
<td>869,080 euro</td>
<td>869,080 euro</td>
<td>– euro</td>
<td>–</td>
</tr>
<tr>
<td>2073</td>
<td>859,992 euro</td>
<td>859,992 euro</td>
<td>– euro</td>
<td>–</td>
</tr>
<tr>
<td>239</td>
<td>10,173,875 euro</td>
<td>9,962,918 euro</td>
<td>210,956 euro</td>
<td>0,02</td>
</tr>
</tbody>
</table>
$EE_s = 30\,881\,485 \times 1,077 = 33\,259\,360$

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

$$EE = 7\,843\,574 + 33\,259\,360 = 41\,102\,934$$

vilket motsvarar en beräknad felprocent på 0,98%.

För att få fram den övre felgränsen behöver man beräkna precisionens båda komponenter, dvs. grundprecisionen BP, och den inkrementella marginalen IA.

Grundprecisionen är produkten av urvalsintervallet och tillförlitlighetsfaktorn (som redan använts för att beräkna urvalets storlek):

$$BP = 30\,881\,485 \times 2,31 = 71\,336\,231$$

Den inkrementella marginalen beräknas för varje urvalsenhet som tillhör det icke uttömmande stratum som innehåller ett fel.

För det första bör poster med fel ordnas i minskande värdeordning för det beräknade felet. För det andra ska en inkrementell marginal beräknas för var och en av dessa poster (med fel) enligt formeln

$$IA_i = (RF(n) - RF(n - 1) - 1) \times SI \times \frac{E_i}{BV_i}$$

där $RF(n)$ är den tillförlitlighetsfaktor för felet i n^{th} ordningen vid en viss konfidensnivå (vanligtvis samma som använts vid beräkningen av urvalets storlek) och $RF(n - 1)$ är tillförlitlighetsfaktorn för felet i $(n - 1)^{th}$ ordningen vid en viss konfidensnivå (se tabell i tillägget).
Slutligen är den inkrementella marginalen summan av alla posternas inkrementella marginaler:

\[IA = \sum_{i=1}^{n} IA_i \]

I följande tabell sammanfattas dessa resultat för de 16 insatser som innehåller fel:

<table>
<thead>
<tr>
<th>Ordnung</th>
<th>Fel (A)</th>
<th>Felprocent (B):=(A)/BV</th>
<th>Beräknat fel:=(B)*SI</th>
<th>RF(n)</th>
<th>(RF(n)-RF(n-1))-1</th>
<th>IA_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,30</td>
</tr>
<tr>
<td>1</td>
<td>4 705 321 euro</td>
<td>0,212</td>
<td>6 546 875 euro</td>
<td>3,89</td>
<td>0,59</td>
<td>3 862 656 euro</td>
</tr>
<tr>
<td>(...)</td>
<td>(...)</td>
<td>(...</td>
<td>(...</td>
<td>(...</td>
<td>(...)</td>
<td>(...)</td>
</tr>
<tr>
<td>12</td>
<td>12 332 euro</td>
<td>0,024</td>
<td>741 156 euro</td>
<td>17,78</td>
<td>0,18</td>
<td>133 408 euro</td>
</tr>
<tr>
<td>13</td>
<td>6 822 euro</td>
<td>0,02</td>
<td>617 630 euro</td>
<td>18,96</td>
<td>0,18</td>
<td>111 173 euro</td>
</tr>
<tr>
<td>14</td>
<td>7 706 euro</td>
<td>0,012</td>
<td>370 578 euro</td>
<td>20,13</td>
<td>0,17</td>
<td>62 998 euro</td>
</tr>
<tr>
<td>15</td>
<td>4 787 euro</td>
<td>0,008</td>
<td>247 052 euro</td>
<td>21,29</td>
<td>0,16</td>
<td>39 528 euro</td>
</tr>
<tr>
<td>16</td>
<td>26 952 euro</td>
<td>0,001</td>
<td>29 488 euro</td>
<td>22,45</td>
<td>0,16</td>
<td>4 718 euro</td>
</tr>
<tr>
<td>Totalt</td>
<td>1,077</td>
<td>38 264 277 euro</td>
<td></td>
<td></td>
<td></td>
<td>14 430 761 euro</td>
</tr>
</tbody>
</table>

Den totala precisionen (SE) är lika med summan av de båda komponenterna: grundprecision (BP) och inkrementell marginal (IA).

\[SE = 71 336 231 + 14 430 761 = 85 766 992 \]

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet i sig EE och den totala precisionen för beräkningen.

\[ULE = 41 102 933 + 85 766 992 = 126 869 926 \]

Nu ska det högsta godtagbara felet TE = 2 % x 4 199 882 024 = 83 997 640 euro jämföras med både det beräknade felet och den övre felgränsen. Det högsta godtagbara felet är större än det beräknade felet, men mindre än den övre felgränsen. Se avsnitt 4.12 för en mer ingående beskrivning av den analys som ska göras.

EE = 41 102 934

TE = 83 997 640

ULE = 126 869 926
6.4 Icke-statistiskt urval

6.4.1 Inledning

En icke-statistisk urvalsmetod kan i vederbörligen motiverade fall användas efter att revisionsmyndigheten har gjort en yrkesmässig bedömning, i enlighet med internationellt erkända revisionsstandarder samt i fall där antalet insatser under ett räkenskapsår är för litet för att den statistiska metoden ska kunna tillämpas.

Som förklaras i avsnitt 5.2 bör statistiska urvalsmetoder användas generellt för att granska deklarerade utgifter och dra slutsatser om felbeloppet i en population. Med icke-statistiska urval går det inte att beräkna precisionen, vilket innebär att det inte görs någon kontroll av revisionsrisken. Därför bör icke-statistiskt urval bara användas i fall där det inte är möjligt att göra ett statistiskt urval.

I praktiken brukar de särskilda situationer där det kan vara motiverat att använda ett icke-statistiskt urval gälla populationens storlek. Det kan t.ex. fungera för en mycket liten population, som inte är tillräckligt stor för att det ska gå att använda statistiska metoder (populationen är mindre än eller mycket nära det rekommenderade urvalets storlek).

För 2014–2020 innehåller förordningen även kriterier som måste vara uppfyllda när icke-statistiskt urval tillämpas, nämligen att minst 5 % av insatserna och 10 % av de deklarerade utgifterna ska täckas (artikel 127.1 i förordningen om gemensamma bestämmelser). Detta kan i praktiken leda till samma urvalsstorlek som för statistiska urvalsmetoder. I sådana fall uppmuntras revisionsmyndigheterna att använda statistiska metoder i stället.
Även i situationer där revisionsmyndigheten har tillämpat en icke-statistisk urvalsmetod ska stickproven tas med en slumpmässig metod\(^{37}\) \(^{38}\). Urvalets storlek ska bestämmas med hänsyn till den garanti som ges i systemet och måste vara tillräckligt för att revisionsmyndigheten ska kunna utfärda ett giltigt yttrande om huruvida utgifterna är lagenliga och korrekta. **Revisionsmyndigheten bör kunna extrapolera resultatet till den population som urvalet hämtats från.**

När revisionsmyndigheten använder ett icke-statistiskt urval bör den överväga att stratifiera populationen genom att dela in den i delpopulationer som var och en består av en grupp urvalsenheter med liknande egenskaper, framför allt i fråga om risk eller förväntad felprocent eller där populationen omfattar specifika typer av insatser (t.ex. finansiella instrument). Stratifiering är ett mycket effektivt verktyg för att förbättra prognosernas kvalitet och vi rekommenderar starkt att någon typ av stratifiering används vid icke-statistiskt urval.

6.4.2 Stratifierat och icke-stratifierat icke-statistiskt urval

Stratifierat icke-statistiskt urval bör vara det alternativ som revisionsmyndigheten överväger i första hand när det inte är möjligt att använda statistiskt urval. De kriterier som ska användas för stratifieringen vid statistiska former av urval är alltså relaterade till revisorns förväntningar på dess bidrag till att förklara felnivån i populationen. När man förväntar sig att felnivån kommer att variera mellan olika grupper inom populationen är denna klassificering en bra kandidat för stratifiering.

För denna stratifiering (som kan användas både för urval som baseras på lika sannolikhet och urval som baseras på sannolikhet i förhållande till storlek) gäller följande:

\(^{37}\) Det vill säga använda en statistisk metod (probabilistisk metod), jfr. avsnitt 4.1 och 4.2 i fråga om skillnaden mellan urvalsmetoderna. Kom också ihåg tumregeln om att ett statistiskt urval bör innehålla minst 30 enheter.

• Fastställ gränsvärden för beaktande av utgifter för poster som ska ingå i stratumet över poster av högt värde. Det finns ingen generell regel för att fastställa gränsvärdet. Om man tillämpar den vanliga metoden med att fastställa gränsvärdet som lika med det högsta godtagbara felet (2 % av de totala utgifterna) i populationen bör detta endast ses som ett utgångspunkt som bör anpassas efter populationens egenskaper. Detta gränsvärde kan och bör ändras beroende på populationens egenskaper. Kort sagt bör gränsvärdet i första hand fastställas genom yrkesmässiga omdömen. När revisorn kan identifiera ett fåtal poster vars utgifter är väsentligt mycket större än för de resterande posterna bör denne överväga att skapa ett stratum med de posterna. Dessutom uppmanas revisorn att använda fler än två utgiftsbaserade stratum om indelningen i två stratum inte verkar vara tillräckligt för att åstadkomma den önskade graden av homogenitet i varje stratum.

• En 100-procentig granskning av posterna med högt värde är en grundläggande metod som bör övervägas. I praktiken kan dock uppstå vissa situationer där det fastställda gränsvärdet leder till ett alltför stort stratum med högt värde, som knappast kan granskas uttömnande. I sådana fall går det också att granska stratumet med högt värde genom ett urval, men som generell regel bör urvalsprocenten (dvs. den andel enheter och utgifter i detta stratum som väljs ut) vara större än eller lika med den som används för stratumet med lågt värde.

• Storleken på det urval som ska ingå i det icke uttömmande stratum beräknas som skillnaden mellan den totala urvalsstorleken och antalet urvalsenheter (t.ex. insatser) i stratumet med högt värde. Om revisionsmyndigheten även vill tillämpa stratifiering för enheter med lågt värde bör denna beräknade urvalsstorlek fördelas på de enskilda stratum i enlighet med de metoder som beskrivs i avsnitt 6.1.2.2 (om urvalet baseras på lika sannolikhet) eller 6.3.2.2 (om urvalet baseras på sannolikhet i förhållande till storlek).

Om det inte går att identifiera några stratifieringskriterier (som enligt revisorn kan bidra till att skapa mer homogena delpopulationer i fråga om förväntade fel eller felprocent) och framför allt om det inte går att konstatera någon stor variation i utgifterna i posterna i populationen kan man som ett alternativ välja att använda en icke-stratifierad icke-statistisk urvalsform. I sådant fall ska urvalet göras direkt från populationen som helhet, utan hänsyn till delpopulationer.

6.4.3 Urvalets storlek

I icke-statistiskt urval beräknas urvalets storlek utifrån en yrkesmässig bedömning och med hänsyn till den garanti som ges i systemet. Slutmålet är att få fram en urvalsstorlek som är tillräcklig för att revisionsmyndigheten ska kunna dra giltiga slutsatser om
populationen och utarbeta ett giltigt revisionsyttrande (jfr. artikel 127.1 i förordningen om gemensamma bestämmelser).

För programperioden 2014–2020 bör ett icke-statistiskt urval i enlighet med artikel 127.1 i förordningen om gemensamma bestämmelser minst omfatta 5 % av insatserna och 10 % av utgifterna. Eftersom förordningen hänvisar till en minsta täckning motsvarar alltså dessa tröskelvärden det mest gynnsamma scenariot med en hög garanti i systemet. Ju större risken för väsentliga avvikelser är enligt revisorns bedömning, desto större behöver urvalets storlek vara, i linje med bilaga 3 till ISA 530. Kravet på 10 % av de deklarerade utgifterna (artikel 127.1 i förordningen om gemensamma bestämmelser) gäller utgifterna i urvalet, oberoende av om ytterligare delurval används. Det betyder att urvalet minst ska motsvara 10 % av de deklarerade utgifterna, men när delurval används kan de utgifter som verkliga granskas vara mindre, förutsatt att revisionsmyndigheten kan avge ett giltigt revisionsyttrande (jfr. avsnitt 6.4.10).

Det finns inga fasta regler för att välja urvalsstorlek utifrån garantinivån i systemrevisionerna, men som referens kan revisionsmyndigheten när den fastställer urvalsstorleken vid icke-statistiskt urval ta hänsyn till följande vägledande tröskelvärden.

<table>
<thead>
<tr>
<th>Revisionsgaranti från systemrevisioner</th>
<th>Rekommenderad täckning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>av insatser</td>
</tr>
<tr>
<td>Fungerar väl. Inga eller endast små förbättringar krävs.</td>
<td>5 %</td>
</tr>
<tr>
<td>Fungerar. En del förbättringar krävs.</td>
<td>Mellan 5 % och 10 %</td>
</tr>
<tr>
<td></td>
<td>(ska fastställas av revisionsmyndigheten utifrån en yrkesmässig bedömning)</td>
</tr>
</tbody>
</table>

39 För programperioden 2007–2013 anser kommissionen fortfarande att urvalsstorleken vid icke-statistiskt urval bör omfatta minst 10 % av insatserna (jfr. avsnitt 7.4.1 i vägledningen om urval COCOF_08-0021-03_EN av den 4 april 2013).

40 Dessa referensvärden får naturligtvis ändras utifrån revisionsmyndighetens yrkesmässiga bedömning och eventuell ytterligare information som den har tillgång till avseende risken för väsentliga avvikelser.
<table>
<thead>
<tr>
<th>Revisionsgaranti från</th>
<th>Rekommenderad täckning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungerar delvis. Avsevärd förbättringar krävs.</td>
<td>mellan 10 % och 15 % (ska fastställas av revisionsmyndigheten utifrån en yrkesmässig bedömning)</td>
</tr>
<tr>
<td>Fungerar inte.</td>
<td>mellan 15 % och 20 % (ska fastställas av revisionsmyndigheten utifrån en yrkesmässig bedömning)</td>
</tr>
</tbody>
</table>

Tabell 6. Rekommenderad täckning för icke-statistiskt urval

6.4.4 Urval

Urvalet från den positiva populationen ska göras med en slumpmässig metod. Urvalet kan framför allt göras med:
- urval baserat på lika sannolikhet (där varje urvalsenshet har samma chans att väljas oavsett beloppet för de utgifter som har deklarerats i urvalsensheten), som i enkelt slumpmässigt urval (jfr. avsnitten 6.1.1 och 6.1.2 för hänvisningen till enkelt slumpmässigt urval och stratifierat enkelt slumpmässigt urval), eller
- urval baserat på sannolikhet i förhållande till storlek (utgifter) (där ett slumpmässigt urval görs för det första elementet i urvalet och de efterföljande elementen sedan väljs enligt ett intervall tills man har uppnått den önskade urvalsstorleken, i denna metod används beloppensheten som hjälpvariabel för urvalet), precis som i fallet med MUS (jfr. avsnitten 6.3.1 och 6.3.2 i fråga om urvalsmetoden MUS (Monetary Unit Sampling) och den stratifierade urvalsmetoden MUS).

6.4.5 Beräkning

De fel som upptäcks i urvalet måste fortfarande beräknas i populationen, även när icke-statistiskt urval används. Beräkningen måste ta hänsyn till formen av urval, dvs. huruvida stratifiering används eller ej, typen av urval (lika sannolikhet eller sannolikhet i förhållande till storlek) och alla andra relevanta egenskaper hos strategin. Det är bara möjligt att använda enkel urvalsstatistik (t.ex. felprocent i urvalet) under mycket specifika omständigheter, där urvalet är kompatibelt med den typen av statistik. Felprocent i urvalet går t.ex. bara att använda för att beräkna fel i populationen i en strategi som är helt utan stratifiering, baserat på urval efter lika sannolikhet och kvotsskattning. Den enda signifikanta skillnaden mellan statistiskt och icke-statistiskt urval ligger alltså i den sista precisionsnivån och därför beräknas inte den övre felgränsen.
6.4.5.1 Urval baserat på lika sannolikhet

Om enheterna har valts ut med lika sannolikhet bör det beräknade felet följa någon av de beräkningsmetoder som beskrivs i avsnitt 6.1.1.3, dvs. skattning av genomsnitt per enhet eller kvotskattning.

Skattning av genomsnitt per enhet (absoluta fel)

Det genomsnittliga felet per observerad insats i urvalet multipliceras med antalet insatser i populationen, vilket ger det beräknade felet

\[EE_1 = N \times \frac{\sum_{i=1}^{n} E_i}{n} \]

Kvotskattning (felprocent)

Den genomsnittliga felprocent som har observerats i urvalet multipliceras med det bokförda värdet på populationsnivå:

\[EE_2 = BV \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i} \]

Felprocenten för urvalet i formeln ovan räknas helt enkelt ut genom att det sammanlagda felet i urvalet divideras med de sammanlagda utgifterna för enheterna i urvalet (granskade utgifter).

Vi föreslår att valet mellan de båda beräkningsmetoderna baseras på rekommendationen i avsnitt 6.1.1.3 i fråga om enkelt slumpmässigt urval.

6.4.5.2 Stratifierat urval baserat på lika sannolikhet

Med utgångspunkt i \(H \) slumpvis tagna stickprov av insatser (\(H \)-stratum) kan det beräknade felet på populationsnivå återigen beräknas med de två vanliga metoderna, skattning av genomsnitt per enhet och kvotskattning. Beräkningen följer det förfarande som beskrivs i avsnitt 6.1.2.3 för det stratifierade enkla slumpmässiga urvalet.

Skattning av genomsnitt per enhet

I varje populationsgrupp (stratum) ska det genomsnittliga fel per insats som har observerats i urvalet multipliceras med antalet insatser i urvalet (\(N_h \)). Sedan summeras de resultat som har erhållits för varje stratum, vilket ger det beräknade felet

\[EE_1 = \sum_{h=1}^{H} N_h \times \frac{\sum_{i=1}^{n_h} E_i}{n_h} \]
Kvotskattning

I varje populationsgrupp (stratum) ska den genomsnittliga felprocent som har observerats i urvalet multipliceras med populationens bokförda värde på stratumnivå (BV_h):

$$EE_2 = \sum_{h=1}^{H} BV_h \times \frac{\sum_{i=1}^{n_h} E_i}{\sum_{i=1}^{n_h} BV_i}$$

Valet mellan de båda metoderna bör baseras på de överväganden som beskrivs för den icke-stratifierade metoden.

Om ett 100-procentigt stratum har övervägts och tidigare tagits ur urpopulationen, bör det sammanlagda felbelopp som konstaterats i det uttömmande stratumet läggas till skattningen ovan (EE_1 eller EE_2) för att få fram en slutlig beräkning av felbeloppet för hela populationen.

6.4.5.3 Urval baserat på sannolikhet i förhållande till utgifter

Om enheterna valdes utifrån sannolikhet i förhållande till utgifternas värde bör det beräknade felet följa den beräkningsmetod som beskrivs i avsnitt 6.3.1.4 (MUS-metoden).

För det uttömmande stratumet, dvs. det stratum som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet $BV_i > \frac{BV}{n}$, är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i stratumet:

$$EE_e = \sum_{i=1}^{n_e} E_i$$

För det icke uttömmande stratumet, dvs. det stratum som innehåller urvalsenheter med ett bokfört värde som inte överstiger gränsvärdet $BV_i \leq \frac{BV}{n}$, är det beräknade felet

$$EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} E_i$$

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

$$EE = EE_e + EE_s$$
6.4.5.4 Stratifierat urval baserat på sannolikhet i förhållande till utgifter

Om enheterna valdes utifrån sannolikhet i förhållande till utgifternas värde och populationen är stratifierad enligt specifika kriterier bör det beräknade felet följa den beräkningsmetod som beskrivs i avsnitt 6.3.2.4 (stratifierad MUS-metod).

Beräkningen av fel i populationen görs på olika sätt för enheter som tillhör de uttömmande grupperna och för posterna i de icke uttömmande grupperna.

För de uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet $BV_{hi} > \frac{BV_h}{n_h}$, är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i de grupperna:

$$EE_e = H \sum_{h=1}^{H} n_h \sum_{i=1}^{n_h} E_{hi}$$

För de icke uttömmande grupperna, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde $BV_{hi} \leq \frac{BV_h}{n_h}$ som inte övertager gränsvärdet, är det beräknade felet

$$EE_s = H \sum_{h=1}^{H} \frac{BV_{sh}}{n_{sh}} \sum_{i=1}^{n_{sh}} E_{hi}$$

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

$$EE = EE_e + EE_s$$

6.4.6 Utvärdering

I de ovan beskrivna strategierna ska det beräknade felet slutligen jämföras med det högsta godtagbara felet (väsentlighet gånger utgifterna för populationen).

- Om det är lägre än det godtagbara felet drar vi slutsatsen att det inte förekommer väsentliga avvikelser i populationen.
- Om det är högre än det godtagbara felet drar vi slutsatsen att det förekommer väsentliga avvikelser i populationen.

Trots begränsningarna (dvs. att det inte går att beräkna den övre felgränsen och därmed inte går att kontrollera revisionsrisken) är den beräknade felprocenten den bästa skattningen av felet i populationen och kan därför jämföras med tröskelvärdet för
väsentlighet för att dra slutsatser om huruvida det förekommer väsentliga avvikelser i populationen (eller ej).

6.4.7 Exempel 1 – Urval baserat på sannolikhet i förhållande till storlek (PPS)

Här antar vi att vi har en positiv population på 36 insatser för vilka utgifter på 22 031 228 euro har deklarerats.

Revisionsmyndigheten anser att förvaltnings- och kontrollsystemet väsentligen inte fungerar och bestämmer sig därför för en urvalsstorlek på 20 % av populationen med insatser. I vårt fall blir detta 20 % x 36 = 7,2 avrundat uppåt till 8.

Täckningen av populationens utgifter är endast tillgänglig efter det att urvalet har gjorts, men eftersom 20 % av insatserna väljs och urvalet görs med hänsyn till sannolikhet i förhållande till storlek, väntas urvalet i fråga om vår population täcka minst 20 % av utgifterna.

Man måste först identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförda värdet (BV) och den planerade urvalsstorleken (n). Alla poster vars bokförda värde är högre än detta gränsvärde (om $\frac{BV_i}{n} > BV / n$) kommer att placeras i det 100-procentiga granskningsstratumet. I detta fall är gränsvärdet 22 031 228/8 = 2 753 904 euro\(^4\).

I följande tabell sammanfattas resultatet:

Deklarerade utgifter (DE) under referensperioden	22 031 228 euro
Populationens storlek (antal insatser)	36
Väsentlighetsnivå (högst 2 %)	2 %
Godtagbar avvikelse (TE)	440 625 euro

\(^{41}\) Tänk på att revisionsmyndigheten också kan välja ett lägre gränsvärde än det som har räknats fram på grundval av kvoten mellan den positiva populationen och antalet insatser som ska väljas för att öka täckningen av de deklarerade utgifterna.
Gränsvärde	2 753 904 euro
Antal enheter ovanför gränsvärdet | 4
Populationens bokförda värde över gränsvärdet | 12 411 965 euro
Återstående populationsstorlek (antal insatser) | 32
Återstående populationsvärde | 9 619 263,00 euro

Revisionsmyndigheten placerade alla insatser med ett bokfört värde på mer än 2 753 904 euro i ett isolerat stratum, dvs. fyra insatser till ett värde av 12 411 965 euro. Det felbelopp som upptäckts i dessa fyra insatser uppgår till

\[EE_e = 80,028. \]

Urvalsintervallet för den återstående populationen är lika med det bokförda värden under gränsvärdet i det icke uttömmande stratumet (\(BV_i \)) (differensen mellan det sammanlagda bokförda värdet och det bokförda värde för de fyra insatserna i det översta stratumet) dividerat med antalet insatser som ska väljas ut (åtta minus de fyra insatserna i det översta stratumet).

\[Urvalsintervall = \frac{BV_i}{n_s} = \frac{22 031 228 - 12 411 965}{4} = 2 404 816^{42} \]

En fil som innehåller de återstående 32 insatserna i populationen sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas. Urvalet görs genom att varje post som innehåller den 2 404 816:e beloppsenheten väljs.

De granskade utgifterna uppgår till det sammanlagda bokförda värdet för projekten med hög värde, 12 411 965 euro plus de granskade utgifterna i urvalet från den återstående populationen 1 056 428 euro. Sammanlagt uppgår de granskade utgifterna till 13 468 393 euro, vilket motsvarar 61,1 % av de totala deklarerade utgifterna, enligt begäran. Med hänsyn till den garanti som ges i förvaltnings- och kontrollsystemet anser revisionsmyndigheten att denna nivå av granskade utgifter räcker mer än väl för att säkerställa att slutsatserna från granskningen blir tillförlitliga.

42 Efter det att urvalsintervallet har beräknats på grundval av urvalsstratumets utgifter och urvalsstorlek kan det i praktiken inträffa att vissa populationsenheter fortfarande uppvisar utgifter som är större än detta urvalsinterval \(BV_i/n_s \) (trotts att de tidigare inte uppvisade utgifter som var större än gränsvärdet \(BV/n \)). Alla poster vars bokförda värde fortfarande är större än detta intervall (\(BV_i > BV_i/n_s \)) måste också läggas till stratumet med poster av hög värde. Om detta inträffar måste de nya posterna flyttas till stratumet med poster av högt värde och sedan måste urvalsintervallet räknas ut på nytt för urvalsstratumen, med hänsyn till de nya värdena för kvoten \(BV_i/n_s \). Denna iterativa process kan behöva utföras flera gånger, till dess att inga ytterligare enheter uppvisar utgifter som är större än urvalsintervallet.

43 Om någon av de valda insatserna måste ersättas på grund av de begränsningar som införs genom artikel 148 bör den nya insatsen/de nya insatserna väljas ut baserat på sannolikhet i förhållande till storlek. I avsnitt 7.10.3.1 hittar du ett exempel på en sådan ersättning.
Värdet för det extrapolerade felet i stratumet med poster av lågt värde är

\[EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_{si}}{BV_{si}} \]

där \(BV_s \) är det sammanlagda bokförda värdet av den återstående populationen och \(n_s \) är motsvarande urvalsstorlek. Lägg märke till att detta beräknade fel är lika med summan av felprocentvärdena multiplicerat med urvalsintervallet. Summan av felprocentvärdena är lika med 0,0272:

\[EE_s = \frac{9619623}{4} \times 0,0272 = 65411 \]

Det sammanlagda extrapolerade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

\[EE = EE_e + EE_s = 80028 + 65411 = 145439 \]

Det beräknade felet jämförs slutligen med det högsta godtagbara felet (2% av 22031228 euro = 440625 euro). Det beräknade felet är mindre än väsentlighetsnivån.

Förfarande när täckningen av utgifter inte är tillräcklig

Om det inte gick att uppnå tröskelvärden för den nödvändiga täckningen av utgifter på grund av särskilda egenskaper hos populationen bör revisionsmyndigheten välja ytterligare en insats eller ytterligare insatser med hjälp av sannolikhet i förhållandet till storlek. I sådant fall bör de nya insatserna/urvalsenhetererna som ska granskas väljas ur populationen, exklusive de insatser som redan har vals ut. Det intervall som används för ett sådant urval bör beräknas med urvalsintervallet \(\frac{BV_{sf}}{n_{sf}} \), där \(BV \) motsvarar det bokförda värdet för stratumet med lågt värde, exklusive insatser som redan har vals inom detta stratum och \(n_s \) motsvarar antalet insatser som vi vill lägga till för granskning i stratumet med lågt värde.

6.4.8 Exempel 2 – Urval baserat på lika sannolikhet

Här antar vi att vi har en positiv population på 48 insatser för vilka utgifter på 10420247 euro har deklarerats.
Denna population är för liten för att granskas genom statistiskt urval. Dessutom går det inte att göra något urval av betalningsansökningar för att utöka populationens storlek. Därför beslutar sig revisionsmyndigheten för att använda en icke-statistisk metod med stratifiering av insatserna av högt värde, eftersom det finns några få insatser med extremt stora utgifter. Revisionsmyndigheten beslutade att identifiera dessa insatser genom att fastställa gränsvärdet till 5 % av 10 420 247 euro, dvs. 521 012 euro.

Egenskaperna för populationen sammanfattas nedan:

Deklarerade utgifter under referensperioden	10 420 247 euro
Populationens storlek (antal insatser)	48
Väsentlighetsnivå (högst 2 %)	2 %
Godtagbar avvikelse (TE)	208 405 euro
Gränsvärde (5 % av totalt bokfört värde)	521 012 euro

I följande tabell sammanfattas resultatet:

Antal enheter ovanför gränsvärdet	12
Värde för resterande population	8 785 634 euro
Återstående populationsstorlek (antal insatser)	36
Återstående populationsvärde	1 634 613 euro

På grund av den låga variationen i utgifter för denna population i varje stratument beslutar revisorn sig för att göra urvalet från populationen baserat på lika sannolikhet i båda stratummen.

Även om urvalet baseras på lika sannolikhet förväntas det ge en täckning på minst 20 % av populationens utgifter genom den höga täckningen av stratument med högt värde. Genom att multiplicera urvalsstörelsen med det genomsnittliga bokförda värdet per insats i varje stratum förväntar sig revisionsmyndigheten att den kommer att granska 4 392 817 euro i stratument med högt värde och 136 218 euro i den återstående populationen, vilket motsvarar cirka 43,5 % av de totala utgifterna.
Ett urval på sex insatser görs slumpmässigt från stratumet med högt värde. De granskade utgifterna i urvalet uppgår till 4 937 894 euro. Inga fel upptäcktes i dessa sex insatser.

Dessutom görs ett urval på tre insatser i den återstående populationen av insatser. Urvalet av granskade utgifter i den återstående populationen uppgår till 153 647 euro. Det identifierade totala urvalsfelet i detta stratum uppgår till 4 374 euro.

De totala granskade utgifterna är 153 647 euro + 4 937 894 euro = 5 091 541 euro, vilket motsvarar 48,9 % av de totala deklarerade utgifterna. Med hänsyn till den garanti som ges i förvaltnings- och kontrollsystemet anser revisionsmyndigheten att denna nivå av granskade utgifter är tillräcklig för att säkerställa att slutsatserna från granskningen blir tillförlitliga.

För att avgöra om den skulle använda skattning av genomsnitt per enhet eller kvotskattning kontrollerade revisionsmyndigheten urvalsdata för att verifiera villkoret $\frac{\text{COV}_{EBV}}{\text{VAR}_{BV}}> ER/2$, som bekräftades. Därför beslutade man att använda kvotskattning.

Värdet för det extrapolerade felet i båda stratumen är

$$EE = BV_e \times \frac{\sum_{i=1}^{6} E_i}{\sum_{i=1}^{6} BV_i} + BV_s \times \frac{\sum_{i=1}^{3} E_i}{\sum_{i=1}^{3} BV_i} = 0 + 1 634 613 \times \frac{4 374}{153 647} = 46 534$$

Där BV_e och BV_s är de totala bokförda värdena för stratumet med högt och lågt värde. Lägg märke till att det beräknade felet är lika med felprocentvärdet i urvalet multiplicerat med stratumets bokförda värde.

Det beräknade felet jämförs slutligen med det högsta godtagbara felet (2 % av 10 420 247 euro = 208 405 euro). Det beräknade felet är mindre än väsentlighetsnivån.

Den slutsats som kan dras av detta räkneexempel är att revisorn har rimliga skäl för att anta att populationen inte innehåller ett väsentligt fel. Det går emellertid inte att fastställa den uppnådda precisionen och slutsatsens konfidensnivå är okänd.

6.4.9 Icke-statistiskt urval – två perioder

På liknande sätt som när statistiska urvalsmetoder används kan revisionsmyndigheten välja att göra urvalsprocessen i flera perioder under året (vanligtvis två halvår) med en icke-statistisk urvalsstrategi. Den största fördelen med denna metod ligger inte i att urvalet blir mindre, utan framför allt i att arbetssökan för granskningen kan spridas ut över året och därmed minska arbetsbelastningen vid årets slut för endast en observation.
Med denna metod delas referensperiodens/räkenskapsårets population in i två delpopulationer där var och en motsvarar insatserna och utgifterna för varje halvår. Oberoende urval görs för varje halvår, baserat på lika sannolikhet eller på sannolikhet i förhållande till storlek (utgifter), vilket vi i fortsättningen kallar PPS-urval.

Två exempel nedan (ett om urval baserat på lika sannolikhet och ett om PPS-urval) illustrerar urval i två perioder tillsammans med icke-statistiska urvalsmetoder. Observera att samma former av urval och beräkningsmetoder används för urval i två perioder för icke-statistiskt urval som vid statistiskt urval, dvs. enkelt slumpmässigt urval vid urval baserat på lika sannolikhet och MUS (standardmetod) vid PPS-urval. De enda skillnaderna är följande:
– Urvalsstorleken beräknas inte med en specifik formel.
– Precisionen beräknas inte.

Tänk dock på det särskilda krav som införs för icke-statistiskt urval genom de rättsliga bestämmelserna för programperioden 2014–2020 om att minst 10 % av de utgifter som har deklarerats för kommissionen under ett räkenskapsår och 5 % av insatserna ska täckas. Om ett urval med en enda period används leder urval baserat på lika sannolikhet ofta till en täckningsgrad för utgifterna som ligger nära den urvalsfraction som används för att bestämma antalet insatser. Om ett urval med två eller flera perioder används blir täckningsgraden ofta mindre eftersom vissa insatser (dvs. insatser som deklareras under mer än en granskingsperiod) endast kontrolleras för delar av de utgifter som har deklarerats under året.

Om urval med två eller flera perioder används kan det därför bli nödvändigt att täcka fler insatser än om man gör urvalet för en enda period, för att nå det tröskelvärde som krävs för utgiftstäckningen.

Tänk på att eftersom granskningen av insatser kommer att täcka utgifter som deklarerats under en del av referensperioden bör den genomsnittliga granskningsbördan vid urval i två eller flera perioder bli mindre tidskrävande. Trots detta kan dock den totala arbetsbördan per räkenskapsår öka om man ska uppnå den önskade utgiftstäckningen.

För att lösa detta problem kan revisionsmyndigheten besluta att använda ett stratum med poster av högt värde, vilket kan begränsa antalet insatser som ska kontrolleras per räkenskapsår till det minimum som krävs (eftersom insatserna med större utgifter kommer att ha större representation i urvalet).

44 Se även avsnitt 6.4.3.
For att minska arbetsbörjan för revisioner efter referensperiodens utgång beslutade revisionsmyndigheten att fördela revisionsarbetet på två perioder. Vid utgången av det första halvåret delade revisionsmyndigheten in populationen i två grupper som motsvarade de båda halvåren. Populationen vid utgången av det första halvåret kan sammanfattas på följande sätt:

| Deklarerade utgifter vid utgången av första halvåret | 19 930 259 euro |
| Populationens storlek (insatser – första halvåret) | 41 |

Revisionsmyndigheten vet av erfarenhet att inte alla insatser som ingår i programmet vid utgången av referensperioden brukar vara aktiva i populationen för det första halvåret. Dessutom förväntas de deklarerade utgifterna för det andra halvåret bli dubbelt så stora som de deklarerade utgifterna för det första halvåret. Dennaökning av utgifterna mellan de båda halvåren åtföljs av en mindre ökning i antalet insatser. Revisionsmyndigheten förväntar sig att det kommer att finnas 62 aktiva insatser under det andra halvåret (en insats kommer att slutföras under det första halvåret, de återstående 40 insatserna det första halvåret kommer att fortsätta under det andra halvåret och utgifter väntas också bli deklarerade för 22 nya insatser under det andra halvåret). Att göra urvalet baserat på ansökningar om utbetalning skulle inte öka populationens storlek eftersom det i vårt hypotetiska exempel enligt de nationella programreglerna endast gör en ansökan om utbetalning per halvår. Revisionsmyndigheten bestämmer sig för att använda en icke-statistisk strategi genom att göra urvalet baserat på lika sannolikhet.

Utifrån dessa antaganden görs en sammanfattning av populationen i följande tabell:

| Deklarerade utgifter vid utgången av första halvåret | 19 930 259 euro |
| Utgifter som ska deklareras under det andra halvåret (prognos) | 39 860 518 euro |
| (19 930 259 euro * 2 = 39 860 518 euro) |
Prognos över totala utgifter för referensperioden	59 790 777 euro
Populationens storlek (insatser – första halvåret)	41
Populationens storlek (insatser – andra halvåret, förväntad)	62 (40 + 22)
Väsentlighetsnivå (högst 2%)	2%
Godtagbara fel (TE)	1 195 816 euro

Revisionsmyndigheten anser att förvaltnings- och kontrollsystemet fungerar delvis, men att det krävs avsevärda förbättringar och bestämmer sig därför för en urvalsstorlek på 15% av antalet insatser (se avsnitt 6.4.3). I vårt fall har vi under referensperioden...
samma insatser för vilka utgifter har deklarerats under båda urvalsperioderna (41 insatser som inleddes under det första halvåret och 22 nya insatser under det andra halvåret). Den totala urvalsstorleken för hela året är alltså

\[n = 0,15 \times 63 \approx 10 \]

Urvalets fördelning efter halvår blir

\[n_1 = \frac{N_1}{N_1 + N_2} = \frac{41}{41 + 62} \times 10 \approx 4 \]

och

\[n_2 = n - n_1 = 6 \]

Revisionsmyndigheten har beslutat att använda ett stratum med poster av högt värde, vilket kan begränsa antalet insatser som ska kontrolleras per räkenskapsår till det minimum som krävs (eftersom insatserna med större utgifter kommer att ha större representation i urvalet).

