Wytyczne dotyczące metod doboru próby dla instytucji audytowych

ZASTRZEŻENIE PRAWNE: Niniejszy dokument jest dokumentem roboczym przygotowanym przez służby Komisji. Na podstawie obowiązującego prawa Unii w dokumencie zostały sformułowane wskazówki techniczne dla organów publicznych, podmiotów stosujących system w praktyce, beneficjentów lub potencjalnych beneficjentów, a także innych organów biorących udział w monitorowaniu, kontroli lub realizacji polityki spójności i polityki morskiej, które dotyczą interpretowania i stosowania przepisów UE w tych obszarach. Celem niniejszego dokumentu jest przedstawienie wyjaśnień i interpretacji służb Komisji dotyczących wyżej wymienionych przepisów, tak aby ułatwić realizację programów i wspierać stosowanie dobrych praktyk. Niniejsze wytyczne pozostają jednak bez uszczerbku dla wykładni Trybunału Sprawiedliwości i Sądu lub decyzji Komisji.
SPIS TREŚCI

1 WPROWADZENIE .. 8
2 ODNIESIENIA DO PRZEPISÓW .. 9
3 MODEL RYZYKA KONTROLI I PROCEDURY KONTROLI ... 9
 3.1 MODEL RYZYKA .. 9
 3.2 POZIOM PRAWDOODPOWIEDNIOŚCI W ODNIESIENIU DO AUDYTÓW OPERACJI 14
 3.2.1 Wprowadzenie ... 14
 3.2.2 Określenie mającego zastosowanie poziomu pewności przy grupowaniu programów 16
4 POJĘCIA STATYSTYCZNE DOTYCZĄCE AUDYTÓW OPERACJI .. 16
 4.1 METODA DOBORU PROBY ... 16
 4.2 METODA DOBORU ... 17
 4.3 PROGNOZOWANIE (ESTYMACJA) ... 18
 4.4 DOKŁADNOŚĆ (BŁĄD PROBY) ... 19
 4.5 POPULACJA .. 20
 4.6 UJEMNE JEDNOSTKI PROBY ... 22
 4.7 STRATYFIKACJA .. 26
 4.8 JEDNOSTKA PROBY ... 26
 4.9 ISTOTNOŚĆ ... 27
 4.10 BŁĄD DOPUSZCZALNY I PLANOWANA DOKŁADNOŚĆ ... 27
 4.11 ZMIENNOŚĆ .. 28
 4.12 PRZEDZIAŁ UFNOSTI I GÓRNA GRANICA BŁĘDU ... 30
 4.13 POZIOM UFNOSTI .. 31
 4.14 POZIOM BŁĘDU ... 32
5 TECHNIKI DOBORU PROBY DO CELÓW AUDYTU OPERACJI ... 32
 5.1 PRZEGŁĄD ... 32
 5.2 WARUNKI STOSOWANIA SCHEMATÓW DOBORU PROBY ... 35
 5.3 ZAPIS .. 37
6 METODY DOBORU PROBY .. 39
 6.1 DOBÓR LOSOWY PROSTY ... 39
 6.1.1 Podejście standardowe .. 39
 6.1.1.1 Wprowadzenie .. 39
 6.1.1.2 Liczebność próby .. 39
 6.1.1.3 Błąd przewidywany ... 40
 6.1.1.4 Dokładność ... 41
 6.1.1.5 Ocena ... 42
 6.1.1.6 Przykład .. 43
 6.1.2 Dobór losowy warstwowy .. 49
 6.1.2.1 Wprowadzenie .. 49
 6.1.2.2 Liczebność próby .. 50
 6.1.2.3 Błąd przewidywany ... 51
 6.1.2.4 Dokładność ... 52
 6.1.2.5 Ocena ... 53
 6.1.2.6 Przykład .. 53
 6.1.3 Dobór losowy prosty – dwa okresy .. 60
 6.1.3.1 Wprowadzenie .. 60
6.3.4.1 Wprowadzenie
6.3.4.2 Liczebność próby
6.3.4.3 Dobór próby
6.3.4.4 Błąd przewidywany
6.3.4.5 Dokładność
6.3.4.6 Ocena
6.3.4.7 Przykład
6.3.5 Podejście konserwatywne
6.3.5.1 Wprowadzenie
6.3.5.2 Liczebność próby
6.3.5.3 Dobór próby
6.3.5.4 Błąd przewidywany
6.3.5.5 Dokładność
6.3.5.6 Ocena
6.3.5.7 Przykład
6.4 Niestatystyczny dobór próby
6.4.1 Wprowadzenie
6.4.2 Stratyfikowany i nistratyfikowany niestatystyczny dobór próby
6.4.3 Liczebność próby
6.4.4 Dobór próby
6.4.5 Propozowanie
6.4.5.1 Dobór próby na podstawie równego prawdopodobieństwa
6.4.5.2 Stratyfikowany dobór próby na podstawie równego prawdopodobieństwa
6.4.5.3 Dobór na podstawie prawdopodobieństwa proporcjonalnego do wydatków
6.4.5.4 Stratyfikowany dobór na podstawie prawdopodobieństwa proporcjonalnego do wydatków
6.4.6 Ocena
6.4.7 Przykład 1 – dobór próby z prawdopodobieństwem proporcjonalnym do wielkości
6.4.8 Przykład 2 – dobór próby na podstawie równego prawdopodobieństwa
6.4.9 Niestatystyczny dobór próby – dwa okresy
6.4.9.1 Niestatystyczny dobór próby – dwa okresy
6.4.9.2 Niestatystyczny dobór próby – dwa okresy
6.4.10 Dwuetapowy dobór próby (dobra podprób) w niestatystycznych metodach doboru próby
6.5 Metody doboru próby w odniesieniu do programów Europejskiej współpracy terytorialnej
6.5.1 Wprowadzenie
6.5.2 Jednostka próby
6.5.3 Metodyka doboru próby
6.5.3.1 Dwu- i trójetapowy dobór próby
6.5.3.2 Główne potencjalne konfiguracje jednostek próby w przypadku dwu- i trójetapowego doboru próby
6.5.3.3 Możliwe podejścia w ramach dwuetapowego doboru próby
7 WYBRANE KWESTIE
7.1 Sposób określania błędu oczekiwanego
7.2 Dodatkowy dobór próby
7.2.1 Uzupełniający dobór próby
7.2.2 Dodatkowy dobór próby (ze względu na niejednoznaczne wyniki audytu)
7.3 Dobór próby dokonywany w ciągu roku ... 203
 7.3.1 Wprowadzenie .. 203
 7.3.2 Dodatkowe uwagi dotyczące doboru próby obejmującego wiele okresów 204
 7.3.2.1 Prezentacja ... 204
 7.3.2.2 Przykład .. 207
 7.4 Zmiana metody doboru próby w trakcie okresu programowania 214
 7.5 Poziomy błędów ... 215
 7.6 Dwuetapowy dobór próby (dobór podpróby) .. 215
 7.6.1 Wprowadzenie ... 215
 7.6.2 Liczność próby ... 219
 7.6.3 Prognozowanie ... 220
 7.6.4 Dokładność .. 222
 7.6.5 Przykład .. 222
 7.7 Poniowne obliczenie poziomu ufności ... 227
 7.8 Strategie audytu grup programów i programów wielofunduszowych 229
 7.8.1 Wprowadzenie ... 229
 7.8.2 Przykład .. 232
 7.9 Technika doboru próby mająca zastosowanie do audytów systemu 241
 7.9.1 Wprowadzenie ... 241
 7.9.2 Liczność próby ... 243
 7.9.3 Ekstrapolacja ... 244
 7.9.4 Dokładność ... 244
 7.9.5 Ocena ... 245
 7.9.6 Specjalistyczne metody doboru jakościowego .. 245
 7.10 Procedury proporcjonalnej kontroli w okresie programowania 2014–2020 – skutki
dl doboru próby ... 246
 7.10.1 Ograniczenia doboru próby wynikające z art. 148 ust. 1 RWP 246
 7.10.2 Metoda doboru próby zgodnie z procedurami proporcjonalnej kontroli 249
 7.10.3 Przykłady ... 254
 7.10.3.1 Przykłady wymiany jednostek próby w ramach metod PPS (MUS i niestatystycznych metod
doboru próby PPS) ... 254
 7.10.3.2 Przykład wykluczenia operacji na etapie doboru próby zgodnie z podejściem standardowym w
ramacie metod PPS .. 259
 7.10.3.3 Przykład wykluczenia operacji na etapie doboru próby zgodnie z podejściem
konservatywnym w ramach metod MUS ... 263
 7.10.3.4 Przykład wykluczenia operacji na etapie doboru próby zgodnie z doborem losowym prostym
(estywacja ilorazowa i estymacja wartości na podstawie średniej) 266

ZAŁĄCZNIK I – PROGNOZA BŁĘDÓW LOSOWYCH W PRZYPADKU
ZIDENTYFIKOWANIA BŁĘDÓW SYSTEMOWYCH ... 273
1. Wprowadzenie .. 273
2. Dobór losowy prosty ... 275
 2.2. Estymacja wartości na podstawie średniej ... 275
 2.3. Estymacja ilorazowa ... 275
3. Estymacja różniczy ... 276
4. Metoda doboru próby na podstawie jednostki monetarnej 277
 4.1. Podejście standardowe w ramach metody MUS ... 278
 4.2. Estymacja ilorazowa w ramach metody MUS ... 280
 4.3. Podejście konservatywne w ramach metody MUS ... 281
5. Niestatystyczny dobór próby .. 281

ZAŁĄCZNIK 2 – WZORY NA DOBOR PRÓBY OBEJMUTY WIELE OKRESÓW 284
1. DOBÓR LOSOWY PROSTY ... 284
 1.1. TRZY OKRESY .. 284
 1.1.1. Liczebność próby .. 284
 1.1.2. Prognozowanie i dokładność .. 285
 1.2. CZTERY OKRESY ... 286
 1.2.1. Liczebność próby .. 286
 1.2.2. Prognozowanie i dokładność .. 288

2. METODA DOBORU PRÓBY NA PODSTAWIE JEDNOSTKI MONETARNEJ 289
 2.1. TRZY OKRESY .. 289
 2.1.1. Liczebność próby .. 289
 2.1.2. Prognozowanie i dokładność .. 290
 2.2. CZTERY OKRESY ... 291
 2.2.1. Liczebność próby .. 291
 2.2.2. Prognozowanie i dokładność .. 292

ZAŁĄCZNIK 3 – WSPÓŁCZynnIKI WIARYGDNOŚCI W ODNIESIENIU DO METODY MUS ... 293
ZAŁĄCZNIK 4 – WARTOŚCI DLA STANDARYZowanego ROZKŁADU NORMALNEGO (Z) ... 294
ZAŁĄCZNIK 5 – FORMuły W PROGRAMIE MS EXCEL WYKORZYSTYWANE W METODACH DOBORU PRÓBY ... 295
ZAŁĄCZNIK 6 – GLOSAriUSZ .. 296
Wykaz skrótów

AA – instytucja audytowa
ACR – roczne sprawozdanie audytowe
AE – błąd oczekiwany
AR – ryzyko kontroli
BP – dokładność podstawowa
BV – wartość księgową (wydatki poświadczone Komisji w roku odniesienia)
COCOF – komitet koordynujący fundusze
CR – ryzyko zawodności systemów kontroli wewnętrznej
DR – ryzyko niewykrycia
E_i – poszczególne błędy w próbie
\bar{E} – średni błąd próby
KE – Komisja Europejska
EE – błąd przewidywany
EDR – ekstrapolowany współczynnik odchylenia
EF – współczynnik rozszerzenia
ETC – Europejska współpraca terytorialna
IA – rezerwa dodatkowa
IR – ryzyko nieodłączne
IT – technologie informacyjne
MCS – system zarządzania i kontroli
MUS – metoda doboru na podstawie jednostki monetarnej
PPS – prawdopodobieństwo proporcjonalne do wielkości
RF – współczynnik wiarygodności
SE – efektywny (tj. po przeprowadzieniu czynności audytowych) błąd próby (dokładność)
SI – interwał losowania
TE – maksymalny dopuszczalny błąd
TPE – całkowity błąd przewidywany (skrót odnosi się również do TPER, czyli skrótu stosowanego w odniesieniu do okresu programowania 2007–2013)
ULD – górna granica odchylenia
ULE – górna granica błędu
1 Wprowadzenie

Niniejszy przewodnik dotyczący doboru próby na potrzeby audytu przygotowano w celu przedstawienia instytucjom audytowym w państwach członkowskich zaktualizowanego przeglądu najczęściej stosowanych i odpowiednich metod doboru próby, zapewniając im tym samym wsparcie w zakresie wdrażania ram regulacyjnych w odniesieniu do okresu programowania 2007–2013 oraz, w stosownych przypadkach, do okresu programowania 2014–2020.

Międzynarodowe standardy kontroli i zaktualizowana teoria doboru próby zapewniają wytyczne dotyczące stosowania doboru próby i innych środków wyboru pozycji do badania przy opracowywaniu procedur kontroli.

Niniejsze wytyczne zastępują poprzednie wytyczne na ten sam temat (nr ref. COCOF 08/0021/03-EN z dnia 4 kwietnia 2013 r.). Niniejszy dokument nie narusza innych uzupełniających wytycznych Komisji, mianowicie:

- Okres programowania 2007–2013:
 - „Wytycznych dotyczących rocznych sprawozdań audytowych i opinii” z dnia 18 lutego 2009 r. nr ref. COCOF 09/0004/01-EN i EFFC/0037/2009-EN z dnia 23 lutego 2009 r.;
 - „Wytycznych dotyczących sposobu postępowania w przypadku wykrycia błędów w rocznych sprawozdaniach audytowych” nr ref. EGESIF_15-0007-01 z dnia 9 października 2015 r.;
 - „Wytycznych dotyczących wspólnej metodyki oceny systemów zarządzania i kontroli w państwach członkowskich”, nr ref. COCOF 08/0019/01-EN i EFFC/27/2008 z dnia 12 września 2008 r.;
- Okres programowania 2014–2020:
 - Wytycznych dla państw członkowskich dotyczących rocznego sprawozdania z kontroli i opinii audytowej (okres programowania 2014–2020) nr ref. EGESIF_15-0002-02 final z dnia 9 października 2015 r.;
 - Wytycznych dla Komisji i państw członkowskich dotyczących wspólnej metodyki oceny systemów zarządzania i kontroli w państwach członkowskich (EGESIF_14-0010-final z dnia 18 grudnia 2014 r.).

Zaleca się zatem zapoznanie się z tymi dodatkowymi dokumentami, aby uzyskać pełny obraz wytycznych związanych ze sporządzaniem rocznych sprawozdań audytowych.
2 Odniesienia do przepisów

<table>
<thead>
<tr>
<th>Rozporządzenie</th>
<th>Artykuły</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okres programowania 2007–2013</td>
<td></td>
</tr>
<tr>
<td>Rozporządzenie (WE) nr 1083/2006</td>
<td>Artykuł 62 – Funkcje instytucji audytowej</td>
</tr>
<tr>
<td>Rozporządzenie (WE) nr 1828/2006</td>
<td>Artykuł 17 – Dobór próby ZAŁĄCZNIK IV – Parametry techniczne dotyczące statystycznego losowego doboru próby zgodnie z art. 17</td>
</tr>
<tr>
<td>Rozporządzenie (WE) nr 1198/2006</td>
<td>Artykuł 61 – Funkcje instytucji audytowej</td>
</tr>
<tr>
<td>Rozporządzenie (WE) nr 498/2007</td>
<td>Artykuł 43 – Dobór próby ZAŁĄCZNIK IV – Parametry techniczne</td>
</tr>
<tr>
<td>Okres programowania 2014–2020</td>
<td></td>
</tr>
<tr>
<td>Rozporządzenie (UE) nr 1303/2013</td>
<td>Art. 127 ust. 5 – Funkcje instytucji audytowej</td>
</tr>
<tr>
<td>Rozporządzenie w sprawie wspólnych przepisów (zwane dalej „RWP”)</td>
<td>Artykuł 148 ust. 1 – Proporcjonalna kontrola programów operacyjnych</td>
</tr>
<tr>
<td>Rozporządzenie (UE) nr 480/2014 Rozporządzenie delegowane Komisji (zwane dalej RDK)</td>
<td>Artykuł 28 – Metodyka wyboru próby operacji</td>
</tr>
</tbody>
</table>

3 Model ryzyka kontroli i procedury kontroli

3.1 Model ryzyka

Ryzyko kontroli to ryzyko wydania przez audytora opinii bez zastrzeżeń w sytuacji, gdy deklaracja wydatków zawiera istotne błędy.
Rys. 1. Model ryzyka kontroli
Wskazane powyżej trzy części składowe ryzyka kontroli określa się odpowiednio jako ryzyko nieodłączne (IR), ryzyko zawodności systemów kontroli wewnętrznej (CR) oraz ryzyko niewykrycia (DR). Na tej podstawie otrzymujemy następujący model ryzyka kontroli:

\[AR = IR \times CR \times DR \]

gdzie:
- **IR**, czyli ryzyko nieodłączne, oznacza postrzegany poziom ryzyka wystąpienia istotnego błędu w deklaracjach wydatków przedłożonych Komisji lub na podstawowych poziomach agregacji w przypadku braku procedur kontroli wewnętrznej. Ryzyko nieodłączne jest związane z rodzajem działalności jednostki kontrolowanej i będzie uzależnione od czynników zewnętrznych (kulturowych, politycznych, ekonomicznych, działalności gospodarczej, klientów i dostawców itp.) oraz czynników wewnętrznych (rodzaj organizacji, procedury, kompetencje personelu, niedawne zmiany w procesach lub na stanowiskach kierowniczych itp.). Ryzyko nieodłączne należy ocenić przed rozpoczęciem szczegółowych procedur kontroli (wywiadów z zarządem i kluczowym personelu, przeglądu informacji kontekstowych, takich jak schematy organizacyjne, podręczniki oraz dokumenty wewnętrzne/zewnętrzne).
- **CR** czyli ryzyko zawodności systemów kontroli wewnętrznej, oznacza postrzegany poziom ryzyka, że w ramach procedur kontroli wewnętrznej zarządzania nie uda się zapobiec istotnemu błędowi lub też wykryć i skorygować takiego błędu w deklaracjach wydatków przedłożonych Komisji lub na podstawowych poziomach agregacji. Ryzyko zawodności systemów kontroli wewnętrznej jest zatem związane z jakością zarządzania ryzykiem nieodłącznym.
(kontrolowania tego ryzyka) oraz będzie uzależnione od systemu kontroli wewnętrznej, obejmującego między innymi kontrole stosowania, kontrole IT i kontrole organizacyjne. Ryzyko zawodności systemów kontroli wewnętrznej można ocenić za pomocą **audytów systemu** – szczegółowych badań kontroli i sprawozdawczości, które służą zgromadzeniu dowodów na skuteczność opracowania i funkcjonowania systemu kontroli w zakresie zapobiegania lub wykrywania istotnych błędów oraz dowodów na zdolność organizacji do rejestrowania, przetwarzania, podsumowywania i zgłaszania danych.

Iloczyn ryzyka nieodłącznego i ryzyka zawodności systemów kontroli wewnętrznej (tj. \(IR \times CR \)) określa się mianem **ryzyka istotnego błędu**. Ryzyko istotnego błędu jest związane z wynikiem **audytów systemu**.

- **DR**, czyli ryzyko niewykrycia, oznacza postrzegany poziom ryzyka, że audytor nie wykryje istotnego błędu w deklaracjach wydatków przedłożonych Komisji lub na podstawowych poziomach agregacji. Ryzyko niewykrycia jest powiązane z dokładnością przeprowadzonych audytów, z uwzględnieniem metod doboru prób, kompetencji personelu, technik audytu, narzędzi audytu itp. Ryzyko niewykrycia jest związane z przeprowadzaniem audytów operacji. Obejmuje to badania bezpośrednie szczegółów lub transakcji związanych z operacjami w programie, które są zwykle oparte na doborze prób operacji.

![Rys. 2 Ilustracja ryzyka kontroli (adaptacja z nieznanego źródła)](image)

Rys. 2 Ilustracja ryzyka kontroli (adaptacja z nieznanego źródła)

Model pewności jest odwrotnością modelu ryzyka. Jeżeli przyjmuje się, że ryzyko kontroli wynosi 5 %, wówczas pewność audytu wynosi 95 %.
Model ryzyka kontroli/pewności audytu stosuje się w odniesieniu do planowania i alokacji podstawowych zasobów w odniesieniu do określonego programu operacyjnego lub kilku programów operacyjnych i służy dwóm celom:

- zapewnieniu wysokiego poziomu pewności: pewność jest zapewniona na określonym poziomie, na przykład przy pewności na poziomie 95 % ryzyko kontroli wynosi 5 %;
- przeprowadzeniu skutecznych kontroli: przy danym poziomie pewności, np. 95 %, audytor powinien opracować procedury kontroli uwzględniające ryzyko nieodłączne i ryzyko zawodności systemów kontroli wewnętrznej. Dzięki temu zespół ds. kontroli może ograniczyć czynności kontrolne w niektórych obszarach i skupić się na bardziej ryzykownych obszarach, które mają zostać objęte audytem.