När det gäller populationen för det första halvåret har vi i vårt exempel en stor insats med ett sammanlagt värde på 3 388 144 euro, medan de återstående 40 insatserna är mycket mindre. Revisionsmyndigheten har gjort en yrkesmässig bedömning och beslutat att tillämpa ett stratum med högt värde som omfattar en insats (dvs. den största insatsen i populationen för det första halvåret). Med denna stratifiering förväntade sig revisionsmyndigheten att den skulle täcka minst 20% av de sammanlagda utgifterna under det första halvåret genom att granska fyra insatser.

De återstående tre insatserna i urvalet valdes slumpmässigt från populationen för det första halvåret, exklusive insatsen i stratumen med högt värde (dvs. från populationen på 16 542 115 euro). Det sammanlagda värdet för de tre insatserna uppgick till 1 150 398 euro.

Urvalet av fyra insatser under det första halvåret täckte därmed 22,77% av de deklarerade utgifterna för det första halvåret.

Revisionsmyndigheten har upptäckt ett fel på 127 euro i insatsen i stratumen med högt värde och ett sammanlagt fel på 4 801 euro i de tre slumpvis utvalda insatserna.

45 62 aktiva insatser plus en insats som slutfördes under det första halvåret.

46 Detta fel kunde konstateras på grundval av en verifiering av alla fakturor (utgiftsposter) i insatsen i stratumen med högt värde som hade deklarerats för det första halvåret. Som ett alternativ hade myndigheten kunnat göra ett delurval på minst 30 fakturor (utgiftsposter). Om ett delurval av utgiftsposter hade gjorts skulle detta fel avse ett fel som har extrapolerats från de utvalda utgiftsposterna till insatsnivå. Man bör se till att delurvalet av fakturor görs slumpmässigt. Som ett alternativ kan man göra en stratifiering på insatsnivå, med en uttömmande granskning av vissa stratum och slumpmässigt urval av utgiftsposter i de återstående stratummen.
Vid utgången av det andra halvåret finns det mer information tillgänglig. Framför allt känner man till de korrekta siffrorna för de totala utgifterna och antalet aktiva insatser under det andra halvåret.

Revisionsmyndigheten konstaterar att det antagande om de sammanlagda utgifterna som gjordes vid utgången av första halvåret, 39 860 518 euro, är något mindre än det verkliga värdet på 40 378 264 euro. Antalet aktiva insatser under det andra halvåret är något mindre än vad man förväntade sig till en början. Därför behöver revisionsmyndigheten inte ändra urvalsstorleken för det andra halvåret, eftersom den ursprungliga prognosen över antalet insatser under andra halvåret ligger nära det verkliga antalet. I tabellen nedan ges en sammanfattning av siffrorna:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prognos gjord under första halvåret</th>
<th>Utgången av andra halvåret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal insatser under andra halvåret</td>
<td>62</td>
<td>61</td>
</tr>
<tr>
<td>Sammanlagda utgifter under andra halvåret</td>
<td>39 860 518 euro</td>
<td>40 378 264 euro</td>
</tr>
</tbody>
</table>

Med hänsyn till populationens egenskaper beslutar revisionsmyndigheten sig återigen för att använda en stratifiering efter utgifter och definierar ett stratum med högt värde baserat på ett tröskelvärde på 5 % av utgifterna i populationen för det andra halvåret. Tre insatser överskrider detta tröskelvärde och har ett sammanlagt värde på 6 756 739 euro. De tre återstående insatserna (sex insatser som ska ingå i granskningen det andra halvåret, minus tre insatser i stratumet med högt värde) väljs ut slumpmässigt från populationen på 58 insatser i stratumet med lågt värde under det andra halvåret, dvs. populationen på 33 621 525 euro. Det sammanlagda värdet på det slumpmässiga urvalet för det andra halvåret är 1 200 987 euro. Revisionsmyndigheten konstaterade att det sammanlagda värdet på urvalet för det andra halvåret (7 957 726 euro = 1 200 987 + 6 756 739) är något lägre än tröskelvärdet på 20 % för det andra halvåret. Eftersom det sammanlagda värdet för de båda halvåren överskridet minimivärdet på 20 % konstaterar man dock att det inte krävs något ytterligare urval för att säkra utgiftstäckningen.

Revisionsmyndigheten upptäckte ett fel på 432 076 euro i de tre insatserna i stratumet med högt värde och 5 287 euro i stratumet med lågt värde.

Med hänsyn till korrelationen mellan fel i stratum med lågt värde och utgifter beslutar sig revisionsmyndigheten för att beräkna felet med hjälp av kvotskattning.

Det värde för det extrapolerade felet för båda halvåren som har fastställts genom kvotskattning är

47 Om vi använder skattning av genomsnitt per enhet blir formeln
Där:
- EE_{e1} och EE_{e2} avser de fel som upptäckts i stratumen med högst värde i det första och andra halvåret.
- BV_{s1} och BV_{s2} avser de bokförda värdena för de icke-uttömmande stratumen i det första och andra halvåret.
- $\sum_{i=1}^{n_{s1}} E_{s1i}/\sum_{i=1}^{n_{s1}} BV_{s1i}$ respektive $\sum_{i=1}^{n_{s2}} E_{s2i}/\sum_{i=1}^{n_{s2}} BV_{s2i}$ avspeglar en genomsnittlig felprocent som har observerats i det icke-uttömmande stratumen för det första halvåret och det andra halvåret.

Observera att det beräknade felet är lika med summan av de fel som upptäckts i stratumen med högst värde i båda halvåren och felprocenten i de slumpmässiga urvalen multiplicerade med respektive stratum bokförda värden för dessa slumpmässiga urval.

I vårt exempel blir det extrapolerade felet på populationsnivå

$$EE = 127 + 432,076 + 16,542,115 \times \frac{4,801}{1150,398} + 33,621,524 \times \frac{5,287}{1200,987} = 649,247,94$$

(dvs. 1,08 % av populationsvärdet)

Det beräknade felet jämförs slutligen med det högsta godtagbara felet (2 % av 60 308 523 euro, dvs. 1 206 170 euro). Det beräknade felet är mindre än väsentlighetsnivån.

Det går emellertid inte att fastställa den uppnådda precisionen och slutsatsens konfidensnivå är okänd.

6.4.9.2 Icke-statistiskt urval – två perioder – PPS-urval

För att minska arbetsbördan för revisioner efter referensperiodens utgång beslutade revisionsmyndigheten att fördela revisionsarbetet på två perioder. Vid utgången av det första halvåret delade revisionsmyndigheten in populationen i två grupper som motsvarade de båda halvåren. Populationen vid utgången av det första halvåret kan sammanfattas på följande sätt:

| Deklarerade utgifter vid utgången av första halvåret | 16 930 259 euro |

$$EE = EE_{e1} + EE_{e2} + \frac{n_{s1}}{n_{s1}} \sum_{i=1}^{n_{s1}} E_{s1i} + \frac{n_{s2}}{n_{s2}} \sum_{i=1}^{n_{s2}} E_{s2i}$$
Revisionsmyndigheten vet av tidigare erfarenhet att inte alla insatser som ingår i programmet vid utgången av referensperioden brukar vara aktiva i populationen för det första halvåret. Dessutom förväntas de deklarerade utgifterna för det andra halvåret bli två och en halv gånger så stora som de utgifter som hade deklarerats vid utgången av det första halvåret. Dessutom väntas antalet aktiva insatser ha ökat vid utgången av det andra halvåret, om än inte med lika mycket som prognosen för utgifterna. Revisionsmyndigheten förväntar sig att det kommer att finnas 52 aktiva insatser under det andra halvåret (två insatser kommer att slutföras under det första halvåret, de återstående 32 insatserna det första halvåret kommer att fortsätta under det andra halvåret och utgifter väntas också bli deklarerade för 20 nya insatser under det andra halvåret). Det går inte att göra något urval av betalningsansökningar för att utöka populationens storlek. Därför bestämmer sig revisionsmyndigheten för att använda en icke-statistisk strategi.

Utifrån dessa antaganden görs en sammanfattning av populationen i följande tabell:

Deklarerade utgifter vid utgången av första halvåret	16 930 259 euro
Utgifter som ska deklareras under det andra halvåret (prognos)	42 325 648 euro
(16 930 259 euro * 2,5 = 42 325 648 euro)	
Summa beräknat totalresultat för året	59 255 907 euro
Populationens storlek (insatser – första halvåret)	34
Populationens storlek (insatser – andra halvåret, förväntad)	52 (32 + 20)
Väsentlighetsnivå (högst 2 %)	2 %
Godtagbara fel (TE)	1 185 118 euro

Revisionsmyndigheten anser att förvaltnings- och kontrollsystemet fungerar delvis, men avsevärda förbättringar krävs och bestämmer sig därför för en urvalsstorlek på 15 % av antalet insatser. För att få så stor täckning av utgifterna som möjligt i det slumpvisa urvalet bestämmer sig revisorn för att göra urvalet med hjälp av sannolikhet i förhållande till storlek. I vårt fall har vi under referensperioden sammanlagt 54 insatser för vilka utgifter har deklarerats under båda urvalsperioderna (34 insatser som ingick i det första halvåret och 20 nya insatser under det andra halvåret). Den totala urvalsstorleken för hela året är

\[n = 0,15 \times 54 \approx 9 \]

Urvalets fördelning efter halvår blir

\[n_1 = \frac{BV_1}{BV_1 + BV_2} = \frac{16 930 259}{16 930 259 + 42 325 648} \times 9 \approx 3 \]

och

\[n_2 = n - n_1 = 6 \]
Täckningen av populationens utgifter går endast att bedöma efter det att urvalet har gjorts, men eftersom 15% av insatserna väljs och urvalet görs med hänsyn till sannolikhet i förhållande till storlek, väntas urvalet i fråga om vår population täcka minst 20% av utgifterna.

För det första måste man identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratum med poster av högt värde som ska genomgå en uttömmande granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförda värdet (BV_s) och den planerade urvalsstorleken (n_1). Alla poster vars bokförda värde är högre än detta gränsvärde kommer att placeras i det uttömmande granskningsstratumet. I detta fall är gränsvärdet 16 930 259 euro/3 = 5 643 420 euro.

Det finns inga insatser med ett bokfört värde som är högre än 5 643 420 euro. Därför motsvarar urvalsintervallet gränsvärdet, dvs. 5 643 420 euro.

I följande tabell sammanfattas ovanstående resultat:

Gränsvärde för beaktande – första halvåret	5 643 420 euro
Antal insatser med ett bokfört värde som är högre än gränsvärdet – första halvåret	0
Bokfört värde för insatser med ett bokfört värde som är högre än gränsvärdet – första halvåret	0
BV_{s1} – bokfört värde för populationen i icke-uttömmande stratum för första halvåret (eftersom vi inte har några insatser som ligger över gränsvärdet för det första halvåret är detta hela populationen för det första halvåret)	16 930 259 euro
n_{s1} – urvalsstorlek för icke-uttömmande stratum för första halvåret	3
Sl_{s1} – urvalsintervall under första halvåret	5 643 420 euro

En fil som innehåller de 34 insatserna i populationen sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas. Urvalet görs genom att varje post som innehåller den 5 643 420:e beloppsenheten väljs 48. Värdet på dessa tre insatser granskas. Summan av felprocentvärdena för det första halvåret är

$$\sum_{i=1}^{3} \frac{E_{1i}}{BV_{1i}} = 0,066$$

De granskade utgifterna för urvalet uppgår till 6 145 892 euro, vilket motsvarar 36,3% av de sammanlagda deklarerade utgifterna. Med hänsyn till den garanti som ges i förvaltnings- och kontrollsystemet anser revisionsmyndigheten att denna nivå av

48 Om någon av de valda insatserna måste ersättas på grund av de begränsningar som införs genom artikel 148 bör den nya insatsen/de nya insatserna väljas ut baserat på sannolikhet i förhållande till storlek. I avsnitt 7.10.3.1 finns exempel på en sådan ersättning.
granskade utgifter räcker mer än väl för att säkerställa att slutsatserna från granskningen blir tillförlitliga.

Vid utgången av det andra halvåret finns det mer information tillgänglig. Framför allt känner man till de korrekta siffrorna för de totala utgifterna och antalet aktiva insatser under det andra halvåret.

Revisionsmyndigheten konstaterar att det antagande om de sammanlagda utgifterna som gjordes vid utgången av första halvåret, 42 325 648 euro, är mindre än det verkligavärdet på 49 378 264 euro. Antalet aktiva insatser under det andra halvåret är mindre än vad man förväntade sig till en början. Det minskade antalet insatser innebär att urvalet kan minsas för det andra halvåret. I följande tabell sammanfattas populationen för det andra halvåret:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prognos gjord under första halvåret</th>
<th>Utgången av andra halvåret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal insatser under andra halvåret</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>Sammanlagda utgifter under andra halvåret</td>
<td>42 325 648 euro</td>
<td>49 378 264 euro</td>
</tr>
</tbody>
</table>

Det totala antalet insatser som har deklarerats för båda halvåren var alltså 48 insatser (34 insatser som ingick i det första halvåret och 14 som inleddes under det andra halvåret).

Med hänsyn till denna justering blir den nya beräknade urvalsstorleken för det andra halvåret till följd av det ändrade antalet insatser

\[n_2 = 0.15 \times 48 - 3 \approx 5 \]

49 46 insatser plus två insatser som slutfördes under det andra halvåret.

50 Tänk på att revisionsmyndigheten också kan välja ett lägre gränsvärde än det som har räknats fram på grundval av kvoten mellan halvårets population och antalet insatser som ska väljas under halvåret. Att tillämpa ett lägre gränsvärde för att öka antalet insatser i toppstratumet kan vara särskilt användbart för revisionsmyndigheten om analyser av de särskilda egenskaperna hos populationen visar att tröskelvärdet för utgiftstäckning kan bli svårt att uppnå även om PPS tillämpas.
Storleken på det urval som ska ingå i det icke uttömmande stratumet \(n_{s2} \) beräknas som skillnaden mellan \(n_2 \) och antalet urvalsenheter (t.ex. insatser) i det uttömmande stratumet (\(n_{e2} \)). I vårt fall är detta tre insatser (fem, urvalsstorleken, minus de två insatserna med hög värde). Därför måste revisorn göra det slumpmässiga urvalet med urvalsintervallet

\[
SI_{s2} = \frac{BV_{s2} - n_{s2}}{3} = 9160969^{51}
\]

I följande tabell sammanfattas ovanstående resultat:

<table>
<thead>
<tr>
<th>Gränsvärde – andra halvåret</th>
<th>9 875 653 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal insatser med ett bokfört värde som är högre än gränsvärdet – andra halvåret</td>
<td>2</td>
</tr>
<tr>
<td>Bokfört värde för insatser med ett bokfört värde som är högre än gränsvärdet – andra halvåret</td>
<td>21 895 357 euro</td>
</tr>
<tr>
<td>(BV_{s2}) – population av insatser med ett bokfört värde under gränsvärdet (icke-uttömmande stratum) – andra halvåret</td>
<td>27 482 907 euro</td>
</tr>
<tr>
<td>(n_{s2}) – urvalsstorlek för icke-uttömmande stratum för andra halvåret</td>
<td>3</td>
</tr>
<tr>
<td>(SI_{s2}) – urvalsintervall under andra halvåret</td>
<td>9 160 969 euro</td>
</tr>
</tbody>
</table>

En fil som innehåller de återstående 43 insatserna i populationen för det andra halvåret sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas. Ett urval på tre insatser tas ut med hjälp av det systematiska förfarenadet för ett urval i förhållande till storlek. Värdet på de tre insatserna granskas. Summan av felprocentvärdena för det andra halvåret är

\[
\sum_{i=1}^{3} E_{2i} = 0,0475
\]

De granskade utgifterna i urvalet för det andra halvåret uppgår till det sammanlagda bokförda värdet för projekten med högt värde, 21 895 357 euro, plus de granskade utgifterna i urvalet från den återstående populationen, 2 245 892 euro. De sammanlagda granskade utgifterna för andra halvåret uppgår till 24 141 249 euro, vilket motsvarar 48,89 % av de sammanlagda deklarerade utgifterna. Med hänsyn till den garanti som ges i förvaltnings- och kontrollsystemet anser revisionsmyndigheten att denna nivå av granskade utgifter räcker mer än väl för att säkerställa att slutsatserna från granskningen blir tillförlitliga."
Beräkningen av fel i populationen görs på olika sätt för (insatser) urvalsenheter som tillhör de uttömmande stratumen och för enheterna i de icke uttömmande stratumen.

För de uttömmande stratumen, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet $BV_{ti} > \frac{BV_t}{n_t}$, är det beräknade felet summan av de fel som konstaterats bland de poster som ingår i de stratumen:

\[EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} = 0 + 56823 = 56823 \]

I praktiken betyder det följande:
1) Identifiera för varje halvår t de enheter som tillhör den uttömmande gruppen och summera deras fel.
2) Summera de föregående resultaten för de båda halvåren.

För den icke uttömmande gruppen, dvs. de stratum som innehåller urvalsenheter med ett bokfört värde som inte överstiger gränsvärde $BV_{ti} \leq \frac{BV_t}{n_t}$, är det beräknade felet

\[EE_s = \frac{BV_{s1}}{n_{s1}} \sum_{i=1}^{n_{s1}} \frac{BV_{1i}}{BV_{1i}} + \frac{BV_{s2}}{n_{s2}} \sum_{i=1}^{n_{s2}} \frac{E_{2i}}{BV_{2i}} = 5643420 \times 0,066 + 9160969 \times 0,0475 = 807612 \]

Vid beräkningen av det beräknade felet ska
1) felprocenten beräknas för varje halvår t för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, $\frac{E_{ti}}{BV_{ti}}$
2) dessa felprocentvärden summeras för varje halvår t för samtliga enheter i urvalet,
3) det ovanstående resultatet för halvåret t multiplikeras med det urvalsintervall som har tillämpats för det slumpmässiga urvalet av insatser i det icke uttömmande stratumet,
4) de föregående resultaten summeras för de båda halvåren.

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

\[EE = EE_e + EE_s = 56823 + 807612 = 864435 \]

(dvs. 1,30 % av populationsvärdet)

Det beräknade felet jämförs slutligen med det högsta godtagbara felet (2% av $66\ 308\ 523$ euro = $1\ 326\ 170$ euro). Det beräknade felet är mindre än väsentlighetsnivån.
Det går emellertid inte att fastställa den uppnådda precisionen och slutsatsens konfidensnivå är okänd.

6.4.10 Urval i två steg (delurval) i icke-statistiska urvalsmetoder

Generellt ska alla utgifter som deklarerats till kommissionen och som ingår i urvalet granskas. Om de valda urvalsenheterna omfattar ett stort antal underliggande betalningsansökningar eller fakturor/andra utgiftsposter får revisionsmyndigheten
granska dem genom ytterligare ett urval. Du hittar mer detaljerad information om detta i avsnitt 7.6 Urval i två steg och i avsnitt 6.5.3.1 som handlar om urval i två och tre steg inom ramen för program för europeiskt territoriellt samarbete.

Tänk på att de poster som ingår i det ytterligare urvalet bör väljas slumpmässigt.
Det går också att använda en stratifieringsstrategi på delurvalsnivå, där fakturor/utgiftsposter i vissa stratum granskas uttömmande och vissa stratum kontrolleras genom en verifiering av ett slumpmässigt urval av utgiftsposter. Stratifieringen kan vanligtvis göras på grundval av typen av utgifter eller beloppet för fakturan/utgiftsposten (t.ex. genom att göra en uttömmande verifiering av alla poster av högt värde och göra ett slumpmässigt urval av poster i stratum med poster av lågt värde).

För programperioden 2014–2020 och i linje med artikel 28 i den delegerade förordningen, där delurval används antingen med fakturor eller betalningsansökningar som delurvalsenheter, bör revisionsmyndigheten täcka minst 30 fakturor/andra utgiftsposter eller betalningsansökningar. Om andra delurvalsenheter används vid icke-statistiskt urval (t.ex. ett projekt i en insats, en projektpartner i ETS-program) får revisionsmyndigheten göra en yrkesmässig bedömning för att avgöra vad som är en tillräcklig täckning i ett delurval. Om mindre än 30 delurvalsenheter väljs ut i ett sådant fall rekommenderar vi att de omfattar minst 10 % av utgifterna i urvalsenheten (t.ex. en insats).

6.5 Urvalsmetoder för program för europeiskt territoriellt samarbete (ETS)

6.5.1 Inledning

6.5.2 Urvalsenhet
Urvalsenheten ska fastställas av revisionsmyndigheten efter en yrkesmässig bedömning. Det kan vara en insats, ett projekt i en insats eller en betalningsansökning från en mottagare (artikel 28.6 i den delegerade förordningen (EU) nr 480/2014). Om revisionsmyndigheten bestämmer sig för att använda betalningsansökningar som urvalsenhet kan den antingen välja en summerad betalningsansökning som inkluderar enskilda ansökningar om utbetalning från den samordnande partnern och andra
projektpartner eller välja en betalningsansökan från en projektpartner (utan att göra åtskillnad mellan den samordnande partnern och andra projektpartner). Revisionsmyndigheten kan också välja att använda grupperade betalningsansökningar från en projektpartner som har deklarerats inom en insats under en viss urvalsperiod. I sådant fall är det de grupperade betalningsansökningarna per projektpartner som är urvalsenheten (i fortsättningen kallar vi denna urvalsenhet projektpartner).

Valet av urvalsenhet avgör vilken beräkningsstrategi som ska användas. Beräkningen av fel på populationsnivå baseras på fel i de valda urvalsenheterna. Om revisionsmyndigheten inte verifierar alla utgifter i den valda urvalsenheten (delurval tillämpas) måste den extrapolera felen i delurvalet till urvalsenhetens nivå innan den kan göra extrapoleringen till populationsnivå.

Framför allt gäller att om revisionsmyndigheten väljer att använda insatser som urvalsenhet, med ett delurval av projektpartner, måste myndigheten beräkna de fel som har upptäckts i utgifterna hos de valda partnerna till insatsnivå innan de gör extrapoleringen till populationsnivå.

En enklare beräkningsmetod kan vara att använda projektpartner eller projektpartners ansökningar om utbetalning som urvalsenheter. Med dessa urvalsenheter går det att beräkna de fel som har upptäckts i de utgifter som har deklarerats av de utvalda projektpartnerna (eller de utvalda ansökningarna om utbetalning från projektpartner) direkt till populationsnivån för samtliga utgifter som har deklarerats till kommissionen utan att gå via den beräkning i två steg som beskrivs ovan. (Eftersom insatsen inte är urvalsenhet i detta fall behöver man inte extrapolera upptäckta fel till insatsnivå.)

Det kan finnas andra möjliga alternativ, men kommissionens avdelningar rekommenderar framför allt att någon av följande urvalsenheter används i ETS-program när urvalsmetoden utformas:

a) ansökan om utbetalning från en (enskild) projektpartner,
b) projektpartner (dvs. alla ansökningar om utbetalning som har deklarerats av en projektpartner i en insats under en viss urvalsperiod), eller
c) insatsen.

Alla de ovanämnda urvalsenheterna kan användas i såväl statistiska som icke-statistiska urvalsmetoder. Att använda insatser som urvalsenheter i en statistisk urvalsmetod skapar dock en stor arbetsbörda när det gäller ETS-program jämfört med de två andra urvalsenheter som anges ovan. Därför bör insatser hellre användas som urvalsenhet vid icke-statistiska urvalsmetoder.

53 Utan att man behöver göra åtskillnad mellan samordnande partner och andra projektpartner.
I avsnitt 6.5.3 om urval i två eller tre steg finns mer detaljerad information om vilka urvalsenheter och delurvalsenheter som kan användas för ETS-program. Där finns även ytterligare anmärkningar om relevanta begränsningar och implikationer för metoden.

6.5.3 Urvalsmetod

Oavsett om det gäller statistiska eller icke-statistiska urvalsförfaranden för ETS-programmen ska de allmänna urvalsmetoderna som beskrivs i de relevanta avsnitten i denna vägledning användas. Detta avsnitt innehåller ytterligare förklaringar med tanke på ETS-programmens särskilda egenskaper.

Det är inte säkert att tröskelvärdet på 50–150 insatser går att uppnå för ETS-programmen, som brukar ha små populationsstorlekar, framför allt i början av genomförandeperioden. Dessutom kanske det inte är kostnadseffektivt att använda statistiskt urval ens om tröskelvärdet uppnås, med hänsyn till ETS-programmens speciella utformning. Därför kan revisionsmyndigheten göra en yrkesmässig bedömning och använda icke-statistiskt urval urval för ETS på de villkor som anges i artikel 127.1 i förordningen om gemensamma bestämmelser, förutsatt att de uppnår en täckning på minst 5 % av insatserna och minst 10 % av utgifterna. Revisionsmyndighetens resonemang och valda alternativ bör beskrivas i revisionsstrategin som måste uppdateras årligen i enlighet med artikel 127.4 i förordningen om gemensamma bestämmelser.

För programperioden 2014–2020 krävs det dessutom enligt artikel 127 i förordning (EU) nr 1303/2013 en täckning på minst 5 % av insatserna och 10 % av de deklarerade utgifterna om en icke-statistisk urvalsmetod används. Eftersom detta krav inte gäller vid statistiskt urval bör revisionsmyndigheten tänka på att användningen av en statistisk urvalsmetod i vissa fall kan leda till lika mycket eller rentav mindre granskningsarbete (jämfört med icke-statistiskt urval), framför allt om man använder betalningsansökningar från projektpartner som urvalsenheter och tillämpar ett enkelt slumpmässigt urval. Om revisionsmyndigheten ställs inför liknande granskningskostnader och ansträngningar rekommenderar vi ett statistiskt urval.
Till följd av det särskilda kontrollsystem som används av ETS-programmen (t.ex. decentraliserade jämfört med centraliserade system) kan revisionsmyndigheten slutligen överväga stratifiering (t.ex. att använda resultatet av systemrevisioner) för att kunna dra slutsatser per stratum vid behov. Revisionsmyndigheten kan överväga att göra en stratifiering per medlemsstat på förhand eller i efterhand (t.ex. när felprocenten är högre än 2 %) för att kunna bedöma var felet kommer ifrån. Här kan urvalsmetoden ta hänsyn till den ”bottom-up-strategi” som beskrivs i avsnitt 7.8 i denna vägledning.

6.5.3.1 Urval i två och tre steg (delurval)

När revisionsmyndigheten använder statistiska eller icke-statistiska urvalsmetoder måste den fastställa fel på de valda urvalsenheternas nivå innan den beräknar de fel som upptäckts i urvalet i populationen. Generellt ska alla utgifter som deklareras till kommissionen och som ingår i urvalet granskas. Om de valda urvalsenheterna omfattar ett stort antal underliggande betalningsansökningar eller fakturor får revisionsmyndigheten gransa dem genom ytterligare ett urval. I sådana fall måste revisionsmyndigheten beräkna de fel som har upptäckts i delurvalet på urvalsenhetsnivå för att kunna fastställa felet på urvalsenhetsnivå. I nästa steg beräknas felen i de valda urvalsenheterna (fastställt utifrån ett delurval) i populationen av insatser eller betalningsansökningar för att beräkna felet för populationen.

Delurvalsenheter

I både statistiskt och icke-statistiskt urval kan revisionsmyndigheten använda olika delurvalsenheter i urvalsformer med två/tre steg, t.ex. fakturor, projekt i insatser, sammanlagda betalningsansökningar inklusive enskilda betalningsansökningar från den samordnande partnern och andra projektpartner, betalningsansökningar från enskilda projektpartner, projektpartner.

På grund av insatsernas utformning i ETS-programmen brukar revisionsmyndigheterna ofta använda urval i två eller tre steg, där en projektpartner eller en betalningsansökan från en projektpartner kan vara en urvalsenhet i ett av urvalsstegen.

Om urvalsenheten är en insats kan revisionsmyndigheten bestämma sig för en urvalsform med ett delurval av betalningsansökningar från enskilda projektpartner (urval i två steg). Ett annat alternativ för urvalsformer i två steg – och det som är vanligast i samband med ETS – är att gruppera alla ansökningar om utbetalningar från enskilda projektpartner per projektpartner och sedan välja ett delurval av projektpartner i den valda insatsen. I sådana fall måste fel som upptäckts på betalningsansöknings-/projektpartnernivå först beräknas på insatsnivå innan de slutligen kan beräknas för populationen av insatser.
Fakturor som delurvalsenhet

Om vissa urvalsenheter i delurvalet (betalningsansökningar/partner) har ett stort antal fakturor/andra utgiftsposter, kan revisionsmyndigheten välja att granska dem på urvalsbasis, vilket leder till en urvalsform i tre steg. I sådant fall ska det fel som uppstått in delurvalet av fakturor först beräknas på betalningsansökans-/partnernivå. Därefter ska de fel som har fastställts på betalningsansökans-/partnernivå överföras till insatsnivå precis som vid urval i två steg.

Revisionsmyndigheten kan också använda fakturor som urvalsenhet vid urval i två steg, vilket framför allt används när betalningsansökningar från en enskild projektpartner eller en projektpartner utgör huvudurvalsenheten. När insatser används som huvudurvalsenhet i ett urval i två steg görs delurvalet av fakturor direktt från populationen av alla fakturor i insatsen, utan det mellanliggande steget med ett delurval på partner-/betalningsansökansnivå.

Val av delurvalsenheter i statistiska och icke-statistiska metoder

Alla urvalsenheter i delurval bör väljas slumpmässigt54, även när icke-statistiskt urval används. Om det görs en stratifiering på delurvalsnivå kan revisionsmyndigheten naturligtvis ändå bestämma sig för att granska alla urvalsenheter i ett visst stratum.

Exempel: Om revisionsmyndigheten bestämmer sig för att använda en insats som urvalsenhet för huvudurvalet och projektpartner som delurvalsenheter kan den
– göra ett slumpmässigt urval av projektpartner (utan att skilja mellan samordnande partner och andra projektpartner), eller
– använda stratifiering på insatsnivå:
 – ett stratum för den samordnande partnerns utgifter och
 – ett andra stratum för de andra projektpartnernas utgifter.

Eftersom den samordnande partnern i det senare fallet inte väljs slumpmässigt utan dennes utgifter är ett uttömmande stratum bör beräkningsmodellen ta hänsyn till detta. För att beräkna felet på insatsnivå bör felen hos de andra projektpartnerna, som har valts ut slumpmässigt i insatsen, överföras till stratumen för de övriga projektpartnerna, medan den samordnande partnerns fel bör läggas till det beräknade felet för att fastställa den sammanlagda beräknade felprocenten för insatsen. I avsnitt 6.5.3.3 finns ett exempel som utgår från en sådan utformning av urvalet.

54 Det går i så fall att använda urval baserat på lika sannolikhet (där varje urvalsenhet har lika stor chans att väljas oavsett vilket utgiftsbelopp som har deklarerats i urvalsenheten) eller baserat på sannolikhet i förhållande till storlek (utgifter) (där ett slumpmässigt urval görs för det första elementet i urvalet och de efterföljande elementen sedan väljs enligt ett intervall tills man har uppnått den önskade urvalsstorleken) där beloppsenhet används som hjälpvariabel för urvalet precis som för MUS.
Tänk också på att om statistiskt urval används för huvudurvalet måste revisionsmyndigheten se till att den statistiska urvalsmetoden används i urvalet av urvalsenhet i delurvalen i alla steg. Om insatser väljs som urvalsenheter med ett delurval av projektpartner i det andra steget och ett delurval av fakturor i det tredje steget måste revisionsmyndigheten framför allt se till att minst 30 enheter observeras i det andra steget och även i det tredje steget. Om projektpartner väljs som delurvalsenhet inom en insats innebär detta alltså att 30 projektpartner bör väljas ut (ett fatal fall skulle vara tillämpliga, eller inga). Annars kan metoden fortfarande användas, men den leder till att alla partner som ingår i insatsen väljs ut, vilket i praktiken innebär att urvalet görs i två steg (insats i första steget och faktura i andra steget), inte tre steg. På liknande sätt bör ett delurval av minst 30 fakturor från varje vald partner granskas, om det kostar för mycket att göra en uttömmande granskning.

För programperioden 2014–2020 och i linje med artikel 28 i den delegerade förordningen, där delurval används med fakturor eller betalningsansökningar som delurvalsenheter, bör revisionsmyndigheten täcka minst 30 fakturor/andra utgiftsposter eller betalningsansökningar även när icke-statistiskt urval används. Om andra delurvalsenheter används vid icke-statistiskt urval (t.ex. ett projekt i en insats, en projektpartner) får revisionsmyndigheten göra en yrkesmässig bedömning för att avgöra vad som är en tillräcklig täckning i ett delurval. Om mindre än 30 delurvalsenheter väljs ut i ett sådant fall rekommenderar vi att de omfattar minst 10% av utgifterna i urvalsenheten (t.ex. en insats).

6.5.3.2 Viktigaste konfigurationer som är möjliga för urvalsenheter vid urval i två steg och tre steg

I tabellerna nedan sammanfattas de viktigaste möjliga konfigurationerna av urvalsenheter i urval med två eller tre steg i samband med ETS. Baserat på statistiska överväganden kan dessa konfigurationer användas i både statistiska och icke-statistiska urvalsmetoder. Som framgår av tabellen kommer några av de konfigurationer som visas kanske inte att vara genomförbara, på grund av de höga granskningskostnaderna. I vissa fall finns det även metodbegränsningar som gör att de inte kan användas i statistiska urvalsmetoder, eftersom det i praktiken inte finns tillräckligt många delurvalsenheter. Alternativ 1 och 2 i tabellen nedan anses vara mest kostnadseffektiva för statistiska urvalsmetoder, medan alternativ 2 och 3 anses vara mest kostnadseffektiva för icke-statistiska urvalsmetoder. De övriga alternativen kan kräva mycket större granskningsresurser och är därför ofta inte genomförbara i praktiken.
6.5.3.2.1 Strategier i två steg

<table>
<thead>
<tr>
<th>Alternativ</th>
<th>Urvalsenhet i huvudurvalet</th>
<th>Delurvalsenhet (i förekommande fall)</th>
<th>Rekommenderas för användning i icke-statistiska och statistiska urvalsmetoder</th>
<th>Övriga anmärkningar/begränsningar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ansökan om utbetalning från en projektpartner</td>
<td>Faktura/annan utgiftspost</td>
<td>Statistiskt urval: Ja</td>
<td>Av de statistiska urvalsformer som presenteras är detta den konfiguration som kräver minst granskningsresurser och samtidigt tillåter beräkning av precision och övre felgräns, vilket ger kontroll över revisionsrisken.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Icke-statistiskt urval: Detta är en betydligt mindre kostnadseffektiv metod jämfört med att använda projektpartner som huvudurvalsenhet på grund av kravet på att minst 10 % av de utgifter som har deklarerats till kommissionen och 5 % av insatserna under ett räkenskapsår ska täckas. (Revisionsmyndigheten skulle behöva täcka fler urvalsenheter för att uppfylla kravet på täckning av den minsta utgiftsnivån.)</td>
<td>För icke-statistiska urvalsmetoder är alternativ 2 och 3 mer kostnadseffektiva.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Icke-statistiskt urval: Ja</td>
<td>(Enligt artikel 127 i förordningen om gemensamma bestämmelser måste minst 5 % av insatserna och 10 % av de deklarerade utgifterna täckas.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tänk på att jämföra med en annan kostnadseffektiv strategi för icke-statistiskt urval (dvs. alternativ 3) krävs det i alternativ 2 ingen överföring från projektpartner till insatsnivå eftersom beräkningen i populationen görs direkt från projektpartnerna. När det är fråga om projektpartner för vilka det inte görs någon utömnande verifiering av fakturor/utgiftsposter skulle felet för en partner beräknas på grundval av beräkning av fel som har upptäckts i delurvalet av fakturor/andra utgiftsposter.</td>
</tr>
<tr>
<td>3.</td>
<td>Insats</td>
<td>Projektpartner<sup>55</sup></td>
<td>Statistiskt urval: a) Denna strategi används inte när det finns upp till 30 projektpartner i en insats. (För statistiska metoder skulle det krävas en verifiering av samtliga eller minst 30 partner på delurvalsnivå. Om antalet partner är högst 30 skulle metoden innebära att alla befintliga</td>
<td>För statistiska urvalsmetoder är alternativ 1 och 2 mer kostnadseffektiva.</td>
</tr>
</tbody>
</table>

⁵⁵ I denna delurvalsenhet görs en gruppering per projektpartner av alla ansökningar om utbetalning som har deklarerats av en projektpartner i en insats under en viss urvalsperiod.
<table>
<thead>
<tr>
<th>Alternativ</th>
<th>Urvalsenhet i huvudurvalet</th>
<th>Delurvalsenhet (i förekommande fall)</th>
<th>Rekommenderas för användning i icke-statistiska och statistiska urvalsmetoder</th>
<th>Övriga anmärkningar/begränsningar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>partner väljs, vilket leder till ett urval i ett steg.) b) Om det finns mer än 30 projektpartner: höga granskningskostnader för att täcka minst 30 partner.</td>
<td>Icke-statistiskt urval: Ja (Enligt artikel 127 i förordningen om gemensamma bestämmelser måste minst 5 % av insatserna och 10 % av de deklarerade utgifterna täckas.)</td>
<td>Två alternativ kan användas för att välja projektpartner: a) ett slumpmässigt urval av partner utan åtskillnad mellan samordnande partner och andra projektpartner, b) för varje vald insats, en verifiering av utgifter som har deklarerats av den samordnande partnern och utgifter som har deklarerats av slumpmässigt valda andra projektpartner. För denna strategi krävs att fel hos de valda projektpartnerna överförs till insatsnivå (se alternativ 2 för en annan kostnadseffektiv strategi vid icke-statistiskt urval som inte kräver överföring från partnernivå till insatsnivå). Vid icke-statistiskt urval rekommenderas att delurvalet av projektpartner täcker minst 10 % av utgifterna i insatsen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVå alternativ kan användas för att välja projektpartner: a) ett slumpmässigt urval av partner utan åtskillnad mellan samordnande partner och andra projektpartner, b) för varje vald insats, en verifiering av utgifter som har deklarerats av den samordnande partnern och utgifter som har deklarerats av slumpmässigt valda andra projektpartner. För denna strategi krävs att fel hos de valda projektpartnerna överförs till insatsnivå (se alternativ 2 för en annan kostnadseffektiv strategi vid icke-statistiskt urval som inte kräver överföring från partnernivå till insatsnivå). Vid icke-statistiskt urval rekommenderas att delurvalet av projektpartner täcker minst 10 % av utgifterna i insatsen.</td>
<td>Icke-statistiskt urval: Ja (Enligt artikel 127 i förordningen om gemensamma bestämmelser måste minst 5 % av insatserna och 10 % av de deklarerade utgifterna täckas.)</td>
<td>Två alternativ kan användas för att välja projektpartner: a) ett slumpmässigt urval av partner utan åtskillnad mellan samordnande partner och andra projektpartner, b) för varje vald insats, en verifiering av utgifter som har deklarerats av den samordnande partnern och utgifter som har deklarerats av slumpmässigt valda andra projektpartner. För denna strategi krävs att fel hos de valda projektpartnerna överförs till insatsnivå (se alternativ 2 för en annan kostnadseffektiv strategi vid icke-statistiskt urval som inte kräver överföring från partnernivå till insatsnivå). Vid icke-statistiskt urval rekommenderas att delurvalet av projektpartner täcker minst 10 % av utgifterna i insatsen.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Insats/summerad betalningsansökan</td>
<td>Faktura/annan utgiftspost</td>
<td>Statistiskt urval: Denna konfiguration är inte kostnadseffektiv, eftersom den skulle innebära att utgifter från olika partner i en vald insats (summerad betalningsansökan) skulle behöva kontrolleras. Den kräver mer granskningsresurser än alternativ 1 och 2.</td>
<td>För statistiska urvalsmetoder är alternativ 1 och 2 mer kostnadseffektiva.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Icke-statistiskt urval: År oftast inte genomförbart på grund av höga granskningskostnader.</td>
<td>För icke-statistiska urvalsmetoder är alternativ 2 och 3 mer kostnadseffektiva.</td>
</tr>
<tr>
<td>5.</td>
<td>Insats</td>
<td>Summerad betalningsansökan</td>
<td>Statistiskt urval: a) I fallet med upp till 30 summerade betalningsansökningsor innebär denna strategi att samtliga summerade betalningsansökningsor måste kontrolleras, vilket leder till en strategi i ett steg. b) Om det finns mer än 30 betalningsansökningsor: höga granskningskostnader för att täcka minst 30 summerade betalningsansökningsor.</td>
<td>För statistiska urvalsmetoder är alternativ 1 och 2 mer kostnadseffektiva.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Icke-statistiskt urval: År oftast inte genomförbart på grund av höga</td>
<td>För icke-statistiska urvalsmetoder är alternativ 2 och 3 mer kostnadseffektiva.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternativ</th>
<th>Urvalsenhet i huvudurvalet</th>
<th>Delurvalsenhet (i förekommande fall)</th>
<th>Recommernderas för användning i icke-statistiska och statistiska urvalsmetoder</th>
<th>Övriga anmärkningar/begränsningar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>granskningskostnader.</td>
<td>kostnadseffektiva.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Statistiskt urval:</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Insats eller summerad betalningsansökan</td>
<td>Ansökan om utbetalning från en projektpartner</td>
<td>a) Om det finns upp till 30 betalningsansökningsurvalsmetoder för urval (jfr. alternativ 3),</td>
<td>För statistiska urvalsmetoder är alternativ 1 och 2 mer kostnadseffektiva.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b) Om det finns mer än 30 betalningsansökningsurvalsmetoder för urval (jfr. alternativ 3),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Icke-statistiskt urval:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a) Om det finns upp till 30 betalningsansökningsurvalsmetoder för urval (jfr. alternativ 3),</td>
<td>För icke-statistiska urvalsmetoder är alternativ 2 och 3 mer kostnadseffektiva.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b) Om det finns mer än 30 betalningsansökningsurvalsmetoder för urval (jfr. alternativ 3),</td>
<td></td>
</tr>
</tbody>
</table>

De urvalsformer i två steg som oftast brukar användas i ETS-sammanhang är i praktiken
– användning av en insats som urvalsenhet och en projektpartner som delurvalsenhet vid icke-statistiskt urval (jfr. alternativ 3),
– användning av en betalningsansökan från en enskild projektpartner som urvalsenhet och en faktura/andra utgiftsposter som delurvalsenhet vid statistiskt urval (jfr. alternativ 1).

Konfigureringen med en projektpartner som urvalsenhet och en faktura/annan utgiftspost som delurvalsenhet (jfr. alternativ 2) är också en rekommenderad metod som kan vara kostnadseffektiv vid både statistiska och icke-statistiska urvalsmetoder. I sådant fall kan felet hos varje partner beräknas på grundval av beräkning av fel som har upptäckts i delurvalet av fakturor. Felen hos partner skulle extrapoleras direkt till populationsnivå (utan att man behöver beräkna felet hos de berörda insatserna, eftersom insatsen inte är urvalsenhet i denna konfiguration).

Särskild uppmärksamhet krävs när revisionsmyndigheten bestämmer sig för att använda insats som urvalsenhet i en statistisk urvalsmetod. I sådant fall kan olika delurvalsenheter användas, t.ex. en summerad betalningsansökan (jfr. alternativ 5), en projektpartner (jfr. alternativ 3) eller en betalningsansökan från en enskild projektpartner (jfr. alternativ 6). I en statistisk urvalsmetod krävs dock minst 30 observationer i varje urvalssteg, vilket kan betyda att alla delurvalsenheter granskas (eftersom det normalt sett brukar finnas mindre än 30 delurvalsenheter tillgängliga).

Undantaget är när insats väljs som urvalsenhet och en faktura/annan utgiftspost väljs som delurvalsenhet (jfr. alternativ 4). I sådant fall kommer det statistiska delurvalet av fakturor att göras från populationen av alla fakturor som har deklarerats för insatsen under urvalsperioden (dvs. de omfattar alla projektpartner som har deklarerat utgifter.
under urvalsperioden). Arbetsbörjan för granskningen minskar i så fall rejält jämfört med andra delurvalsenheter som nämns ovan. Denna konfiguration kräver dock i allmänhet mycket större granskningsresurser än om man använder projektpartner eller betalningsansökningar från projektpartner som urvalsenheter med ett delurval av faktorar (jfr. alternativ 1 och 2).

6.5.3.2 Urvalsformer i tre steg

<table>
<thead>
<tr>
<th>Urvalslenhet i huvudurvalet</th>
<th>Delurvalsenhet</th>
<th>Urvalsenhet för delurvalet i det lägsta steget</th>
<th>Anmärkningar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insats</td>
<td>Projektpartner 56</td>
<td>Faktura/annan utgiftspost</td>
<td>Se alternativ 3 i tabellen ovan.</td>
</tr>
<tr>
<td>Insats</td>
<td>Summerad betalningsansökan</td>
<td>Faktura/annan utgiftspost</td>
<td>Se alternativ 5 i tabellen ovan.</td>
</tr>
<tr>
<td>Insats</td>
<td>Ansökan om utbetalning från en enskild projektpartner</td>
<td>Faktura/annan utgiftspost</td>
<td>Se alternativ 6 i tabellen ovan.</td>
</tr>
<tr>
<td>Summerad betalningsansökan</td>
<td>Ansökan om utbetalning från en enskild projektpartner</td>
<td>Faktura/annan utgiftspost</td>
<td>Se alternativ 6 i tabellen ovan.</td>
</tr>
</tbody>
</table>

När det gäller ETS tillämpas urvalsformen i tre steg framför allt i icke-statistiska urvalsmetoder där insatser väljs som urvalsenheter och projektpartner används som delurvalsenhet där man kontrollerar ett slumpmässigt urval av faktorar.

6.5.3.3 En möjlig strategi i urval i två steg (insats som urvalsenhet och delurval av projektpartner, där den samordnande partnern och ett urval av projektpartner väljs ut)

6.5.3.3.1 Urvalsform

56 I denna delurvalsenhet görs en gruppering per projektpartner av alla ansökningar om utbetalning som har deklarerats av en projektpartner i en insats under en viss urvalsperiod.
I sådana fall bör beräkningen av fel i populationen (eller till motsvarande insats) ta hänsyn till att den samordnande partnern har granskats, medan projektpartnerna har granskats genom ett urval.

I den metod som revisionsmyndigheten tillämpar i detta exempel antas att

- icke-statistiskt urval används,
- strategin omfattar två steg, där den första nivån är valet av insatser och den andra nivån är valet av ett urval av partner inom varje insats 57,
- alla enheter (insatser, partner) väljs baserat på lika sannolikhet (andra urvalsmetoder kan godtas),
- den samordnande partnern alltid väljs för varje insats,
- ett urval av projektpartner väljs ut från förteckningen över partner.

För det första bör strategin för det första steget i urvalet (insatser) följa någon av de metoder som har föreslagits tidigare. Inom ramen för varje insats är strategin formellt sett stratifierad, med två stratum:

- Det första stratumet motsvarar den samordnande partnern och består av endast en populationsenhet som alltid ska väljas. I praktiken måste detta stratum behandlas som ett uttömmande stratum, på liknande sätt som stratum med poster av högt värde.
- Det andra stratumet motsvarar uppsättningen av projektpartner och observeras genom urval.

För en viss insats \(i \) i urvalet är det beräknade felet för det uttömmande stratumet (som motsvarar den samordnande partnern)

\[
EE_c = E_{LP}
\]

där \(E_{LP} \) är det felbelopp som har upptäckts i den samordnande partnerns utgifter. Det beräknade felet i det uttömmande stratumet är med andra ord helt enkelt det felbelopp som har upptäckts hos den samordnande partnern.

Tänk på att det inte är obligatoriskt att göra en fullständig revision av den samordnande partnern. Ett alternativ är att göra ett delurval av den samordnande partnerns utgifter, om de omfattar ett stort antal ansökningar om utbetalning (eller andra underenheter). Om så är fallet måste delurvalet betalningsansökningar (eller andra underenheter) användas för att beräkna felbeloppet till den samordnande partnern.

Om ett delurval används och vi återigen förutsätter att urvalet görs baserat på lika sannolikhet och kvotskattning 58 blir det beräknade felet för den samordnande partnern

\[\text{57 Det går också att göra ett delurval av betalningsansökningar eller andra enheter för de utvalda partnerna, om de är för stora för en uttömmande observation.}\]
\[EE_{LP} = BV_{LP} \sum_{j=1}^{n_{LP}} \frac{E_j}{\sum_{j=1}^{n_{LP}} BV_j} \]

där \(BV_{LP} \) är den samordnande partnerns utgifter och \(n_{LP} \) är storleken på det urval av underenheter som har granskats för denna partner.

För det stratum som innehåller de andra projektpartnerna måste felet beräknas med hänsyn till att endast ett urval av dessa partner har kontrollerats.

Även här gäller att om partnerna har valts ut baserat på lika sannolikhet och med kvotsskattning blir det beräknade felet

\[EE_{PP} = BV_{PP} \sum_{i=1}^{n_{s,PP}} \frac{E_i}{\sum_{i=1}^{n_{s,PP}} BV_i} \]

där \(BV_{PP} \) är utgifterna för uppsättningen projektpartner och \(n_{s,PP} \) är storleken på urvalet i stratumet med projektpartner.

Detta beräknade fel är lika med felprocenten i urvalet av projektpartner multiplicerad med populationens utgifter i stratumet.

Tänk på att om de projektpartner som ingår i urvalet inte genomgår en fullständig granskning utan endast granskas genom ett delurval av betalningsansökningar (eller andra enheter) måste felet \(E_i \) beräknas, på samma sätt som beskrivits för den samordnande partnern.

Det sammanlagda beräknade felet för insats I är helt enkelt summan av dessa båda komponenter:

\[EE_i = EE_{LP} + EE_{PP} \]

Detta beräkningsförfarande bör följas för varje insats i urvalet för att få fram det beräknade felet för varje insats \((EE_i, i = 1, \ldots n)\). När de beräknade felet för alla insatser i urvalet har beräknats är det enkelt att göra beräkningen för populationen med de metoder som vi har beskrivit i föregående avsnitt.

Det beräknade felet (och den övre felgränsen när en statistisk strategi används) jämförs slutligen med det högsta godtagbara felet (väsentlighetsnivå multiplicerad med

\[58 \text{ Tänk på att denna formel måste anpassas efter den specifika val- och extrapoleringsprocess som har valts. Vi kommer inte att gå in på de överväganden som krävs eftersom dessa val har diskuterats mer ingående i de föregående avsnitten.} \]
populationens utgifter) för att dra slutsatser om huruvida det förekommer väsentliga fel i populationen.

6.5.3.3.2 Exempel

Vi tänker oss att populationen utgör utgifter som har deklarerats för kommissionen under en referensperiod för insatser i program för europeiskt territoriellt samarbete (ETS). Eftersom inte alla deltagande medlemsstater använder likadana förvaltnings- och kontrollsystem går det inte att gruppera dem. Eftersom antalet insatser dessutom är mycket lågt (endast 47) och det finns mer än en projektpartner för varje insats (den samordnande partnern och minst ytterligare en projektpartner) och det finns ett fåtal insatser med extremt stora bokförda värden valde revisionsmyndigheten att använda en icke-statistisk urvalsstrategi med stratifiering av insatserna av högt värde. Revisionsmyndigheten beslutade att identifiera dessa insatser genom att fastställa gränsvärdet till 3 % av det totala bokförda värdet.

I följande tabell sammanfattas den tillgängliga informationen om populationen:

Deklarerade utgifter (DE) under referensperioden	113 300 285 euro
Populationens storlek (insatser)	47
Väsentlighetsnivå (högst 2 %)	2 %
Godtagbar avvikelse (TE)	2 266 006 euro
Gränsvärde (3 % av totalt bokfört värde)	3 399 009 euro

Detta projekt av högt värde kommer att undantas från urvalet och kommer att behandlas separat. Det totala värdet för detta projekt är 4 411 965 euro. Det felbelopp som upptäckts i denna insats uppgår till

\[EE_e = 80,328. \]

I följande tabell sammanfattas resultatet:

Antal enheter ovanför gränsvärdet för beaktande	1
Värde för resterande population	4 411 965 euro
Felbelopp som upptäckts i insatser vars bokförda värde är högre än gränsvärdet	80 328 euro
Återstående populationsstorlek (antal insatser)	46
Återstående populationsvärde	108 888 320 euro

Revisionsmyndigheten anser att förvaltnings- och kontrollsystemet väsentligen inte fungerar och bestämmer sig därför för en urvalsstorlek på 20 % av populationen med insatser. Det vill säga 20 % x 47 = 9,4 avrundat uppåt till 10. På grund av den låga variationen i utgifter för denna population beslutar revisorn sig för att göra urvalet från
den återstående populationen baserat på lika sannolikhet. Även om urvalet baseras på lika sannolikhet förväntas det ge en täckning på minst 20% av populationens utgiftsstratum (jfr. avsnitt 6.4.3).

Ett urval på nio insatser (tio minus insatsen med högt värde) görs slumpmässigt. En 100-procentig granskning gjordes av utgifterna för den samordnande partnern. Två fel upptäcktes.

<table>
<thead>
<tr>
<th>Insats-nr</th>
<th>Samordnande partners utgifter</th>
<th>Bokfört värde</th>
<th>Granskade utgifter</th>
<th>Felbelopp</th>
</tr>
</thead>
<tbody>
<tr>
<td>864</td>
<td></td>
<td>890 563 euro</td>
<td>890 563 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>12895</td>
<td></td>
<td>1 278 327 euro</td>
<td>1 278 327 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>6724</td>
<td></td>
<td>658 748 euro</td>
<td>658 748 euro</td>
<td>5 274 euro</td>
</tr>
<tr>
<td>763</td>
<td></td>
<td>234 739 euro</td>
<td>234 739 euro</td>
<td>20 327 euro</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>987 329 euro</td>
<td>987 329 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1 045 698 euro</td>
<td>1 045 698 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>895 398 euro</td>
<td>895 398 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>567</td>
<td></td>
<td>444 584 euro</td>
<td>444 584 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>678 927 euro</td>
<td>678 927 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7 114 313 euro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

När det gäller de utgifter som har rapporterats av de återstående projektpartnerna beslutar sig revisionsmyndigheten för att för varje insats göra ett slumpvis urval av en projektpartner som ska genomgå en uttömmande granskning.

<table>
<thead>
<tr>
<th>Insats-nr</th>
<th>Projektpartners utgifter</th>
<th>Antal granskade partner</th>
<th>Bokfört värde (för alla projekt i stratum med lägt värde)</th>
<th>Granskade utgifter</th>
<th>Felbelopp</th>
<th>Beräknat fel</th>
</tr>
</thead>
<tbody>
<tr>
<td>864</td>
<td></td>
<td>1</td>
<td>234 567 euro</td>
<td>37 147 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>12895</td>
<td></td>
<td>1</td>
<td>834 459 euro</td>
<td>164 152 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>6724</td>
<td></td>
<td>1</td>
<td>766 567 euro</td>
<td>152 024 euro</td>
<td>23 euro</td>
<td>116 euro</td>
</tr>
<tr>
<td>763</td>
<td></td>
<td>1</td>
<td>666 578 euro</td>
<td>83 384 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>1</td>
<td>245 538 euro</td>
<td>56 318 euro</td>
<td>127 euro</td>
<td>554 euro</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>344 765 euro</td>
<td>101 258 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>1</td>
<td>678 927 euro</td>
<td>97 656 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>567</td>
<td></td>
<td>1</td>
<td>1 023 346 euro</td>
<td>213 216 euro</td>
<td>1 264 euro</td>
<td>6 067 euro</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1</td>
<td>789 491 euro</td>
<td>137 311 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 584 238 euro</td>
</tr>
</tbody>
</table>

Revisionsmyndigheten beräknar felet för varje insats med hjälp av kvotskattning. Det beräknade felet för insats-nr 65 räknas t.ex. fram med urvalets felprocent (127 / 56 318 x 100% = 0,23 %) multiplicerad med det bokförda värdet för projektpartnerna i insatsen (0,23 % x 245 538 euro = 554 euro).
För varje insats i urvalet är det beräknade felet lika med det fel som har beräknats för projektpartnerna plus det fel som har upptäckts hos den samordnande partnern.

<table>
<thead>
<tr>
<th>Insats-nr</th>
<th>Totalt bokföringsvärde</th>
<th>Beräknat fel (samordnande partner)</th>
<th>Beräknat fel (övriga projektpartner)</th>
<th>Totalt beräknat fel per insats</th>
</tr>
</thead>
<tbody>
<tr>
<td>864</td>
<td>1 125 130 euro</td>
<td>0 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>12895</td>
<td>2 112 786 euro</td>
<td>0 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>6724</td>
<td>1 425 315 euro</td>
<td>5 274 euro</td>
<td>116 euro</td>
<td>5 390 euro</td>
</tr>
<tr>
<td>763</td>
<td>901 317 euro</td>
<td>20 327 euro</td>
<td>0 euro</td>
<td>20 327 euro</td>
</tr>
<tr>
<td>65</td>
<td>1 232 867 euro</td>
<td>0 euro</td>
<td>554 euro</td>
<td>554 euro</td>
</tr>
<tr>
<td>3</td>
<td>1 390 463 euro</td>
<td>0 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>65</td>
<td>1 574 325 euro</td>
<td>0 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>567</td>
<td>1 467 930 euro</td>
<td>0 euro</td>
<td>6 067 euro</td>
<td>6 067 euro</td>
</tr>
<tr>
<td>24</td>
<td>1 468 418 euro</td>
<td>0 euro</td>
<td>0 euro</td>
<td>0 euro</td>
</tr>
<tr>
<td>Totalt</td>
<td>12 698 551 euro</td>
<td>0 euro</td>
<td>0 euro</td>
<td>32 338 euro</td>
</tr>
</tbody>
</table>

Det beräknade felet för hela stratumet med lågt värde räknas fram genom att summan av de beräknade felen per insats (32 338 euro) divideras med det totala bokförda värdet för insatserna i urvalet, 7 114 313 euro + 5 584 238 euro = 12 698 551 euro, vilket ger oss en felprocent på 0,25 % för urvalet i stratumet med lågt värde. Med kvotskattning kan denna felprocent för urvalet tillämpas på det bokförda värdet för stratumet med lågt värde, 108 888 320 euro, vilket ger ett beräknat fel för stratumet med lågt värde på 277 294 euro.

Därefter summerar revisionsmyndigheten det beräknade felet för de båda stratumen med högt respektive lågt värde för att räkna fram det totala beräknade felet.

\[EE = EE_o + EE_s = 80328 + 277294 = 357622 \text{ €} \]

Slutligen jämförs det beräknade felet med tröskelvärdet för väsentlighet (2 266 006 euro) på vanligt sätt, vilket ger slutsatsen att det beräknade felet ligger under tröskelvärdet för väsentlighet.

7 Utvalda teman

7.1 Hur fastställer man det förväntade felet?

Det förutsedda felvärdet kan definieras som det felvärde som revisorn förväntar sig att hitta i populationen. Relevanta faktorer för revisorns övervägande av det förväntade felvärdet är resultatet av granskningar av kontroller, resultaten av de revisionsförfaranden som har tillämpats under den föregående perioden och resultaten
av andra substansgranskningar. Tänk på att ju mer det förväntade felet skiljer sig från det verkliga felet, desto större blir risken för att granskningen inte ger entydiga resultat (det beräknade felet EE < 2 % och den övre felgränsen ULE > 2 %).

Revisorn bör ta hänsyn till följande när det förväntade felet fastställs:

1. Om revisorn har information om felprocentvärdena för de föregående åren bör det förväntade felet i princip baseras på det beräknade fel som erhållits för det föregående året. Om revisorn har fått information om att kvaliteten i kontrollsystemen förändrats bör denna information emellertid användas för att sänka eller höja det förväntade felet. Exempel: Om förra årets beräknade felprocent var 0,7 % och det inte finns någon ytterligare information, kan detta värde användas som den förväntade felprocenten. Om revisorn har fått information om att systemen har förbättrats och är rimligt övertygad om att felprocenten kommer att vara lägre för det innevarande året, kan denna information användas för att sänka det förväntade felet till ett lägre värde, på t.ex. 0,4 %.

2. Om det inte finns någon historisk information om felprocent kan revisorn använda ett preliminärt urval/piloturval för att göra en inledande skattning av felprocenten i populationen. Den förväntade felprocenten anses vara lika med det beräknade felet för detta preliminära urval. Om det redan har gjorts ett preliminärt urval för att beräkna de standardavvikelser som krävs för att använda formlerna för att beräkna urvalets storlek kan samma preliminära urval användas för att göra en första beräkning av felprocenten och därmed av det förväntade felet.

3. Om det saknas historisk information för att ta fram ett förväntat fel och det inte går att använda ett preliminärt urval på grund av begränsningar som inte går att kontrollera, bör revisorn fastställa ett förväntat felvärde på grundval av sin yrkessämman erfarenhet och sitt yrkessämman omdöme. Värdet bör framför allt avspeglas revisorns förväntningar i fråga om det verkliga felet i populationen.

Sammanfattningsvis bör revisorn använda historiska data, hjälpdata, yrkessämman omdöme eller en blandning av dessa faktorer för att välja ett så realistiskt värde som möjligt för det förväntade felet.

Ett förväntat fel som baseras på objektiva kvantitativa data är vanligtvis mer korrekt och innebär att man slipper göra ytterligare undersökningar för att revisionen inte ger entydiga resultat. Om revisorn t.ex. fastställer ett förväntat fel på 10 % av väsentlighetsnivån, dvs. 0,2 % av utgifterna och det beräknade felet vid utgången av granskningen är 1,5 %, kommer resultatet sannolikt inte att vara entydigt, eftersom den övre felgränsen kommer att vara högre än väsentlighetsnivån. För att undvika sådana situationer bör revisorn i kommande urval använda ett så realistiskt mått som möjligt av det verkliga felet i populationen som förväntat fel.
En särskild situation kan uppstå när den förväntade felprocenten ligger nära 2 % (jfr. figur 6). Om det förväntade felet t.ex. är 1,9 % och konfidensnivån är hög (t.ex. 90 %) kan det hända att urvalet blir extremt stort och mycket svårt att åstadkomma. Denna företeelse är gemensam för alla urvalsmetoder och inträffar när den planerade precisionen är mycket liten (0,1 % i detta exempel)59. I detta läge är det lämpligt att dela upp populationen i två olika delpopulationer där revisorn förväntar sig att upptäcka olika felnivåer. Om det går att identifiera en delpopulation med ett förväntat fel på mindre än 2 % och en annan delpopulation med ett förväntat fel på mer än 2 % kan revisorn utan risk planera olika urval för dessa delpopulationer utan att riskera att få alltför stora urval.

Slutligen bör revisionsmyndigheten planera sitt granskningsarbete för att uppnå tillräckligt stor precision i det mest sannolika felet, även när det förväntade felet ligger betydligt högre än väsentlighetsnivån (dvs. minst 4,0 %). I detta fall är det lämpligt att använda ett förväntat fel i formlerna för att fastställa urvalsstorlek som leder till en planerad precision på högst 2 %, dvs. genom att räkna det förväntade felet som lika med 4,0 % (jfr. figur 6).

Där historiska data om granskningar av insatser och eventuella resultat av systemrevisioner leder till en mycket låg förväntad felprocent kan revisorn bestämma sig för att använda dessa historiska data eller ett större fel som förväntat fel för att vara försiktig i fråga om den faktiska precisionen (t.ex. om den faktiska felprocenten är större än förväntat).

59 Tänk på att den planerade precisionen är en funktion av det förväntade felet, dvs. lika med skillnaden mellan det högsta godtagbara felet och det förväntade felet.
7.2 Ytterligare urval

7.2.1 Kompletterande urval (på grund av bristande täckning av högriskområden)

För programperioden 2007–2013 hänvisas det till kompletterande urval i artikel 17.5 i kommissionens förordning (EG) nr 1828/2006 (för Eruf, Sammanhållningsfonden och ESF) och i artikel 43.5 i kommissionens förordning (EG) nr 498/2007 (för EFF).

En liknande bestämmelse finns för programperioden 2014–2020 i artikel 28.12 i förordning (EU) nr 480/2014: ”Om det finns oriktigheter eller risk för oriktigheter ska revisionsmyndigheten efter en yrkesmässig bedömning besluta om det behövs en revision av ett kompletterande urval av insatser eller delar av insatser som inte reviderades i det slumpmässiga urvalet, så att man kan beakta de särskilda riskfaktorer som upptäckts.”

Revisionsgarantin bör baseras på revisionsmyndighetens arbete med systemrevisioner och granskningen av insatser och eventuella kompletterande revisioner som revisionsmyndigheten anser vara nödvändiga med hänsyn till sin riskbedömning och det revisionsarbete som har utförts under programperioden.
Resultaten av ett slumpmässigt statistiskt urval måste bedömas i förhållande till resultaten av riskanalysen för varje program. I de fall där man utifrån denna jämförelse drar slutsatsen att det slumpmässiga statistiska urvalet inte är till hjälp för att hantera vissa högriskområden, ska det kompletteras med ytterligare urval av insatser, dvs. ett kompletterande urval.

Revisionsmyndigheten ska göra denna bedömning med jämna mellanrum under genomförandeperioden.

I detta sammanhang ska resultaten av de revisioner som omfattar kompletterande urval analyseras separat från resultaten av revisionerna av det slumpmässiga statistiska urvalet. Det är särskilt viktigt att tänka på att de fel som upptäcks i det kompletterande urvalet inte ska beaktas vid beräkningen av den felprocent som man får från granskningen av det slumpmässiga statistiska urvalet. En detaljerad analys av de fel som upptäckts i det kompletterande urvalet måste dock göras för att fastställa felens karaktär och lämna rekommendationer om hur de ska korrigeras.

Resultatet av det kompletterande urvalet bör rapporteras till kommissionen i den årliga kontrollrapporten direkt efter granskningen av ett kompletterande urval.

7.2.2 Ytterligare urval (på grund av att det inte går att dra några slutsatser av granskningen)

Om det inte går att dra några slutsatser av granskningen och det med hänsyn till de möjligheter som beskrivs i avsnitt 7.7 krävs ytterligare undersökningar (vanligt när det beräknade felet ligger under väsentlighetsnivån men den övre gränsen ligger över den nivån) går det att göra ett ytterligare urval. I så fall bör det beräknade fel som blivit resultatet av det ursprungliga urvalet användas i formlerna för att fastställa urvalets storlek i stället för det förväntade felet (det beräknade felet är i själva verket i det ögonblicket den bästa skattningen av felet i populationen). På det sättet går det att räkna fram en ny urvalsstorlek som baseras på ny information från det ursprungliga urvalet. Storleken på det extra urval som krävs kan fastställas genom att den ursprungliga urvalsstorleken dras av från den nya urvalsstorleken. Slutligen kan ett nytt urval göras (med samma metod som för det ursprungliga urvalet), de båda urvalen grupperas tillsammans och resultatet (beräknat fel och precision) bör räknas fram på nytt utifrån data från det slutliga grupperade urvalet.

Antag att det ursprungliga urvalet med en urvalsstorlek på 60 insatser gav en beräknad felprocent på 1,5 % med en precision på 0,9 %. Den övre gränsen för felprocenten är alltså 1,5 + 0,9 = 2,4 %. I denna situation har vi en beräknad felprocent som är lägre än väsentlighetsnivån 2 %, men högre än den övre gränsen. Därför behöver revisorn göra ytterligare undersökningar för att kunna dra någon slutsats (se avsnitt 4.12). Ett
alternativ är att göra fler tester med hjälp av ytterligare urval. I så fall bör den beräknade felprocenten på 1,5 % användas i stället för det förväntade felet i formeln för att fastställa urvalets storlek, vilket ger en ny beräkning av urvalets storlek som i vårt exempel ger ett nytt urval på $n = 78$. Eftersom det ursprungliga urvalet omfattade 60 insatser bör detta antal subtraheras från det nya urvalet, vilket ger $78 - 60 = 18$ nya observationer. Ett ytterligare urval på 18 insatser bör alltså väljas ur populationen med samma metod som för det ursprungliga urvalet (t.ex. MUS). Efter detta urval grupperas de två urvalet tillsammans och bildar ett helt nytt urval på $60 + 18 = 78$ insatser. Detta totala urval ska sedan användas för att göra en ny beräkning av det beräknade felet och precisionen i beräkningen med hjälp av de vanliga formlerna.

7.3 Urval som görs under året

7.3.1 Inledning

Revisionsmyndigheten kan besluta sig för att genomföra urvalsprocessen under flera perioder under året (vanligtvis två halvår). Denna metod bör inte användas för att minska det totala urvalets storlek. I allmänhet kommer summan av urvalsstorlekarna för observationsperioderna tillsammans att vara större än det urval som hade krävts om stickprovstagningen hade gjorts för en enda period vid årets utgång. Om beräkningarna är baserade på realistiska antaganden brukar summan av delurvalen dock inte bli dramatiskt mycket större än vad urvalet skulle ha varit för en enda observation. Den största fördelen med denna metod ligger inte i att urvalet blir mindre, utan framför allt i att arbetsbördan för granskningen kan spridas ut över året och därmed minska arbetsbelastningen vid årets slut för endast en observation.

Med denna metod måste man göra vissa antaganden under den första observationsperioden om den efterföljande observationsperioden (vanligtvis det efterföljande halvåret). Revisor kan t.ex. behöva göra en skattning av de sammanlagda utgifter som förväntas för populationen under nästa halvår. Denna metod medför därför en viss risk till följd av eventuella felaktigheter i antagandena om följande perioder. Om egenskaperna hos populationen i de efterföljande perioderna skiljer sig avsevärt från antagandena, kan urvalet för den efterföljande perioden behöva utökas och den totala urvalsstorleken (för alla perioder sammantaget) kan bli större än vad som förväntats och planerats.

I kapitel 6 i denna vägledning beskrivs de särskilda formlerna och de närmare riktlinjerna för att göra urval under två observationsperioder för ett år. Tänk på att det går att använda denna strategi för alla urvalsmetoder som revisorn har valt, även med en eventuell stratifiering. Det går också att behandla perioderna under ett år som olika
populationer från vilka olika urval planeras och tas fram60. Detta tas inte upp i de metoder som beskrivs i kapitel 6, eftersom den behandlingen är okomplicerad och följer standardformlerna för de olika urvalsmetoderna. Med den strategin blir det enda merarbetet att man behöver lägga samman de beräknade felen för delarna vid årets utgång.

Revisionsmyndigheten bör sträva efter att använda samma metod för en viss referensperiod. Vi rekommenderar inte att man använder olika urvalsmetoder under samma referensperiod eftersom detta leder till mer komplicerade formler för att extrapolera felet för det året. Det går att ta fram övergripande precisionsmått, förutsatt att man har använt statistiska urval under samma referensperiod, men dessa mer komplicerade formler tas inte upp i detta dokument. Om revisionsmyndigheten använder olika urvalsmetoder för samma år bör den ta sakkunnig hjälp för att få fram en korrekt beräkning av den beräknade felprocenten.

Om revisionsmyndigheten väljer att utforma urvalet med tre eller fyra perioder, se tillägg 2, där de relevanta formlerna beskrivs.

\textbf{7.3.2 Ytterligare anmärkningar om urval i flera perioder}

\textbf{7.3.2.1 Klassificering}

I de metoder som beskrivits tidigare för urval i två eller flera perioder börjar man alltid med att beräkna den totala urvalsstorleken (för hela året) och den fördelas sedan på de olika perioderna.

I MUS med två perioder börjar man t.ex. med att beräkna urvalets storlek

\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

och fördelar det på de två perioderna genom

\[n_1 = \frac{BV_1}{BV} n \]

och

\[n_2 = \frac{BV_2}{BV} n \]

60 Detta leder naturligtvis till större urvalsstorlekar än vad som krävs vid den metod som beskrivs i kapitel 6.
Beräkningen och fördelningen av urvalets storlek baseras på vissa antaganden om populationens parametrar (utgifter, standardavvikelser osv.), som inte kommer att vara kända förrän vid utgången av nästa revisionsperiod.

Det betyder att urvalets storlek kan behöva beräknas på nytt vid utgången av nästa halvår, om antagandena skiljer sig kraftigt från de kända populationsparametrarna. Därför har man föreslagit att urvalets storlek för det andra halvåret ska beräknas på nytt med

\[n_2 = \frac{(z \times BV_2 \times \sigma_{r_2})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r_1}^2} \]

Denna rekommenderade metod utesluter inte att det fortfarande kan vara lämpligt att använda andra metoder för en ny beräkning av urvalets storlek i syfte att uppnå den precision som behövs vid programårets utgång. Den föreslagna metoden utvecklades i själva verket för att undvika att behöva räkna om urvalets storlek för den första (redan granskade) perioden och därmed undvika att göra ett kompletterande urval för den perioden. Om detta är ett önskvärt alternativ för revisionsmyndigheten\(^61\) är det ändå möjligt att göra en ny beräkning av den totala urvalsstorleken (efter granskning av den första periodens urval) och att fördela korrigeringen proportionellt per period mellan urvalen för den första och andra perioden.

En möjlig metod för att åstadkomma detta kan vara följande. Efter granskningen av den första periodens urval görs en ny beräkning av den totala urvalsstorleken med

\[n' = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

där \(\sigma_{rw}^2 \) är ett viktat medelvärde av varianserna i felprocentvärdena under varje halvår, där vikten för varje halvår är lika med kvoten mellan det bokförda värdet för halvåret \((BV_t)\) och det bokförda värdet för hela populationen \((BV)\):

\[\sigma_{rw}^2 = \frac{BV_1}{BV} s_{r_1}^2 + \frac{BV_2}{BV} \sigma_{r_2}^2 \]

Tänk på att i denna beräkning kunde variansen \(s_{r_1}^2 \) hämtas från urvalet för det första halvåret (som redan har granskats), medan \(\sigma_{r_2}^2 \) endast är en approximering av variansen i felprocentvärdena för det andra halvåret, som vanligt baserat på historiska data, ett preliminärt urval eller helt enkelt revisorns yrkesmässiga bedömning.

\(^{61}\) Ett sådant alternativ kan användas för att undvika att korrigeringsar av urvalets storlek till följd av en första felaktig prognos för populationsparametrarna koncentreras helt och hållet till den sista perioden för granskningen.
Populationens bokförda värde (BV) i formeln kan också skilja sig från det värde som användes i den första perioden. Om denna nya beräkning görs vid utgången av den andra perioden kommer båda halvårens utgifter att vara kända. Under första halvåret kände man enbart till det bokförda värdet för den första perioden och det bokförda värdet för det andra halvåret baserades på en prognos av revisorn.