Należy zauważyć, że bezpośrednim rezultatem jest określenie stopnia niewykrycia, który z kolei determinuje liczebność próby w odniesieniu do doboru prób operacji, pod warunkiem że ryzyko nieodłączne i Ryzyko zawodności systemów kontroli wewnętrznej zostały wcześniej poddane ocenie. W istocie,

\[AR = IR \times CR \times DR \Rightarrow DR = \frac{AR}{IR \times CR} \]

gdzie \(AR \) ustala się zwykle na poziomie 5 %, zaś \(IR \) i \(CR \) oceniane są przez audytora.

Przykład

Niski poziom pewności z kontroli: zakładając, że pożądane i akceptowane ryzyko kontroli wynosi 5 %, oraz jeśli ryzyko nieodłączne (= 100 %) i ryzyko zawodności systemów kontroli wewnętrznej (= 50 %) są wysokie – co oznacza, że jest to jednostka wysokiego ryzyka, której procedury kontroli wewnętrznej są nieodpowiednie do zarządzania ryzykiem, audytor powinien ustalić ryzyko niewykrycia na bardzo niskim poziomie, tj. 10 %. Aby uzyskać niskie ryzyko niewykrycia, liczba badań bezpośrednich, a tym samym liczebność próby, musi być duża.

\[DR = \frac{AR}{IR \times CR} = \frac{0,05}{1 \times 0,5} = 0,1 \]

Wysoki poziom pewności z kontroli: w innej sytuacji, gdy ryzyko nieodłączne jest wysokie (100 %), ale stosowane są odpowiednie systemy kontroli, ryzyko zawodności systemów kontroli wewnętrznej można ocenić na 12,5 %. Aby osiągnąć poziom ryzyka kontroli w wysokości 5 %, poziom ryzyka niewykrycia może wynosić 40 %, przy czym ta ostatnia wartość oznacza, że audytor może przyjąć większe ryzyko, ograniczając liczebność próby. W ostatecznym rozrachunku będzie to oznaczało mniej szczegółowy i mniej kosztowny audyt.
\[DR = \frac{AR}{IR \times CR} = \frac{0,05}{1 \times 0,125} = 0,4 \]

Należy zauważyć, że w obu przykładach otrzymuje się ten sam poziom ryzyka kontroli wynoszący 5% w różnych środowiskach.

Planując czynności audytowe, należy określić kolejność oceny poszczególnych poziomów ryzyka. Po pierwsze, konieczna jest ocena ryzyka nieodłącznego oraz, w związku z tym, niezbędny jest przegląd ryzyka zawodności systemów kontroli wewnętrznej. Na podstawie tych dwóch współczynników zespół ds. kontroli może określić ryzyko niewykrycia, co będzie się wiązało z wyborem procedur kontroli stosowanych w trakcie badań szczegółowych.

Mimo że model ryzyka kontroli zapewnia ramy, które pokazują sposób opracowywania planu kontroli i alokacji zasobów, w praktyce dokładne określenie ilościowe ryzyka nieodłącznego i ryzyka zawodności systemów kontroli wewnętrznej może być trudne.

Poziomy pewności/ufności na potrzeby audytu operacji zależą głównie od jakości systemu kontroli wewnętrznych. Kontrolerzy oceniają części składowe ryzyka na podstawie wiedzy i doświadczenia, posługując się raczej takimi określeniami, jak NISKIE, ŚREDNIE/UMIARKOWANE czy WYSOKIE, niż wskazując dokładne prawdopodobieństwo. Jeżeli w trakcie audytu systemów zostaną wykryte poważne uchybienia, ryzyko zawodności systemów kontroli wewnętrznej będzie wysokie, a poziom pewności wynikający z systemu będzie niski. W przypadku braku poważnych uchybień ryzyko zawodności systemów kontroli wewnętrznej jest niskie, a jeżeli ryzyko nieodłączone jest również niskie, wówczas poziom pewności wynikający z systemu będzie wysoki.

Jak wskazano powyżej, w przypadku zidentyfikowania poważnych uchybień w trakcie audytu systemów można stwierdzić, że ryzyko istotnego błędu jest wysokie (ryzyko zawodności systemów kontroli wewnętrznej w połączeniu z ryzykiem nieodłącznym), w związku z czym poziom pewności wynikający z systemu będzie niski. W załączniku IV do rozporządzeń wskazano, że jeżeli poziom pewności wynikający z systemu jest niski, przy dobórze próby operacji należy stosować poziom ufności nie niższy niż 90 %.

W przypadku braku poważnych uchybień w systemach ryzyko istotnych błędów jest niskie, a poziom pewności wynikający z systemu jest wysoki, co oznacza że przy dobórze próby operacji należy stosować poziom ufności nie niższy niż 60 %.

Sekcja 3.2 zawiera szczegółowe ramy wyboru poziomu pewności/ufności na potrzeby audytu operacji.
3.2 Poziom pewności/ufności w odniesieniu do audytów operacji

3.2.1 Wprowadzenie

Badania bezpośrednie należy wykonywać na próbach, których liczebność będzie zależała od poziomu ufności ustalonego zgodnie z poziomem pewności wynikającego z audytu systemu, tj.:

- nie mniej niż 60 %, jeżeli pewność jest wysoka;
- średnia pewność (w rozporządzeniu Komisji nie sprecyzowano wartości procentowych odpowiadających temu poziomowi pewności, chociaż zaleca się stosowanie pewności na poziomie 70–80 %);
- nie mniej niż 90 %, jeżeli pewność jest niska.

Instytucja audytowa powinna ustalić kryteria stosowane na potrzeby audytów systemu w celu określenia niezawodności systemów zarządzania i kontroli. Kryteria te powinny zawierać ilościową ocenę wszystkich istotnych elementów systemów (kluczowe wymogi) i obejmować główne instytucje i instytucje pośredniczące uczestniczące w zarządzaniu programem operacyjnym i jego kontrolowaniu.

Komisja opracowała wytyczne dotyczące metodyki oceny systemów zarządzania i kontroli. Mają one zastosowanie zarówno do głównych programów, jak i programów Europejskiej współpracy terytorialnej. Zaleca się, aby instytucja audytowa uwzględniała tę metodykę.

W metodyce tej przewiduje się cztery poziomy niezawodności:
- działa dobrze. Nie wymaga żadnych usprawnień lub wymaga jedynie niewielkich usprawnień;
- działa. Potrzebne są pewne usprawnienia.
- działa częściowo. Potrzebne są znaczne usprawnienia.
- zasadniczo nie działa.

Poziom ufności w odniesieniu do doboru próby określa się zgodnie z poziomem niezawodności wynikającym z audytów systemu.

W odniesieniu do systemów pod uwagę bierze się trzy poziomy pewności: wysoki, średni i niski. Średni poziom skutecznie odpowiada drugiej i trzeciej kategorii metodyki oceny systemów zarządzania i kontroli, które zapewniają dokładniejsze rozróżnienie między dwiema skrajnościami wysoką/„działa dobrze” i niską/„nie działa”.

Zalecane powiązanie przedstawiono w poniższej tabeli:

1 COCOF 08/0019/01-EN z 06.06.2008; EGESIF_14-0010 z 18.12.2014.
<table>
<thead>
<tr>
<th>Poziom pewności z audytów systemu</th>
<th>Powiązana niezawodność w rozporządzeniu / pewność z systemu</th>
<th>Poziom ufności</th>
<th>Ryzyko niewykrycia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Działa dobrze. Nie wymaga żadnych lub wymaga jedynie niewielkich usprawnień usprawnień.</td>
<td>Wysoka</td>
<td>Nie mniej niż 60 %</td>
<td>Równe lub mniejsze niż 40 %</td>
</tr>
<tr>
<td>2. Działa. Wymaga pewnych usprawnień.</td>
<td>Średnia</td>
<td>70 %</td>
<td>30 %</td>
</tr>
<tr>
<td>3. Działa częściowo. Wymaga znacznych usprawnień.</td>
<td>Średnia</td>
<td>80 %</td>
<td>20 %</td>
</tr>
<tr>
<td>4. Zasadniczo nie działa.</td>
<td>Niska</td>
<td>Nie mniej niż 90 %</td>
<td>Nie większe niż 10 %</td>
</tr>
</tbody>
</table>

Tabela 1. Poziom ufności w odniesieniu do audytu operacji zgodnie z pewnością systemu

Oczekuje się, że na początku okresu programowania poziom pewności będzie niski z uwagi na brak lub jedynie ograniczoną liczbę przeprowadzonych audytów systemu. Poziom ufności, który należy zastosować, będzie wynosił zatem nie mniej niż 90 %. Jeżeli jednak systemy pozostaną niezmienione od poprzedniego okresu programowania i będą istniały wiarygodne dowody kontroli dotyczące pewności, jaką zapewniają te systemy, państwo członkowskie będzie mogło zastosować inny poziom ufności (60–90 %). Poziom ufności można również obniżyć w trakcie okresu programowania, jeżeli nie zostaną wykryte istotne błędy lub w przypadku braku dowodów na ulepszenie systemów. W strategii kontroli należy wyjaśnić metodykę zastosowaną w celu określenia poziomu ufności oraz wskazać wykorzystane w tym celu dowody kontroli.

Określenie odpowiedniego poziomu ufności ma podstawowe znaczenie dla audytów operacji, ponieważ liczność próby w dużym stopniu zależy od tego poziomu (im wyższy poziom ufności, tym większa liczność próby). Dlatego też w rozporządzeniach przewiduje się możliwość obniżenia poziomu ufności, a w konsekwencji zmniejszenia natężenia czynności audytowych w odniesieniu do systemów o niskim poziomie błędów (a zatem wysokiej pewności), przy jednoczesnym zachowaniu wymogu wysokiego poziomu ufności (a w konsekwencji większej liczności próby) w przypadku systemów, które mają potencjalnie wysoki poziom błędów (a zatem niską pewność).

Instytucje audytowe zachęca się do aktywnego wykorzystywania parametrów doboru próby odpowiadających faktycznemu funkcjonowaniu systemów, a tym samym do
unikania stosowania zbyt dużych prób audytowych i związanego z tym nakładu pracy, pod warunkiem zapewnienia odpowiedniej dokładności.

3.2.2 Określenie mającego zastosowanie poziomu pewności przy grupowaniu programów

Instytucja audytowa powinna stosować jeden poziom pewności w przypadku grupowania programów.

Jeżeli w ramach audytów systemu w obrębie grupy programów występują różnice we wnioskach dotyczących funkcjonowania różnych programów, dostępne są następujące opcje:

- stworzenie dwóch (lub większej liczby) grup np. jednej dla programów z niskim poziomem pewności (poziom ufności wynoszący 90 %), drugiej dla programów z wysokim poziomem pewności (poziom ufności wynoszący 60 %) itd. Obie grupy traktowane są jako dwie różne populacje. W rezultacie liczba kontroli, które zostaną wykonane, będzie wysoka, ponieważ z każdej oddzielnej grupy należy pobrać próbę;

4 Pojęcia statystyczne dotyczące audytów operacji

4.1 Metoda doboru próby

Metoda doboru próby obejmuje dwa elementy: schemat doboru prób (np. równe prawdopodobieństwo, prawdopodobieństwo proporcjonalne do wielkości) i procedurę prognozowania (szacowania). Obie te elementy łącznie stanowią ramy obliczania liczebności prób.

Najbardziej znane metody doboru prób odpowiednie do celów audytu operacji przedstawiono w sekcji 5.1. Należy pamiętać, że pierwsze rozróżnienie między
metodami doboru próby dotyczy podziału na statystyczny i niestatystyczny dobór próby.

Metoda statystycznego doboru próby ma następujące cechy:

- każdy element populacji posiada znane i dodatnie prawdopodobieństwo doboru;
- należy zapewnić losowość dzięki wykorzystaniu odpowiedniego, specjalistycznego lub innego, oprogramowania generującego liczby losowe (np. program MS Excel pozwala na generowanie liczb losowych);
- liczbeńność próby oblicza się w sposób umożliwiający uzyskanie określonego pożądanego poziomu dokładności.

Podobnie art. 28 ust. 4 rozporządzenia (UE) nr 480/2014 stanowi, że: „Do celów stosowania art. 127 ust. 1 rozporządzenia (UE) nr 1303/2013 metoda doboru próby jest metodą statystyczną, jeśli zapewnia: (i) losowy wybór elementów próby; (ii) wykorzystanie teorii prawdopodobieństwa do oceny wyników próby, w tym pomiaru i kontroli ryzyka doboru próby oraz planowanej i osiągniętej precyzji”.

Metody statystycznego doboru próby pozwalają na dobór próby, która jest reprezentatywna dla populacji (dlatego właśnie dobór statystyczny jest tak istotny). Ostatecznym celem jest prognozowanie (ekstrapolacja lub estymacja) wartości parametru („zmiennjej”) obserwowanego w próbie dla populacji, co pozwala stwierdzić, czy populacja zawiera istotne nieprawidłowości, a jeśli tak, to jaki jest ich zakres (kwota błędu).

Metody niestatystycznego doboru próby nie pozwalają na obliczenie dokładności, w związku z czym nie ma żadnej kontroli nad ryzykiem kontroli, a zapewnienie reprezentatywności próby w odniesieniu do populacji jest niemożliwe. Dlatego też błąd należy ocenić empirycznie.

4.2 Metoda doboru

Metoda doboru może należeć do jednej z dwóch szerokich kategorii:

- dobór statystyczny lub
dobór niestatystyczny.

Dobór statystyczny obejmuje dwie możliwe techniki:
- dobór losowy;
- dobór systematyczny.

W przypadku doboru losowego dla każdej jednostki populacji generowane są liczby losowe w celu dokonania doboru jednostek stanowiących próbę.

W przypadku doboru systematycznego wykorzystuje się losowy punkt startowy, a następnie stosuje się systematyczną zasadę doboru kolejnych jednostek (np. co dwudziesta jednostka od losowo wybranego punktu startowego).

Metody doboru próby na podstawie równego prawdopodobieństwa opierają się na doborze losowym, a metoda doboru próby na podstawie jednostki monetarnej (MUS) opiera się na doborze systematycznym.

Dobór niestatystyczny obejmuje następujące możliwości (między innymi):
- dobór przypadkowy,
- dobór blokowy,
- dobór na podstawie osądu,
- dobór na podstawie ryzyka łączący elementy powyższych trzech możliwości.

Dobór przypadkowy jest metodą „fałszywego doboru losowego”, w której audytor wybiera elementy populacji „losowo”, co oznacza niezmierzone obciążenie doboru (np. elementy, które łatwo poddać analizie, elementy, które łatwo ocenić, elementy wybrane z listy wyświetlonej na ekranie itp.).

Dobór blokowy przypomina losowanie zespołowe (z grup jednostek populacji), gdzie zespół nie jest wybierany losowo.

Dobór na podstawie osądu opiera się wyłącznie na swobodzie uznania audytora bez względu na przesłanki (np. elementy o podobnych nazwach, wszystkie operacje związane z określoną dziedziną badań itp.).

Dobór na podstawie ryzyka jest niestatystyczną metodą doboru jednostek opartą na różnych zamierzonych elementach, w której często wykorzystuje się wszystkie trzy niestatystyczne metody doboru.

4.3 Prognozowanie (estymacja)
Jak wspomniano powyżej, ostatecznym celem stosowania metody doboru próby jest prognozowanie (ekstrapolacja lub estymacja) poziomu błędu (nieprawidłowości) obserwowanego w próbie dla całej populacji. Proces ten pozwala stwierdzić, czy populacja zawiera istotne nieprawidłowości, a jeśli tak, to jaki jest ich zakres (kwota błędu). Dlatego też zidentyfikowany w próbie poziom błędu sam w sobie nie stanowi przedmiotu zainteresowania, ponieważ ma on charakter jedynie pomocniczy, tj. stanowi środek, za pomocą którego dokonuje się prognozowania błędu dla populacji.

Przykładową statystyką służącą do prognozowania błędu dla populacji jest estymator. Czynność prognozowania jest nazywana estymacją, a wartość obliczoną na podstawie prób (wartość przewidywana) określa się mianem szacunków. Szacunek taki, który dotyczy zaledwie ułamka populacji, jest oczywiście narażony na błąd zwany błędem próby.

4.4 Dokładność (błąd próby)

Jest to błąd, który wynika z faktu, że przedmiotem obserwacji nie jest cała populacja. W praktyce dobor próby zawsze wiąże się z błędem szacowania (ekstrapolacji), ponieważ przy ekstrapolacji na całą populację opieramy się na danych z próby. Błąd próby wskazuje na różnicę między prognozowaniem na podstawie próby (szacunkiem) a rzeczywistym (nieznanym) parametrem populacji (wartością błędu). W praktyce odzwierciedla on niepewność związaną z prognozowaniem wyników dla populacji. Miarę tego błędu określa się zazwyczaj mianem dokładności lub precyzji szacowania. Jest ona zależna głównie od liczebności próby, zmienności populacji oraz, w mniejszym stopniu, od liczebności populacji.

2 Chociaż poszczególne błędy wykryte w próbie należy odpowiednio skorygować.
Rys. 4 Błąd próby
Należy dokonać rozróżnienia między planowaną dokładnością a efektywną dokładnością (SE we wzorach przedstawionych w sekcji 6). O ile planowana dokładność oznacza maksymalny planowany błąd próby przy ustalaniu liczebności próby (azzwyczaj jest to różnica między maksymalnym dopuszczalnym błędem a błędem oczekiwanyem i jej wartość powinna być niższa niż próg istotności), o tyle efektywna dokładność jest wskaźnikiem różnicy między prognozowaniem na podstawie próby (szacunkiem) a rzeczywistym (nieznanym) parametrem (wartością błędu) i odzwierciedla niepewność związaną z prognozowaniem wyników dla populacji.

4.5 Populacja

Do celów doboru próby populacja obejmuje zadeklarowane Komisji wydatki na operacje w ramach programu lub grupy programów w okresie odniesienia, z wyjątkiem ujemnych jednostek próby, co wyjaśniono w sekcji 4.6 poniżej. Wszystkie operacje ujęte w zadeklarowanych wydatkach powinny zostać zawarte w próbie populacji, chyba że procedury proporcjonalnej kontroli określone w art. 148 ust. 1 RWP i art. 28 ust. 8 rozporządzenia delegowanego (UE) nr 480/2014 mają zastosowanie w kontekście doboru próby przeprowadzonego w odniesieniu do okresu programowania 2014–2020. W ramach prawnych na lata 2007–2013 nie ma możliwości wyłączenia operacji z populacji objętej próbą, z wyjątkiem przypadków działania „siły wyższej”.

3 Oznacza to, że następujące pozycje wydatków w praktyce powinny zostać uwzględnione w populacji wykorzystanej do doboru próżki losowej i nie należy ich wykluczać na etapie doboru próby: (i) operacje związane z instrumentami inżynierii finansowej, (ii) projekty uznane za „zbyt małe”, (iii) projekty poddane audytowi we wcześniejszych latach lub projekty, których beneficjent został objęty audytem we wcześniejszych latach, (iv) projekty, w przypadku których zastosowano stawki ryczałtowe korekt finansowej.

4 Por. sekcja 7.6 zaktualizowanych wytycznych dotyczących sposobu postępowania w przypadku wykrycia błędów (EGESIF_15-0007-01 z 09.10.2015 r.), dotycząca podejścia, jakie powinna przyjąć instytucja audytowa w przypadku zagubienia lub zniszczenia dokumentów potwierdzających dotyczących operacji objętych próbą w wyniku działania „siły wyższej” (np. w wyniku klęski żywiołowej).
Aby zwiększyć efektywność audytów, instytucja audytowa może podjąć decyzję o rozszerzeniu zakresu audytu na inne powiązane wydatki zadeklarowane w ramach wybranych operacji i dotyczące poprzedniego okresu odniesienia. Wyników otrzymanych po skontrolowaniu dodatkowych wydatków spoza okresu odniesienia nie należy uwzględniać przy ustalaniu całkowitego przewidywanego poziomu błędu.

Zasadniczo wszystkie zadeklarowane Komisji wydatki dotyczące wszystkich wybranych operacji w próbie powinny być objęte audytem. W przypadku gdy wybrane operacje obejmują znaczną liczbę wniosków o płatność lub faktur, instytucja audytowa może zastosować dwuetapowy dobór próby, jak wyjaśniono w sekcji 7.6 poniżej.

Zasadniczo przy doborze próby instytucja audytowa powinna uwzględnić całkowite zadeklarowane wydatki (tj. wydatki publiczne i wydatki prywatne), jak wynika z art. 17 ust. 3 rozporządzenia (WE) nr 1828/2006 i art. 127 ust. 1 RWP. W każdym przypadku w ramach audytów operacji należy zweryfikować całkowite zadeklarowane wydatki, jak wynika z art. 16 ust. 2 i art. 17 ust. 4 rozporządzenia (WE) nr 1828/2006 i art. 27 ust. 2 RDK. Zdarza się jednak, że przy doborze próby instytucja audytowa uwzględnia jedynie zadeklarowane wydatki publiczne, twierdząc, że wkład z funduszu zostaje wypłacony na tej podstawie. Tego rodzaju praktyka może wynikać z przyjmowania przez instytucję certyfikującą błędnej interpretacji, w świetle której przedstawiane Komisji wnioski dotyczące wydatków obejmują wyłącznie wydatki publiczne, natomiast zgodnie z prawidłowym podejściem instytucja certyfikująca zawsze powinna deklarować całkowite wydatki, nawet jeżeli stopę dofinansowania oblicza się na podstawie wydatków publicznych.