När urvalets storlek för hela året har beräknats på nytt måste det fördelas på nytt över de båda halvåren på vanligt sätt

\[n'_1 = \frac{BV_1}{BV} n' \]

och

\[n'_2 = \frac{BV_2}{BV} n' \]

Denna fördelning kan skilja sig från den ursprungliga eftersom \(BV_2 \) nu är känt och inte enbart är en prognos.

Slutligen väljs ett urval med storleken \(n'_2 \) bland utgifterna i den andra perioden och granskas. Om den nya beräknade urvalsstorleken \(n'_1 \) är större än den ursprungligen planerade \(n_1 \) måste ett kompletterande urval göras från det första halvårets utgifter med storleken \(n'_1 - n_1 \), och granskas. Detta kompletterande urval ska läggas ihop med det första urvalet som granskades för den första perioden och ska användas för beräkningar enligt den allmänna metod som beskrivs i avsnitt 7.2.2.

7.3.2.2 Exempel

För att ta hänsyn till att arbetsbördan för revisioner oftast är koncentrerad till utgången av revisionsåret beslutade revisionsmyndigheten att fördela revisionsarbetet på två perioder. Vid utgången av det första halvåret delade revisionsmyndigheten in populationen i två grupper som motsvarade de båda halvåren. I slutet av första halvåret har populationen följande egenskaper:

| Deklarerade utgifter vid utgången av första halvåret | 1 827 930 259 euro |
| Populationens storlek (insatser – första halvåret) | 2 344 |

Revisionsmyndigheten vet av tidigare erfarenhet att alla insatser som ingår i programmen vid utgången av referensperioden redan brukar vara aktiva i populationen för det första halvåret. Dessutom väntras de deklarerade utgifterna vid utgången av det första halvåret motsvara ungefär 35 % av de sammanlagda deklarerade utgifterna vid referensperiodens utgång. Utifrån dessa antaganden görs en sammanfattning av populationen i följande tabell:
Deklarerade utgifter (DE) vid utgången av första halvåret | 1 827 930 259 euro
Deklarerade utgifter (DE) vid utgången av andra halvåret (förväntade) | 3 394 727 624 euro
1 827 930 259 euro / (0,35 – 1 827 930 259 euro) = 3 394 727 624 euro

Summa beräknat totalresultat för året | 5 222 657 883 euro
Populationens storlek (insatser – första halvåret) | 2 344
Populationens storlek (insatser – andra halvåret, förväntad) | 2 344

Revisionsmyndigheten beslutar att använda en standardiserad metod för MUS-urval och fördelar de deklarerade utgifterna efter det halvår som de lämnades in för. För den första perioden beräknas den totala urvalsstorleken (för de båda halvåren tillsammans) enligt följande:

\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

där \(\sigma_{rw}^2 \) är ett viktat medelvärde av variantserna i felprocentvärdena under varje halvår, där vikten för varje halvår är lika med kvoten mellan det bokförda värdet för halvåret \((BV_t)\) och det bokförda värdet för hela populationen \((BV)\):

\[\sigma_{rw}^2 = \frac{BV_1}{BV} \sigma_{r1}^2 + \frac{BV_2}{BV} \sigma_{r2}^2 \]

och \(\sigma_{rt}^2 \) är variansen i felprocentvärdena under varje halvår. Variansen i felprocentvärdena beräknas för varje halvår som:

\[\sigma_{rt}^2 = \frac{1}{n_t^p - 1} \sum_{i=1}^{n_t^p} (r_{ti} - \bar{r}_t)^2, t = 1, 2, ..., T \]

Eftersom dessa variantser är okända beslutade revisionsmyndigheten att göra ett preliminärt urval på 20 insatser vid utgången av första halvåret under det innevarande året. Standardavvikelsen för felprocentvärdena i detta preliminära urval för det första halvåret är 0,12. Revisionsmyndigheten har utifrån sin yrkesmässiga erfarenhet och kändedom om att utgifterna brukar vara större under andra halvåret än det första gjort ett preliminärt antagande om att standardavvikelsen för felprocentvärdena för det andra halvåret kommer att vara 110 % större än under det första, dvs. 0,25. Det viktade genomsnittet för variansen i felprocentvärdena är alltså

\[\sigma_{rw}^2 = \frac{1 827 930 259}{1 827 930 259 + 3 394 727 624} \times 0,12^2 + \frac{3 394 727 624}{1 827 930 259 + 3 394 727 624} \times 0,25^2 = 0,0457 \]
För det första halvåret anser revisionsmyndigheten att en konfidensnivå på 60 % är lämplig med hänsyn till hur förvaltnings- och kontrollsystemet fungerar. Den totala urvalsstorleken för hela året är

\[n = \left(\frac{0,842 \times (1 \ 827 \ 930 \ 259 + 3 \ 394 \ 727 \ 624) \times \sqrt{0,0457}}{104 \ 453 \ 158 - 20 \ 890 \ 632} \right)^2 \approx 127 \]

där z är 0,842 (koefficient som motsvarar en konfidensnivå på 60 %) och det godtagbara felet TE är 2 % (högsta väsentlighetsnivå enligt förordningen) av det bokförda värdet. Det totala bokförda värdet omfattar det verkliga bokförda värdet vid utgången av det första halvåret plus det förväntade bokförda värdet för andra halvåret 3 394 727 624 euro, vilket betyder att det godtagbara felet är 2 % x 5 222 657 883 euro = 104,453,158 euro. Förra årets granskning gav en beräknad felprocent på 0,4 %. Det förväntade felet blir alltså AE 0,4 % x 5 222 657 883 euro = 20 890 632 euro.

Urvalets fördelning efter halvår blir

\[n_1 = \frac{BV_1}{BV_1 + BV_2} \frac{1 \ 827 \ 930 \ 259}{1 \ 827 \ 930 \ 259 + 3 \ 394 \ 727 \ 624} \times 127 \approx 45 \]

och

\[n_2 = n - n_1 = 82 \]

Vid utgången av andra halvåret finns mer information att tillgå. Framför allt känner man till de sammanlagda utgifterna för aktiva insatser under det andra halvåret. Varianserna i urvalets felprocentvärden beräknade från urvalet för det första halvåret är redan tillgängliga och det går nu att göra en mer korrekt bedömning av standardavvikelsen för felprocentvärdena för det andra halvåret med ett preliminärt urval av verkliga data.

Revisionsmyndigheten konstaterar att det antagande om de sammanlagda utgifterna som gjordes vid utgången av första halvåret 3 394 727 624 euro överstiger det verkliga värdet på 2 961 930 008 euro. Det finns också ytterligare två parametrar där man bör använda uppdaterade siffror.

Skattningen av standardavvikelsen för felprocentvärdena utifrån det första halvårets urval på 45 insatser gav ett värde på 0,085. Detta nya värde bör nu användas för att göra en ny bedömning av den planerade urvalstorleken. Ett preliminärt urval på 20 insatser från populationerna för det andra halvåret gav en preliminär skattning av standardavvikelsen för felprocentvärdena på 0,32, långt från det första värdet på 0,25. De uppdaterade siffrorna för standardavvikelsen för felprocentvärdena för båda
halvåren ligger långt ifrån de ursprungliga skattningarna. Därför bör urvalet revideras för det andra halvåret.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prognos gjord under första halvåret</th>
<th>Utgången av andra halvåret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardavvikelse för felprocent under första halvåret</td>
<td>0,12</td>
<td>0,085</td>
</tr>
<tr>
<td>Standardavvikelse för felprocent under andra halvåret</td>
<td>0,25</td>
<td>0,32</td>
</tr>
<tr>
<td>Sammanlagda utgifter under andra halvåret</td>
<td>3 394 727 624 euro</td>
<td>2 961 930 008 euro</td>
</tr>
</tbody>
</table>

Standardmetoden för att göra en ny beräkning av urvalets storlek (jfr. avsnitt 6.3.3.7) skulle vara att räkna om urvalets storlek för det andra halvåret baserat på de uppdaterade populationsparametrarna. Revisionsmyndigheten bestämmer sig ändå för att använda den alternativa metoden och göra en ny beräkning av den totala urvalsstorleken och fördela den på nytt över de båda halvåren. Den nya totala urvalsstorleken är

\[n' = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 , \]

där \(\sigma_{rw}^2 \) har definierats tidigare, men baseras på de kända värdena \(BV_1, BV_2 \) och \(BV \) och variansen \(s_{r1}^2 \) hämtas från urvalet för det första halvåret (som redan har granskats), medan \(\sigma_{r2}^2 \) endast är en approximering av variansen i felprocenten för det andra halvåret baserat på ett preliminärt urval från populationen för det andra halvåret:

\[\sigma_{rw}^2 = \frac{BV_1}{BV} s_{r1}^2 + \frac{BV_2}{BV} \sigma_{r2}^2 \]

Därför

\[\sigma_{rw}^2 = \frac{1 827 930 259}{4 789 860 267} \times 0,085^2 + \frac{2 961 930 008}{4 789 860 267} \times 0,32^2 = 0,066 \]

och

\[n' = \left(\frac{0,842 \times 4 789 860 267 \times 0,2571}{95 797 205 - 19 159 441} \right)^2 \approx 183 \]

När urvalets storlek för hela året har beräknats på nytt måste det fördelas på nytt över de båda halvåren på vanligt sätt.
\[n'_1 = \frac{1 827 930 259}{4 789 860 267} \times 183 \approx 70 \]

och

\[n'_2 = 183 - 70 = 113 \]

\[SI'_{s1} = \frac{BV'_{s1}}{n'_{s1}} = \frac{618 739 011 - 83 678 923}{23} = 27 263 482 \]

Inga fel upptäcktes i de två insatser vars bokförda värde var högre än gränsvärdet. Dessa urvalenheter måste ändå grupperas tillsammans med dem som redan har tagits med i stratumen med högst värde i det ursprungliga urvalet för det första halvåret. Av de 45 insatser som valdes ut för det första halvåret ingår elva i stratumen med högst värde. Det sammanlagda felet för dessa insatser uppgår till 19 240 855 euro.

En slumpmässig sortering görs av en fil som innehåller de återstående insatserna (2 344 minus 45 insatser som redan valt valts för det första halvåret minus de två insatserna med ett bokfört värde som var högre än gränsvärdet) i populationen och en stegvis kemalativ variabel för bokfört värde skapas. Ett urval på 23 insatser tas ut med hjälp av det systematiska förfarandet för ett urval i förhållande till storlek.

Värdet på de 23 insatserna granskas. Summan av felprocentvärdena i hela urvalet för det icke uttömmande stratumen på 57 insatser (34 det första halvåret + 23 det andra) för det första halvåret är

\[\sum_{i=1}^{57} \frac{E_{is1}}{BV_{is1}} = 0,8391 \]

Standardavvikelsen för felprocentvärdena i detta urval är 0,059.
När det gäller det arbete som rör det andra halvåret måste man först identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförd värde \(BV_2 \) och den planerade urvalsstorleken \(n_2 \). Alla poster vars bokförda värde är högre än detta gränsvärde (om \(BV_{i2} > BV_2 / n_2 \)) kommer att placeras i det 100-procentiga granskingsstratumet. I detta fall är gränsvärdet 26 211 770 euro. Det finns sex insatser vars bokförda värde ligger över detta gränsvärde. Det totala bokförda värdet för dessa insatser är 415 238 983 euro.

Storleken på det urval som ska ingå i det icke uttömmande stratumet, \(n_{s2} \), beräknas som skillnaden mellan \(n_2 \) och antalet urvalsenheter (t.ex. insatser) i det uttömmande stratumet \(n_e \), dvs. 107 insatser (urvalet på 113 insatser minus de sex insatserna av högt värde). Därför måste revisorn göra urvalet med urvalsintervallet

\[
SI_{s2} = \frac{BV_{s2}}{n_{s2}} = \frac{2 961 930 008 - 415 238 983}{107} = 23 800 851
\]

Det bokförda värdet i det icke uttömmande stratumet \(BV_{s2} \) är helt enkelt skillnaden mellan det sammanlagda bokförda värdet och det bokförda värdet för de sex insatser som tillhör stratumet med högt värde.

Av de sex insatser vars bokförda värde är högre än gränsvärdet, innehåller fyra insatser fel. De sammanlagda felen i detta stratum uppgår till 9 340 755 euro.

En fil som innehåller de återstående 2 338 insatserna i populationen för det andra halvåret sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas. Ett urval på 107 insatser tas ut med hjälp av det systematiska förfarandet för ett urval i förhållande till storlek.

Värdet på de 107 insatserna granskas. Summan av felprocentvärdena för det andra halvåret är

\[
\sum_{i=1}^{107} \frac{E_{2i}}{BV_{2i}} = 0,2875.
\]

Standardavvikelsen för felprocentvärdena i urvalet för den icke uttömmande populationen för det andra halvåret är

\[
s_{rs2} = \sqrt{\frac{1}{107 - 1} \sum_{i=1}^{107} (r_{is2} - \bar{r}_{s2})^2} = 0,129
\]
och \(\tilde{r}_{s2} \) är lika med det enkla genomsnittet av felprocentvärdena i urvalet för den icke uttömmande gruppen för det andra halvåret.

Beräkningen av fel i populationen görs på olika sätt för enheter som tillhör de uttömmande stratumen och för posterna i de icke uttömmande stratumen.

För de uttömmande stratumen, dvs. de grupper som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet \(BV_{ti} > \frac{BV_t}{n_t} \), är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i de stratumen:

\[
EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} = 19240855 + 9340755 = 28581610
\]

I praktiken betyder det följande:
1) Identifiera för varje halvår \(t \) de enheter som tillhör den uttömmande gruppen och summera deras fel.
2) Summera de föregående resultaten för de båda halvåren.

För den icke uttömmande gruppen, dvs. de stratum som innehåller urvalsenheter med ett bokfört värde som inte överstiger gränsvärdet \(BV_{si} \leq \frac{BV_t}{n_t} \), är det beräknade felet

\[
EE_s = \frac{BV_{s1}}{n_{s1}} \times \sum_{i=1}^{n_{s1}} \frac{E_{1i}}{BV_{1i}} + \frac{BV_{s2}}{n_{s2}} \times \sum_{i=1}^{n_{s2}} \frac{E_{2i}}{BV_{2i}}
\]

\[
= \frac{1827930259 - 891767519 - 83678923}{57} \times 0,8391 + \frac{2546691025}{107} \times 0,2875 = 19392204
\]

Vid beräkningen av det beräknade felet ska
1) felprocenten beräknas för varje halvår \(t \) för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, \(\frac{E_{ti}}{BV_{ti}} \).
2) dessa felprocentvärden summas för varje halvår \(t \) för samtliga enheter i urvalet,
3) det ovanstående resultatet för varje halvår \(t \) multipliceras med de sammanlagda utgifterna i populationen i den icke uttömmande gruppen \((BV_{st}) \), dessa utgifter är också lika med de sammanlagda utgifterna i stratumet minus utgifterna för poster som tillhör den uttömmande gruppen,
4) det ovanstående resultatet för varje halvår \(t \) divideras med storleken på urvalet i den icke uttömmande gruppen \((n_{st}) \),
5) de föregående resultaten summeras för de båda halvåren.

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:
\[EE = EE_a + EE_s = 28\,581\,610 + 19\,392\,204 = 47\,973\,814 \]

vilket motsvarar en beräknad felprocent på 1,0 %.

Precision är ett mått på osäkerheten i beräkningen. Precisionen räknas fram med formeln

\[
SE = z \times \sqrt{\frac{BV_{s1}^2}{n_{s1}} \times s_{rs1}^2 + \frac{BV_{s2}^2}{n_{s2}} \times s_{rs2}^2}
\]

\[
= 0,842 \times \sqrt{\frac{(1\,827\,930\,259 - 891\,767\,519 - 83\,678\,923)^2}{57} \times 0,059^2 + \frac{2\,546\,691\,025^2}{107} \times 0,129^2}
\]

\[
= 27\,323\,507
\]

där \(s_{rs1} \) är den standardavvikelse för felprocentvärden som redan har beräknats.

Urvalsfelet beräknas endast för de icke uttömmande stratumen eftersom det inte finns något urvalsfel att ta hänsyn till i den uttömmande gruppen.

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i beräkningen

\[
ULE = EE + SE = 47\,973\,814 + 27\,323\,507 = 75\,297\,320
\]

Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet för att det ska gå att dra revisionsslutsatser.

I detta specifika fall är det beräknade felet och den övre felgränsen lägre än det högsta godtagbara felet. Det betyder att revisorn drar slutsatsen att det finns bevis för att felen i populationen ligger under tröskelvärdet för väsentlighet.
7.4 Ändring av urvalsmetod under programperioden

Om revisionsmyndigheten anser att den urvalsmetod som ursprungligen valts inte är den lämpligaste kan den besluta att ändra metoden. Detta ska emellertid meddelas kommissionen i den årliga kontrollrapporten eller i den reviderade revisionsstrategin.

7.5 Felprocent

De formler och den metod som presenteras i kapitel 6 för att ta fram beräknade fel och tillhörande precision är avsedda för fel i termer av belopp, dvs. skillnaden mellan det bokförda värdet i populationen (deklarerade utgifter) och det korrekt/granskade bokförda värdet. Det är dock vanligt att man tar fram resultat i form av felprocent eftersom de är tilltalande för att de medger en intuitiv tolkning. Konverteringen av fel till felprocent är okomplicerad och gemensam för alla urvalsmetoder.

Den beräknade felprocenten är helt enkelt lika med det beräknade felet dividerat med det bokförda värdet för populationen.

\[EER = \frac{EE}{BV} \]

På liknande sätt är precisionen för skattningen av felprocenten lika med precisionen för det beräknade felet dividerat med det bokförda värdet.

\[SER = \frac{SE}{BV} \]

7.6 Urval i två steg (delurval)

7.6.1 Inledning

ändå kontrollera att slutsatserna blir tillförlitliga. I så fall bör lämpliga urvalsstorlekar beräknas inom varje insats. Det är viktigt att betona att endast utgifterna i de sekundära enheter som väljs i delurvalet kommer att granskas. Det betyder att de granskade utgifterna i den årliga kontrollrapporten endast är dem som ingår i urvalet och inte de totala utgifterna i den valda insatsen.

I följande bild illustreras urvalsprocessen baserat på en utformning i två steg. Det första steget motsvarar valet av insatser och det andra steget motsvarar valet av utgiftsposter inom varje insats i urvalet.

![Illustration of sampling process in two steps](image)

Figur 7. Illustration av urval i två steg

Revisionsmyndigheten får välja att använda vilka statistiska urvalsmetoder som helst för att välja betalningsansökningar/fakturor inom insatserna. Den urvalsmetod som används på delurvalsnivå behöver inte vara likadan som den som används för

Trots de olika hänsyn man behöver ta för att välja lämpligast urvalsform är det i många fall (framför allt på grund av operatives begränsningar) lättast att använda enkelt slumpmässigt urval i det andra steget (ansökningar eller fakturor). Anledningen är att revisionsmyndigheten i många fall vill välja utgiftsposter på plats (när granskningen görs) och att det då är svårt att använda mer sofistikerade urvalsformer (framför allt om det handlar om urval baserat på olika sannolikhet).

När delurvalet har gjorts och har granskats måste de upptäckta fel beräknas för respektive insats med en beräkningsmetod som är förenlig med den valda urvalsformen. Om utgiftsposterna t.ex. har valts baserat på lika sannolikhet kan felet beräknas för insatsen med den vanliga skattningen av genomsnitt per enhet. Tänk på att fel som upptäckts i delurvalet INTE ska behandlas på något annat sätt (t.ex. behandlas som systembetingade, sådana inte verkligen är det, dvs. det upptäckta felet är systembetingat i hela den granskade populationen och kan avgränsas fullständigt av revisionsmyndigheten).

När felen slutligen har beräknats för varje insats i urvalet där ett delurval har gjorts följer beräkningen för populationen det vanliga förfarandet (som om hela utgiften för insatsen hade observerats). Antag t.ex. att en insats i urvalet har utgifter på 2 500 000 euro och 400 fakturor. Det beslutas att göra ett urval på 40 fakturor baserat på lika sannolikhet, utan någon stratifiering och att använda kvotskattning. Antag att de sammanlagda granskade utgifterna är 290 000 euro och det sammanlagda observerade felet är 9 280 euro. Den beräknade felprocenten för insatsen är 3,2% (9 280 euro/290 000 euro) och det beräknade felet för insatsen är 80 000 euro = 3,2% x 2 500 000 euro.

I avsnitt 6.5.3 finns ytterligare information om urval i två och tre steg i samband med ETS-program.
7.6.2 Urvalets storlek

Det finns formella sätt att beräkna urvalets storlek i varje steg samtidigt med hjälp av urvalsformler i flera steg. Om revisionsmyndigheten kan utveckla sådana metoder får den gärna göra det.

Som redan förklarats går det dock att använda den föreslagna enkla metoden genom att beräkna urvalets storlek i två oberoende steg.

- Första steget: beräkna urvalets storlek på insatsnivå med de vanliga lämpliga formlerna och parametrarna (ska alltid vara minst 30).
- Andra steget: för varje insats där det ska göras ett delurval beräknas urvalsstorleken återigen med de vanliga formlerna (som är lämpliga för den typ av val som används i det andra steget). Parametrarna bör vara kompatibla med dem som användes i det första steget, även om några kan anpassas för att avspeglar de verkliga förhållandena för referensinsatsen (om det t.ex. finns historiska data om variansen hos felen i insatsen bör man använda den variansen i stället för den felvarians som används för beräkningen av urvalets storlek i det första steget). Även i detta steg bör urvalets storlek vara minst 30.

Om urvalet i detta andra steg baseras på lika sannolikhet beräknas urvalets storlek med

\[
n_i = \left(\frac{N_i \times z \times \sigma_{ei}}{TE_i - AE_i} \right)^2
\]

där index \(i\) betecknar insatsen, \(N_i\) är insatsens storlek, \(\sigma_{ei}\) är standardfelavvikelsen för fel på insatsnivå \(TE_i\) och \(AE_i\) är det godtagbara och förväntade felet på insatsnivå. Tänk på att populationens storlek ska anpassas till insatsnivån och att även standardfelavvikelsen kan anpassas baserat på historiska data och yrkesmässig bedömning om det finns någon information eller några förväntningar som pekar på att denna parameter bör anpassas efter de verkliga förhållandena för insatsen.

Om urvalet i detta andra steg baseras på MUS beräknas urvalets storlek med

\[
n_i = \left(z \times BV_i \times \sigma_{ri} \right)^2
\]

där index \(i\) betecknar insatsen, \(BV_i\) är insatsens utgifter, \(\sigma_{ri}\) är standardfelavvikelsen för felprocentvärdena på insatsnivå \(TE_i\) och \(AE_i\) är det godtagbara och förväntade felet på insatsnivå. Återigen bör det bokföra värden anpassas till insatsnivån och standardavvikelsen för felprocentvärdena och det förväntade felet får också anpassas utifrån historiska data och en yrkesmässig bedömning.
7.6.3 Beräkning

I likhet med beräkningen av urvalets storlek görs beräkningen i två steg. För det första används delurvalet inom insatserna för att beräkna felet för de insatserna. När felet för insatserna har beräknats ska de behandlas som ”faktiska” fel hos insatserna och ingår i den vanliga extrapoleringen baserat på huvudurvalet.

Sammanfattningsvis gäller följande:

• Beräkna felet (eller felprocenten) för varje insats där det ska göras ett felurval genom att använda urvalet av sekundära enheter.

• När felen har beräknats för samtliga insatser ska du använda urvalet av insatser för att beräkna det sammanlagda felet i populationen.

• I båda fallen ska beräkningen baseras på de formler som motsvarar de urvalsformer som har använts för att välja enheterna.

En vanlig strategi är t.ex. att välja insatser baserat på MUS och göra delurvalet av utgiftsposter baserat på lika sannolikhet. I detta fall blir beräkningen av felet följande:

\[EE_{1i} = N_i \times \frac{\sum_{j=1}^{n_i} E_{ij}}{n_i} \]

eller

\[EE_{2i} = BV_i \times \frac{\sum_{j=1}^{n_i} E_{ij}}{\sum_{j=1}^{n_i} BV_{ij}} \]

där alla parametrar har de vanliga betydelserna, \(i \) betecknar insatsen och \(j \) betecknar dokumentet inom insatsen.
Huvudurvalsnivå

Beräkningen görs med hjälp av de vanliga MUS-formlerna. Den enda skillnaden jämfört med den standardiserade MUS-metoden är att några av felen E_i kommer att baseras på en fullständig observation av insatser medan andra har beräknats baserat på ett delurval av utgiftsposter. I detta steg bortser man från detta faktum eftersom alla fel kommer att behandlas som om de var de ”verkliga” felen hos insatserna, oavsett om de har observerats i sin helhet eller beräknats genom ett delurval.

\[EE_e = \sum_{i=1}^{n_x} E_i \]
\[EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_x} \frac{E_i}{BV_i} \]

7.6.4 Precision

Precisionen beräknas som vanligt, dvs. med de formler som överensstämmer med den urvalsform som användes för det första steget i urvalet och utan hänsyn till att det förekommer delurval. Insatsernas fel läggs in i precisionsformlerna oavsett art (antingen de faktiska när det har gjorts en uttömmande granskning eller de beräknade när det har gjorts ett delurval).

7.6.5 Exempel

Vi tänker oss en population av utgifter som har deklareras till kommissionen under ett givet år. De systemrevisioner som genomförts av revisionsmyndigheten har gett en låg garanti. Urvalet för detta program bör därför göras med en konfidensnivå på 90 %. Just detta program utmärks av insatser som omfattar ett stort antal styrkande utgiftsposter. Revisionsmyndigheten överväger möjligheten att granska denna population med hjälp av delurval, dvs. att enbart granska ett begränsat antal av betalningsansökningarna från varje insats som ingår i urvalet. På grund av den förväntade variationen i felen i populationen bestämmer sig revisionsmyndigheten dessutom för att välja insatserna i första steget baserat på sannolikhet i förhållande till storlek (MUS).
De viktigaste egenskaperna hos populationen sammanfattas i tabellen nedan:

<table>
<thead>
<tr>
<th>Populationstorlek (antal insatser)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>4 199 882 024 euro</td>
</tr>
</tbody>
</table>

Urvalets storlek beräknas på följande sätt:

\[n = \left(\frac{z \times BV \times \sigma_r}{TE - AE} \right)^2 \]

där \(\sigma_r \) är standardavvikelsen för felprocentvärden framtagna ur ett MUS-urval. För att göra en approximering för denna standardavvikelse beslutade sig revisionsmyndigheten för att använda standardavvikelsen för det föregående året. Urvalet för det föregående året bestod av 50 insatser, varav fem har ett bokfört värde som är större än urvalsintervallet.

Enligt detta preliminära urval är standardavvikelsen för felprocentvärdena, \(\sigma_r \), 0,087.

Med denna skattning av standardavvikelsen för felprocentvärden, det högsta godtagbara felet och det förväntade felet kan vi nu beräkna urvalets storlek. Om vi förutsätter ett godtagbart fel på 2 % av det sammanlagda bokförda värdet, dvs. 2 % x 4 199 882 024 = 83 997 640 (väsentlighetsgränsen enligt förordningen) och en förväntad felprocent på 0,4 %, dvs. 0,4 % x 4 199 882 024 = 16 799 528 (vilket motsvarar en stark övertygelse hos revisionsmyndighet baserad på information från föregående år och resultatet i rapporten om bedömningen av förvaltnings- och kontrollsystem), får vi

\[n = \left(\frac{1,645 \times 4 199 882 024 \times 0,085}{83 997 640 - 16 799 528} \right)^2 \approx 77 \]

Först måste man identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförda värdet (\(BV \)) och den planerade urvalsstorleken (\(n \)). Alla poster vars bokförda värde är högre än detta gränsvärde (om \(BV_i > BV/n \)) kommer att placeras i det 100-procentiga granskningstratumet. I detta fall är gränsvärdet 4 199 882 024 euro / 77 = 54 593 922 euro.

Revisionsmyndigheten placeras alla insatser med ett bokfört värde på mer än 54 593 922 euro i ett isolerat stratum, dvs. åtta insatser till ett värde av 786 837 081 euro. Detta program innehåller som sagt ett stort antal
betalningsansökningar med lågt bokfört värde i varje insats. Dessa åtta insatser motsvarar t.ex. mer än 14 000 betalningsansökningar. Därför bestämmer sig revisionsmyndigheten för att göra ett urval av betalningsansökningar i var och en av dessa åtta insatser. Detta innebär att urvalsstorleken ska fastställas på insatsnivå. Baserat på lika sannolikhet beräknas urvalsstorleken på insatsnivå med

\[n_i = \left(\frac{N_i \times z \times \sigma_{ei}}{TE_i - AE_i} \right)^2 \]

där index \(i \) betecknar insatsen, \(N_i \) är insatsens storlek, \(\sigma_{ei} \) är standardavvikelsen för fel på insatsnivå \(TE_i \) och \(AE_i \) är det godtagbara och förväntade felet på insatsnivå. Tänk på att populationens storlek ska anpassas till insatsnivån och att även standardavvikelsen för fel kan anpassas baserat på historiska data och yrkesmässig bedömning om det finns någon information eller några förväntningar som pekar på att dessa parametrar bör anpassas efter de verkliga förhållandena för insatsen.

Förhandsuppgifter och erfarenheter från revisioner tidigare år pekar på en standardavvikelse för fel på cirka 8 000 euro. Genom att använda samma konfidensnivå och förväntad felprocent som på populationsnivå, 90 % respektive 0,4 %, kan revisionsmyndigheten t.ex. beräkna urvalsstorleken för insats-nr 243:

\[n_i = \left(\frac{629 \times 1,645 \times 8 800}{1 802 856 - 360 571} \right)^2 \approx 40 \]

som kommer att göras baserat på lika sannolikhet (enkelt slumpmässigt urval). Eftersom de villkor som anges i avsnitt 6.1.1.3 är uppfyllda väljer man att använda kvotskattning som beräkningsmetod. I följande tabell sammanfattas resultatet:

<table>
<thead>
<tr>
<th>Insatsnr</th>
<th>Bokfört värde</th>
<th>Antal betalningsansökningar</th>
<th>Granskade utgifter</th>
<th>Felbelopp i betalningsansökningar i urvalet</th>
<th>Beräknat fel (kvotskattning)</th>
</tr>
</thead>
<tbody>
<tr>
<td>243</td>
<td>90 142 818 euro</td>
<td>629</td>
<td>7 829 euro</td>
<td>845 euro</td>
<td>9 729 299 euro</td>
</tr>
<tr>
<td>6324</td>
<td>89 027 451 euro</td>
<td>1239</td>
<td>1 409 euro</td>
<td>76 euro</td>
<td>4 802 048 euro</td>
</tr>
<tr>
<td>734</td>
<td>79 908 909 euro</td>
<td>729</td>
<td>56 729 euro</td>
<td>1 991 euro</td>
<td>2 804 538 euro</td>
</tr>
<tr>
<td>451</td>
<td>79 271 094 euro</td>
<td>769</td>
<td>48 392 euro</td>
<td>3 080 euro</td>
<td>5 045 358 euro</td>
</tr>
<tr>
<td>95</td>
<td>89 771 154 euro</td>
<td>2839</td>
<td>3 078 euro</td>
<td>81 euro</td>
<td>2 362 399 euro</td>
</tr>
<tr>
<td>9458</td>
<td>100 525 833 euro</td>
<td>4818</td>
<td>67 128 euro</td>
<td>419 euro</td>
<td>627 463 euro</td>
</tr>
<tr>
<td>849</td>
<td>165 336 715 euro</td>
<td>1972</td>
<td>12 345 euro</td>
<td>1 220 euro</td>
<td>16 339 473 euro</td>
</tr>
<tr>
<td>872</td>
<td>92 853 106 euro</td>
<td>1256</td>
<td>29 735 euro</td>
<td>1 544 euro</td>
<td>4 821 429 euro</td>
</tr>
<tr>
<td>Total</td>
<td>786 837 081 euro</td>
<td>14251</td>
<td>226 645 euro</td>
<td>9 256 euro</td>
<td>46 532 007 euro</td>
</tr>
</tbody>
</table>

Det beräknade felet för detta 100-procentiga granskningsstratum uppgår till 46 532 007 euro.
Urvalsintervallet för den återstående populationen är lika med det bokförda värdet i det icke uttömmande stratumet (BV_i) (differensen mellan det sammanlagda bokförda värdet och det bokförda värdet för de åtta insatserna i det översta stratumet) dividerat med antalet insatser som ska väljas ut (77 minus de 8 insatserna i det översta stratumet).

$$Urvalsinterval = \frac{BV_s}{n_s} = \frac{4199882024 - 786837081}{69} = 49464419$$

Stickprovet väljs ur en slumpmässig förteckning insatser, där varje post som innehåller den 49464419:e beloppsenheten väljs.

En fil som innehåller de återstående 3 844 insatserna (3 852 minus 8 insatser med högt värde) i populationen sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas. Ett urvalsvalue på 69 insatser (77 minus 8 insatser med högt värde) tas fram med exakt samma systematiska urvalsalgoritm som beskrivs i avsnitt 6.3.1.3. Revisionsmyndigheten bestämmer urvalstorleken för betalningsansökningar som ska granskas i varje vald insats på exakt samma sätt som tidigare.

I följande tabell sammanfattas resultatet av granskningen av de 69 insatser som valdes i det första steget:

<table>
<thead>
<tr>
<th>Bokfört värde</th>
<th>Antal betalningsansökningar</th>
<th>Granskade utgifter</th>
<th>Felbelopp i betalningsansökningar i urvalet</th>
<th>Beräknat fel</th>
<th>Felprocent</th>
</tr>
</thead>
<tbody>
<tr>
<td>901 818 euro</td>
<td>689</td>
<td>616 908 euro</td>
<td>58 889 euro</td>
<td>86 086 euro</td>
<td>0,0955</td>
</tr>
<tr>
<td>89 251 euro</td>
<td>1989</td>
<td>59 377 euro</td>
<td>4 784 euro</td>
<td>7 191 euro</td>
<td>0,0806</td>
</tr>
<tr>
<td>799 909 euro</td>
<td>799</td>
<td>308 287 euro</td>
<td>17 505 euro</td>
<td>45 421 euro</td>
<td>0,0568</td>
</tr>
<tr>
<td>792 794 euro</td>
<td>369</td>
<td>504 euro</td>
<td>0 euro</td>
<td>0 euro</td>
<td>0,0000</td>
</tr>
<tr>
<td>8 971 154 euro</td>
<td>1839</td>
<td>8 613 633 euro</td>
<td>406 545 euro</td>
<td>423 419 euro</td>
<td>0,0472</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1 525 348 euro</td>
<td>5618</td>
<td>1 483 693 euro</td>
<td>74 604 euro</td>
<td>76 699 euro</td>
<td>0,0503</td>
</tr>
<tr>
<td>1 653 365 euro</td>
<td>1272</td>
<td>82 240 euro</td>
<td>1 565 euro</td>
<td>31 461 euro</td>
<td>0,0190</td>
</tr>
<tr>
<td>853 106 euro</td>
<td>1396</td>
<td>69 375 euro</td>
<td>0 euro</td>
<td>0 euro</td>
<td>0,0000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Totalt</td>
<td></td>
<td></td>
<td></td>
<td>1,034</td>
<td></td>
</tr>
</tbody>
</table>

För det återstående urvalet behandlas felet på ett annat sätt. För dessa insatser använder vi följande förfarande:
1) Felprocenten beräknas för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift $\frac{E_i}{BV_i}$. I detta fall har felprocenten beräknats med hjälp av delurval av betalningsansökningar, men i denna beräkning behandlas de som om de var verkliga fel.
2) Dessa felprocentvärden summeras för samtliga enheter i urvalet.
3) Ovanstående resultat multipliceras med urvalsintervallet (SI).
\[
EE_s = SI \sum_{i=1}^{n_s} \frac{E_i}{BV_i}
\]

\[
EE_s = 49\,464\,419 \times 1,034 = 51\,146\,209
\]

Det beräknade felet på populationsnivå är helt enkelt summan av dessa båda komponenter:

\[
EE = 46\,532\,007 + 51\,146\,209 = 97\,678\,216
\]

Den beräknade felprocenten är kvoten mellan det beräknade felet och de sammanlagda utgifterna.

\[
r = \frac{97\,678\,216}{4\,199\,882\,024} = 2,33\%
\]

Eftersom det beräknade felet är större än det högsta godtagbara felet kan revisionsmyndigheten konstatera att populationen innehåller väsentliga fel.

7.7 Omberäkning av konfidensnivån

Om revisionsmyndigheten efter sin granskning konstaterar att det beräknade felet är lägre än väsentlighetsnivån, men att den övre gränsen ligger över det tröskelvärdet, kan den vilja räkna fram en ny konfidensnivå som skulle göra det möjligt att dra slutsatser (dvs. att både det beräknade felet och den övre gränsen ligger under väsentlighetsnivån).

Om denna nya beräknade konfidensnivå fortfarande går att använda för att bedöma kvaliteten i förvaltnings- och kontrollsystemen (se tabell i avsnitt 3.2) kan man utan risk utgå från att det inte förekommer väsentliga avvikelser i populationen, även utan den ytterligare granskningen. Det är alltså enbart i de situationer där den beräknade konfidensnivån inte är godtagbar (inte förenlig med bedömningen av systemen) som det är nödvändigt att gå vidare med de ytterligare undersökningar som föreslås i avsnitt 4.12.

Omberäkningen av konfidensintervallet görs på följande sätt:

- Beräkna väsentlighetsnivån i värde, dvs. väsentlighetsnivån (2 %) gånger det sammanlagda bokförda värdet för populationen.