W takiej sytuacji, jeżeli ponadto instytucja audytowa stosuje metodę doboru próby na podstawie prawdopodobieństwa proporcjonalnego do wielkości (tj. metodę statystycznego doboru próby na podstawie jednostki monetarnej), mogą pojawić się dwa rodzaje problemów:

a) Proces ten może prowadzić do obciążenia wyników doboru próby na skutek mniejszej szansy wyboru niektórych jednostek próby o stosunkowo wysokim wkładzie prywatnym.

b) Wartość efektywnej dokładności uzyskana w wyniku audytu całkowitych wydatków przeprowadzonego przez instytucję audytową na podstawie doboru próby wyłącznie spośród wydatków publicznych może być zbyt duża.

5 Art. 43 ust. 3 rozporządzenia (WE) nr 498/2007.
6 Art. 42 ust. 2 i art. 43 ust. 4 rozporządzenia (WE) nr 498/2007.
7 Jest to również konieczne do celów ścieżki audytu, gdyż przedmiotem audytu na miejscu na poziomie beneficjenta są całkowite zadeklarowane wydatki, a nie jedynie wydatki publiczne. Zazwyczaj pozycje wydatków są dofinansowane ze środków publicznych i ze środków prywatnych i w praktyce całość wydatków zostaje objęta audytem.
Odnośnie do lit. a) powyżej, jeżeli instytucja audytowa dokonuje doboru próby na podstawie wydatków publicznych, instytucja audytowa może rozważyć potrzebę doboru próby uzupełniającej z takiej podpopulacji:
– jeżeli występują jednostki próby o dużej wartości, które nie zostały objęte próbą (ze względu na wyżej zidentyfikowany problem), oraz
– jeżeli istnieje ryzyko związane z wydatkami zadeklarowanymi w odniesieniu do tego rodzaju jednostek próby.

Odnośnie do lit. b) powyżej, jeżeli instytucja audytowa prognozuje błędy dla całkowitych wydatków a górna granica błędu przekracza istotność, dla której najbardziej prawdopodobny poziom błędu wynosi 2 %, oznacza to małą dokładność. Może to oznaczać, że wyniki doboru próby są niejednoznaczne i
– konieczne jest ponowne obliczenie poziomu ufności albo, jeżeli nie jest to możliwe,
– konieczny jest dodatkowy dobór próby, co dotyczy przypadków, w których efektywna dokładność przekracza poziom dwóch punktów procentowych.

Należy zauważyć, że zgodnie z ogólną metodą, jeżeli efektywna dokładność (UEL–MLE) nie osiąga poziomu dwóch punktów procentowych, uznaje się, że zasadniczo uwzględniając wszystkie elementy informacji dotyczących danego programu nie zachodzi konieczność rozważenia podejmowania dodatkowych działań.

4.6 Ujemne jednostki próby
Istnieje możliwość wystąpienia jednostek próby (operacji lub wniosków o płatność), które mają wartość ujemną, w szczególności w związku z zastosowaniem korekt finansowych przez organy krajowe.

W takim przypadku ujemna jednostka próby powinna zostać uwzględniona w oddzielnej populacji i powinna zostać objęta oddzielnym audytrem w celu zweryfikowania, czy kwota skorygowana odpowiada wysokości korekty ustalonej przez państwo członkowskie lub Komisję. Jeżeli instytucja audytowa uzna, że kwota skorygowana jest niższa od ustalonej, wówczas kwestię tę należy ujawnić w rocznym sprawozdaniu z kontroli, w szczególności gdy niezgodność taka wskazuje na słabe punkty w zakresie zdolności naprawczych państwa członkowskiego.

8 Zgodnie z praktyczną zasadą mamy do czynienia z „jednostką o dużej wartości”, jeżeli odpowiednie całkowite zadeklarowane wydatki przekraczają próg 2 % całkowitych wydatków związanych z danym programem.
9 Por. sekcja 7.7 niniejszych wytycznych.
10 Por. sekcja 7.2.2 niniejszych wytycznych.
11 Por. ostatni akapit w sekcji 7.1 niniejszych wytycznych.
12 Instytucja audytowa może również oczywiście wylosować próbę z tej oddzielnej populacji, jeżeli taka populacja zawiera zbyt wiele jednostek i wymagałaby dużych nakładów pracy.
W tej sytuacji przy obliczaniu łącznego wskaźnika błędów instytucja audytowa uwzględnia jedynie błędy wykryte w populacji kwot dodatnich i jest to wartość księgowa, którą należy uwzględnić zarówno w prognozie błędów losowych, jak i w łącznym poziomie błędu. Przed obliczeniem przewidywanego poziomu błędu instytucja audytowa powinna zweryfikować, czy wykryte błędy nie zostały już skorygowane w okresie odniesienia (tj. ujęte w populacji kwot ujemnych, jak opisano powyżej). W takiej sytuacji błędów tych nie należy ujmować w przewidywanym poziomie błędu.13

Dokładnie rzecz ujmując, spośród całej populacji jednostek próby (tj. operacji lub wniosków o płatność), z których ma zostać dobrana próba, instytucja audytowa musi zidentyfikować ujemne jednostki próby i poddać je audytowi jako oddzielną populację. Proces, w którym jako jednostkę próby zastosowano operację (ten sam tok rozumowania ma zastosowanie, jeżeli jako jednostkę próby stosuje się wnioski o płatność), zilustrowano poniżej:

- Operacja X: 100 000 EUR (w okresie odniesienia nie zastosowano żadnych korekt);
- Operacja Y: 20 000 EUR => jeżeli kwota ta wynika z pomniejszenia kwoty 25 000 EUR o 5 000 EUR (wskutek korekt/potrzezeń zastosowanych w okresie odniesienia), instytucja audytowa nie musi ujmować kwoty 5 000 EUR w oddzielnej populacji kwot ujemnych;
- Operacja Z: - 5 000 EUR (kwota wynikająca z zastosowania korekty w wysokości 15 000 EUR w odniesieniu do kwoty 10 000 EUR nowych wydatków w okresie odniesienia) => kwotę tę należy ująć w oddzielnej populacji kwot ujemnych;
- Całkowite wydatki zadeklarowane w odniesieniu do danego programu (kwota netto): 115 000 EUR (= 120 000 – 5 000);
- Populacja, z której dokonuje się doboru losowego: wszystkie operacje, których kwoty są dodatnie = X + Y (w powyższym przypadku kwota ta wynosi 120 000 EUR, zakładając dla uproszczenia, że z programem wiążą się wyłącznie trzy wyżej wspomniane operacje). Operacja Z będzie przedmiotem oddzielnego audytu.

Przedstawione powyżej podejście oznacza, że instytucja audytowa nie ma obowiązku określenia kwot ujemnych w ramach danej jednostki próby jako oddzielnego populacji. W większości przypadków tego rodzaju działanie nie byłoby opłacalne.14 W związku z powyższym w przypadku operacji Y instytucja audytowa mogłaaby ująć kwotę 5 000

13 Zob. również wytyczne dotyczące sposobu postępowania w przypadku wykrycia błędów, które zawierają inne przypadki uzasadniające brak ujęcia określonych błędów w łącznym poziomie błędu.
14 Tym bardziej nie zaleca się identyfikacji kwot ujemnych w ramach jednostki próby w przypadku stosowania doboru podprób (czyli dwuetapowego doboru próby), gdyż wymagałoby to identyfikacji wszystkich kwot ujemnych we wszystkich jednostkach każdej podpróby.
EUR w populacji kwot ujemnych (co wiązałoby się z ujęciem kwoty 25 000 EUR w populacji kwot dodatnich) albo, jak w powyższym przykładzie, ująć kwotę 20 000 EUR w populacji kwot dodatnich. Alternatywnie kwoty korekt finansowych / innego rodzaju kwoty ujemne, które odnoszą się do bieżącego okresu doboru próby, można by odjąć od populacji kwot dodatnich, aby uzyskać kwotę netto, a kwoty korekt / innego rodzaju kwoty ujemne, które odnoszą się do poprzedniego okresu doboru próby, można by ująć w populacji kwot ujemnych.

W szczególności, jeżeli operacja Y odnosi się do jednostki próby w bieżącym okresie doboru próby a kwota ujemna 5 000 EUR odliczona w bieżącym okresie doboru próby od zadeklarowanych wydatków obejmuje:
- 4 000 EUR, stanowiące kwotę korekt finansowych związanych z wydatkami zadeklarowanymi w poprzednim okresie doboru próby,
- 700 EUR, stanowiące kwotę korekty finansowej związanej z wydatkami zadeklarowanymi w bieżącym okresie doboru próby,
- 300 EUR, stanowiące korektę błędu pisarskiego polegającego na zadeklarowaniu zbyt dużej kwoty wydatków w poprzednim okresie doboru próby,

instytucja audytowa mogłaby uwzględnić 24 300 EUR (= 25 000 EUR – 700 EUR) w populacji kwot dodatnich, a kwotę 4 300 EUR (stanowiącą kwotę korekt finansowych / sztuczne ujemne jednostki próby odnoszące się do poprzedniego okresu doboru próby) w populacji kwot ujemnych.

Podsumowując, jeżeli chodzi o rozdzielanie dodatnich i ujemnych jednostek próby, można wyróżnić trzy podejścia:
1) Jeżeli suma kwot ujemnych i dodatnich w ramach jednostki próby daje wynik dodatni, kwoty ujemne uwzględnia się w populacji kwot dodatnich.
2) Wszystkie kwoty dodatnie uwzględnia się w populacji kwot dodatnich, a wszystkie kwoty ujemne – w populacji kwot ujemnych.
3) Kwoty ujemne dotyczące poprzednich okresów doboru próby (takie jak korekty kwot zadeklarowanych w poprzednich latach) uwzględnia się w populacji kwot ujemnych, natomiast kwoty ujemne korygujące/dostosowujące kwoty dodatnie w populacji kwot dodatnich w bieżącym okresie doboru próby uwzględnia się w populacji kwot dodatnich.

Według Komisji zalecane jest stosowanie opcji 2 i 3. Opcja 1 jest dopuszczalna, ale może wiązać się z nią ryzyko ograniczenia prawdopodobieństwa uwzględnienia w próbie / wyboru operacji lub wniosków o płatność, wobec których w okresie odniesienia zastosowano korekty dotyczące wydatków zadeklarowanych w poprzednich latach.

Jeżeli systemy informatyczne w państwach członkowskich są skonfigurowane tak, aby generowały dane dotyczące kwot ujemnych w ramach jednostki próby, to wówczas do instytucji audytowej należy stwierdzenie, czy zastosowanie tego poziomu szczegółowości w ramach metody doboru próby jest konieczne w celu ograniczenia wyżej wskazanego ryzyka.
Jeżeli ze względu na powyższą metodykę instytucja audytowa uzna, że ryzyko to należy ujawnić w rocznym sprawozdaniu audytowym, tego rodzaju ryzyko można ocenić w ramach audytu kwot ujemnych, co prowadzi do wniosku, że ujemne jednostki próby zawierają dużą liczbę pozycji wydatków dodatnich. W oparciu o swój profesjonalny osąd instytucja audytowa powinna ocenić, czy w celu ograniczenia tego rodzaju ryzyka zachodzi konieczność doboru uzupełniającej próbę (spośród wyżej wspomnianych wydatków dodatnich).

Do celów tabeli zadeklarowanych wydatków i audytów prób zawartej w rocznym sprawozdaniu audytowym instytucja audytowa powinna przedstawić w kolumnie „Wydatki zadeklarowane w okresie odniesienia” populację kwot dodatnich. W rocznym sprawozdaniu audytowym instytucja audytowa powinna przedstawić uzgodnienie wydatków zadeklarowanych (kwota netto) z populacją, spośród której pobrano próbkę losową kwot dodatnich.

Stosując metody doboru próby, nie należy wykluczać sztucznych ujemnych jednostek próby (błędu pisarskich, wycofanych wpisów w zestawieniu wydatków nieodpowiednich oraz błędów typograficznych). Dochodów z projektów generujących dochód i przesunięcia operacji z jednego programu do drugiego (lub w ramach jednego programu) niezwiązanych z nieprawidłowościami wykrytymi z tą operacją. Instytucja audytowa może ujmować tego rodzaju jednostki podobnie jak korekty finansowe i uwzględniać je w populacji kwot dodatnich. Alternatywnie próbę tego rodzaju jednostek może być obliczana ze skomplikowanej populacji sztucznych ujemnych jednostek próby (co w szczególności umożliwia odróżnienie korekt finansowych wynikających z nieprawidłowości od sztucznych ujemnych jednostek próby) w celu zapewnienia, aby tylko korekty finansowe zostały uwzględnione w rocznych sprawozdaniach dotyczących kwot wycofanych i odzyskanych zgodnie z art. 20 rozporządzenia (WE) nr 1828/2006 (za lata 2014–2020 sprawozdawczość tę uwzględnia się w zestawieniu wydatków). Audyt ujemnych jednostek próby powinien obejmować weryfikację prawidłowości tego rodzaju dokumentacji w odniesieniu do wybranych jednostek.

Należy zauważyć, że nie oczekuje się od instytucji audytowej, że będzie obliczać poziom błędu na podstawie wyników audytu ujemnych jednostek próby. Zaleca się jednak stosowanie losowego doboru ujemnych jednostek próby. Z losowej próbki jednostek ujemnych można wyłączyć korekty finansowe wynikające z nieprawidłowości wykrytych przez instytucję audytową lub Komisję Europejską i stale monitorowanych przez instytucję audytową. Jeżeli instytucja audytowa uzna, że w świetle konkretnych problemów woli przyjąć podejście oparte na analizie ryzyka, zaleca się, aby stosowała metodę mieszanką, zakładającą dobór losowy co najmniej części ujemnych jednostek próby.
Audyt ujemnych jednostek próby można uwzględnić w audycie zestawień wydatków za okres programowania 2014–2020.

4.7 Stratyfikacja

O stratyfikacji mówimy zawsze, gdy dzielimy populację na subpopulacje zwane warstwami, a następnie z każdej warstwy losujemy niezależne próbki.

Główny cel stratyfikacji ma charakter dwojaki: z jednej strony pozwala ona zazwyczaj na zwiększenie dokładności (w przypadku takiej samej liczebności próby) lub zmniejszenie liczebności próby (w przypadku takiego samego poziomu dokładności), a z drugiej strony gwarantuje, że subpopulacje odpowiadające każdej warstwie są reprezentowane w próbie.

Ilekroć oczekujemy, że poziom błędu (nieprawidłowości) będzie różny dla różnych grup w populacji (np. ze względu na program, region, instytucję pośredniczącą, ryzyko operacji), klasyfikacja taka kwalifikuje się do zastosowania stratyfikacji.

Do różnych warstw można stosować różne metody doboru próby. Przykładowo powszechną praktyką jest objęcie w 100% audytem pozycji o wysokiej wartości i zastosowanie metody statystycznego doboru próby w celu przeprowadzenia audytu próby pozostałych pozycji o niższej wartości, które są zawarte w dodatkowej warstwie lub warstwach. Rozwiązanie takie jest przydatne w przypadkach, w których populacja obejmuje kilka pozycji o stosunkowo wysokiej wartości, ponieważ obniża ono zmienność w każdej warstwie i w związku z tym pozwala na zwiększenie dokładności (lub zmniejszenie liczebności próby).

4.8 Jednostka próby

W okresie programowania 2014–2020 ustalanie jednostki próby reguluje rozporządzenie delegowane Komisji (UE) nr 480/2013. W szczególności art. 28 tego rozporządzenia stanowi, że:

„Jednostka próby jest ustalana przez instytucję audytową na podstawie profesjonalnej oceny. Jednostką próby może być operacja, projekt w ramach operacji lub wniosek o płatność złożony przez beneficjenta [...]”.

Jeżeli instytucja audytowa postanowiła, że jednostką próby będzie operacja, a liczba operacji w okresie odniesienia jest niewystarczająca do zastosowania metody statystycznej (próg 50–150 jednostek w populacji), zastosowanie wniosku o płatność jako jednostek próby mogłoby pomóc w zwiększeniu liczebności populacji tak, aby osiągnięty został próg umożliwiający stosowanie statystycznej metody doboru próby.

4.9 Istotność

Poziom istotności wynoszący maksymalnie 2 % ma zastosowanie do wydatków zadeklarowanych Komisji w okresie odniesienia (populacja kwot dodatnich). Instytucja audytowa może rozważyć obniżenie poziomu istotności dla celów planowania (błąd dopuszczalny). Istotność służy:

- jako próg do porównywania błędu przewidywanego w wydatkach,
- do określania błędu dopuszczalnego/akceptowalnego wykorzystywanego do ustalania liczebności próby.

4.10 Błąd dopuszczalny i planowana dokładność

Błąd dopuszczalny jest maksymalnym dopuszczalnym poziomem błędu, który może być wykryty w populacji w odniesieniu do określonego okresu odniesienia. Przy poziomie istotności wynoszącym 2 % wspomniany maksymalny dopuszczalny błąd wynosi zatem 2 % wydatków zadeklarowanych Komisji dla danego okresu odniesienia.

Planowana dokładność jest to maksymalny błąd próby dopuszczony na potrzeby prognozy błędów w określonym okresie odniesienia, tj. maksymalne odchylenie między rzeczywistym błędem populacji a prognozą uzyskaną na podstawie danych z próby. Audytor powinien ustalić wartość dokładności na poziomie niższym niż błąd dopuszczalny, ponieważ w przeciwnym razie wyniki doboru operacji do próby będą obarczone wysokim ryzykiem niejednoznaczności oraz konieczna może być próba uzupełniająca lub dodatkowa.

Przykładowo błąd dopuszczalny dla populacji o całkowitej wartości księgowej w wysokości 10 000 000 EUR wynosi 200 000 EUR (2 % całkowitej wartości księgowej). Jeżeli błąd przewidywany wynosi 5 000 EUR, a audytor ustali dokładność na poziomie dokładnie 200 000 EUR (błąd ten pojawia się, ponieważ audytor obserwuje jedynie niewielką część populacji, tj. próbę), wówczas górna granica błędu (górna granica przedziału ufności) wyniesie około 205 000 EUR. Jest to wynik niejednoznaczny, ponieważ błąd przewidywany jest na bardzo niskim poziomie, ale górna granica przekracza próg istotności.

Najodpowiedniejszym sposobem określenia planowanej dokładności jest ustalenie jej na poziomie równym różnicy między błędem dopuszczalnym a błędem oczekiwanyм (błąd przewidywany, który audytor spodziewa się uzyskać po zakończeniu audytu). Wartość tego błędu oczekiwany może być oczywiście oparta na profesjonalnym osądzie.
audytor, popartym dowodami zgromadzonymi w trakcie czynności audytowych przeprowadzonych w poprzednich latach w odniesieniu do tej samej lub podobnej populacji lub w ramach próby wstępnej/piłotażowej.

Należy pamiętać, że wybór realistycznego błędu oczekiwанego jest istotny, ponieważ liczność próby w znacznym stopniu zależy od wartości ustalonej dla tego błędu. Zobacz również sekcja 7.1.

W sekcji 6 przedstawiono szczegółowe wzory, które należy stosować w procesie określania liczności próby.

4.11 Zmienność

Zmienność populacji jest parametrem, który ma bardzo duży wpływ na liczebność próby. Zmienność mierzy się zazwyczaj za pomocą parametru zwanego odchyleniem standardowym\(^{15}\) i najczęściej przedstawia jako \(\sigma\). Przykładowo w przypadku populacji obejmującej 100 operacji, w której wszystkie operacje mają taki sam poziom błędu wynoszący 1 000 000 EUR (średni błąd \(\mu = 1 000 000\) EUR), zmienność nie występuje (odchylenie standardowe błędów wynosi zero). Z drugiej strony w przypadku populacji obejmującej 100 operacji, w której 50 operacji posiada wspólny poziom błędu wynoszący 0 EUR, a pozostałe 50 operacji posiada wspólny poziom błędu wynoszący 2 000 000 EUR (taki sam średni błąd \(\mu = 1 000 000\) EUR), odchylenie standardowe błędów jest wysokie (1 000 000 EUR).

Liczebność próby potrzebna do przeprowadzenia audytu populacji o niskiej zmienności jest mniejsza niż liczebność potrzebna dla populacji o wysokiej zmienności. W skrajnym przypadku omówionym w pierwszym przykładzie (w którym wariancja wynosi 0) próbą licząca jedną operację byłaby wystarczająca do dokładnej prognozy błędu populacji.

Odchylenie standardowe (s) jest najczęściej stosowaną miarą zmienności, ponieważ jest pojęciem bardziej zrozumiałym niż wariancja \(s^2\). W praktyce odchylenie standardowe wyraża się w jednostkach zmiennej, której zmienność chcemy zmierzyć. W odróżnieniu od odchylenia standardowego wariancja jest wyrażona jako kwadrat jednostek

\(^{15}\) Odchylenie standardowe jest miarą zmienności populacji wokół jej średniej. Można je liczyć z zastosowaniem błędów lub wartości księgowych. W przypadku obliczeń dla populacji odchylenie standardowe oznacza się jako \(\sigma\), zaś w przypadku obliczeń dla próby – jako \(s\). Im większe odchylenie standardowe, tym większa heterogeniczność populacji (lub próby). Wariancja jest to kwadrat odchylenia standardowego.
zmiennej, której zmienność mierzymy, i stanowi średnią arytmetyczną kwadratów wartości odchylenia zmiennej wokół średniej16:

\[
\text{Variance: } s^2 = \frac{1}{\# \text{ of units}} \sum_{i=1}^{\# \text{ of units}} (V_i - \bar{V})^2
\]

gdzie \(V_i \) oznacza poszczególne obserwacje zmiennej \(V \), a \(\bar{V} = \frac{\sum_{i=1}^{\# \text{ of units}} V_i}{\# \text{ of units}} \) oznacza średni błąd.