- Dra av det beräknade felet (EE) från väsentlighetsvärdet.
Dividera detta resultat med precisionen för beräkningen (SE). Denna precision beror på urvalsmetoden och presenteras i de avsnitt där metoderna beskrivs.

Multiplicera resultatet ovan med den parameter z som används för beräkning av både urvalsstorlek och precision för att få fram det nya värdet z

\[z^* = z \times \frac{(0,02 \times BV) - EE}{SE} \]

Sök efter den konfidensnivå som hör ihop med denna nya parameter (z*) i en tabell över normalfördelningen (i tillägget)). Som alternativ kan följande formel i MS Excel användas, ”=1-(1-NORMSDIST(z*))*2”.

Exempel: efter granskning av en population med ett bokfört värde på 1 858 233 036 euro och en konfidensnivå på 90 % (vilket motsvarar z = 1,645, se avsnitt 5.3) har vi fått följande resultat:

<table>
<thead>
<tr>
<th>Egenskaper</th>
<th>Värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV</td>
<td>1 858 233 036 euro</td>
</tr>
<tr>
<td>Väsentlighet (2 % av det bokförda värdet)</td>
<td>37 164 661 euro</td>
</tr>
<tr>
<td>Beräknat fel (EE)</td>
<td>14 568 765 euro</td>
</tr>
<tr>
<td></td>
<td>(0,8 %)</td>
</tr>
<tr>
<td>Precision (SE)</td>
<td>26 195 819 euro</td>
</tr>
<tr>
<td></td>
<td>(1,4 %)</td>
</tr>
<tr>
<td>Övre felgräns (ULE)</td>
<td>40 764 584 euro</td>
</tr>
<tr>
<td></td>
<td>(2,2 %)</td>
</tr>
</tbody>
</table>

Den nya z*-parametern beräknas som

\[z^* = 1,645 \times \frac{37 164 661 \text{ €} - 14 568 765 \text{ €}}{26 195 819 \text{ €}} = 1,419 \]

Med funktionen i MS Excel ”=1-(1-NORMSDIST(1.419))*2”, får vi fram den nya konfidensnivån 84,4 %.

Om denna omberäknade konfidensnivå är förenlig med bedömningen av kvaliteten i förvaltnings- och kontrollsystemen kan man dra slutsatsen att det inte förekommer väsentliga avvikelser i populationen.
7.8 Strategier för att granska grupper av program och program som omfattas av flera fonder

7.8.1 Inledning

Det är vanligt att revisionsmyndigheten bestämmer sig för att gruppera två eller flera operativa program som har ett gemensamt system för att kunna göra ett enda urval som är representativt för den grupperade populationen.

I vissa fall medfinansieras dessutom det operativa programmet av mer än en fond. I sådana fall kan man också välja ett enda urval och resultatet kan beräknas för gruppen av insatser.

I båda fallen bör ett enda yttrande avges för gruppen av operativa program eller för de olika fonderna, men det går att använda olika urvalsstrategier för att nå detta mål och urvalsstrategin kan ta hänsyn till heterogeniteten i populationen. Detta kan man åstadkomma genom att använda stratifiering (per operativt program eller fond) och även genom att ta hänsyn till den önskade graden av representativitet när urvalsstorleken beräknas.

De två vanligaste alternativa strategierna är följande:

- Gör ett enda urval.
- Använda olika urval (kopplade till olika stratum) för varje operativt program eller varje fond.

Om du gör ett enda urval ska urvalsstorleken beräknas för hela gruppen (utan åtskillnad mellan operativa program eller fonder). Detta alternativ, som även kallas top-down-strategi, gör det möjligt att använda ett mindre urval, men urvalet är bara garanterat representativt för den ”grupperade” populationen. Det betyder att urvalsresultatet kan föras över till gruppen av operativa program eller de olika fonderna, men att det oftast inte går att göra någon beräkning för de enskilda fonderna eller de enskilda programmen. Även om man bara planerar för att urvalet ska vara representativt för den grupperade populationen rekommenderar vi att man stratifierar urvalet per fond (eller operativt program). I detta fall beräknar man först den totala urvalsstorleken och sedan görs en fördelning mellan stratum. Beräkningen och fördelningen av urvalsstorleken görs med de vanliga strategier som har beskrivits tidigare för de olika stratifierade urvalsformerna.
Strategin sammanfattas i följande figur:

![Diagram](image)

Figur 8. Top-down-strategi

Om man använder olika urval (ett för varje operativt program eller fond) beräknas urvalsstorlekarna separat för varje stratum (operativt program eller fond). Detta alternativ, som också kallas bottom-up-strategi, ger ett större urval (eftersom flera prov måste väljas), men urvalet kommer garanterat att vara representativt, inte bara för den "grupperade" populationen, utan också för varje stratum (operativt program eller fond). Det betyder att urvalsresultatet kan föras över till gruppen av operativa program eller gruppen av fonder och de kan också föras över till de enskilda fonderna eller de enskilda programmen, vilket gör att man kan dra slutsatser på stratumnivå. Dessa urval bör naturligtvis vara stratifierade efter fond (eller operativt program). I denna strategi kommer den totala urvalsstorleken helt enkelt att vara summan av de urvalsstorlekar som erhålls för beräkningen vid varje stratum.
Strategin sammanfattas i följande figur:

Den största fördelen med metoden som baseras på ett enda urval (top-down-strategi) är alltså att det går att använda ett mindre urval. Dess största nackdel är dock att den inte på förhand garanterar representativitet per stratum (dvs. det kanske inte går att dra separata slutsatser per stratum). Om revisionsmyndigheten inte förväntar sig att den kommer att behöva extrapolera resultatet på stratumnivå är detta alternativ definitivt att rekommendera.

Med strategin som baseras på olika urval går det att göra en beräkning på stratumnivå, men urvalsstorleken kommer att bli betydligt mycket större. Om man förväntar sig att resultaten kommer att skilja sig väsentligt mellan operativa program eller fonder är denna metod alltså lämplig för att säkerställa att resultaten blir representativa per stratum och att det därmed går att dra differentierade slutsatser.

Det är också viktigt att påpeka att när urvalet enbart är utformat för att säkerställa att den ”grupperade” populationen representeras kan det fortfarande vara möjligt att föra över resultatet för stratum, eller åtminstone för vissa stratum, på följande villkor:

- Varje stratum har minst 30 observationer (det är lämpligt att använda denna urvalsstorlek redan från början).
• Precisionen för varje stratum är tillräckligt stor för att det ska gå att dra slutsatser (förhållandet mellan den övre felgränsen och gränsvärdet på 2 %).

När denna strategi används och beräknas på förhand kommer resultatet ofta att bli representativt för vissa stratum (vanligtvis de större), men inte för andra (vanligtvis de minsta), dvs. det kommer bara att gå att göra slutgiltiga beräkningar för vissa stratum. Om populationen t.ex. medfinansieras av två fonder och en av fonderna motsvarar den största andelen av utgifterna brukar urvalet vara representativt för den större fonden men inte för den andra. Om detta inträffar, dvs. det går att dra slutsatser (resultatet är representativt) för några stratum, men inte för andra, kan det krävas ytterligare granskning för att få fram representativa resultat för samtliga stratum. Detta går att åstadkomma med ett ytterligare urval för det stratum som saknar representativt resultat, som i kombination med det ursprungliga urvalet kommer att göra det möjligt att dra slutsatser. Denna strategi är likadan som den vi har beskrivit i avsnitt 7.2. Omberäkning av konfidensnivå (avsnitt 7.7) kan också vara ett alternativ för att få representativa resultat på stratumnivå.

Sammanfattningsvis kan följande strategi rekommenderas:

• När revisionsmyndigheten planerar att föra över resultatet på stratumnivå bör den använda bottom-up-strategin.

• När revisionsmyndigheten planerar att föra över resultatet på populationenivå (för gruppen av operativa program eller fonder) och tror att det inte kommer att behövas några överföringar på stratumnivå kan den använda top-down-strategin.

• Om revisionsmyndigheten inte har något tydligt beslut om strategin kan den välja top-down-strategin men införa ett visst ”överurval” för de mindre stratum, för att nå upp till minst 30 observationer för dem. På så sätt ökar möjligheten att få representativa resultat. Om resultatet inte är representativt har revisionsmyndigheten genom att göra ett större urval än nödvändigt för de mindre stratum ändå minskat mängden merarbete som kommer att krävas för att kunna dra slutsatser om dessa stratum.

7.8.2 Exempel

Antag att populationen utgör utgifter som har deklareras för kommissionen under en viss referensperiod för insatser i en grupp av program. Förvaltnings- och kontrollsystemet är gemensamt för programgruppen och de systemgranskningar som har genomförts av revisionsmyndigheten har gett en måttlig garantinivå. Därför har revisionsmyndigheten beslutat att granska en insats med en konfidensnivå på 80 %. Revisionsmyndigheten planerar att endast utfärda ett yttrande om den grupperade populationen och bestämmer sig därför för att använda en top-down-strategi, dvs. att använda ett urval som stratifieras efter program, men endast säkerställa representativitet på summerad nivå.
Revisionsmyndigheten har anledning att anta att det finns en avsevärd risk för fel i insatser med höga värden, oavsett vilket program de tillhör. Dessutom finns det skäl att anta att felprocenten varierar mellan de olika programmen. Därför beslutar revisionsmyndigheten att stratifiera populationen efter program och efter uppgifter (och att samla alla insatser med ett bokfört värde över gränsvärdet på 3% av samtliga utgifter i ett 100-procentigt urvalsstratum).

I följande tabell sammanfattas den tillgängliga informationen:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>6 723</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populationsstorlek – stratum 1 (antal insatser i program 1)</td>
<td>4 987</td>
</tr>
<tr>
<td>Populationsstorlek – stratum 2 (antal insatser i program 2)</td>
<td>1 728</td>
</tr>
<tr>
<td>Populationsstorlek – stratum 3 (antal insatser vars bokförda värde > väsentlighetsnivån)</td>
<td>8</td>
</tr>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>123 987 653 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 1 (summan av utgifter i program 1)</td>
<td>85 672 981 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 2 (summan av utgifter i program 2)</td>
<td>19 885 000 euro</td>
</tr>
<tr>
<td>Bokfört värde – stratum 3 (summan av utgifter för insatser vars bokförda värde > väsentlighetsnivån)</td>
<td>18 429 672 euro</td>
</tr>
</tbody>
</table>

Projektens av högt värde kommer att undantas från urvalet och kommer att behandlas separat. Det felbelopp som upptäckts i dessa åtta insatser uppgår till 2 975 euro.

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>6 723</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (sammanlagda deklarerade utgifter under referensperioden)</td>
<td>123 987 653 euro</td>
</tr>
<tr>
<td>Gränsvärde</td>
<td>3 719 630</td>
</tr>
<tr>
<td>Antal enheter ovanför gränsvärdet för beaktande</td>
<td>8</td>
</tr>
<tr>
<td>Värde för resterande population</td>
<td>18 429 672 euro</td>
</tr>
<tr>
<td>Återstående populationsstorlek (antal insatser)</td>
<td>6 715</td>
</tr>
<tr>
<td>Återstående populationsvärdet</td>
<td>105 557 981 euro</td>
</tr>
</tbody>
</table>

Det första steget är att beräkna hur stort urvalet måste vara med hjälp av följande formel:

\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 \]

där \(z \) är 1,282 (koefficient som motsvarar en konfidensnivå på 80 %) och det godtagbara felet \(TE \) är 2% (högsta väsentlighetsnivå enligt förordningen) av det bokförda värdet, dvs. 2% x 123 987 653 euro = 2 479 753 euro. Baserat på
erfarenheterna från föregående år eller slutsatserna i rapporten om förvaltnings- och kontrollsystem förväntar sig revisionsmyndigheten dessutom en felprocent på högst 1,4 %, varför AE, det förväntade felet, är 1,4 % av de sammanlagda utgifterna, dvs. $1,4 \% \times 123\,987\,653 \text{ euro} = 1\,735\,827$ euro.

Ett preliminärt urval på 20 insatser i program 1 gav en preliminär skattning av standardavvikelsen för felen på 1 008 euro. Samma förfarande följses för populationen i program 2. En skattning av standardavvikelsen för fel på 876 euro:

Det viktade medelvärdet för felvariansen i dessa båda stratum är alltså

$$\sigma^2_w = \frac{4\,987\,615}{6\,715} \times 1\,008^2 + \frac{1\,728}{6\,715} \times 876^2 = 950\,935$$

Urvalets storlek beräknas med

$$n = \left(\frac{6\,715 \times 1\,282 \times \sqrt{950\,935}}{2\,479\,753 - 1\,735\,827}\right)^2 \approx 128$$

Den sammanlagda urvalsstorleken blir alltså dessa 128 insatser plus de 8 insatserna i det uttömmande stratumet, dvs. 136 insatser.

Urvalets fördelning efter stratum blir

$$n_1 = \frac{N_1}{N_1 + N_2} \times n = \frac{4\,987\,615}{6\,715} \times 128 \approx 95$$

och

$$n_2 = n - n_1 = 33$$

och

$$n_3 = N_3 = 5$$

En granskning av 95 insatser i program 1, 33 insatser i program 2 och 8 insatser i program 3 ger revisorn ett sammanlagt fel för insatserna i urvalet. De tidigare preliminära urvalen på 20 insatser i programmen 1 och 2 används som en del av huvudurvalet. Därför behöver revisorn endast slumpmässigt välja ytterligare 75 insatser i program 1 och 13 i program 2. För att avgöra om genomsnitt per enhet eller kvotskattning är den bästa beräkningsmetoden ska revisionsmyndigheten beräkna kvoten av kovariansen mellan felen och de bokförda värdena och variationen i de bokförda värdena i insatserna i urvalet, som är lika med 0,0109 för program 1. Eftersom kvoten är mindre än hälfte av urvalets felprocent kan revisionsmyndigheten vara säker
på att skattning av genomsnitt per enhet är den mest tillförlitliga beräkningsmetoden. Detta bekräftades även för stratumen för program 2.

I följande tabell visas urvalsresultatet för de granskade insatserna:

<table>
<thead>
<tr>
<th>Urvalsresultat – program 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bokfört värde för urvalet</td>
</tr>
<tr>
<td>B</td>
<td>Sammanlagt fel för urvalet</td>
</tr>
<tr>
<td>C</td>
<td>Genomsnittligt fel i urvalet (C = B/95)</td>
</tr>
<tr>
<td>D</td>
<td>Felens standardavvikelse i urvalet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urvalsresultat – program 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Bokfört värde för urvalet</td>
</tr>
<tr>
<td>F</td>
<td>Sammanlagt fel för urvalet</td>
</tr>
<tr>
<td>G</td>
<td>Genomsnittligt fel i urvalet (G = F/33)</td>
</tr>
<tr>
<td>H</td>
<td>Felens standardavvikelse i urvalet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urvalsresultat – uttömmande stratum</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Bokfört värde för urvalet</td>
</tr>
<tr>
<td>J</td>
<td>Sammanlagt fel för urvalet</td>
</tr>
</tbody>
</table>

Extrapoleringen av felet för de båda urvalstratumen görs genom att det genomsnittliga felet i urvalet multipliceras med populationsstorleken. Summan av dessa båda siffror måste läggas till det fel som observerats i det 100-procentiga urvalstratumet för att felet ska beräknas i populationen:

\[
EE = \sum_{h=1}^{3} N_h \times \frac{\sum_{i=1}^{n_h} E_i}{n_h} = 4 987 \times 502 + 1 728 \times 100 + 2 975 = 2 681 139
\]

Den beräknade felprocenten beräknas som kvoten mellan det beräknade felet och det bokförda värdet för populationen (sammanlagda utgifter). Om skattning av genomsnitt per enhet används blir den beräknade felprocenten

\[
r_1 = \frac{2 681 139}{123 987 653} = 2,16\%
\]

Det beräknade felet är större än väsentlighetsnivån. Därför kan revisionsmyndigheten med rimlig säkerhet konstatera att populationen innehåller väsentliga fel. Granskningen har dock väckt misstankar om att felet framför allt kan vara koncentrerade till ett av programmen. Revisionsmyndigheten misstänker faktiskt att program 1 bär ansvaret för detta resultat och bestämmer sig för att bedöma resultatet på programnivå. I följande tabell sammanfattas populationernas egenskaper på programnivå:
Program 1	Program 2
(A) Totalt bokfört värde (deklarerade utgifter under referensperioden i stratumet med lågt värde) | 85 672 981 euro | 19 885 000 euro
(B) Totalt bokfört värde (deklarerade utgifter under referensperioden i stratumet med högt värde) | 12 286 448 euro | 6 143 224 euro
(C) Populationsstorlek (antal insatser i stratumet med lågt värde) | 4987 | 1728
(D) Populationsstorlek (antal insatser i stratumet med högt värde) | 6 | 2

I följande tabell sammanfattas resultatet för hela urvalet per program:

<table>
<thead>
<tr>
<th>Program 1 (stratum med högt värde)</th>
<th>Program 2 (stratum med lågt värde)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) Granskade utgifter</td>
<td>1 667 239 euro</td>
</tr>
<tr>
<td>(F) Urvalstorlek (antal insatser)</td>
<td>95</td>
</tr>
<tr>
<td>(G) Sammanlagt fel för urvalet</td>
<td>47 728 euro</td>
</tr>
<tr>
<td>(H) Genomsnittligt fel i urvalet</td>
<td>502,4 euro</td>
</tr>
<tr>
<td>(I) Felens standardavvikelse i urvalet</td>
<td>674 euro</td>
</tr>
</tbody>
</table>

Utöver den information som tillhör stratumet med lågt värde måste revisionsmyndigheten ta hänsyn till information om det uttömmande stratumet. I följande tabell sammanfattas resultatet:

<table>
<thead>
<tr>
<th>Program 1 (uttömmande stratum)</th>
<th>Program 2 (uttömmande stratum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J) Granskade utgifter</td>
<td>12 286 448 euro</td>
</tr>
<tr>
<td>(K) Sammanlagt fel för urvalet</td>
<td>1 983 euro</td>
</tr>
</tbody>
</table>

Med hjälp av dessa data kan revisionsmyndigheten beräkna felprocent och precision på programnivå. I följande tabell sammanfattas resultatet för skattning av genomsnitt per enhet:
Program 1

Program 2

<table>
<thead>
<tr>
<th>Precision: ((C) \times 1.282 \times \frac{(I)}{\sqrt{(F)}})</th>
<th>442 105 euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beräknat fel (skattning av genomsnitt per enhet): ((C) \times (H) + (K))</td>
<td>2 507 452 euro</td>
</tr>
<tr>
<td>Övre felgräns: ((M) + (L))</td>
<td>2 949 557 euro</td>
</tr>
<tr>
<td>Beräknad felprocent (%): (\frac{(M)}{(A)+(B)})</td>
<td>2,56 %</td>
</tr>
<tr>
<td>Övre gräns för den beräknade felprocenten: (\frac{(N)}{(A)+(B)})</td>
<td>2,90 %</td>
</tr>
</tbody>
</table>

Det verkar vara möjligt att dra slutsatser om program 1 eftersom det beräknade felet är större än det högsta godtagbara felet (beräknat på programnivå, dvs. 2 % av 97 959 429 euro). Denna slutsats är uppenbar redan när man tittar på den beräknade felprocenten (över väsentlighetsnivån på 2 %). Det är dock inte möjligt att dra slutsatser om program 2. Det beräknade felet ligger visserligen under väsentlighetsnivån (2 % av 26 028 224 euro), men den övre felgränsen ligger över den, vilket är ett tydligt tecken på att det krävs en ytterligare analys innan man kan dra definitiva slutsatser. Revisionsmyndigheten utgår från data för program 2, 33 insatser i urvalet (exklusive två insatser i det uttömmande stratumen) för att planera ett lämpligt urval. I följande tabell sammanfattas den information som behövs för att planera urvalets storlek:

<table>
<thead>
<tr>
<th>Program 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt bokfört värde (deklarerade utgifter under referensperioden exklusive insatser i det uttömmande stratumen)</td>
</tr>
<tr>
<td>Populationsstorlek (antal insatser, inklusive det uttömmande stratumen)</td>
</tr>
<tr>
<td>Väsentlighetsnivå</td>
</tr>
<tr>
<td>Högsta godtagbara fel</td>
</tr>
<tr>
<td>Förväntad felprocent</td>
</tr>
<tr>
<td>Förväntat fel</td>
</tr>
<tr>
<td>Felens standardavvikelse i urvalet</td>
</tr>
</tbody>
</table>

Den planerade urvalsstorleken för att få fram tillförlitliga resultat blir därför

\[
 n = \left(\frac{1 728 \times 1 282 \times 1 183}{397 700 - 149 138} \right)^2 \approx 89
\]

Revisionsmyndigheten kan få fram slutgiltiga resultat för program 2 med de tidigare 33 insatserna och ett ytterligare urval på 56 insatser. I följande tabell sammanfattas resultatet för samtliga 89 insatser (inkusive de 33 insatserna i det första urvalet):
Revisionsmyndighetens beräkningar återges i följande tabell:

<table>
<thead>
<tr>
<th>(L1)</th>
<th>Precision (skattning av genomsnitt per enhet): ((C) \times 1,282 \times \frac{(I1)}{\sqrt{(F1)}})</th>
<th>Program 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(= 263,469) euro</td>
<td>Program 2</td>
</tr>
<tr>
<td>(M1)</td>
<td>Beräknat fel (skattning av genomsnitt per enhet): ((H1) \times (C) + (K))</td>
<td>161,715 euro</td>
</tr>
<tr>
<td>(N1)</td>
<td>Övre felgräns: (= (M1) + (L1))</td>
<td>425,184 euro</td>
</tr>
<tr>
<td>(O1)</td>
<td>Beräknad felprocent (%): (= \frac{(M1)}{(A) + (B)})</td>
<td>0,62 %</td>
</tr>
<tr>
<td>(P1)</td>
<td>Övre gräns för den beräknade felprocenten: (= \frac{(N1)}{(A) + (B)})</td>
<td>1,63 %</td>
</tr>
</tbody>
</table>

Med resultatet från detta utökade urval (89 insatser) kan revisionsmyndigheten konstatera att det inte förekommer väsentliga avvikelser i populationen av deklarerade utgifter i program 2.

7.9 Tillämplig urvalsteknik för systemrevisioner

7.9.1 Inledning

som är den effektivaste metoden för att få ett tillräckligt och lämpligt verifierande underlag under just de omständigheterna.

Vid systemrevisioner är revisorns analys av felens natur och orsak viktig, liksom blotta förekomsten eller avsaknaden av fel. Därför kan det vara lämpligt med en icke-statistisk strategi. Revisor kan i detta fall välja att göra ett urval av en viss storlek bland de poster som ska granskas för varje nyckelkontroll. Revisor måste emellertid göra en yrkesmässig bedömning av vilka relevanta faktorer som ska övervägas. Om en icke-statistisk strategi tillämpas kan inte resultaten extrapoleras.

Urval enligt attributmetoden är en statistisk metod som kan hjälpa revisorn att fastställa garantiöns in i systemet och uppskatta felprocenten i ett urval. I revisionssammanhang används den vanligen för att granska graden av avvikelse från en föreskriven kontroll för att stödja revisorns uppskattade kontrollrisknivå. Resultaten kan sedan beräknas i populationen.

Attributmetoden är en allmän urvalsmedet som omfattar flera olika varianter och är därför den grundläggande statistiska metod som tillämpas vid systemrevisioner. De andra metoder som kan tillämpas vid systemrevisioner bygger på de begrepp som beskrivs nedan.

Genom attributmetoden blir det möjligt att lösa binära problem som rör svar som ”ja eller nej”, ”hög eller låg” eller ”sant eller falskt”. Genom denna metod beräknas informationen om urvalet i populationen för att fastställa vilken kategori populationen tillhör.

Det är inte obligatoriskt enligt förordningen att tillämpa en statistisk metod för urval för kontrollgransknings inom ramen för en systemrevision. Detta kapitel och bilagorna till detta innehåller därför allmän information och kommer inte att beskrivas närmare.

För ytterligare upplysningar om och exempel på de urvalstekniker som är tillämpliga vid systemrevisioner, se förteckningen över speciallitteratur om revisionsurval.

När attributmetoden används i en systemrevision bör följande generiska plan i sex steg användas.

1. Definiera målet för testet, t.ex. att fastställa om felfrekvensen i en population uppfyller kriterierna för en hög garantiöns.
2. Definiera populationen och urvalsenheten: t.ex. de faktoror som allokerares till ett program.

63 För ytterligare förklaringar eller exempel, se Audit Guide on Sampling, American Institute of Certified Public Accountants, 1.4.2001.
3. Definiera avvikelsevillkoret: detta är det attribut som bedöms, t.ex. förekomst av underskrift på de fakturor som allokerats till en insats inom ett program.
4. Fastställa storleken på urvalet enligt formeln nedan.
5. Göra urvalet och genomföra granskningen (urvalet bör göras slumpmässigt).
6. Utvärdera och dokumentera resultaten.

7.9.2 Urvalets storlek

Beräkningen av urvalets storlek n inom ramen för attributmetoden bygger på följande information:

- Konfidensnivå och åtföljande koefficient z från en normalfördelning (se avsnitt 5.3).
- Den högsta godtagbara avvikelseprocenten T som fastställs av revisorn. De godtagbara nivåerna fastställs av medlemsstatens revisionsmyndighet (t.ex. det saknade antalet underskrifter på fakturor under vilket revisorn anser att det inte finns något problem).
- Populationens förväntade avvikelseprocent, p, skattad eller observerad i ett preliminärt urval. Lägg märke till att den godtagbara avvikelseprocenten bör vara högre än populationens förväntade avvikelseprocent, eftersom testet annars inte har något syfte (dvs. om en felprocent på 10% förväntas är det meningslöst att fastställa en godtagbar felprocent på 5% eftersom fler fel förväntas upptäckas i populationen än vad som är godtagbart).

Urvalets storlek beräknas på följande sätt\(^{64}\):

\[n = \frac{z^2 \times p \times (1 - p)}{T^2} \]

Exempel: om konfidensnivån är 95% ($z = 1.96$), en godtagbar avvikelseprocent (T) är 12% och populationens förväntade avvikelseprocent (p) är 6%, blir den lägsta urvalsstorleken

\[n = \frac{1.96^2 \times 0.06 \times (1 - 0.06)}{0.12^2} \approx 16 \]

Lägg märke till att populationens storlek inte påverkar urvalets storlek. I beräkningen överdrivs det nödvändiga urvalets storlek något för små populationer, vilket är acceptabelt. För att minska det nödvändiga urvalets storlek kan man sänka

\(^{64}\) När det handlar om en liten population, dvs. om det slutliga urvalet motsvarar en stor andel av populationen (som regel mer än 10% av populationen) går det att använda en mer exakt formel som ger

\[n = \frac{z^2 \times p \times (1-p)}{T^2} \left/ \left(1 + \frac{z^2 \times p \times (1-p)}{N \cdot T^2} \right) \right. \]
konfidensnivån (dvs. öka risken för att kontrollrisken bedöms som alltför liten) och höja den godtagbara avvikelseprocenten.

7.9.3 Extrapolering

Antalet avvikelser som observeras i urvalet dividerat med antalet poster i urvalet (dvs. urvalsstorleken) är urvalets avvikelseprocent:

\[EDR = \frac{antal avvikelser i urvalet}{n} \]

Den är också den bästa skattningsfunktionen för den extrapolerade avvikelseprocent (EDR) som man kan få fram från urvalet.

7.9.4 Precision

Tänk på att precision (urvalsfel) är ett mått på osäkerheten i beräkningen (extrapolering). Precisionen räknas fram med följande formel:

\[SE = z \times \frac{p_s \times (1 - p_s)}{\sqrt{n}} \]

där \(p_s \) är kvoten mellan antalet avvikelser som observerats i urvalet och urvalets storlek, urvalets avvikelseprocent.

7.9.5 Utvärdering

Den uppnådda övre avvikelsegränsen är en teoretisk siffra som baseras på urvalets storlek och antalet upptäckta fel:

\[ULD = EDR + SE \]

Den motsvarar den högsta felprocenten i populationen vid den angivna konfidensnivån och följer av binomialtabeller (t.ex. för ett urval på 150 och ett observerat antal avvikelser på 3 (avvikelseprocent för urvalet på 2 \%) blir den högsta avvikelseprocenten (eller uppnådda övre avvikelsegräns) vid en konfidensnivå på 95 \%:

\[ULD = \frac{3}{150} + 1,96 \times \frac{3}{150 \times (1 - \frac{3}{150})}{\sqrt{150}} = 0,023 \]
Om denna procentandel är högre än den godtagbara avvikelseprocenten ger urvalet inte stöd för den antagna förväntade felprocenten för populationen vid den konfidensnivån. Den logiska slutsatsen blir alltså att populationen inte uppfyller det kriterium som fastställts för en hög garantinivå och måste anses ha en genomsnittlig eller låg garantinivå. Lägg märke till att det tröskelvärde vid vilket en låg, genomsnittlig eller hög garanti uppnås ska fastställas av revisionsmyndigheten.

7.9.6 Specialiserade metoder för attributmetoden

Attributmetoden är en generisk metod, varför vissa varianter har utformats för särskilda ändamål. Där ibland fyller felsökningsmetoden och stop or go-metoden särskilda behov.

Stop or go-metoden baseras på att man ofta behöver minska urvalets storlek så mycket som möjligt. Syftet med denna metod är att konstatera att felprocenten i populationen ligger under en i förväg fastställd nivå vid en given konfidensnivå genom att undersöka så få urvalsposter som möjligt – stickprovstagnings avslutas så snart det förväntade resultatet har uppnåtts. Inte heller denna metod är lämplig för att beräkna resultatet i populationen, men den kan vara användbar för att bedöma slutsatser från systemrevisioner. Den går att använda när resultatet av systemrevisioner ifrågasätts, för att kontrollera om kriteriet verkligen uppfylls för den angivna garantinivån.

7.10 System för proportionell kontroll under programperioden 2014–2020 – följer för urvalet

7.10.1 Begränsningar för urval till följd av artikel 148.1 i förordningen om gemensamma bestämmelser

Syftet med de system för proportionell kontroll som införs genom artikel 148.1 i förordningen om gemensamma bestämmelser är att minska den administrativa bördan för stödmottagarna och undvika att de granskas flera gånger av olika organ, ibland till och med för samma utgifter. Systemen sammanfattas nedan och påverkar revisionsmyndighetens arbete:
a) När det gäller insatser för vilka de totala stödberättigande utgifterna inte överskrider 100 000 euro (EMFF), 150 000 euro (ESF) eller 200 000 euro (Eruf och Sammanhållningsfonden), får dessa inte omfattas av mer än en revision, av antingen revisionsmyndigheten eller kommissionen, före inlämningen av redovisningen för det räkenskapsår då insatsen slutförs.

b) När det gäller insatser för vilka de totala stödberättigande utgifterna överskrider 100 000 euro (EMFF), 150 000 euro (ESF) eller 200 000 euro (Eruf och Sammanhållningsfonden), får dessa omfattas av en revision, av antingen revisionsmyndigheten eller kommissionen, före inlämningen av redovisningen för det räkenskapsår då insatsen slutförs.

c) Revisionsmyndigheten eller kommissionen får inte genomföra någon revision under ett visst år om Europeiska revisionsrätten redan genomfört en revision det året, förutsatt att resultatet av det revisionsarbete som Europeiska revisionsrätten utfört för insatserna kan användas av revisionsmyndigheten eller av kommissionen för fullgörandet av deras respektive uppgifter.

För att avgöra om denna artikel ska tillämpas ska de ”totala stödberättigande utgifterna” bedömas på grundval av beloppet i bidragsavtalet eftersom de exakta utgifter som kommer att deklareras under programperioden inte är kända på förhand.

Enligt artikel 148.4 i förordningen om gemensamma bestämmelser får revisionsmyndigheten och kommissionen fortfarande utföra revisioner av de insatser som omfattas av de ovannämnda villkoren (om en riskbedömning eller en revision av Europeiska revisionsrätten visar att det finns en särskild risk för oriktigheter eller bedrägerier, om det finns indikationer på allvarliga brister i det berörda operativa programmets förvaltnings- och kontrollsystemets sätt att fungera samt under den period som avses i artikel 140.1). För revisionsmyndigheten innebär detta framför allt att bestämmelserna i artikel 148.1 inte gäller när det är fråga om riskbaserade kompletterande granskningsurval.

Artikel 148.1 i förordningen om gemensamma bestämmelser medför vissa praktiska utmaningar för revisionsmyndighetens arbete när det gäller den strategi som ska användas för urvalet, med hänsyn till den generella regel som anges i artikel 127.1 i samma förordning. Enligt den bestämmelsen ska revisionsmyndigheten se till att revision genomförs av ”ett lämpligt urval av insatser på grundval av atesterade utgifter” och att urvalet när icke-statistiskt urval används måste vara tillräckligt stort för att göra det möjligt för revisionsmyndigheten att utarbeta ett giltigt revisionsuttalande. Avsnitt 7.10.2 innehåller en närmare beskrivning av de justeringar som krävs för att urvalsmetoden ska uppfylla bestämmelserna i artikel 148.
Revisionsmyndigheten kan utföra sin granskning för ett räkenskapsår efter det berörda räkenskapsåret inom ramen för ett urval med en period, eller i faser med en urvalsform som bygger på två eller flera perioder.

När urvalet sker i en period innebär det faktum att revisionsmyndigheten (eller kommissionen) under ett år granskar insatser under de ovannämnda tröskelvärdena att revisionsmyndigheten inte kan granska de insatserna under efterföljande år innan redovisningen har lämnats in för det räkenskapsår då insatsen slutförs, såvida inte artikel 148.4 i förordningen om gemensamma bestämmelser är tillämplig.

När det är fråga om urval i flera perioder för ett räkenskapsår och utgifterna för samma insats väljs mer än en gång för det året kan revisionsmyndigheten betrakta detta som en revision av en enskild insats i två (eller flera) steg. Det betyder att om en insats ingick i urvalet för en urvalsperiod för räkenskapsåret skulle revisionsmyndigheten behålla insatsen i den population som urvalet ska göras från och som ska granskas under de efterföljande urvalsperioderna i samma räkenskapsår. I detta fall är det inte tillämpligt att byta ut eller utesluta insatser eftersom det är fråga om en enda revision där arbetet har fördelats på olika tidpunkter för samma år. Eftersom revisionsmyndigheten efter urvalet för den första urvalperioden inte kan förutsäga om de valda insatserna kommer att väljas för granskning av utgifterna för någon annan urvalperiod för det räkenskapsåret rekommenderar vi att revisionsmyndigheten informerar de berörda stödmottagarna att revisionsmyndigheten inte kan granska de insatserna under efterföljande urvalsperioderna i samma räkenskapsår. I detta fall är det inte tillämpligt att byta ut eller utesluta insatser eftersom det är fråga om en enda revision där arbetet har fördelats på olika tidpunkter för samma år. Eftersom revisionsmyndigheten efter urvalet för den första urvalperioden inte kan förutsäga om de valda insatserna kommer att väljas för granskning av utgifterna för någon annan urvalperiod för det räkenskapsåret rekommenderar vi att revisionsmyndigheten informerar de berörda stödmottagarna om att deras insatser har valts ut för en revision av innehavare av det relevanta räkenskapsåret och om att insatsen kan komma att granskas i olika faser. För detta krävs ett förtydligande i skrivelsen till förvaltningsmyndigheten/stödmottagaren där det meddelas att insatsen har valts ut för revision.65

Enligt artikel 148.1 i förordningen om gemensamma bestämmelser får det utföras en revision per räkenskapsår av insatser som överskrider de berörda tröskelvärdena. Detta krav tolkas som en revision avseende de utgifter som har deklarerats under ett räkenskapsår och inte som en revision under perioden för ett räkenskapsår.

För att undvika att stödmottagaren måste ta emot mer än ett besök på plats för samma insats kan revisionsmyndigheten bestämma sig för att fortsätta de efterföljande faserna i revisionen efter de första verifieringarna hos förvaltningsmyndigheten/det förmedlande organet, förutsatt att de styrkande handlingarna går att verifiera i de filer som dessa organ innehåer.

65 Revisionsmyndigheterna rekommenderas att använda följande (eller en liknande) text i skrivelser med meddelanden om revision inom ramen för urval i två eller flera perioder: "Revisionsmyndigheten har valt ut din insats för en revision av de utgifter som de nationella myndigheterna har deklarerat till Europeiska kommissionen för räkenskapsåret som löper från och med juli 20xx till och med juni 20xx. Revisionen kan pågå under mer än en revisionsfas under de kommande månaderna. Du kommer att få mer information längre fram om revisionen kommer att begränsas till utgifter som har deklarerats för det första halvåret (annan urvalperiod) eller om den även kommer att omfatta utgifter för det andra halvåret (annan urvalperiod)."
Insatser som granskas av Europeiska revisionsrätten:

I tillägg till de två första villkor som införs genom artikel 148.1 i förordningen om gemensamma bestämmelser fastställs också att revisionsmyndigheten inte får genomföra en revision av en insats om denna har reviderats av Europeiska revisionsrätten samma år och att revisionsmyndigheten får använda revisionsrättens slutsatser.

Även denna bestämmelse innebär praktiska utmaningar för revisionsmyndigheten, särskilt när revisionsmyndigheten inte har tillgång till revisionsrättens slutsatser om revisionen av de valda insatserna och alltså inte kan bedöma eller avgöra om de går att använda i revisionsmyndighetens yttrande. Dessutom kan det hända att revisionsrätten avser en annan referensperiod för deklarerade utgifter än den som revisionsmyndigheten behöver utarbeta sitt revisionsyttrande för, vilket innebär att revisionsmyndigheten inte kan använda revisionsrättens slutsatser.