Najprościej ujmując, odchylenie standardowe jest pierwiastkiem kwadratowym z wariancji:

\[
s = \sqrt{s^2}
\]

Odchylenie standardowe błędów omówione w przykładach przedstawionych na początku niniejszej sekcji można obliczyć w następujący sposób:

a) przypadek 1
 a. \(n=100; \)
 b. wszystkie operacje mają taki sam poziom błędu w wysokości 1 000 000 EUR;
 c. średni błąd;
 \[
 \frac{\sum_{i=1}^{100} 1,000,000}{100} = \frac{100 \times 1,000,000}{100} = 1,000,000
 \]
 d. odchylenie standardowe błędów;
 \[
 s = \sqrt{\frac{1}{100} \sum_{i=1}^{100} (1,000,000 - 1,000,000)^2} = 0
 \]

b) przypadek 2
 a. \(n=100; \)
 b. w przypadku 50 operacji jest 0 błędów, a w przypadku 50 operacji jest błąd wynoszący 2 000 000 EUR;
 c. średni błąd;
 \[
 \frac{\sum_{i=1}^{50} 0 + \sum_{i=1}^{50} 2,000,000}{100} = \frac{50 \times 2,000,000}{100} = 1,000,000
 \]
 d. odchylenie standardowe błędów;

16 Każdorazowo gdy wariancja jest obliczana na podstawie danych z próby, należy uwzględnić alternatywny wzór \(s^2 = \frac{1}{\# \text{ of units}-1} \sum_{i=1}^{\# \text{ of units}} (V_i - \bar{V})^2 \), który należy stosować w celu skompensowania stopnia swobody utraconego podczas estymacji.
\[s = \sqrt{\frac{1}{100} \left(\sum_{i=1}^{50} (0 - 1,000,000)^2 + \sum_{i=1}^{50} (2,000,000 - 1,000,000)^2 \right) } = \sqrt{\frac{50 \times 1,000,000^2 + 50 \times 1,000,000^2}{100}} = \sqrt{1,000,000^2} = 1,000,000 \]

4.12 Przedział ufności i górna granica błędu

Przedział ufności jest to przedział zawierający rzeczywistą (nieznaną) wartość populacji (błąd) o określonym prawdopodobieństwie (zwanym poziomem ufności). Ogólny wzór na przedział ufności jest następujący:

\[[EE - SE; EE + SE] \]

gdzie:
- EE oznacza błąd przewidywany lub ekstrapolowany; odpowiada także najbardziej prawdopodobnemu błędowi (MLE) w terminologii dotyczącej metody doboru próby na podstawie jednostki monetarnej (MUS);
- SE oznacza dokładność (błąd próby).

Błąd przewidywany/ekstrapolowany (EE) i górna granica błędu (EE+SE) są to dwa najważniejsze instrumenty pozwalające stwierdzić, czy populacja operacji zawiera istotne nieprawidłowości, czy też nie. Górną granicę błędu (ULE) można oczywiście obliczyć jedynie wówczas, gdy stosuje się statystyczny dobór próby; dlatego też w przypadku niestatystycznego doboru próby błąd przewidywany (EE) zawsze stanowi najlepszy szacunek błędu w populacji.

W przypadku statystycznego doboru próby możliwe są następujące sytuacje:

- Jeżeli błąd przewidywany (EE) jest wyższy niż próg istotności (dalej 2 % w celu uproszczenia), instytucja audytowa stwierdza wystąpienie istotnego błędu;
- Jeżeli błąd przewidywany (EE) jest niższy niż 2 % i górna granica błędu (ULE) jest również niższa niż 2 %, instytucja audytowa stwierdza, że nieprawidłowości w populacji nie przekraczają 2 % na określonym poziomie ryzyka doboru próby;
- Jeżeli błąd przewidywany (EE) jest niższy niż 2 %, ale górna granica błędu (ULE) jest wyższa niż 2 %, instytucja audytowa stwierdza, że konieczne jest

17 Metody statystyczne pozwalają również na obliczenie niższej granicy błędu, która ma mniejsze znaczenie z punktu widzenia oceny wyników. Z tego względu pozostałe modele statystyczne mogą w większym stopniu koncentrować się na błędzie przewidywanym (najbardziej prawdopodobnym błędzie) i na górnej granicy błędu.
przeprowadzenie dodatkowych czynności. Zgodnie z wytyczną nr 23 Międzynarodowej Organizacji Najwyższych Organów Kontroli (INTOSAI)\(^\text{18}\) dodatkowe czynności mogą obejmować:

- „zwrócenie się do kontrowelowanej jednostki o zbadanie napotkanych błędów/odstępstw oraz możliwości występowania dalszych błędów/odstępstw. Może to prowadzić do uzgodnionych korekt sprawozdań finansowych;
- przeprowadzenie dalszych badań z zamiarem zmniejszenia ryzyka próbkowania, a zatem tolerancji, którą należy włączyć do oceny wyników;
- zastosowanie alternatywnych procedur kontrolnych dla uzyskania dodatkowej pewności”.

Dokonując wyboru jednej ze wskazanych powyżej opcji, instytucja audytowa powinna kierować się profesjonalnym osądem i zamieścić odpowiednie informacje w rocznym sprawozdaniu audytowym.

Należy zwrócić uwagę na fakt, że w większości przypadków, w których góra granica błędu znacznie przekracza 2\%, można temu zapobiec lub to ograniczyć, jeżeli instytucja audytowa uwzględnia realistyczny błąd oczekiwany przy obliczaniu pierwotnej liczebności próby (w celu uzyskania szczegółowych informacji zob. sekcja 7.1 i sekcja 7.2.2 poniżej).

Dokonując wyboru opcji trzeciej (błąd przewidywany jest niższy niż 2\%, ale góra granica błędu przekracza 2\%), instytucja audytowa może w niektórych przypadkach stwierdzić, że wyniki są nadal jednoznaczne nawet w przypadku poziomu ufności niższego od poziomu zakładanego. W przypadku gdy ten ponownie obliczony poziom ufności jest nadal zgodny z oceną jakości systemów zarządzania i kontroli, można bezpiecznie stwierdzić, że dana populacja nie zawiera istotnych niepewności, nawet bez przeprowadzania dodatkowych czynności audytowych. Wyjaśnienia dotyczące ponownego obliczania poziomów ufności znajduje się w sekcji 7.7.

4.13 Poziom ufności

Poziom ufności określono w rozporządzeniu do celów ustalania liczebności próby do badań bezpośrednich.

Ponieważ poziom ufności ma bezpośredni wpływ na liczebność próby, celem rozporządzenia jest ewidentnie umożliwienie zmniejszenia obciążenia czynnościami audytowymi w odniesieniu do systemów posiadających określony niski poziom błędu (a

zatem wysoką pewność), przy jednoczesnym zachowaniu wymogu dotyczącego kontroli znaczej liczby pozycji, w przypadku gdy system charakteryzuje się potencjalnie wysokim poziomem błędu (a zatem niską pewnością).

Zgodnie z najłatwiejszą interpretacją tego terminu poziomu ufności jest to prawdopodobieństwo, że przedział ufności określony na podstawie danych z próby zawiera rzeczywisty błąd populacji (nieznany). Przykładowo, jeżeli prognozuje się, że błąd w populacji wynosi 6 000 000 EUR, a przedział poziomu ufności w wysokości 90 % wynosi

\[[5,000,000 \text{€}; 7,000,000 \text{€}] \],

oznacza to, że istnieje prawdopodobieństwo na poziomie 90 %, że rzeczywisty (ale nieznany) błąd populacji znajdzie się w tym przedziale. Skutki tych strategicznych wyborów dotyczących planowania audytu i doboru operacji do próby wyjaśniono w kolejnych sekcjach niniejszego dokumentu.

4.14 Poziom błędu

Poziom błędu próby oblicza się jako stosunek całkowitego błędu w próbie do całkowitej wartości księgowej jednostek w próbie, podczas gdy przewidywany poziom błędu oblicza się jako stosunek przewidywanego błędu populacji do całkowitej wartości księgowej. Należy ponownie zauważyć, że błąd próby sam w sobie nie stanowi przedmiotu zainteresowania, ponieważ powinien być traktowany jedynie jako narzędzie pomocnicze do obliczenia błędu przewidywanego\(^{19}\).

5 Techniki doboru próby do celów audytu operacji

5.1 Przegląd

W ramach audytu operacji celem doboru próby jest wybór operacji, które zostaną objęte audytem, za pomocą badań bezpośrednich; populację stanowią wydatki zadeklarowane Komisji w odniesieniu do operacji w ramach programu / grupy programów w okresie odniesienia.

\(^{19}\) W przypadku niektórych metod doboru próby, mianowicie metod opartych na doborze próby na podstawie równego prawdopodobieństwa, poziom błędu próby można zastosować do celów prognozowania poziomu błędu populacji.
Rysunek 5 przedstawia zestawienie najczęściej stosowanych metod doboru próby do celów audytu.

Rys. 5 Metody doboru próby do celów audytu operacji

Jak stwierdzono powyżej, należy pamiętać, że pierwsze rozróżnienie między metodami doboru próby dotyczy podziału na statystyczny i niestatystyczny dobór próby.

W sekcji 5.2 przedstawiono warunki stosowania różnych schematów doboru próby oraz omówiono wyjątkowo skrajne sytuacje, w których dopuszcza się stosowanie niestatystycznego doboru próby.

W ramach statystycznego doboru próby główne rozróżnienie między metodami opiera się na prawdopodobieństwie doboru: metody doboru próby na podstawie równego prawdopodobieństwa (w tym dobór losowy prosty i estymacja różnicy) i metody doboru próby na podstawie prawdopodobieństwa proporcjonalnego do wielkości, wśród których wyróżnia się dobrze znana metoda doboru próby na podstawie jednostki monetarnej (MUS).

Metoda doboru próby na podstawie jednostki monetarnej (MUS) jest to w istocie prawdopodobieństwo proporcjonalne do wielkości. Nazwa wywodzi się z faktu, że operacje są obierane z prawdopodobieństwem proporcjonalnym do ich wartości pieniężnej. Im wyższa wartość pieniężna, tym większe prawdopodobieństwo doboru.
Jak poprzednio, warunki sprzyjające stosowaniu każdej z metod są omówione w następnej sekcji.