Om revisionsmyndigheten får tillgång till slutsatser från revisionsrätten om den insats som revisionsmyndigheten har valt i rätt tid för att myndigheten ska kunna utarbeta det relevanta revisionsyttrandet ska revisionsmyndigheten använda resultatet av revisionsrättens arbete för att beräkna felet för den insatsen, om revisionsmyndigheten håller med om slutsatserna och inte behöver utföra revisionen på nytt.

7.10.2 Urvalsmetod i system för proportionell kontroll

Urval

I artikel 28.8 i den delegerade förordningen anges följande: "Om villkoren för proportionell kontroll i artikel 148.1 i förordning (EU) nr 1303/2013 är tillämpliga får revisionsmyndigheten utelämna de enheter som avses i den artikeln från den population från vilket urvalet görs. Om den berörda insatsen redan har valts ut ska revisionsmyndigheten ersätta den genom att göra ett slumpmässigt urval på lämpligt sätt."

Bestämmelserna i denna artikel innebär att revisionsmyndigheten för urvalet kan använda den ursprungliga positiva populationen av utgifter som har deklarerats eller en reducerad population, dvs. en population från vilka urvalsenheter som omfattas av artikel 148 i förordningen om gemensamma bestämmelser utelämnas.

Om de berörda insatserna/andra urvalsenheterna byts ut ska dessa urvalsenheter i urvalet ersättas genom att det görs ett kompletterande urval vars storlek är lika med antalet utbytta insatser. "Ersättningsenheterna" ska väljas ut med samma metod som det ursprungliga urvalet. Framför allt när det gäller PPS-metoder (dvs. MUS och icke-statistiskt PPS-urval) bör de kompletterande urvalsenheterna väljas baserat på sannolikhet i förhållande till storlek. Exempel på urval finns i avsnitt 7.10.3.1.

Både när det gäller ersättning och uteslutning baseras urvalets storlek på de populationsparametrar (t.ex. bokfört värde, antal urvalsenheter) som motsvarar den
ursprungliga populationen (dvs. populationen inklusive insatser/andra urvalsenheter som påverkas av artikel 148.1 i förordningen om gemensamma bestämmelser). De respektive standardformlerna för att beräkna urvalsstorlek (se avsnitt 6 i vägledningen) ska användas.

Revisionsrätten bör göra en yrkesmässig bedömning för att avgöra om urvalsenheter bör uteslutas eller ersättas. Revisionsmyndigheten kanske anser att det är mer praktiskt att ersätta insatser för populationer med ett litet antal urvalsenheter (enkelt slumpmässigt urval) eller där en liten andel utgifter (MUS) påverkas av artikel 148, eftersom sannolikheten för att sådana enheter väljs (med åtfoljande tekniska konsekvenser för ersättning) är låg. Å andra sidan skulle ersättning förekomma oftare och ibland behöva upprepas flera gånger när det gäller populationer med ett stort antal urvalsenheter/utgifter som omfattas av artikel 148. I sådana fall kanske revisionsmyndigheten tycker att det är mer praktiskt att utesluta populationsenheter som omfattas av artikel 148 i förordningen om gemensamma bestämmelser från den population från vilken urvalet ska göras, för att undvika att behöva ersätta urvalsenheter.

Beräkning av fel

Revisionsmyndigheten ska utarbeta ett revisionsuttalande om de sammanlagda deklarerade utgifterna, i enlighet med artikel 127.1 i förordningen om gemensamma bestämmelser. Det betyder att även om den population från vilken urvalet har gjorts motsvarar de deklarerade utgifterna minus de utgifter från de insatser som påverkas av artikel 148, måste man fortfarande beräkna det sammanlagda felet för de deklarerade utgifterna, för att kunna utarbeta ett revisionsuttalande om dessa utgifter.

Detta kan uppnås på två olika sätt. I beräkningsformlerna är populationsstorleken $N_{(h)}$ och populationens bokförda värde $BV_{(h)}$ de som motsvarar den ursprungliga populationen (dvs. populationen inklusive de urvalsenheter som påverkas av artikel 148). I detta fall ska det beräknade felet göras till den ursprungliga populationen (per stratum) och ingen ytterligare åtgärd krävs. Denna metod rekommenderas framför allt när insatser/andra urvalsenheter ersätts.

Som ett alternativ kan detta göras i två steg: I beräkningsformlerna är populationsstorleken $N_{(h)}$ och populationens bokförda värde $BV_{(h)}$ de som avser den reducerade populationen (dvs. populationen efter uteslutning av de urvalsenheter som påverkas av artikel 148 i förordningen om gemensamma bestämmelser). När felet har beräknats på detta sätt ska det beräknade felet multipliceras med kvoten mellan de utgifter som har deklarerats för den ursprungliga populationen och de utgifter som har deklarerats för den reducerade populationen $\frac{BV_{(h), red} \text{population}}{BV_{(h), urp\, population}}$ för att ta fram det totala beräknade felet i den ursprungliga populationen (vanligtvis i MUS och i enkelt slumpmässigt urval med kvotskattning). Denna beräkning från den reducerade till den ursprungliga populationen kan också göras genom att felet i den reducerade populationen multipliceras med kvoten mellan populationsstorleken hos den
ursprungliga populationen och populationsstorleken hos den reducerade populationen
\[N(h)_{\text{ursprunglig population}} \]
\[N(h)_{\text{reducerad population}} \]
(vanligtvis i enkelt slumpmässigt urval med skattning av genomsnitt per enhet). Framför allt rekommenderas att man gör detta i två steg när det gäller uteslutning av insatser/andra urvalsenheter.

På liknande sätt kan även precisionen beräknas med avseende på den ursprungliga populationen \(SE(h)_{\text{ursprunglig}} \) eller den reducerade populationen \(SE(h)_{\text{reducerad}} \) (se dock vissa begränsningar som beskrivs i tabellerna nedan). Om precisionen beräknas för den reducerade populationen bör den i nästa steg justeras för att avspegla den ursprungliga populationen.

Denna justering görs på liknande sätt som för beräknade fel, genom att precisionen för den reducerade populationen multipliceras med kvoten \(BV(h)_{\text{ursprunglig population}} \)
\[BV(h)_{\text{reducerad population}} \]
(när det gäller MUS och enkelt slumpmässigt urval med kvotskattning) eller med kvoten \(\frac{N(h)_{\text{ursprunglig population}}}{N(h)_{\text{reducerad population}}} \) (när det gäller enkelt slumpmässigt urval med skattning av genomsnitt per enhet).

Det går inte att ange en metod som alltid är mer lämplig än de andra (t.ex. att överföra och beräkna precision för den ursprungliga eller reducerade populationen) eftersom vissa urvalsmetoder kan medföra vissa tekniska begränsningar i detta avseende.

I tabellerna nedan finns en sammanfattning av strategierna för att göra urval, beräkna fel och beräkna urvalsprecision inom ramen för de begränsningar som principerna för proportionell kontroll medför.

a) MUS – standardmetod

<table>
<thead>
<tr>
<th>Urvalsform</th>
<th>Standardiserad MUS-metod: Uteslutning av urvalsenheter</th>
<th>Standardiserad MUS-metod: Ersättning av urvalsenheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametrar som används för att beräkna urvalsstorlek</td>
<td>Motsvarar den ursprungliga populationen.</td>
<td>Motsvarar den ursprungliga populationen.</td>
</tr>
<tr>
<td>Population som används för urvalet</td>
<td>Reducerad population</td>
<td>Ursprunglig population</td>
</tr>
<tr>
<td>Rekommenderad metod för beräkning av fel och beräkning av precision</td>
<td>Beräkning av fel och beräkning av precision för den reducerade populationen justeras i nästa steg för att avspegla den ursprungliga populationen. Justeringen kan göras genom att det beräknade felet och precisionen multipliceras med kvoten mellan utgifterna (BV(h){\text{ursprunglig}}) för den ursprungliga populationen och utgifterna (BV(h){\text{reducerad}}) för den reducerade populationen.</td>
<td>Beräkning av fel och beräkning av precision för den ursprungliga populationen. De enheter i stratumet med högst värde (eller enheter i något annat uttömmande stratum) som har uteslutits från revision i enlighet med artikel 148 bör ersättas med urvalsenheter från stratumet med lägt värde. I sådant fall kan man behöva beräkna felet för stratumet med högst värde och beräkna detta fel för de enheter i det stratum som inte</td>
</tr>
</tbody>
</table>
felet för stratumet med högt värde och beräkna detta fel för de enheter i det stratum som inte granskades, med hjälp av formeln \(EE_e = EE_{e\text{ reducerad}} \times \frac{BV_{e\text{ urprunglig}}}{BV_{e\text{ reducerad}}} \) (där \(EE_{e\text{ reducerad}} \) är felbeloppet i urvalsenheterna i det granskade stratumet med högt värde, \(BV_{e\text{ urprunglig}} \) är det bokförd värdet för det ursprungliga stratumet med högt värde och \(BV_{e\text{ reducerad}} \) är det bokförd värdet för poster i stratumet med högt värde som har granskats).

granskades, med hjälp av formeln

\[
EE_e = EE_{e\text{ reducerad}} \times \frac{BV_{e\text{ urprunglig}}}{BV_{e\text{ reducerad}}}
\]

(där \(EE_{e\text{ reducerad}} \) är felbeloppet i urvalsenheterna i det granskade stratumet med högt värde, \(BV_{e\text{ urprunglig}} \) är det bokförd värdet för det ursprungliga stratumet med högt värde och \(BV_{e\text{ reducerad}} \) är det bokförd värdet för poster i stratumet med högt värde som har granskats).

b) konservativ MUS-metod

<table>
<thead>
<tr>
<th>Urvalsform</th>
<th>MUS konservativ: Uteslutning av urvalsenheter</th>
<th>MUS konservativ: Ersättning av urvalsenheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametrar som används för att beräkna urvalstorlek</td>
<td>Ej tillämpligt (urvalstorleken är densamma, oavsett om den beräknas med parametrar för den ursprungliga eller den reducerade populationen)</td>
<td>Ej tillämpligt (urvalstorleken är densamma, oavsett om den beräknas med parametrar för den ursprungliga eller den reducerade populationen)</td>
</tr>
<tr>
<td>Population som används för urvalet</td>
<td>Reducerad population</td>
<td>Ursprunglig population</td>
</tr>
<tr>
<td>Rekommenderad metod för beräkning av fel och beräkning av precision</td>
<td>Beräkning av fel och beräkning av precision för den reducerade populationen justeras i nästa steg för att avspegla den ursprungliga populationen. Justeringen kan göras genom att det beräknade felet och precisionen multipliceras med kvoten mellan utgifterna (BV_{(h)\text{ urprunglig}}) för den ursprungliga populationen och utgifterna (BV_{(h)\text{ reducerad}}) för den reducerade populationen. När det gäller enheter i stratum med högt värde som påverkas av artikel 148 kan man behöva beräkna felet för stratumet med högt värde och beräkna detta fel för de enheter i det stratum som inte granskades, med hjälp av formeln (EE_e = EE_{e\text{ reducerad}} \times \frac{BV_{e\text{ urprunglig}}}{BV_{e\text{ reducerad}}}) (där (EE_{e\text{ reducerad}}) är felbeloppet i urvalsenheterna i det granskade stratumet med högt värde, (BV_{e\text{ urprunglig}}) är det bokförd värdet för det ursprungliga stratumet med högt värde och (BV_{e\text{ reducerad}}) är det bokförd värdet för poster i stratumet med högt värde som har granskats).</td>
<td>På grund av de tekniska svårigheterna med att beräkna fel och beräkna precision när det gäller ersättning av urvalsenheter i den konservativa MUS-metoden rekommenderar vi att man använder uteslutning av urvalsenheter om man använder den konservativa MUS-metoden.</td>
</tr>
</tbody>
</table>
Enkelt slumpmässigt urval

<table>
<thead>
<tr>
<th>Urvallsform</th>
<th>Enkelt slumpmässigt urval: Uteslutning av urvalsenheter</th>
<th>Enkelt slumpmässigt urval: Ersättning av urvalsenheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametrar som används för att beräkna urvalsenheter</td>
<td>Motsvarar den ursprungliga populationen.</td>
<td>Motsvarar den ursprungliga populationen.</td>
</tr>
<tr>
<td>Population som används för urvalet</td>
<td>Reducerad population</td>
<td>Ursprunglig population</td>
</tr>
<tr>
<td>Rekommenderad metod för beräkning av fel och beräkning av precision</td>
<td>Beräkning av fel och beräkning av precision för den reducerade populationen justeras i nästa steg för att avspegla den ursprungliga populationen. När skattning av genomsnitt per enhet används kan justeringen göras genom att det beräknade felet och precisionen multipliceras med kvoten mellan populationsstorleken $N_{(h)}$ ursprunglig för den ursprungliga populationen och $N_{(h)}$ reducerad för den reducerade populationen. När kvotskattning används kan justeringen göras genom att det beräknade felet och precisionen multipliceras med kvoten mellan utgifterna $BV_{(h)}$ ursprunglig för den ursprungliga populationen och utgifterna $BV_{(h)}$ reducerad för den reducerade populationen. Det går också att beräkna felen direkt för den ursprungliga populationen, både vid kvotskattning och vid skattning av genomsnitt per enhet. Precisionen bör inte beräknas direkt för den ursprungliga populationen om kvotskattning används, det är bara möjligt vid skattning av genomsnitt per enhet. Den precision som beräknas för den reducerade populationen vid kvotskattning bör justeras för den ursprungliga populationen genom att precisionen för den reducerade populationen multipliceras med kvoten $BV_{(h)}$ ursprunglig population $BV_{(h)}$ reducerad population. När det gäller enheter i stratumet med högt värde (eller ett annat uttömmande stratum) som omfattas av artikel 148 kan man behöva beräkna ett fel för stratumet med högt värde och beräkna detta fel för de enheter som inte granskades i detta stratum. Vid kvotskattning görs detta med hjälp av formeln $EE_e = EE_e$ reducerad $× BV_e$ ursprunglig BV_e reducerad, där EE_e reducerad är felbeloppet i urvalsenheterna i det granskade stratumet med högt värde, BV_e ursprunglig är det bokförda värdet för det ursprungliga stratumet med högt värde och BV_e reducerad är det bokförda värdet för poster.</td>
<td>Beräkning av fel för den ursprungliga populationen (både för kvotskattning och skattning av genomsnitt per enhet). Precisionen beräknas för den ursprungliga populationen när det gäller skattning av genomsnitt per enhet. När det gäller kvotskattning måste precisionen beräknas för den reducerade populationen (population från vilken avdrag har gjorts för samtliga urvalsposter som omfattas av artikel 148). Därför bör den i nästa steg justeras för att avspegla den ursprungliga populationen. Detta kan göras genom att precisionen för den reducerade populationen multipliceras med kvoten mellan utgifterna $BV_{(h)}$ ursprunglig för den ursprungliga populationen och utgifterna $BV_{(h)}$ reducerad för den reducerade populationen. Tänk också på att även om revisionsmyndigheten inte tagit med några urvalsposter som påverkas av artikel 148 i sitt urval måste precisionen vid kvotskattning också beräknas för den reducerade populationen och sedan justeras enligt formeln ovan. När det gäller enheter i stratumet med högt värde (eller ett annat uttömmande stratum) som omfattas av artikel 148 kan man behöva beräkna ett fel för stratumet med högt värde och beräkna detta fel för de enheter som inte granskades i detta stratum. Vid kvotskattning görs detta med hjälp av formeln $EE_e = EE_e$ reducerad $× BV_e$ ursprunglig BV_e reducerad, där EE_e reducerad är felbeloppet i urvalsenheterna i det granskade stratumet med högt värde, BV_e ursprunglig är det bokförda värdet för det ursprungliga stratumet med högt värde och BV_e reducerad är det bokförda värdet för poster i stratumet med högt värde som har granskats. Vid skattning...</td>
</tr>
</tbody>
</table>
Urvalsform

<table>
<thead>
<tr>
<th>Enkelt slumpmässigt urval: Uteslutning av urvalsenheter</th>
<th>Enkelt slumpmässigt urval: Ersättning av urvalsenheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>i stratumen med högt värde som har granskats. Vid skattning av genomsnitt per enhet görs beräkningen med formeln $EE_e = EE_{e\text{ reducerad}} \times \frac{Ne_{ursprunglig}}{Ne_{reducerad}}$ där $EE_{e\text{ reducerad}}$ är felbeloppet hos urvalsenheterna i det granskade stratumen med högt värde, $Ne_{ursprunglig}$ är antalet urvalsenheter i det ursprungliga stratumen med högt värde och $Ne_{reducerad}$ är antalet urvalsenheter i det granskade stratumen med högt värde.</td>
<td>av genomsnitt per enhet görs beräkningen med formeln $EE_e = EE_{e\text{ reducerad}} \times \frac{Ne_{ursprunglig}}{Ne_{reducerad}}$, där $EE_{e\text{ reducerad}}$ är felbeloppet hos urvalsenheterna i det granskade stratumen med högt värde, $Ne_{ursprunglig}$ är antalet urvalsenheter i det ursprungliga stratumen med högt värde och $Ne_{reducerad}$ är antalet urvalsenheter i det granskade stratumen med högt värde.</td>
</tr>
</tbody>
</table>

7.10.3 Exempel

7.10.3.1 Exempel på ersättning av urvalsenheter i PPS-metoder (MUS och icke-statistiskt PPS-urval)

Som förklaras i avsnittet ovan bör de urvalsenheter som omfattas av artikel 148 i PPS-metoder (MUS och icke-statistiskt PPS-urval) ersättas och de nya enheterna bör väljas baserat på sannolikhet i förhållande till storlek.

Tänk på att förfarandet för att välja nya urvalsenheter i icke-statistiskt PPS-urval är detsamma som för den standardiserade MUS-metoden, varför ersättning av urvalsenheter i dessa båda metoder illuseras med gemensamma exempel. De två exemplen nedan visar följande:

a) Ersättning av urvalsenheter i stratum med lågt värde när den standardiserade MUS-metoden eller icke-statistiskt PPS-urval används.

b) Ersättning av urvalsenheter i stratum med högt värde när den standardiserade MUS-metoden eller icke-statistiskt PPS-urval används.

a) Ersättning av urvalsenheter i stratum med lågt värde – standardiserad MUS-metod och icke-statistiskt PPS-urval

Vi tänker oss att en positiv population utgörs av utgifter som har deklarerats till kommissionen under en given referensperiod för insatser i ett program.

Populationen sammanfattas i följande tabell:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (deklarerade utgifter under referensperioden)</td>
<td>4 199 882 024 euro</td>
</tr>
</tbody>
</table>
Urvalets storlek är 30 insatser (beräknas i den standardiserade MUS-metoden på grundval av de relevanta urvalsparametrarna eller den rekommenderade täckningen av insatser för icke-statistiskt PPS-urval baserat på revisionsgarantin från systemrevisionerna). Stratumen med högt värde omfattar åtta insatser över gränsvärdet på 139 996 067,47 euro, med ett sammanlagt värde på 1 987 446 254 euro. Urvalsintervallet blir därför 100 565 262 euro:

\[Urvalsintervall (SI) = \frac{BV_s}{n_s} = \frac{4 199 882 024 - 1 987 446 254}{22 (dvs. 30 - 8)} = 100 565 262 \]

Värdet på de 22 insatser som revisionsmyndigheten har valt ur stratumen med lågt värde genom att använda det intervallet blir 65 550 000 euro. Detta urval omfattar två insatser som har granskats av Europeiska kommissionens tjänsteavdelningar, med 950 000 euro i utgifter som har deklarerats till kommissionen. Insatserna ersätts med hänsyn till bestämmelserna i artikel 148 genom att en ersättningsenhet väljs ut baserat på sannolikhet i förhållande till storlek.

De nya urvalsenheterna bör väljas från den återstående populationen i stratumen med lågt värde, dvs. en fil som innehåller 3 822 urvalsenheter (3 852 insatser i populationen minus 30 insatser som valdes till en början)\(^{67}\) med intervallet på 1 073 442 885 euro:

\[Urvalsintervall vid ersättning (SI') = \frac{BV_s'}{n_s'} = \frac{4 199 882 024 - 1 987 446 254 - 65 550 000}{2} = 1 073 442 885 \]

I det ursprungliga urvalet ersätts de insatser som påverkas av artikel 148 med de två nya insatser som valts ut. Beräkningen görs som vanligt med parametrarna för populationen och urvalet \(BV_s\) och \(n_s\), dvs. vi summerar felen i stratumen med högt värde och vi beräknar felen i stratumen med lågt värde med formeln

\[EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} E_i \]

där \(BV_s = 2 212 435 770 (4 199 882 024 - 1 987 446 254)\) och \(n_s = 22\).

Om vi antar att summan av felprocentvärdena för samtliga enheter i stratumen med lågt värde (\(\sum_{i=1}^{n_s} \frac{E_i}{BV_s}\)) är 0,52, blir det extrapolerade felet för beloppen i stratumen med lågt värde 52 293 936 euro.

\(^{67}\) Revisionsmyndigheten kan också bestämma sig för att ta bort alla övriga urvalsenheter som påverkas av artikel 148 från filen och välja de nya urvalsenheterna enbart ur den population i stratumen med lågt värde som inte påverkas av artikel 148. På så sätt kommer man inte att behöva göra ersättningsurvalet flera gånger, vilket kan bli nödvändigt om de nya poster som väljs också omfattas av artikel 148.
Revisionsmyndigheten har upptäckt fel till ett sammanlagt belopp av 692 euro i stratumet med högt värde. Det beräknade felet i vår population blir alltså 52 294 628 euro (52 293 936 + 692), dvs. 1,25 % av populationens värde.

Om icke-statistiskt PPS-urval används skulle revisionsmyndigheten göra bedömningen att det inte finns tillräckliga bevis för att populationen innehåller väsentliga fel. Det går emellertid inte att fastställa den uppnådda precisionen och slutsatsens konfidensnivå är okänd.

Om den standardiserade MUS-metoden används skulle revisionsmyndigheten behöva beräkna precisionen med följande standardformel för att bedöma den övre felgränsen:

\[SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r \]

där \(BV_s = 2 212 435 770 \) (4 199 882 024 – 1 987 446 254) och \(n_s = 22 \).

b) Ersättning av urvalsenheter i stratum med högt värde – standardiserad MUS-metod och icke-statistiskt PPS-urval

Vi tänker oss att en positiv population utgörs av utgifter som har deklarerats till kommissionen under en given referensperiod för insatser i ett program.

Populationen sammanfattas i följande tabell:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (deklarerade utgifter under referensperioden)</td>
<td>4 199 882 024 euro</td>
</tr>
</tbody>
</table>

Urvalets storlek är 30 insatser (beräknas i den standardiserade MUS-metoden på grundval av de relevanta urvalsparametrarna eller den rekommenderade täckningen av insatser för icke-statistiskt PPS-urval baserat på revisionsgarantin från systemrevisionerna). Stratumet med högt värde omfattar åtta insatser över gränsvärdet på 139 996 067,47 euro, med ett sammanlagt värde på 1 987 446 254 euro.

När det har fastställts vilka insatser/urvalsenheter som tillhör stratumet med högt värde i den standardiserade MUS-metoden och det icke-statistiska PPS-urvalet rekommenderar vi att revisionsmyndigheten innan urvalet görs i stratumet med lågt värde kontrollerar om stratumet med högt värde innehåller några urvalsenheter som påverkas av artikel 148. Om de åtta insatserna i stratumet med högt värde innehåller några urvalsenheter som påverkas av artikel 148 skulle urvalsenheter som påverkas av artikel 148 skulle urvalsenheter för stratumet med lågt värde bli 23 (30 minus 7), för att se till att 30 insatser granskas. I sådant fall behöver man inte göra något särskilt urval av urvalsenheter för att ersätta den insats som omfattas av artikel 148 i stratumet med högt värde.
Om revisionsmyndigheten efter att ha gjort ett urval på 22 insatser (30 minus 8) i stratumet med lågt värde konstaterar att en insats i stratumet med högt värde omfattas av artikel 148 ska den kompletterande urvalsenheten i stratumet med lågt värde som ska ersätta urvalsenheten från stratumet med högt värde väljas ut baserat på sannolikhet i förhållande till storlek. (Eftersom det inte finns några andra enheter tillgängliga för ersättning i stratumet med högt värde skulle en post i stratumet med lågt värde väljas som ersättning för att se till att 30 insatser täcks och slippa minska urvalets storlek artificiellt till följd av denna begränsning.)

Först valde revisionsmyndigheten de 22 insatserna med det sammanlagda beloppet på 65 550 000 euro från stratumet med lågt värde med intervallet 100 565 262 euro:

\[
Urvalsintervall (SI) = \frac{BV_s}{n_s} = \frac{4 199 882 024 - 1 987 446 254}{22} = 100 565 262
\]

Den nya urvalsenheten i stratumet med lågt värde som ska ersätta urvalsenheten från stratumet med högt värde bör väljas från den återstående populationen i stratumet med lågt värde, dvs. en fil som innehåller 3 822 urvalsenheter (3 852 insatser i populationen minus 30 insatser som valdes till en början) med intervallet på 2 146 885 770,00 euro:

\[
Urvalsintervall vid ersättning (SI') = \frac{BV_{s'}}{n_{s'}} = \frac{4 199 882 024 - 1 987 446 254 - 65 550 000}{1} = 2 146 885 770,00
\]

Därmed omfattar vår granskning 7 insatser i stratumet med högt värde och 23 insatser i stratumet med lågt värde.

Beräkningen av fel i stratumet med lågt värde baseras på standardformeln

\[
EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_i}{BV_i}
\]

där \(BV_s = 2 \ 212 \ 435 \ 770\) (4 199 882 024 – 1 987 446 254) och \(n_s = 23\).

Om vi antar att summan av felprocentvärdena för samtliga enheter i stratumet med lågt värde \(\sum_{i=1}^{n_s} \frac{E_i}{BV_i}\) är 0,52, blir det extrapolera fel för beloppen i stratum med lågt värde 50 020 287 euro.

Revisionsmyndigheten har upptäckt fel till ett sammanlagt belopp av 420 euro i de sju granskade insatserna i stratumet med högt värde. Felet i stratumet med högt värde beräknas med formeln

\[\text{68 Se även fotnoten ovan, där det förklaras att revisionsmyndigheten kan besluta sig för att göra valet av nya urvalsenheter i den population som inte påverkas av artikel 148.}\]

\[EE_{ursprunglig} = EE_{reducerad} \times \frac{BV_{ursprunglig}}{BV_{reducerad}} \]

där:

- \(EE_{reducerad} \) är det felbelopp som har upptäckts i de granskade insatserna i stratumet med högt värde (exklusive de insatser som påverkas av artikel 148),
- \(BV_{ursprunglig} \) är det totala bokförda värdet för stratumet med högt värde inklusive de insatser som påverkas av artikel 148,
- \(BV_{reducerad} \) är det bokförda värdet för stratumet med högt värde exklusive de insatser som påverkas av artikel 148.

Om vi i vårt exempel antar att ett belopp på 290 309 600 euro deklarerades för den insats som omfattas av artikel 148 i stratumet med högt värde skulle felet i stratumet med högt värde uppgå till 492 euro:

\[EE_{ursprunglig} = 420 \times \frac{1 987 446 254}{1 697 136 654} = 492 \]

Det extrapolerade felet på populationsnivå skulle alltså bli 50 020 779 (dvs. 1,19 % av populationens värde):

\[EE = 50 020 287 + 492 = 50 020 779 \]

Om icke-statistiskt PPS-urval används skulle revisionsmyndigheten göra bedömningen att det inte finns tillräckliga bevis för att populationen innehåller väsentliga fel. Det går emellertid inte att fastställa den uppnådda precisionen och slutsatsens konfidensnivå är okänd.

Om den standardiserade MUS-metoden används skulle revisionsmyndigheten behöva beräkna precisionen med följande standardformel för att bedöma den övre felgränsen:

\[SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r \]

där \(BV_s = 2 212 435 770 (4 199 882 024 – 1 987 446 254) \) och \(n_s = 23 \).

7.10.3.2 Exempel på uteslutning av insatser i urvalssteget enligt den standardiserade MUS-metoden

Vi tänker oss att en population utgörs av utgifter som har deklarerats till kommissionen under en given referensperiod för insatser i ett program. De systemrevisioner som
genomförts av revisionsmyndigheten har gett en låg garanti. Urvalet för detta program bör därför göras med en konfidensnivå på 90%.

Populationen sammanfattas i följande tabell:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokfört värde (summan av utgifter under referensperioden)</td>
<td>4 199 882 024 euro</td>
</tr>
</tbody>
</table>

Det finns fyra insatser som påverkas av bestämmelserna i artikel 148.1 i förordningen om gemensamma bestämmelser och deras sammanlagda bokförda värde är 12 706 417 euro. De ska uteslutas från den population som urvalet görs från.

Urvalets storlek beräknas på följande sätt:

\[n = \left(\frac{z \times BV \times \sigma_r}{TE - AE} \right)^2 \]

där \(\sigma_r \) är standardavvikelsen för felprocentvärdena till följd av MUS-urvalet och BV är de totala utgifterna under referensåret och omfattar de fyra föregående insatserna. Baserat på ett preliminärt urval på 20 insatser skattar revisionsmyndigheten standardavvikelsen för felprocentvärdena till 0,0935.

Med denna skattning av standardavvikelsen för felprocentvärden, det högsta godtagbara felet och det förväntade felet kan vi nu beräkna urvalets storlek. Förutsatt ett godtagbart fel på 2% av det sammanlagda bokförda värdet, 2% x 4 199 882 024 = 83 997 640 (väsentlighetsnivån enligt förordningen), och ett förväntat felprocentvärde på 0,4%, 0,4% x 4 199 882 024 = 16 799 528.

\[n = \left(\frac{1,645 \times 4 199 882 024 \times 0,0935}{83 997 640 - 16 799 528} \right)^2 \approx 93 \]

Man måste först identifiera de (eventuella) populationsenheter av högt värde som ska ingå i ett stratrum med poster av högt värde som ska genomgå 100-procentig granskning. Gränsvärdet för detta toppstratum är lika med kvoten mellan det bokförda värdet (BV) exklusive de fyra tidigare nämnda insatserna (på sammanlagt 12 706 417 euro) och den planerade urvalsstorleken (n). Alla poster vars bokförda värde är högre än detta gränsvärde (om \(BV_i > BV/n \)) kommer att placeras i det 100-procentiga granskningsstratumet. I detta fall är gränsvärdet 4 187 175 607 / 93 = 45 023 394 euro.

Revisionsmyndigheten placera alla insatser med ett bokfört värde på mer än 45 023 394 euro i ett isolerat stratrum, dvs. sex insatser till ett värde av 586 837 081 euro.
Urvalsintervallet för den återstående populationen är lika med det bokförda värdet i det icke uttömmande stratumet \((BV_s)\) (differensen mellan det sammanlagda bokförda värdet och det bokförda värdet för de sex insatserna i det översta stratumet) dividerat med antalet insatser som ska väljas ut (93 minus de sex insatserna i det översta stratumet).

\[
Urvalsintervall = \frac{BV_s}{n_s} = \frac{4187175607 - 586837081}{87} = 41383201
\]

Revisionsmyndigheten har kontrollerat att det inte fanns några insatser vars bokförda värde var större än intervallet. Det högsta stratumet innehåller därför endast de sex insatser vars bokförda värde var högre än gränsvärdet. Stickprovet väljs ur en slumpmässig förteckning insatser, där varje post som innehåller den 41 383 201:e beloppsenheten väljs.

En fil som innehåller de återstående 3 842 insatserna (3 852 minus 4 uteslutna insatser och 6 insatser med högt värde) i populationen sorteras slumpmässigt och en stegvis kumulativ variabel för bokfört värde skapas. Ett urvalsvärde på 87 insatser (93 minus 6 insatser med högt värde) tas fram med systematiskt urval.

Efter att ha granskat de 93 insatserna kan revisionsmyndigheten beräkna felet.

Av de sex insatserna av högt värde (sammanlagt bokfört värde på 586 837 081 euro) innehåller tre insatser fel som motsvarar ett felbelopp på 7 616 805 euro.

För det återstående urvalet behandlas felet på ett annat sätt. För dessa insatser använder vi följande förfarande:
1) Felprocenten beräknas för varje enhet i urvalet, dvs. kvoten mellan felet och motsvarande utgift, \(E_i/BV_i\).
2) Dessa felprocentvärden summeras för samtliga enheter i urvalet.
3) Ovanstående resultat multipliceras med urvalsintervallet (SI),

\[
EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_i}{BV_i}
\]

där \(BV_s\) och \(n_s\) är det bokförda värde som används för att beräkna urvalsintervallet (4 187 175 607 euro minus 586 837 081 euro = 3 600 338 526 euro) respektive 87.

\[
EE_s = 41383201 \times 1,026 = 42459164
\]

För att beräkna felet (i euro) i urvalsstratumen för den ursprungliga positiva population utfifter som har deklarerats till kommissionen ska det beräknade felet multipliceras med kvoten av de ursprungliga utfifterna i stratumen (utan avdrag för de uteslutna enheterna) och stratumets reducerade utfifter (efter avdrag för de uteslutna enheterna).
\[
EE_{ursprunglig} = \frac{BV_{s,ursprunglig}}{BV_{s,reducerad}} \times EE_z = \frac{3\,613\,044\,943}{3\,600\,338\,526} \times 42\,459\,164 = 42\,609\,012
\]

Det fel som upptäcks i stratumen med högt värde behöver inte överföras till den ursprungliga populationen eftersom utgifterna för de fyra uteslutna enheterna ligger under gränsvärdet.

Det beräknade felet på den ursprungliga populationsnivån är helt enkelt summan av de två komponenterna (stratum med högt värde och urvalsstratum).

\[
EE_{ursprunglig} = 7\,616\,805 + 42\,609\,012 = 50\,225\,817
\]

Den beräknade felprocenten är kvoten mellan det beräknade felet och de sammanlagda utgifterna för den ursprungliga populationen:

\[
r = \frac{50\,225\,817}{4\,199\,882\,024} = 1,20\%
\]

Standardavvikelsen för felprocentvärdena i urvalsstratumet är 0,0832.

Precisionen beräknas alltså med

\[
SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r = 1,645 \times \frac{3\,600\,338\,526}{\sqrt{87}} \times 0,0832 = 52\,829\,067
\]

För att beräkna denna precision för den ursprungliga populationen (inklusive de uteslutna enheterna) måste det erhålta värdet multipliceras med kvoten mellan de ursprungliga utgifterna i urvalsstratumet och de reducerade utgifterna i urvalsstratumet (från vilka de uteslutna enheterna har dragits av).

\[
SE_{ursprunglig} = \frac{BV_{s,ursprunglig}}{BV_{s,reducerad}} \times SE = \frac{3\,613\,044\,943}{3\,600\,338\,526} \times 52\,829\,067 = 53\,015\,513
\]

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE\) i sig och precisionen i extrapoleringen.

\[
ULE = 50\,225\,817 + 53\,015\,513 = 103\,241\,330
\]
Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet (83 997 640 euro) för att det ska gå att dra revisionsslutsatser.

Eftersom det högsta godtagbara felet är större än det beräknade felet, men mindre än den övre felgränsen innebär detta att urvalsresultatet kanske inte är entydigt. Läs mer om detta i avsnitt 4.12.

7.10.3.3 Exempel på uteslutning av insatser i urvalssteget enligt den konservativa MUS-metoden

Vi tänker oss en population på 3 857 insatser med sammanlagda utgifter på 4 207 500 608 euro som har deklarerats till kommissionen under en given referensperiod (population av positiva belopp). Revisionsmyndigheten bestämde sig för att använda en konservativ MUS-metod och att använda en insats som urvalsenhet. I enlighet med artikel 28.8 i den delegerade förordningen bestämde sig revisionsmyndigheten dessutom för att utesluta de insatser som avses i artikel 148.1 i förordningen om gemensamma bestämmelser från den population som ska ligga till grund för urvalet.

Fem insatser i populationen till ett totalt belopp på 7 618 584 euro påverkades av artikel 148 i förordningen om gemensamma bestämmelser och uteslöts från populationen innan urvalet gjordes. Urvalet gjordes alltså från en population på 3 852 insatser med totala utgifter på 4 199 882 024 euro.

Populationen exklusive insatser som påverkas av bestämmelserna i artikel 148 sammanfattas i följande tabell:

| Populationsstorlek (antal insatser) | 3 852 |

240
Bokfört värde (deklarerade utgifter under referensperioden) 4 199 882 024 euro

Den urvalsstorlek som motsvarar en konfidensnivå på 90% och ett tröskelvärde för väsentlighet på 2% är

\[n = \frac{BV \times RF}{TE - (AE \times EF)} = \frac{4 207 500 608 \times 2,31}{0,02 \times 4 207 500 608 - (0,002 \times 4 207 500 608 \times 1,5)} \approx 136 \].

Urvalet görs baserat på sannolikhet i förhållande till storlek med intervallet 30 881 485 (\(SI = \frac{BV}{n} = \frac{4 199 882 024}{136} = 30 881 485 \)).

I vår population finns 24 insatser vars bokförda värde är större än urvalsintervallet. Dessa 24 insatser med ett sammanlagt bokfört värde på 1 375 130 377 euro kommer att utgöra vårt stratum med högt värde (som räknas som 45 träffar eftersom vissa insatser markerades mer än en gång). Urvalsstorleken för stratumet med lågt värde är 91 insatser till ett sammanlagt belopp på 301 656 001 euro.

Beräkningen av fel i stratumet med lågt värde görs som vanligt med formeln

\[EE_S = SI \sum_{i=1}^{n_s} \frac{E_i}{BV_i} \]

där

\[SI = \frac{BV}{n} \]

är det intervall som används för urvalet, dvs. baserat på vårt reducerade populationsvärde (\(BV = 4 199 882 024 \)) och urvalsstorleken (antal träffar \(n = 136 \)).

Förutsatt att summan av felprocentvärdena i urvalet med lågt värde \(\left(\sum_{i=1}^{n_s} \frac{E_i}{BV_i} \right) \) är 1,077 blir det beräknade felet för stratumet med lågt värde 33 259 360:

\[EE_S = 30 881 485 \times 1,077 = 33 259 360 \]

För att beräkna felet (i euro) i urvalsstratumet för den ursprungliga positiva populationen utgifter som har deklarerats till kommissionen ska det beräknade felet multiplikeras med kvoten av de ursprungliga utgifterna i stratumet (utan avdrag för de uteslutna enheterna) och stratumets reducerade utgifter (efter avdrag för de uteslutna enheterna). I vårt exempel ingår alla de fem insatser som påverkas av artikel 148 i stratumet med lågt värde.

\[EE_{S,ursprunglig} = \frac{BV_{S,ursprunglig}}{BV_{S,reduserad}} \times EE_S = \frac{2 832 370 231}{2 824 751 647} \times 33 259 360 = 33 349 063 \]
Det fel som upptäcks i stratumen med högt värde behöver inte överföras till den ursprungliga populationen eftersom utgifterna för de fem uteslutna insatserna ligger under gränsvärdet.

Det beräknade felet på populationsnivå är helt enkelt summan av det upptäckta felet i stratumen med högt värde och det beräknade felet i stratumen med lågt värde (korrigerat för den ursprungliga populationen). Förutsatt att revisionsmyndigheten har upptäckt ett sammanlagt fel på 7 843 574 i stratumen med högt värde skulle det beräknade felet på ursprunglig populationsnivå vara

\[EE_{ursprunglig} = 7\ 843\ 574 + 33\ 349\ 063 = 41\ 192\ 637 \]

(vilket motsvarar en beräknad felprocent på 0,98 %).

Den övergripande precisionen (SE) för den reducerade populationen beräknas som vanligt genom att två komponenter summeras: grundprecision (\(BP = SI \times RF \)) och inkrementell marginal (\(IA = \sum_{i=1}^{n_s} IA_i \)), där den inkrementella marginalen beräknas för varje urvalsenhet som tillhör det icke uttömmande stratum som innehåller ett fel med följande standardformel:

\[IA_i = (RF(n) - RF(n - 1) - 1) \times SI \times \frac{E_i}{BV_i} \]

I vårt exempel blir grundprecisionen 71 336 231:
\[BP = 30\ 881\ 485 \times 2,31 = 71\ 336\ 231 \]

Förutsatt att \(IA \) är 14 430 761 (beräknat med ett intervall på 30 881 485 som \(SI \)), blir den övergripande precisionen för den reducerade populationen 85 766 992 (summan av 71 336 231 och 14 430 761).

För att beräkna denna precision för den ursprungliga populationen (som omfattar de insatser som påverkas av artikel 148) måste det erhållna värdet multipliceras med kvoten mellan de ursprungliga utgifterna i urvalsstratumet och de reducerade utgifterna i urvalssstratumet (från vilka de insatser som påverkas av artikel 148 har dragits av).

\[SE_{ursprunglig} = \frac{BV_{s,ursprunglig}}{BV_{s,redducrad}} \times SE_{redducrad} = \frac{2\ 832\ 370\ 231}{2\ 824\ 751\ 647} \times 85\ 766\ 992 \approx 85,998,313 \]

För att avgöra om felen är väsentliga bör den övre felgränsen beräknas. Den övre gränsen är lika med summan av det beräknade felet \(EE \) i sig och precisionen i extrapoleringen.
Därefter ska både det beräknade felet och den övre gränsen jämföras med det högsta godtagbara felet 84 150 012 euro (2 % av 4 207 500 608). I vårt exempel är det högsta godtagbara felet större än det beräknade felet, men mindre än den övre felgränsen.

\[
ULE = 41\,192\,637 + 85\,998\,313 = 127\,190\,950
\]

7.10.3.4 Exempel på uteslutning av insatser vid urvalssteget i enkelt slumpmässigt urval (skattning av genomsnitt per enhet och kvotskattning)

Vi tänker oss en population på 3 520 insatser med sammanlagda utgifter på 2 301 882 970 euro som har deklarerats till kommissionen under en given referensperiod (population av positiva belopp). Revisionsmyndigheten bestämde sig för att använda en urvalsform med enkelt slumpmässigt urval kombinerat med stratifiering efter utgiftsnivå per insats, vilket kommer att vara vår urvalsenhet. I enlighet med artikel 28.8 i den delegerade förordningen bestämde sig revisionsmyndigheten dessutom för att utesluta de insatser som avses i artikel 148.1 i förordningen om gemensamma bestämmelser från den population som ska ligga till grund för urvalet.

Sex insatser i populationen till ett totalt belopp på 93 598 481 euro påverkades av artikel 148 i förordningen om gemensamma bestämmelser och uteslöts från populationen innan urvalet gjordes. Urvalet gjordes alltså från en population på 3 514 insatser med totala utgifter på 2 208 284 489 euro.

Med hänsyn till populationens egenskaper använde revisionsmyndigheten ett gränsvärde på 3 % av den (reducerade) positiva populationen (3 % x 2 208 284 489 = 66 248 535). Två insatser hade utgifter som var högre än detta tröskelvärde, med ett sammanlagt belopp på 203 577 481 euro. Stratumet med poster av lågt värde innehöll alltså 3 512 insatser till ett sammanlagt belopp på 2 004 707 008 euro.

Den reducerade positiva populationen exklusive sex insatser som omfattas av artikel 148 sammanfattas i följande tabell:

| Populationsstorlek utan sex insatser som omfattas av artikel 148 (antal) | 3 514 |

243
Den ursprungliga positiva populationen som deklarerats till kommissionen sammanfattas nedan:

<table>
<thead>
<tr>
<th>Populationsstorlek (antal insatser)</th>
<th>3 520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt bokfört värde (positiv population av utgifter under referensperioden)</td>
<td>2 301 882 970 euro</td>
</tr>
<tr>
<td>Toppstratum (tre insatser)</td>
<td>295 006 242 euro</td>
</tr>
<tr>
<td>Stratum med insatser med lågt värde (3 517 insatser)</td>
<td>2 006 876 728 euro</td>
</tr>
</tbody>
</table>

För att beräkna urvalets storlek använder revisionsmyndigheten standardformeln

\[n = \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2 \]

och använder i linje med förklaringen ovan urvalsparametrar som motsvarar den fullständiga populationen (inklusive de insatser som har uteslutits från urvalet med hänsyn till bestämmelserna i artikel 148).

Framför allt baserades beräkningen av urvalets storlek på följande parametrar:

1) \(z – 1,036 \) koeficient som motsvarar en konfidensnivå på 70 %, fastställd på grundval av systemrevisorernas arbete, då man bedömde att systemet ger en genomsnittlig garanti (kategori 2)

2) \(AE – 13 811 297,82 \) euro
Revisionsmyndigheten beslutade att använda historiska data för att bestämma det förväntade felet. 0,6 % tillämpades som förväntad felprocent (den felprocent som blev resultatet vid den senaste granskningen av insatser), vilket ger ett förväntat fel (AE) på 13 811 297 82 euro (0,006 \(\times \) 2 301 882 970 euro, dvs. det totala värdet för den positiva populationen – det totala värdet för toppstratumet och stratumet med lågt värde, inklusive insatser som utesluts i ett senare steg med hänsyn till bestämmelserna i artikel 148)

3) \(TE – 46 037 659,40 \) euro
2 % av det totala populationsvärdet, det vill säga den högsta väsentlighetsnivån enligt artikel 28.11 i den delegerade förordningen
Revisionsmyndigheten beslutade att använda historiska data för att bestämma standardfelavvikelsen. Utifrån revisionsmyndighetens yrkesmässiga bedömning beslutade man sig för att tillämpa en genomsnittlig standardavvikelse baserat på tre föregående urval, dvs. 34 973, 97 654 och 43 564:

$$\sigma_e = \frac{34 973 + 97 654 + 43 564}{3} \approx 58 730$$

5) $N - 3 \ 517$

$N = 3 \ 512 + 5$ (populationens storlek i stratumen med lågt värde inklusive de insatser som omfattas av artikel 148 i stratumen med lågt värde, som uteslöts från urvalsförfarandet; i vårt fall låg fem av de sex uteslutna insatserna under gränsvärdet)

Utifrån parametrarna ovan fastställdes att urvalets storlek i stratumen med lågt värde ska vara 45 insatser:

$$n = \left(\frac{3 \ 517 \times 1,036 \times 58 \ 730}{0,02 \times 2 \ 301 \ 882 \ 970 - 0,006 \times 2 \ 301 \ 882 \ 970} \right)^2 \approx 45$$

Vårt urval kommer alltså att omfatta sammanlagt 47 insatser, inklusive två insatser i toppstratumen och 45 insatser i stratumen med lågt värde.

För att göra urvalet i stratumen med lågt värde skapade revisionsmyndigheten en fil med 3 512 insatser där de insatser som påverkas av artikel 148 utesluts från den population som urvalet ska göras från. Dessutom utesluts insatserna i stratumen med högt värde. Därefter gjordes ett slumpmässigt urval av 45 insatser från denna population till ett sammanlagt belopp av 23 424 898 euro.

Under granskningen av insatserna i toppstratumen upptäcktes ett fel på 469 301 euro i en av de två insatser som granskades. Eftersom inga felaktiga utgifter upptäcktes i den andra insats som granskades i detta stratum uppgick det totala felbeloppet i det granskade stratumen med högt värde till 469 301 euro.

Vid granskningen av de återstående slumpvis utvalda 45 insatserna upptäcktes ett totalt fel på 378 906 euro.

Skattning av genomsnitt per enhet

Med hänsyn till resultatet har revisionsmyndigheten fastställt att en skattning av genomsnitt per enhet ska användas för att beräkna felen i populationen. Man beslutade
att felen i stratet med lågt värde skulle beräknas direkt på nivån för den ursprungliga populationen\(^{69}\).

\[
EE_{\text{stratum med lågt värde}} = N_{\text{stratum med lågt värde i ursprunglig population}} \times \frac{\sum_{i=1}^{n} E_i}{n}
\]

\[
EE_{\text{stratum med lågt värde}} = N \times \frac{\sum_{i=1}^{45} E_i}{n} = \frac{3517 \times 378906}{45} \approx 29613608,93\text{ euro}
\]

För att beräkna det totala felet i populationen med de standardiserade förfarandena för enkelt slumpmässigt urval behöver revisionsmyndigheten lägga till detta extrapolerade fel för stratet med lågt värde till felet för stratet med högt värde. Tänk dock på att i vårt fall uteslöts en insats i toppstratetet från granskningen med hänsyn till bestämmelserna i artikel 148. Därför behöver revisionsmyndigheten extrapolera det fel som har fastställts för toppstratetet, som inte omfattade en insats, till hela stratetet med högt värde. I vårt fall skulle vi beräkna felet för stratetet med högt värde med följande formel:

\[
EE_{\text{ursprungligt stratet med högt värde}} = \frac{N_{\text{stratum med högt värde i ursprunglig population}}}{N_{\text{stratum med högt värde i reducerad population}}} \times \sum_{i=1}^{2} E_i = \frac{3}{2} \times 469301 = 703951,5
\]

För att beräkna det totala felet i den ursprungliga populationen behöver revisionsmyndigheten lägga till det extrapolerade felet för stratetet med lågt värde till felet för det ursprungliga stratetet med högt värde.

\[
EE = 29613608,93 + 703951,5 = 30317560,43
\]

Vårt mest sannolika fel på 30317 560,43 motsvarar alltså 1,32 % av utgifterna för den ursprungliga populationen.

Precisionen för den ursprungliga populationen kan beräknas med följande standardformel\(^{70}\):

\[
\text{Precision} = \frac{EE}{\sqrt{n}}
\]

\(^{69}\) Revisionsmyndigheten kunde också beräkna felet för den reducerade populationen och senare justera det för den ursprungliga populationen. Denna justering kan göras genom att felet i den reducerade populationen multipliceras med kvoten \(\frac{N_{\text{stratum med lågt värde i ursprunglig population}}}{N_{\text{stratum med lågt värde i reducerad population}}}\). Slutresultatet av denna beräkning skulle bli detsamma som om felet beräknas med direkt beräkning på nivån för den ursprungliga populationen, vilket beskrivs i detta exempel.

\(^{70}\) Revisionsmyndigheten kan också beräkna precisionen för den reducerade populationen och senare justera den för den ursprungliga populationen. Denna justering kan göras genom att precisionen i den reducerade populationen multipliceras med kvoten \(\frac{N_{\text{stratum med lågt värde i ursprunglig population}}}{N_{\text{stratum med lågt värde i reducerad population}}}\). Slutresultatet av denna beräkning skulle bli detsamma som om precisionen beräknas direkt på nivån för den ursprungliga populationen, vilket beskrivs i detta exempel.
\[
SE_{\text{ursprunglig}} = N_{\text{ursprunglig}} \times z \times \frac{s_e}{\sqrt{n}}
\]
där \(N_{\text{ursprunglig}} = 3\,517\) (dvs. alla insatser med lågt värde i den ursprungliga populationen). Förutsatt att \(s_e = 28\,199\) skulle precisionen på den ursprungliga populationsnivån vara 15 316 501,38:

\[
SE_{\text{ursprunglig}} = 3\,517 \times 1,036 \times \frac{28\,199}{\sqrt{45}} \approx 15\,316\,501,38
\]

Baserat på denna beräkning är vår övre felgräns 45 634 061,81 (30 317 560,43 + 15 316 501,38), dvs. under tröskelvärdet för väsentlighet på 2 % av den ursprungliga populationen (46 037 659).

Kvotskattning

För att illustrera beräkningen av det beräknade felet för kvotskattning kan vi tänka oss att revisionsmyndigheten med hänsyn till resultatet har valt att använda kvotskattning.

För att ta fram felet i stratumet med lågt värde på nivån för den reducerade populationen använder revisionsmyndigheten standardformeln

\[
EE_{\text{stratum med lågt värde i ursprunglig population}} = BV_{\text{stratum med lågt värde i reducerad population}} \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i}
\]

I vårt exempel kommer vi att använda följande data för att beräkna det beräknade felet i stratumet med lågt värde i den reducerade populationen baserat på de resultat som beskrivs ovan:

\[
BV_{\text{stratum med lågt värde i reducerad population}} = 2\,004\,707\,008
\]

\[
\sum_{i=1}^{n} E_i = 378\,906 \quad (\text{totalt felbelopp som har upptäckts i stratumet med lågt värde})
\]

\[
\sum_{i=1}^{n} BV_i = 23\,424\,898 \quad (\text{totalt belopp av deklarerade utgifter för 45 insatser som granskas i det slumpmässiga urvalet från stratumet med lågt värde})
\]

\[
EE_{\text{stratum med lågt värde i reducerad population}} = 2\,004\,707\,008 \times \frac{378\,906}{23\,424\,898} \approx 32\,426\,844,02
\]

Det beräknade felet i stratumet med lågt värde för den ursprungliga populationen kan beräknas med formeln

\[
EE_{\text{ursprungligt stratum med lågt värde}} = BV_{\text{ursprungligt stratum med lågt värde}} \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i}
\]

Som beskrivs i avsnitt 7.10.2 kan det beräknade felet i stratumen också beräknas direkt för den ursprungliga populationen (vilket ger samma resultat). I detta fall kan man använda formeln

\[
EE_{\text{ursprungligt stratum med lågt värde}} = BV_{\text{ursprungligt stratum med lågt värde}} \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i}
\]
För att beräkna det totala felet i populationen med standardiserade förfaranden för enkelt slumpmässigt urval behöver revisionsmyndigheten lägga till detta extrapolerade fel för stratumet med lågt värde till felet för stratumet med högt värde. Tänk dock på att i vårt fall uteslöts en insats i toppstratumet från granskningen med hänsyn till bestämmelserna i artikel 148. Därför behöver revisionsmyndigheten extrapolera det fel som har fastställts för toppstratumet, som inte omfattade en insats, till det sammanlagda värdet för toppstratumet inklusive denna insats. I vårt fall skulle vi beräkna felet för stratumet med högt värde med följande formel:

\[EE_{ursprungligt stratum med lågt värde} = EE_{reducerat stratum med lågt värde} \times \frac{BV_{stratum med lågt värde i ursprunglig population}}{BV_{stratum med lågt värde i reducerad population}} \]

\[EE_{stratum med lågt värde i ursprunglig population} = 32\,426\,844,02 \times \frac{2\,006\,876\,728}{2\,004\,707\,008} \approx 32\,461\,940,01 \]

För att beräkna det totala felet i den ursprungliga populationen behöver revisionsmyndigheten lägga till det extrapolerade felet för det ursprungliga stratumet med lågt värde till felet för det ursprungliga stratumet med högt värde.

\[EE = 32\,461\,940,01 + 680\,068,95 = 33\,142\,008,96 \]

Detta extrapolerade fel i den ursprungliga populationen utgör 1,44 % av värdet för den ursprungliga populationen.

Precisionen för den reducerade populationen beräknas med följande standardformel (som förklaras i avsnitt 7.10.2 går det inte att beräkna precisionen direkt för den ursprungliga populationen när kvotskattning används):

\[SE_{reducerad population} = N_{stratum med lågt värde i reducerad population} \times z \times \frac{s_q}{\sqrt{n}} \]

I vårt exempel skulle vi använda följande data för att beräkna precisionen för den reducerade populationen:

\[N_{reducerad population i stratum med lågt värde} = 3\,512 \]
\[z = 1,036 \]
\[n = 45 \]

\[s_q \] är urvalets standardavvikelse för variabeln \(q \):
\[q_i = E_i - \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i} \times BV_i \]

där:
\[\sum_{i=1}^{n} E_i = 378 \, 906 \] (totalt felbelopp som har upptäckts i stratumet med lågt värde)
\[\sum_{i=1}^{n} BV_i = 23 \, 424 \, 898 \] (totalt belopp av deklarerade utgifter för 45 insatser som granskas i det slumpmässiga urvalet från stratumet med lågt värde)

Precisionen för den ursprungliga populationen skulle behöva justeras utifrån formeln

\[
SE_{ursprunglig\ population} = SE_{reducerad\ population} \times \frac{BV_{stratum\ med\ lågt\ värde\ i\ ursprunglig\ population}}{BV_{stratum\ med\ lågt\ värde\ i\ reducerad\ population}} =
\]

\[
SE_{reducerad\ population} \times \frac{2,006,876,728}{2,004,707,008} = SE_{reducerad\ population} \times 1,0011
\]

För att beräkna den övre felgränsen bör revisionsmyndigheten lägga ihop det mest sannolika felet i den ursprungliga populationen (i vårt fall 33 142 008,96) med den precision som har beräknats för den ursprungliga populationen (dvs. \(SE_{reducerad\ population} \times 1,0011 \) i vårt exempel). Denna övre felgräns ska jämföras med tröskelvärdet för väsentlighet (46 037 659, som är 2 \% av den ursprungliga populationen) för att det ska gå att dra revisionsslutsatser.
Tillägg 1 – Beräkning av slumpmässiga fel när systembetingade fel har upptäckts

1. Inledning

Syftet med detta tillägg är att förklara beräkningen av beräknade slumpmässiga fel när systembetingade fel har upptäckts. Identifieringen av ett potentiellt systembetingat fel innebär att man måste utföra det kompletterande arbete som krävs för att identifiera omfattningen av felet och beräkna hur stort belopp det rör sig om. Detta innebär att man bör identifiera alla situationer som kan innehålla ett fel av samma typ som det som har upptäkts i urvalet. På så sätt minimerar man felets totala effekt i populationen. Om en sådan avgränsning inte görs innan den årliga kontrollrapporten överlämnas ska de systembetingade felen behandlas som slumpmässiga fel vid uträkningen av beräknade slumpmässiga fel.

Den totala felprocenten (TER) motsvarar summan av följande fel: beräknade slumpmässiga fel, systembetingade fel och okorrigerade anomalier.

När revisionsmyndigheten i detta sammanhang extrapolrar de slumpmässiga fel som upptäckts i urvalet i populationen bör den dra av beloppet för de systembetingade felen från det bokförd va ldet (samanlagda utgifter som deklarerats under referensperioden) när detta värde ingår i beräkningsformeln, vilket förklaras nedan.

När det gäller skattning av genomsnitt per enhet och skattning av skillnad görs ingen förändring av de formler som beskrivs i vägledningen för beräkningen av slumpmässiga fel. För beloppsbaserat urval beskrivs två möjliga tillvägagångssätt i detta tillägg (ett tillvägagångssätt som inte påverkar formeln och ett annat som kräver mer komplexa formler för att uppnå bättre precision). För kvotskattning måste beräkningen av de slumpmässiga felen och precisionen (SE) baseras på det sammanlagda va rdet av bokförda vården efter avdrag för systembetingade fel.

I alla statistiska urvalsmetoder gäller att när det finns systembetingade fel eller okorrigerade anomalier ska den övre felgränsen (ULE) motsvara summan av den totala felprocenten (TER) plus precisionen (SE). När det endast förekommer slumpmässiga fel är den övre felgränsen summan av de beräknade slumpmässiga felen plus precisionen.

I följande avsnitt ges en mer ingående förklaring av extrapoleringen av slumpmässiga fel när det förekommer systembetingade fel för de viktigaste urvalsteknikerna.

72 Se avsnittet om enkelt slumpmässigt urval i vägledningen.
2. Enkelt slumpmässigt urval

2.2 Skattning av genomsnitt per enhet

Beräkningen av slumpmässiga fel och beräkningen av precisionen görs som vanligt

\[EE_1 = N \times \frac{\sum_{i=1}^{n} E_i}{n} \]

\[SE_1 = N \times z \times \frac{s_e}{\sqrt{n}} \]

där \(E_i \) motsvarar beloppet för de slumpmässiga fel som upptäckts i varje urvalsenhet och \(s_e \) är standardavvikelsen för de slumpmässiga felen i urvalet.

Det sammanlagda beräknade felet är summan av de slumpmässiga beräknade felen, de systembetingade felen och de okorrigerade anomalierna.

Den övre felgränsen (ULE) är lika med summan av det sammanlagda beräknade felet, \(TPE \), och precisionen i extrapoleringen.

\[ULE = TPE + SE \]

2.3 Kvotskattning

Beräkningen av det slumpmässiga felet görs som

\[EE_2 = BV' \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV'_{i}} \]

där \(BV' \) motsvarar det totala bokförda värdet för den population från vilket de systembetingade fel som tidigare avgränsades, \(BV' = BV - \text{systembetingade fel} \), har dragits av, \(BV'_{i} \) är det bokförda värdet av enheten \(i \) minus beloppet för det systembetingade fel som påverkar den enheten.

Felprosenten för urvalet i formeln ovan räknas helt enkelt ut genom att det sammanlagda beloppet av slumpmässiga fel i urvalet divideras med de sammanlagda utgifterna (från vilket avdrag görs för systembetingade fel) för enheterna i urvalet (granskade utgifter).
Precisionen räknas fram med formeln

\[SE_2 = N \times z \times \frac{s_{q'}}{\sqrt{n}} \]

där \(s_{q'} \) är urvalets standardavvikelse för variabeln \(q' \):

\[q'_i = E_i - \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV'_{i}} \times BV'_i \]

Denna variabel beräknas för varje enhet i urvalet som differensen mellan dess slumpmässiga fel och produkten av dess bokförd värde (från vilket avdrag görs för systembetingade fel) och felprocenten i urvalet.

Det sammanlagda beräknade felet är summan av de slumpmässiga beräknade felen, de systembetingade felen och de okorrigerade anomalierna.

Den övre felgränsen (ULE) är lika med summan av det sammanlagda beräknade felet \(TPE \), och precisionen i extrapoleringen.

\[ULE = TPE + SE \]

3. Skattning av skillnad

Det beräknade slumpmässiga felet på populationsnivå kan beräknas som vanligt genom att det genomsnittliga slumpmässiga fel som observerats per insats i urvalet multipliceras med antalet insatser i populationen, vilket ger det beräknade felet.

\[EE = N \times \frac{\sum_{i=1}^{n} E_i}{n} \]

I ett andra steg bör den totala felprocenten (TPE) tas fram genom att beloppet för systembetingade fel och okorrigerade anomalier läggs till det slumpmässiga beräknade felet (EE).

Det korrekta bokförd värde (de korrekta utgifter som skulle ha konstaterats om alla insatser i populationen hade granskats) beräknas genom att den totala felprocenten (TER) subtraheras från det bokförd värde (BV) i populationen (deklarerade utgifter.

\[EE_2 = BV' \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV'_{i}} \]

73 Som ett alternativ kan det beräknade slumpmässiga felet beräknas med den formel som beskrivs under kvotskattning \(EE_2 = BV' \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV'_{i}} \).
utan avdrag för de systembetingade felet). Det beräknade korrekta bokförda värdet (CBV) är

\[CBV = BV - TER \]

Precisionen i beräkningen beräknas som vanligt med

\[SE = N \times z \times \frac{s_e}{\sqrt{n}} \]

där \(s_e \) är standardavvikelsen för slumpmässiga fel i urvalet.

För att kunna dra någon slutsats om huruvida felen är väsentliga bör man först beräkna den lägre gränsen för det korrigerade bokförda värdet. Den lägre gränsen är som vanligt lika med

\[LL = CBV - SE \]

Både beräkningen för det korrekta bokförda värdet och den övre gränsen bör jämföras med differensen mellan det bokförda värdet (deklarerade utgifter) och det högsta godtagbara felet (TE), vilket motsvarar väsentlighetsnivån gånger det bokförda värdet:

\[BV - TE = BV - 2 \% \times BV = 98 \% \times BV \]

Värderingen av felet bör göras i enlighet med avsnitt 6.2.1.5 i vägledningen.

4. Den statistiska urvalsmetoden MUS

4.1 Standardiserad MUS-metod

Beräkningen av slumpmässiga fel och beräkningen av precisionen görs som vanligt.

Beräkningen av de slumpmässiga felen i populationen bör göras på ett annat sätt för enheter i det uttömmande stratumet jämfört med för posterna i det icke uttömmande stratumet.

För det uttömmande stratumet, dvs. det stratum som innehåller urvalsposter med ett bokfört värde som är högre än gränsvärdet \(BV_i > \frac{BV_n}{n} \) är det beräknade felet helt enkelt summan av de fel som konstaterats bland de poster som ingår i stratumet:

\[
EE_e = \sum_{i=1}^{n_e} E_i
\]

För det icke uttömmande stratumet, dvs. det stratum som innehåller urvalsposter med ett bokfört värde som inte överstiger gränsvärdet \(BV_i \leq \frac{BV_n}{n} \), är det beräknade slumpmässiga felet

\[
EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_i}{BV_i}
\]

Tänk på att de bokförda värden som anges i formeln ovan avser utgifterna utan avdrag för de systembetingade felen. Det betyder att felprocentvärdena, \(\frac{E_i}{BV_i} \), bör beräknas med de sammanlagda utgifterna för urvalsenheterna oavsett om ett systembetingat fel upptäckts i varje enhet eller ej.

Precisionen räknas också fram med den vanliga formeln

\[
SE = z \times \frac{BV_s}{\sqrt{n_s}} 	imes s_r
\]

där \(s_r \) är standardavvikelsen för slumpmässiga felprocentvärden i det icke uttömmande stratumet. Återigen bör dessa felprocentvärden beräknas med de ursprungliga bokförda värdena, \(BV_i \), utan avdrag för de systembetingade felen.

Det sammanlagda beräknade felet är summan av de slumpmässiga beräknade felen, de systembetingade felen och de okorrigerade anomalierna.

Den övre felgränsen (ULE) är lika med summan av det sammanlagda beräknade felet, \(TPE \), och precisionen i extrapoleringen.
ULE = TPE + SE

4.2 **MUS-kvotskattning**

Beräkningen av de slumpmässiga felen i populationen bör återigen göras på ett annat sätt för poster i det uttömmande stratumen jämfört med för poster i det icke uttömmande stratumen.

För det **uttömmande stratumen**, dvs. det stratum som innehåller urvalsenheter med ett bokfört värde som är högre än gränsvärdet \((BV_i > \frac{BV}{n})\) är det beräknade felet helt enkelt summan av de slumpmässiga fel som konstaterats bland de poster som ingår i stratumen:

\[
EE_e = \sum_{i=1}^{n_e} E_i
\]

För det icke **uttömmande stratumen**, dvs. det stratum som innehåller urvalsposter med ett bokfört värde som inte överstiger gränsvärdet \((BV_i \leq \frac{BV}{n})\), är det beräknade slumpmässiga felet

\[
EE_s = BV'_s \times \frac{\sum_{i=1}^{n_s} E_i}{\sum_{i=1}^{n_s} BV'_i}
\]

där \(BV'_s\) motsvarar det totala bokförda värdet för det stratum med poster av lågt värde från vilket de systembetingade fel av tidigare avgränsades i samma stratum, \(BV'_s = BV_s - systembetingade fel i urvalsstratumet\), har dragits av. \(BV'_i\) är det bokförda värdet av enheten \(i\) minus beloppet för det systembetingade fel som påverkar den enheten.

Precisionen räknas fram med formeln

\[
SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_{rq}
\]

där \(s_{rq}\) är standardavvikelsen för felprocentvärdena för det **transformerade felet** \(q'\). För att beräkna denna formel måste man först beräkna värdena för de **transformerade felet** för all enheter i urvalet:

\[
q'_i = E_i - \frac{\sum_{i=1}^{n_s} E_i}{\sum_{i=1}^{n_s} BV'_i} \times BV'_i
\]
Slutligen beräknas standardavvikelsen för felprocentvärdena i urvalet för det icke uttömmande stratumet (s_{rq})) för det transformerade felet q', som

$$s_{rq} = \sqrt{\frac{1}{n_s - 1} \sum_{i=1}^{n_s} \left(\frac{q'_i}{BV_i} - \bar{rq}_s \right)^2}$$

där \bar{rq}_s är lika med det enkla genomsnittet av de transformerade felprocentvärdena i urvalet för stratumet.

$$\bar{rq}_s = \frac{\sum_{i=1}^{n_s} q'_i}{n_s}$$

Det sammanlagda beräknade felet är summan av de slumpmässiga beräknade felen, de systembetingade felen och de okorrigerade anomalierna.

Den övre felgränsen (ULE) är lika med summan av det sammanlagda beräknade felet (TPE) och precisionen i extrapoleringen.

$$ULE = TPE + SE$$

4.3 Konservativ MUS-metod

Det är inte lämpligt att använda kvotskattning tillsammans med den konservativa MUS-metoden, eftersom det inte går att ta hänsyn till dess inverkan på skattningens precision. Därför rekommenderar vi att man beräknar felen och sedan räknar ut det beräknade felet och precisionen med de vanliga formlerna (utan att dra av det belopp som påverkas av systembetingade fel från utgifterna).

5. Icke-statistiskt urval

Om beräkningen baseras på en skattning av genomsnitt per enhet görs beräkningen på samma sätt som vanligt.

Om det finns ett uttömmande stratum, dvs. ett stratum som innehåller de urvalsenheter vars bokförda värde överskrider gränsvärdet för beaktande, är det beräknade felet helt enkelt summan av de slumpmässiga fel som upptäckts i denna grupp:

$$EE_e = \sum_{i=1}^{n_e} E_i$$
För urvalsstratument gäller att om enheter valdes baserat på lika sannolikhet blir det beräknade slumpmässiga felet som vanligt

\[EE_s = N_s \frac{\sum_{i=1}^{n_s} E_i}{n_s} \]

där \(N_s \) är populationens storlek och \(n_s \) är storleken på urvalet i stratument med poster av lågt värde.

Om kvotskattning används (i samband med slumpmässigt urval med lika sannolikhet) beräknas det slumpmässiga felet på samma sätt som i samband med enkelt slumpmässigt urval:

\[EE_{s2} = BV'_s \times \frac{\sum_{i=1}^{n_s} E_i}{\sum_{i=1}^{n_s} BV'_i} \]

där \(BV'_s \) motsvarar det totala bokförda värdet för populationen i det urvalsstratumen från vilket de systembetingade fel dras av. \(BV'_i \) är det bokförda värdet av enheten \(i \) från vilket avdrag görs med beloppet för det systembetingade fel som påverkar den enheten.

Om enheterna har valts baserat på sannolikhet i förhållande till storlek blir det beräknade slumpmässiga felet för stratument med poster av lågt värde

\[EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_i}{BV_i} \]

där \(BV_s \) är det sammanlagda bokförda värdet (utan avdrag för beloppet för systembetingade fel), \(BV_i \) det bokförda värdet för urvalsenhet \(i \) (utan avdrag för beloppet för systembetingade fel) och \(n_s \) är storleken för urvalet i stratument med poster av lågt värde.

I likhet med vad som beskrivs för MUS-metoden kan kvotskattningsformeln

\[EE_s = BV'_s \times \frac{\sum_{i=1}^{n_s} \frac{E_i}{BV_i}}{\sum_{i=1}^{n_s} \frac{BV'_i}{BV_i}} \]
användas som ett alternativ. Åter igen motsvarar BV'_s det totala bokförda värdet för det stratum med poster av lågt värde från vilket de systembetingade fel som tidigare avgränsades i samma stratum, $BV'_s = BV_s - \text{systembetingade fel i urvalsstratumen}$, har dragits av. BV'_i är det bokförda värdet av enheten i minus beloppet för det systembetingade fel som påverkar den enheten.

Den totala felprocenten (TER) är summan av de beräknade slumpmässiga felen, de systembetingade felen och de okorrigerade anomalierna.
Tillägg 2 – Formler för urval i flera perioder

1. Enkelt slumpmässigt urval

1.1 Tre perioder

1.1.1 Urvalets storlek

Första perioden

\[
n_{1+2+3} = \frac{(z \times N_{1+2+3} \times \sigma_{ew1+2+3})^2}{(TE - AE)^2}
\]

där

\[
\sigma_{ew1+2+3}^2 = \frac{N_1}{N_{1+2+3}} \sigma_{e1}^2 + \frac{N_2}{N_{1+2+3}} \sigma_{e2}^2 + \frac{N_3}{N_{1+2+3}} \sigma_{e3}^2
\]

\[
N_{1+2+3} = N_1 + N_2 + N_3
\]

\[
n_t = \frac{N_t}{N_{1+2+3}} n_{1+2+3}
\]

Andra perioden

\[
n_{2+3} = \frac{(z \times N_{2+3} \times \sigma_{ew2+3})^2}{(TE - AE)^2 - z^2 \times \frac{N_2^2}{n_1} \times s_{e1}^2}
\]

där

\[
\sigma_{ew2+3}^2 = \frac{N_2}{N_{2+3}} \sigma_{e2}^2 + \frac{N_3}{N_{2+3}} \sigma_{e3}^2
\]

\[
N_{2+3} = N_2 + N_3
\]

\[
n_t = \frac{N_t}{N_{2+3}} n_{2+3}
\]
Tredje perioden

\[n_3 = \frac{(z \times N_3 \times \sigma_3)^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2 - z^2 \times \frac{N_2^2}{n_2} \times s_{e2}^2} \]

Anmärkningar:
För varje period ska alla parametrar för populationen uppdateras med de mest korrekta uppgifter som finns tillgängliga.
När olika approximeringar för standardavvikelserna för varje period inte går att få fram/inte är tillämpliga, får samma värde på standardavvikelsen tillämpas på alla perioder. I sådant fall är \(\sigma_{e1+2+3} \) lika med den enda standardfelavvikelsen \(\sigma_e \).
Parametern \(\sigma \) avser den standardavvikelse som tas fram ur hjälpdata (t.ex. historiska data) och \(s \) avser den standardavvikelse som tas fram ur det granskade urvalet. När \(s \) inte finns tillgänglig kan den i formlerna ersättas med \(\sigma \).

1.1.2 Beräkning och precision

Skattning av genomsnitt per enhet

\[EE_1 = \frac{N_1}{n_1} \sum_{i=1}^{n_1} E_{1i} + \frac{N_2}{n_2} \sum_{i=1}^{n_2} E_{2i} + \frac{N_3}{n_3} \sum_{i=1}^{n_3} E_{3i} \]

\[SE = z \times \sqrt{\left(N_1^2 \times \frac{s_{e1}^2}{n_1} + N_2^2 \times \frac{s_{e2}^2}{n_2} + N_3^2 \times \frac{s_{e3}^2}{n_3} \right)} \]

Kvotskattning

\[EE_2 = BV_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{\sum_{i=1}^{n_1} BV_{1i}} + BV_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{\sum_{i=1}^{n_2} BV_{2i}} + BV_3 \times \frac{\sum_{i=1}^{n_3} E_{3i}}{\sum_{i=1}^{n_3} BV_{3i}} \]

\[SE = z \times \sqrt{\left(N_1^2 \times \frac{s_{q1}^2}{n_1} + N_2^2 \times \frac{s_{q2}^2}{n_2} + N_3^2 \times \frac{s_{q3}^2}{n_3} \right)} \]

\[q_{ti} = E_{ti} - \frac{\sum_{i=1}^{n_t} E_{ti}}{\sum_{i=1}^{n_t} BV_{ti}} \times BV_{ti} \]
1.2 Fyra perioder

1.2.1 Urvalets storlek

Första perioden

\[n_{1+2+3+4} = \frac{(z \times N_{1+2+3+4} \times \sigma_{ew1+2+3+4})^2}{(TE - AE)^2} \]

där

\[\sigma_{ew1+2+3+4}^2 = \frac{N_1}{N_{1+2+3+4}} \sigma_{e1}^2 + \frac{N_2}{N_{1+2+3+4}} \sigma_{e2}^2 + \frac{N_3}{N_{1+2+3+4}} \sigma_{e3}^2 + \frac{N_4}{N_{1+2+3+4}} \sigma_{e4}^2 \]

\[N_{1+2+3+4} = N_1 + N_2 + N_3 + N_4 \]

\[n_t = \frac{N_t}{N_{1+2+3+4}} n_{1+2+3+4} \]

Andra perioden

\[n_{2+3+4} = \frac{(z \times N_{2+3+4} \times \sigma_{ew2+3+4})^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2} \]

där

\[\sigma_{ew2+3+4}^2 = \frac{N_2}{N_{2+3+4}} \sigma_{e2}^2 + \frac{N_3}{N_{2+3+4}} \sigma_{e3}^2 + \frac{N_4}{N_{2+3+4}} \sigma_{e4}^2 \]

\[N_{2+3+4} = N_2 + N_3 + N_4 \]

\[n_t = \frac{N_t}{N_{2+3+4}} n_{2+3+4} \]

Tredje perioden

\[n_{3+4} = \frac{(z \times N_{3+4} \times \sigma_{ew3+4})^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2 - z^2 \times \frac{N_2^2}{n_2} \times s_{e2}^2} \]

där
\[
\sigma_{ew3+4}^2 = \frac{N_3}{N_{3+4}}\sigma_{e3}^2 + \frac{N_4}{N_{3+4}}\sigma_{e4}^2
\]

\[N_{3+4} = N_3 + N_4\]

\[n_t = \frac{N_t}{N_{3+4}}n_{3+4}\]

Fjärde perioden

\[n_4 = \frac{(z \times N_4 \times \sigma_{e4})^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2 - z^2 \times \frac{N_2^2}{n_2} \times s_{e2}^2 - z^2 \times \frac{N_3^2}{n_3} \times s_{e3}^2}\]

Anmärkningar:

För varje period ska alla parametrar för populationen uppdateras med de mest korrekta uppgifter som finns tillgängliga.

När olika approximeringar för standardavvikelsena för varje period inte går att få fram/inte är tillämpliga, får samma värde på standardavvikelsen tillämpas på alla perioder. I sådant fall är \(\sigma_{ew1+2+3+4}\) lika med den enda standardfelavvikelsen \(\sigma_e\).

Parametern \(\sigma\) avser den standardavvikelse som tas fram ur hjälpdata (t.ex. historiska data) och \(s\) avser den standardavvikelse som tas fram ur det granskade urvalet. När \(s\) inte finns tillgänglig kan den i formlerna ersättas med \(\sigma\).
1.2.2 Beräkning och precision

Skattning av genomsnitt per enhet

\[
EE_1 = \frac{N_1}{n_1} \sum_{i=1}^{n_1} E_{1i} + \frac{N_2}{n_2} \sum_{i=1}^{n_2} E_{2i} + \frac{N_3}{n_3} \sum_{i=1}^{n_3} E_{3i} + \frac{N_4}{n_4} \sum_{i=1}^{n_4} E_{4i}
\]

\[
SE = z \times \sqrt{\left(\frac{N_1^2}{n_1} \times \frac{s_{e1}^2}{n_1} + \frac{N_2^2}{n_2} \times \frac{s_{e2}^2}{n_2} + \frac{N_3^2}{n_3} \times \frac{s_{e3}^2}{n_3} + \frac{N_4^2}{n_4} \times \frac{s_{e4}^2}{n_4} \right)}
\]

Kvotsskattning

\[
EE_2 = BV_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{\sum_{i=1}^{n_1} BV_{1i}} + BV_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{\sum_{i=1}^{n_2} BV_{2i}} + BV_3 \times \frac{\sum_{i=1}^{n_3} E_{3i}}{\sum_{i=1}^{n_3} BV_{3i}} + BV_4 \times \frac{\sum_{i=1}^{n_4} E_{4i}}{\sum_{i=1}^{n_4} BV_{4i}}
\]

\[
SE = z \times \sqrt{\left(\frac{N_1^2}{n_1} \times \frac{s_{q1}^2}{n_1} + \frac{N_2^2}{n_2} \times \frac{s_{q2}^2}{n_2} + \frac{N_3^2}{n_3} \times \frac{s_{q3}^2}{n_3} + \frac{N_4^2}{n_4} \times \frac{s_{q4}^2}{n_4} \right)}
\]

\[
q_{ti} = E_{ti} - \frac{\sum_{i=1}^{n_t} E_{ti}}{\sum_{i=1}^{n_t} BV_{ti}} \times BV_{ti}
\]
2. Den statistiska urvalsometoden MUS

2.1 Tre perioder

2.1.1 Urvalets storlek

Första perioden

\[n_{1+2+3} = \frac{(z \times BV_{1+2+3} \times \sigma_{rw1+2+3})^2}{(TE - AE)^2} \]

där

\[\sigma_{rw1+2+3}^2 = \frac{BV_1}{BV_{1+2+3}} \sigma_{r1}^2 + \frac{BV_2}{BV_{1+2+3}} \sigma_{r2}^2 + \frac{BV_3}{BV_{1+2+3}} \sigma_{r3}^2 \]

\[BV_{1+2+3} = BV_1 + BV_2 + BV_3 \]

\[n_t = \frac{BV_t}{BV_{1+2+3}} n_{1+2+3} \]

Andra perioden

\[n_{2+3} = \frac{(z \times BV_{2+3} \times \sigma_{rw2+3})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2} \]

där

\[\sigma_{rw2+3}^2 = \frac{BV_2}{BV_{2+3}} \sigma_{r2}^2 + \frac{BV_3}{BV_{2+3}} \sigma_{r3}^2 \]

\[BV_{2+3} = BV_2 + BV_3 \]

\[n_t = \frac{BV_t}{BV_{2+3}} n_{2+3} \]

Tredje perioden

\[n_3 = \frac{(z \times BV_3 \times \sigma_{r3})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2 - z^2 \times \frac{BV_2^2}{n_2} \times s_{r2}^2} \]
Anmärkningar:
För varje period måste parametrarna för populationen uppdateras med de mest korrekta uppgifter som finns tillgängliga.
När olika approximeringar för standardavvikelsena för varje period inte går att få fram/inte är tillämpliga, får samma värde för standardavvikelsen tillämpas på alla perioder. I sådant fall är σ_{r_1+2+3} lika med den enda standardavvikelsen för felprocentvärdena σ_r.
Parametern σ avser den standardavvikelse som tas fram ur hjälpdata (t.ex. historiska data) och s avser den standardavvikelse som tas fram ur det granskade urvalet. När s inte finns tillgänglig kan den i formlerna ersättas med σ.

2.1.2 Beräkning och precision

\[
EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} + \sum_{i=1}^{n_3} E_{3i}
\]

\[
EE_s = \frac{BV_{1s}}{n_{1s}} \times \sum_{i=1}^{n_{1s}} E_{1i} + \frac{BV_{2s}}{n_{2s}} \times \sum_{i=1}^{n_{2s}} E_{2i} + \frac{BV_{3s}}{n_{3s}} \times \sum_{i=1}^{n_{3s}} E_{3i}
\]

\[
SE = z \times \sqrt{\frac{BV_{1s}^2}{n_{1s}} \times s_{r1s}^2 + \frac{BV_{2s}^2}{n_{2s}} \times s_{r2s}^2 + \frac{BV_{3s}^2}{n_{3s}} \times s_{r3s}^2}
\]
2.2 Fyra perioder

2.2.1 Urvalets storlek

Första perioden

\[n_{1+2+3+4} = \frac{(z \times BV_{1+2+3+4} \times \sigma_{rw1+2+3+4})^2}{(TE - AE)^2} \]

där

\[\sigma_{rw1+2+3+4}^2 = \frac{BV_1}{BV_{1+2+3+4}} \sigma_{r1}^2 + \frac{BV_2}{BV_{1+2+3+4}} \sigma_{r2}^2 + \frac{BV_3}{BV_{1+2+3+4}} \sigma_{r3}^2 + \frac{BV_4}{BV_{1+2+3+4}} \sigma_{r4}^2 \]

\[BV_{1+2+3+4} = BV_1 + BV_2 + BV_3 + BV_4 \]

\[n_t = \frac{BV_t}{BV_{1+2+3+4}} n_{1+2+3+4} \]

Andra perioden

\[n_{2+3+4} = \frac{(z \times BV_{2+3+4} \times \sigma_{rw2+3+4})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2} \]

där

\[\sigma_{rw2+3+4}^2 = \frac{BV_2}{BV_{2+3+4}} \sigma_{r2}^2 + \frac{BV_3}{BV_{2+3+4}} \sigma_{r3}^2 + \frac{BV_4}{BV_{2+3+4}} \sigma_{r4}^2 \]

\[BV_{2+3+4} = BV_2 + BV_3 + BV_4 \]

\[n_t = \frac{BV_t}{BV_{2+3+4}} n_{2+3+4} \]

Tredje perioden

\[n_{3+4} = \frac{(z \times BV_{3+4} \times \sigma_{rw3+4})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2 - z^2 \times \frac{BV_2^2}{n_2} \times s_{r2}^2} \]

där
\[\sigma_{rw3+4}^2 = \frac{BV_3}{BV_{3+4}} \sigma_{r3}^2 + \frac{BV_4}{BV_{3+4}} \sigma_{r4}^2 \]

\[BV_{3+4} = BV_3 + BV_4 \]

\[n_t = \frac{BV_t}{BV_{3+4}} n_{3+4} \]

Fjärde perioden

\[n_4 = \frac{(z \times BV_4 \times \sigma_{r4})^2}{(TE - AE)^2 - z^2 \times \frac{BV_4^2}{n_1} \times \sigma_{r1}^2 - z^2 \times \frac{BV_4^2}{n_2} \times \sigma_{r2}^2 - z^2 \times \frac{BV_4^2}{n_3} \times \sigma_{r3}^2} \]

Anmärkningar:
För varje period ska alla parametrar för populationen uppdateras med de mest korrekta uppgifter som finns tillgängliga.

När olika approximeringar för standardavvikelsena för varje period inte går att få fram/inte är tillämpliga, får samma värde på standardavvikelsen tillämpas på alla perioder. I sådant fall är \(\sigma_{rw1+2+3+4} \) lika med den enda standardavvikelsen för felprocentvärdena \(\sigma_r \).

Parametern \(\sigma \) avser den standardavvikelse som tas fram ur hjälpdata (t.ex. historiska data) och \(s \) avser den standardavvikelse som tas fram ur det granskade urvalet. När \(s \) inte finns tillgänglig kan den i formlerna ersättas med \(\sigma \).

2.2.2 Beräkning och precision

\[EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} + \sum_{i=1}^{n_3} E_{3i} + \sum_{i=1}^{n_4} E_{4i} \]

\[EE_s = \frac{BV_{1s}}{n_{1s}} \times \sum_{i=1}^{n_{1s}} E_{1i} + \frac{BV_{2s}}{n_{2s}} \times \sum_{i=1}^{n_{2s}} E_{2i} + \frac{BV_{3s}}{n_{3s}} \times \sum_{i=1}^{n_{3s}} E_{3i} + \frac{BV_{4s}}{n_{4s}} \times \sum_{i=1}^{n_{4s}} E_{4i} \]

\[SE = z \times \sqrt{\frac{BV_{1s}^2}{n_{1s}} \times \sigma_{r1s}^2 + \frac{BV_{2s}^2}{n_{2s}} \times \sigma_{r2s}^2 + \frac{BV_{3s}^2}{n_{3s}} \times \sigma_{r3s}^2 + \frac{BV_{4s}^2}{n_{4s}} \times \sigma_{r4s}^2} \]
Tillägg 3 – tillförlitlighetsfaktorer för MUS

<table>
<thead>
<tr>
<th>Antal fel</th>
<th>Antal fel</th>
<th>Risk för felaktigt godkännande</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.61</td>
<td>3.00</td>
</tr>
<tr>
<td>1</td>
<td>6.64</td>
<td>4.74</td>
</tr>
<tr>
<td>2</td>
<td>8.41</td>
<td>6.30</td>
</tr>
<tr>
<td>3</td>
<td>10.05</td>
<td>7.75</td>
</tr>
<tr>
<td>4</td>
<td>11.60</td>
<td>9.15</td>
</tr>
<tr>
<td>5</td>
<td>13.11</td>
<td>10.51</td>
</tr>
<tr>
<td>6</td>
<td>14.57</td>
<td>11.84</td>
</tr>
<tr>
<td>7</td>
<td>16.00</td>
<td>13.15</td>
</tr>
<tr>
<td>8</td>
<td>17.40</td>
<td>14.43</td>
</tr>
<tr>
<td>9</td>
<td>18.78</td>
<td>15.71</td>
</tr>
<tr>
<td>10</td>
<td>20.14</td>
<td>16.96</td>
</tr>
<tr>
<td>11</td>
<td>21.49</td>
<td>18.21</td>
</tr>
<tr>
<td>12</td>
<td>22.82</td>
<td>19.44</td>
</tr>
<tr>
<td>13</td>
<td>24.14</td>
<td>20.67</td>
</tr>
<tr>
<td>14</td>
<td>25.45</td>
<td>21.89</td>
</tr>
<tr>
<td>15</td>
<td>26.74</td>
<td>23.10</td>
</tr>
<tr>
<td>16</td>
<td>28.03</td>
<td>24.30</td>
</tr>
<tr>
<td>17</td>
<td>29.31</td>
<td>25.50</td>
</tr>
<tr>
<td>18</td>
<td>30.58</td>
<td>26.69</td>
</tr>
<tr>
<td>19</td>
<td>31.85</td>
<td>27.88</td>
</tr>
<tr>
<td>20</td>
<td>33.10</td>
<td>29.06</td>
</tr>
<tr>
<td>21</td>
<td>34.35</td>
<td>30.24</td>
</tr>
<tr>
<td>22</td>
<td>35.60</td>
<td>31.41</td>
</tr>
<tr>
<td>23</td>
<td>36.84</td>
<td>32.59</td>
</tr>
<tr>
<td>24</td>
<td>38.08</td>
<td>33.75</td>
</tr>
<tr>
<td>25</td>
<td>39.31</td>
<td>34.92</td>
</tr>
<tr>
<td>26</td>
<td>40.53</td>
<td>36.08</td>
</tr>
<tr>
<td>27</td>
<td>41.76</td>
<td>37.23</td>
</tr>
<tr>
<td>28</td>
<td>42.98</td>
<td>38.39</td>
</tr>
<tr>
<td>29</td>
<td>44.19</td>
<td>39.54</td>
</tr>
<tr>
<td>30</td>
<td>45.40</td>
<td>40.69</td>
</tr>
<tr>
<td>31</td>
<td>46.61</td>
<td>41.84</td>
</tr>
<tr>
<td>32</td>
<td>47.81</td>
<td>42.98</td>
</tr>
<tr>
<td>33</td>
<td>49.01</td>
<td>44.13</td>
</tr>
<tr>
<td>34</td>
<td>50.21</td>
<td>45.27</td>
</tr>
<tr>
<td>35</td>
<td>51.41</td>
<td>46.40</td>
</tr>
<tr>
<td>36</td>
<td>52.60</td>
<td>47.54</td>
</tr>
<tr>
<td>37</td>
<td>53.79</td>
<td>48.68</td>
</tr>
<tr>
<td>38</td>
<td>54.98</td>
<td>49.81</td>
</tr>
<tr>
<td>39</td>
<td>56.16</td>
<td>50.94</td>
</tr>
<tr>
<td>40</td>
<td>57.35</td>
<td>52.07</td>
</tr>
<tr>
<td>41</td>
<td>58.53</td>
<td>53.20</td>
</tr>
<tr>
<td>42</td>
<td>59.71</td>
<td>54.32</td>
</tr>
<tr>
<td>43</td>
<td>60.88</td>
<td>55.45</td>
</tr>
<tr>
<td>44</td>
<td>62.06</td>
<td>56.57</td>
</tr>
<tr>
<td>45</td>
<td>63.23</td>
<td>57.69</td>
</tr>
<tr>
<td>46</td>
<td>64.40</td>
<td>58.82</td>
</tr>
<tr>
<td>47</td>
<td>65.57</td>
<td>59.94</td>
</tr>
<tr>
<td>48</td>
<td>66.74</td>
<td>61.05</td>
</tr>
<tr>
<td>49</td>
<td>67.90</td>
<td>62.17</td>
</tr>
<tr>
<td>50</td>
<td>69.07</td>
<td>63.29</td>
</tr>
</tbody>
</table>

268
Tillägg 4 – värden för den standardiserade normalfördelningen (z)

<table>
<thead>
<tr>
<th>z</th>
<th>0.00</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.5000</td>
<td>0.5040</td>
<td>0.5080</td>
<td>0.5120</td>
<td>0.5160</td>
<td>0.5199</td>
<td>0.5239</td>
<td>0.5279</td>
<td>0.5319</td>
<td>0.5359</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3988</td>
<td>0.4025</td>
<td>0.4060</td>
<td>0.4096</td>
<td>0.4132</td>
<td>0.4167</td>
<td>0.4203</td>
<td>0.4238</td>
<td>0.4272</td>
<td>0.4307</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2799</td>
<td>0.2832</td>
<td>0.2863</td>
<td>0.2893</td>
<td>0.2922</td>
<td>0.2950</td>
<td>0.2977</td>
<td>0.3003</td>
<td>0.3029</td>
<td>0.3055</td>
</tr>
<tr>
<td>0.3</td>
<td>0.1977</td>
<td>0.2009</td>
<td>0.2040</td>
<td>0.2071</td>
<td>0.2099</td>
<td>0.2127</td>
<td>0.2153</td>
<td>0.2178</td>
<td>0.2202</td>
<td>0.2224</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1405</td>
<td>0.1429</td>
<td>0.1451</td>
<td>0.1473</td>
<td>0.1494</td>
<td>0.1515</td>
<td>0.1535</td>
<td>0.1554</td>
<td>0.1573</td>
<td>0.1591</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1010</td>
<td>0.1027</td>
<td>0.1043</td>
<td>0.1058</td>
<td>0.1073</td>
<td>0.1087</td>
<td>0.1101</td>
<td>0.1114</td>
<td>0.1127</td>
<td>0.1139</td>
</tr>
<tr>
<td>0.6</td>
<td>0.0676</td>
<td>0.0691</td>
<td>0.0705</td>
<td>0.0719</td>
<td>0.0732</td>
<td>0.0745</td>
<td>0.0757</td>
<td>0.0769</td>
<td>0.0781</td>
<td>0.0792</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0405</td>
<td>0.0418</td>
<td>0.0431</td>
<td>0.0443</td>
<td>0.0455</td>
<td>0.0466</td>
<td>0.0477</td>
<td>0.0487</td>
<td>0.0497</td>
<td>0.0507</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0190</td>
<td>0.0199</td>
<td>0.0208</td>
<td>0.0217</td>
<td>0.0225</td>
<td>0.0233</td>
<td>0.0241</td>
<td>0.0249</td>
<td>0.0257</td>
<td>0.0265</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0087</td>
<td>0.0093</td>
<td>0.0099</td>
<td>0.0105</td>
<td>0.0110</td>
<td>0.0116</td>
<td>0.0121</td>
<td>0.0126</td>
<td>0.0131</td>
<td>0.0136</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

269
Tillägg 5 – formler i MS Excel till stöd för urvalsmetoderna

De formler som anges nedan kan användas i MS Excel som stöd för beräkningarna av de olika parametrar som behövs för att använda de metoder och begrepp som beskrivs i denna vägledning. Mer information om hur dessa formler fungerar hittar du i Excels hjälpavsnitt som innehåller mer information om de underliggande matematiska formlerna.

I formlerna ovan avses med (.) en vektor som innehåller adressen till de celler som innehåller värdena för urvalet eller populationen.

=AVERAGE(.): medelvärde för en datauppsättning
=VAR.S(.): varians för en datauppsättning i ett urval
=VAR.P(.): varians för en datauppsättning i en population
=STDEV.S(.): standardavvikelse för en datauppsättning i ett urval
=STDEV.P(.): standardavvikelse för en datauppsättning i en population
=COVARIANCE.S(.): kovarians mellan två variabler i ett urval
=COVARIANCE.P(.): kovarians mellan två urvalsvariabler i en population
=RAND(): slumpmässig siffra mellan 0 och 1, hämtad från en enhetlig fördelning
=SUM(.): summa för en datauppsättning
Tillägg 6 – Ordlista

<table>
<thead>
<tr>
<th>Begrepp</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Förväntat fel (AE)</td>
<td>Det förväntade felet är det felbelopp som revisorn förväntar sig att uppätäcka i populationen (efter att ha utfört granskningen). För planeringen av urvalsstorlek fastställs det förväntade felet till högst 4,0 % av populationens bokförda värde.</td>
</tr>
<tr>
<td>Attributmetoden</td>
<td>Detta är en statistisk metod för att fastställa garantinivån i systemet och uppskatta felprocenten i ett urval. I revisionssammanhang används den vanligen för att granska graden av avvikelser från en föreskriven kontroll för att stödja revisorns uppskattade kontrollrisknivå.</td>
</tr>
<tr>
<td>Revisionssäkerhet</td>
<td>Garantimodellen är motsatsen till riskmodellen. Om revisionsrisken beräknas till 5 %, anses revisionsgarantin vara 95 %. Användningen av revisionsgarantimodellen är kopplad till planeringen och den underliggande fördelningen av medel till ett program eller en grupp av program.</td>
</tr>
<tr>
<td>Revisionsrisk (AR)</td>
<td>Risken för att en revisor avger ett okvalificerat yttrande när utgiftsdeklarationen innehåller väsentliga fel.</td>
</tr>
<tr>
<td>Grundprecision (BP)</td>
<td>Används i den konservativa MUS-metoden och är produkten av urvalsintervallet och tillförlitlighetsfaktorn (RF) (som redan används för att beräkna urvalets storlek).</td>
</tr>
<tr>
<td>Bokfört värde (BV)</td>
<td>De utgifter som deklarerats för kommissionen för en post (insats/ansökan om utbetalning), BV_i, $i = 1, 2, \ldots, N$. Det sammanlagda bokförda värdet för en population utgörs av summan av posternas bokförda värde i populationen.</td>
</tr>
<tr>
<td>Begrepp</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Konfidensintervall</td>
<td>Det intervall som innehåller det verkliga (okända) populationsvärdet (i allmänhet felbeloppet eller felprocenten) med en viss sannolikhet (kallas konfidensnivå).</td>
</tr>
<tr>
<td>Konfidensnivå</td>
<td>Sannolikheten att ett konfidensintervall som tagits fram med urvalsdata innehåller det verkliga populationsfelet (okänt).</td>
</tr>
<tr>
<td>Kontrollrisk (CR)</td>
<td>Den uppfattade risken för att ett väsentligt fel i klientens årsredovisningshandlingar eller underliggande sammanställningar inte kommer att förhindras, upptäckas och rättas till genom ledningens förfaranden för internkontroll.</td>
</tr>
<tr>
<td>Korrekt bokfört värde (CBV)</td>
<td>De korrekta utgifter som skulle ha upptäckts om alla insatser/betalningsansökningar i populationen skulle granskas och inga fel förekommer i populationen.</td>
</tr>
<tr>
<td>Upptäcktsrisk</td>
<td>Detta är den uppfattade risken för att ett väsentligt fel i klientens årsredovisningshandlingar eller underliggande sammanställningar inte kommer att upptäckas av en revisor. Upptäcktsriskerna är kopplade till granskningen av insatser.</td>
</tr>
<tr>
<td>Skattning av skillnad</td>
<td>Detta är en statistisk urvalsmetod som baseras på urval med lika sannolikhet. Metoden bygger på extrapolering av felet i urvalet. Det extrapolerade felet subtraheras från de sammanlagda deklarerade utgifterna i populationen för att bedöma de korrekta utgifterna i populationen (dvs. de utgifter som skulle ha erhållits om alla insatser i populationen hade granskats).</td>
</tr>
<tr>
<td>Fel (E)</td>
<td>I denna vägledning avses med fel en kvantifierbar överskattning av de utgifter som har deklarerats till kommissionen. Det definieras som skillnaden mellan det bokförda värdet för den i:e posten i urvalet och respektive korrekta bokförda värde. (E_i = BV_i - CBV_i), (i = 1, 2, \ldots, N). Om populationen är stratifierad används ett index (h) för att beteckna respektive stratum: (E_{hi} = BV_{hi} - CBV_{hi}), where (i = 1, 2, \ldots; N_h, h = 1, 2, \ldots, H) och (H) är antalet stratum.</td>
</tr>
<tr>
<td>Begrepp</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Expansionsfaktor (EF)</td>
<td>Detta är en faktor som används vid beräkningen av konservativa MUS-urval när man förväntar sig fel och som baseras på risken för felaktig acceptans. Den bidrar till att minska urvalsfelet. Om inga fel förväntas, kommer det förväntade felet (AE) att vara noll och expansionsfaktorn används inte. Värden för expansionsfaktorn anges i avsnitt 6.3.4.2 i denna vägledning.</td>
</tr>
<tr>
<td>Inkrementell marginal (IA)</td>
<td>Den inkrementella marginalen mäter den precisionsmarginal som tillförs av varje fel som upptäcks i urvalet. Denna marginal används i den konservativa MUS-metoden och bör läggas till värdet för grundprecisionen varje gång fel upptäcks i urvalet (jfr. avsnitt 6.3.4.5 i denna vägledning).</td>
</tr>
<tr>
<td>Inneboende risk (IR)</td>
<td>Den uppfattade risken för att ett väsentligt fel kan förekomma i utgiftsdeklarationer till kommissionen eller underliggande sammanställningar på grund av att det saknas förfaranden för internkontroll. Den inneboende risken måste uppskattas innan detaljerade revisionsförfaranden inleds i form av intervjuer med ledningen och berörd personal, granskning av relaterad information såsom organisationsscheman, manueraler och interna/externa dokument.</td>
</tr>
<tr>
<td>Oriktigheter</td>
<td>Samma innebörd som fel.</td>
</tr>
<tr>
<td>Begrepp</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Väsentlighet</td>
<td>Fel är väsentliga om de överskrider en viss felnivå som skulle betraktas som acceptabel. En väsentlighetsnivå på högst 2 % är tillämplig för de utgifter som deklarerats till kommissionen under referensperioden. Revisionsmyndigheten kan överväga att minska väsentligheten av planeringsskäl (godtagbara fel). Väsentlighet används som ett tröskelvärde för att jämföra det beräknade felet i utgifterna.</td>
</tr>
<tr>
<td>Högsta godtagbara fel (TE)</td>
<td>Det högsta godtagbara fel som kan upptäckas i en population för ett visst år, dvs. den nivå över vilken man anser att det förekommer väsentliga avvikelser i populationen. Med en väsentlighetsnivå på 2 % är den högsta acceptabla felprocenten därför 2 % av de utgifter som deklarerats för kommissionen för den referensperioden.</td>
</tr>
<tr>
<td>Avvikelse</td>
<td>Samma innebörd som fel.</td>
</tr>
<tr>
<td>Den statistiska metoden ”Monetary Unit Sampling” (MUS)</td>
<td>En statistisk urvalsmetod där beloppshanter används som hjälpvariabel för urval. Denna metod baseras vanligen på systematiskt urval med sannolikhet i förhållande till storlek (probability proportional to size, PPS-urval), dvs. i förhållande till urvalshantens monetära värde (det är större sannolikhet för att poster av högt värde väljs ut).</td>
</tr>
<tr>
<td>Urval i flera steg</td>
<td>Ett urval som görs stegvis, där urvalshanterna i varje steg har hämtats ur de (större) enheter som valdes vid det föregående steg. Urvalshanterna för det första steget kallas primära enheter eller enheter i första steget, och motsvarande för enheter i andra steget osv.</td>
</tr>
<tr>
<td>Begrepp</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Population</td>
<td>Populationen för urvalsändamål omfattar deklarerade utgifter till kommissionen för insatser inom ett program eller en grupp av program för referensperioden, med undantag för negativa urvalsenheter (vilket förklaras i avsnitt 4.6) och där de system för proportionell kontroll som anges i artikel 148.1 i förordningen om gemensamma bestämmelser och artikel 28.8 i den delegerade förordningen (EU) nr 480/2014 ska tillämpas i samband med urvalet för programperioden 2014–2020.</td>
</tr>
<tr>
<td>Populationsstorlek (N)</td>
<td>Antalet insatser eller betalningsansökningar som ingår i de utgifter som deklarerats till kommissionen under referensperioden. Om populationen är stratifierad används ett index h för att beteckna respektive stratum N_h, $h = 1, 2, ..., H$ där H är antalet stratum.</td>
</tr>
<tr>
<td>Planerad precision</td>
<td>Det högsta planerade urvalsfellet när urvalsstorlek fastställs, dvs. den högsta avvikelsen mellan det verkliga populationsvärdet och den skattning som görs utifrån urvalsdata. Detta är vanligtvis skillnaden mellan det högsta godtagbara felet och det förväntade felet och bör fastställas till ett värde som är lägre än (eller lika med) väsentlighetsnivån.</td>
</tr>
<tr>
<td>(Faktisk) precision (SE)</td>
<td>Detta är det fel som uppstår eftersom vi inte observerar hela populationen. Stickprovstagnung innebär i själva verket ett fel i beräkningen (extrapoleringsfel) eftersom revisorn förlitar sig på stickprov för att extrapolera till hela populationen. Detta faktiska urvalsfel är en indikation på skillnaden mellan beräkningen för urvalet (skattning) och den verkliga (okända) populationsparametern (felvärde). Det motsvarar osäkerheten i beräkningen av resultatet för populationen.</td>
</tr>
<tr>
<td>Beräknat/extrapolerat fel (EE)</td>
<td>Det beräknade/extrapolerade felet motsvarar den skattade effekten av slumpmässiga fel på populationsnivå.</td>
</tr>
<tr>
<td>Begrepp</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Beräknat slumpmässigt fel</td>
<td>Det beräknade slumpmässiga felet är resultatet av extrapoleringen av de slumpmässiga fel som upptäckts i urvalet (vid granskning av insatser) till hela populationen. Extrapolerings-/beräkningsförfarandet beror på vilken urvalsmetod som används.</td>
</tr>
<tr>
<td>Slumpmässigt fel</td>
<td>Fel som inte anses systembetingade, kända eller som anomaler klassificeras som slumpmässiga fel. Konceptet bygger på att slumpmässiga fel som upptäckts i det granskade urvalet troligen även förekommer i den population som inte granskats. Dessa fel ska ingå i uträkningen av den beräknade felprocenten.</td>
</tr>
<tr>
<td>Referensperiod</td>
<td>Detta begrepp motsvarar den period för vilken revisionsmyndigheten ska lämna garantier.</td>
</tr>
<tr>
<td></td>
<td>För programperioden 2014–2020 motsvarar referensperioden det räkenskapsår som löper från den 1 juli år N till den 30 juni år N+1 och som den årliga kontrollrapport som ska lämnas in senast den 15 februari år N+2 avser.</td>
</tr>
<tr>
<td>Tillförlitlighetsfaktor (RF)</td>
<td>Tillförlitlighetsfaktorn RF är en konstant från Poisson-fördelningen för ett förväntat noll-fel. Den beror på konfidensnivån och de värden som ska tillämpas i varje situation anges i avsnitt 6.3.4.2 i denna vägledning.</td>
</tr>
<tr>
<td>Risk för väsentliga fel</td>
<td>Detta är produkten av inneboende risk och kontrollrisk. Risken för väsentliga fel är kopplad till resultatet av systemrevisionerna.</td>
</tr>
<tr>
<td>Urvalets felprocent</td>
<td>Urvalets felprocent motsvarar det belopp av oriktheter som upptäckts vid granskningar av insatser dividerat med de granskade utgifterna.</td>
</tr>
<tr>
<td>Begrepp</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Urvalets storlek (n)</td>
<td>Det antal enheter/poster som ingår i urvalet. Om populationen är stratifierad används ett index h för att beteckna respektive stratum n_h, $h = 1, 2, ..., H$ och H är antalet stratum.</td>
</tr>
<tr>
<td>Urvalsfel</td>
<td>Samma som precision.</td>
</tr>
<tr>
<td>Urvalsintervall (SI)</td>
<td>Urvalsintervallet är det urvalssteg som används i urvalsmetoder som är baserade på systematiskt urval. För metoder där man använder urval baserat på sannolikhet i förhållande till storlek (t.ex. MUS) är urvalsintervallet kvoten mellan det bokförd värdet i populationen och urvalets storlek.</td>
</tr>
<tr>
<td>Urvalsmetod</td>
<td>Urvalsmetoden består av två delar: utformning av urvalet (t.ex. urval med lika sannolikhet, urval med sannolikhet i förhållande till storlek) och beräkning (skattning). Tillsammans bildar dessa båda delar ramen för beräkningen av urvalets storlek och av felet.</td>
</tr>
<tr>
<td>Urvalsperiod</td>
<td>När det gäller urval i två eller flera perioder avses med urvalsperiod(er) en del av referensperioden (vanligtvis en period på tre månader, fyra månader eller ett halvår). Urvalsperioden kan också vara samma som referensperioden.</td>
</tr>
<tr>
<td>Urvalsenhet</td>
<td>En urvalsenhet är en av de enheter som en population delas in i för ett urval. Urvalsenheten kan vara en insats, ett projekt inom en insats eller en betalningsansökan från en stödmottagare.</td>
</tr>
<tr>
<td>Enkelt slumpmässigt urval</td>
<td>Enkelt slumpmässigt urval är en statistisk urvalsmetod. Den statistiska enhet som ska ingå i urvalet är insatsen (eller ansökan om utbetalning, vilket förklaras ovan). Enheter i urvalet väljs slumpmässigt med lika sannolikhet.</td>
</tr>
<tr>
<td>Standardavvikelse (σ eller s)</td>
<td>Ett mått på populationens variation omkring sitt medelvärde. Den kan beräknas med fel eller med bokförd värden. När standardavvikelsen beräknas för populationen betecknas den vanligtvis</td>
</tr>
</tbody>
</table>
Begrepp | Definition
--- | ---
med σ och betecknas med s när den beräknas för urvalet. Ju större standardavvikelsen är, desto mer heterogen är populationen (urvalet).

Stratifiering
Innebär att en population delas upp i flera grupper (stratum) efter värdet på en hjälpvariabel (oftast den variabel som granskas, dvs. värdet av utgifter per insats i det granskade programmet). I ett stratifierat urval görs oberoende urval från varje stratum.
Stratifieringen har två syften: å ena sidan går det vanligen att förbättra precisionen (för urvalets storlek) eller minska urvalets storlek (för att nå samma precision), å andra sidan garanterar stratifieringen att de delpopulationer som motsvarar varje stratum blir representerade i urvalet.

Systembetingat fel
Systembetingade fel är sådana fel i det granskade urvalet som påverkar den granskade populationen och som förekommer vid klart definierade och likartade omständigheter. Vanligtvis har dessa fel en gemensam nämnare, t.ex. typ av insats, plats eller tidsperiod. De förknippas i regel med ineffektiva rutiner inom (delar av) förvaltnings- och kontrollsystemen.

Godtagbara fel
Det godtagbara felet är den högsta acceptabla felprocent som kan upptäckas i populationen. Med en väsentlighetsnivå på 2% är den acceptabla felprocenten därför 2% av de utgifter som deklarerats för kommissionen för den referensperioden.

Godtagbar avvikelse
Samma innebörd som godtagbart fel.

Totalt bokfört värde
Sammanlagda utgifter som har deklarerats för kommissionen för ett program eller en grupp av program som motsvarar den population från vilken urvalet görs.
<table>
<thead>
<tr>
<th>Begrepp</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total felprocent (TER)</td>
<td>Den totala felprocenten motsvarar summan av följande fel: beräknade slumpmässiga fel, systembetingade fel och okorrigerade anomalier. Alla fel kvantifieras av revisionsmyndigheten och ingår i den totala felprocenten (TER), med undantag av korrigerade anomalier. Har samma innebörd som total beräknad felprocent (TPER) eller total beräknad avvikelse.</td>
</tr>
<tr>
<td>Urval i två steg</td>
<td>Ett urval som väljs i två steg, där urvalsenheterna i det andra steget (delurvalsenheter) väljs bland urvalsenheterna i huvudurvaltet. När det gäller granskningar av europeiska struktur- och investeringsfonder (ESI-fonder) brukar ett urval i två steg vara utformat så att insats används i det första steget och faktura används som delurvalsenhet i det andra steget.</td>
</tr>
<tr>
<td>Övre felgräns (ULE)</td>
<td>Den övre gränsen är lika med summan av det beräknade felet och precisionen i extrapoleringen. Har samma innebörd som övre gräns för konfidensintervall, övre gräns för avvikelser i populationen och övre gräns för avvikelser.</td>
</tr>
<tr>
<td>Varians (σ^2)</td>
<td>Kvadraten på standardavvikelsen.</td>
</tr>
<tr>
<td>z</td>
<td>En parameter från normalfördelningen som berör den konfidensnivå som avgörs via systemgranskningar. De möjliga värdena för z visas i avsnitt 5.3 i denna vägledning.</td>
</tr>
</tbody>
</table>