Niezależnie od wybranej metody doboru próby audyt operacji za pomocą doboru próby powinien zawsze przebiegać zgodnie z podstawowym schematem ogólnym:

1. **określenie celów badań bezpośrednich**: zazwyczaj określenie poziomu błędu w wydatkach zadeklarowanych Komisji za dany rok w odniesieniu do programu (lub grupy programów) w oparciu o prognozę na podstawie próby;

2. **zdeterminowanie populacji**: wydatki zadeklarowane Komisji za dany rok w odniesieniu do programu lub grupy programów i jednostka próby, która stanowi pozycję doboraną do próby (zwykle operacja, ale istnieją również inne możliwości, np. wniosek o płatność);

3. **zdeterminowanie parametrów populacji**: obejmuje to określenie błędu dopuszczalnego (2% wydatków zadeklarowanych Komisji), błędu oczekiwewanego (przewidywanego przez audytora), poziomu ufności (z uwzględnieniem modelu ryzyka kontroli) i (zazwyczaj) miary zmienności populacji;

5. **dobór próby i przeprowadzanie audytu**;

6. **prognozowanie wyników, obliczenie dokładności i wyciągnięcie wniosków**: etap ten obejmuje obliczenie dokładności i błędu przewidywanego oraz porównanie tych wyników z progiem istotności.

Wybór konkretnej metody doboru próby ulepsza ten klasyczny schemat, dostarczając wzór na obliczenie liczebności próby oraz ramy na potrzeby prognozy wyników.

Należy również pamiętać, że poszczególne wzory na określanie liczebności próby różnią się w zależności od wybranej metody doboru próby. Niezależnie od wybranej metody liczebność próby będzie jednak zależna od trzech parametrów:

- poziomu ufności (im wyższy poziom ufności, tym większa liczebność próby);
- Zmienności populacji21 (tj. jak bardzo zmienne są wartości populacji; jeżeli wszystkie operacje w populacji mają podobne wartości błędu, uznaje się, że populacja jest mniej zmienna niż populacja, w której wszystkie operacje wykazują wyraźnie zróżnicowane wartości błędu). Im większa zmienność populacji, tym większa liczebność próby;

20 Jeżeli liczebność próby oblicza się w odniesieniu do różnych warstw i okresów, dopuszcza się możliwość niezaokrąglania liczebności próby w przypadku niektórych warstw/okresów pod warunkiem zaokrąglenia ogólnej liczebności próby.

21 Obliczanie liczebności próby w przypadku konserwatywnego podejścia do metody doboru próby na podstawie jednostki monetarnej (MUS) nie jest zależne od żadnych parametrów związanych ze zmiennością w odniesieniu do danej populacji.
• planowanej dokładności określonej przez audytora; ta planowana dokładność stanowi zwykle różnicę między błędem dopuszczalnym w wysokości 2% wydatków a błędem oczekiwanym. Zakładając, że błąd oczekiwany jest mniejszy niż 2%, wówczas im większy błąd oczekiwany (lub im mniejsza planowana dokładność), tym większa liczebność próby.

Poszczególne wzory na wyznaczenie liczebności próby przedstawiono w sekcji 6. Zgodnie z jedną z istotnych podstawowych zasad nigdy nie należy jednak stosować próby obejmującej mniej niż 30 jednostek (w celu utrzymania założeń dotyczących podziału wykorzystywanych do tworzenia przedziałów ufności).

5.2 Warunki stosowania schematów doboru próby

Jeżeli chodzi o wybór metody doboru operacji do objęcia audytem, należy na wstępie zaznaczyć, że chociaż istnieją liczne kryteria wpływające na tę decyzję, ze statystycznego punktu widzenia wybór ten opiera się głównie na oczekiwaniach dotyczących zmienności błędów i ich związku z wydatkami.

W poniższej tabeli przedstawiono kilka wskazówek co do wyboru najodpowiedniejszej metody w zależności od kryteriów.
Metoda doboru próby	Sprzyjające warunki
Standardowa metoda doboru próby na podstawie jednostki monetarnej (MUS) | Błędy charakteryzują się dużą zmiennością\(^{22}\) i są w przybliżeniu proporcjonalne do poziomu wydatków (tj. poziomy błędu charakteryzują się niewielką zmiennością). Wartości wydatków na operację charakteryzują się dużą zmiennością.

Konserwatywna metoda doboru próby na podstawie jednostki monetarnej (MUS) | Błędy charakteryzują się dużą zmiennością i są w przybliżeniu proporcjonalne do poziomu wydatków. Wartości wydatków na operację charakteryzują się dużą zmiennością. Oczekuje się, że odsetek błędów będzie niski\(^{23}\). Oczekiwany poziom błędu musi być niższy niż 2\%.

Estymacja różnic | Błędy charakteryzują się stosunkową niezmiennością lub małą zmiennością. Potrzebne są szacunki całkowitych skorygowanych wydatków w populacji.

Dobór losowy prosty | Ogólnie proponowana metoda, którą można zastosować, jeżeli nie występują wcześniej omówione warunki. Można ją stosować za pomocą estymacji wartości na podstawie średniej lub estymacji ilorazowej (zob. sekcja 6.1.1.3 zawierająca wytyczne dotyczące wyboru jednej z tych dwóch technik estymacji).

Metody niestatystyczne | W przypadku gdy zastosowanie metody statystycznej jest niemożliwe (zob. poniżej omówienie).

Stratyfikacja | Można ją stosować w połączeniu z każdą z wyżej omówionych metod. Jest ona szczególnie przydatna zawsze, gdy oczekuje się, że poziom błędu będzie znacznie zróżnicowany dla poszczególnych grup populacji (subpopulacji).

Tabela 2. Warunki sprzyjające wyborowi metod doboru próby

Chociaż należy stosować się do powyższych zaleceń, nie można powszechnie uznać żadnej metody za jedyną właściwą metodę czy nawet „najlepszą metodę”. Ogólnie rzecz biorąc, można stosować wszystkie metody. Wybór metody, która nie jest najodpowiedniejsza dla danej sytuacji, skutkuje tym, że liczebność próby będzie

\(^{22}\) Duża zmienność oznacza, że błędy w operacjach nie są podobne, tj. występują małe i duże błędy w odróżnieniu od sytuacji, w której wszystkie błędy mają mniej więcej podobną wartość (por. sekcja 4.11).

\(^{23}\) Ponieważ podejście konserwatywne do metody MUS jest oparte na rozkładzie zdarzeń rzadkich, jego zastosowanie jest szczególnie wskazane, gdy oczekuje się niskiego stosunku liczby błędów do całkowitej liczby operacji w populacji (odsetek błędów).
musiała być większa niż liczebność uzyskana z zastosowaniem odpowiedniejszej metody. Każda z metod pozwala jednak na dobór reprezentatywnej próby, pod warunkiem że uważmy się odpowiednią liczebność próby.

Należy również pamiętać, że stratyfikację można stosować w połączeniu z każdą inną metodą doboru próby. Stratyfikacja polega na podziale populacji na grupy (warstwy) bardziej homogeniczne (o mniejszej zmienności) niż cała populacja. Zamiast populacji charakteryzującej się dużą zmiennością można otrzymać dwie subpopulacje lub większą ich liczbę, które charakteryzują się mniejszą zmiennością. Stratyfikację należy stosować w celu zminimalizowania zmienności albo odizolowania podzbiorów populacji powodujących błąd. W obu przypadkach stratyfikacja zmniejszy wymaganą liczebność próby.

Jak stwierdzono powyżej, statystyczny dobór próby należy stosować w celu wyciągnięcia wniosków dotyczących kwoty błędu w populacji. Istnieją jednak szczególne uzasadnione przypadki, w których niestatystyczne metody doboru próby mogą być stosowane na podstawie profesjonalnego osądu instytucji audytowej w zgodzie z przyjętymi na szczeblu międzynarodowym standardami audytu.

W praktyce szczególne sytuacje, które mogą uzasadniać zastosowanie niestatystycznego doboru próby, są związane z liczebnością populacji. W praktyce metoda ta może być odpowiednia w przypadku bardzo małej populacji, której liczebność jest niewystarczająca, aby umożliwić stosowanie metod statystycznych (populacja jest mniejsza lub bardzo zbliżona do zalecanej liczebności próby)\(^{24}\).

Instytucja audytowa musi zastosować wszelkie możliwe środki, aby uzyskać wystarczająco dużą populację: grupując programy, gdy są one częścią ogólnego systemu, lub wykorzystując okresowe wnioski beneficjentów o płatność jako jednostkę. Instytucja audytowa powinna również uznać, że nawet w skrajnym przypadku, gdy zastosowanie podejścia statystycznego na początku programu nie jest możliwe, powinno ono zostać zastosowane tak szybko jak to możliwe.

5.3 Zapis

Przed przedstawieniem głównych metod doboru próby do celów audytu operacji warto zdefiniować zestaw pojęć związanych z doborem próby, które są wspólne dla wszystkich metodom. Zatem:

- z oznacza parametr z rozkładu normalnego związany z poziomem ufności ustalonym na podstawie audytów systemu. Możliwe wartości z przedstawiono w

\(^{24}\) Por. sekcja 6.4.1.
poniższej tabeli. Pełna tabela z wartościami rozkładu normalnego znajduje się w dodatku 3.

<table>
<thead>
<tr>
<th>Poziom ufności</th>
<th>60 %</th>
<th>70 %</th>
<th>80 %</th>
<th>90 %</th>
<th>95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poziom pewności systemu</td>
<td>Wysoki</td>
<td>Umiarkowany</td>
<td>Umiarkowany</td>
<td>Niski</td>
<td>Brak pewności</td>
</tr>
<tr>
<td>z</td>
<td>0,842</td>
<td>1,036</td>
<td>1,282</td>
<td>1,645</td>
<td>1,960</td>
</tr>
</tbody>
</table>

Tabela 3. Wartości z według poziomów ufności

- N oznacza liczebność populacji (np. liczbę operacji w programie lub wniosków o płatność); jeżeli dokonano stratyfikacji populacji, stosuje się indeks h do oznaczania poszczególnych warstw, gdzie $N_h, h = 1,2, ..., H$ i H oznacza liczbę warstw;
- n oznacza liczebność próby; jeżeli dokonano stratyfikacji populacji, stosuje się indeks h do oznaczania poszczególnych warstw, gdzie $n_h, h = 1,2, ..., H$ i H oznacza liczbę warstw;
- TE oznacza maksymalny dopuszczalny błąd zgodnie z rozporządzeniem, tj. 2 % całkowitych wydatków zadeklarowanych Komisji (wartość księgowa, BV);
- $BV_i, i = 1,2, ..., N$ oznacza wartość księgową (wydatki zadeklarowane Komisji) pozycji (operacji / wniosku o płatność);
- $CBV_i, i = 1,2, ..., N$ oznacza skorygowaną wartość księgową, wydatki określone po zastosowaniu procedur kontroli w odniesieniu do pozycji (operacji / wniosku o płatność);
- $E_i = BV_i - CBV_i, i = 1,2, ..., N$, oznacza kwotę błędu pozycji i oznacza różnicę między wartością księgową objętej próbą pozycji i i odpowiedniej skorygowanej wartości księgowej; jeżeli dokonano stratyfikacji populacji, stosuje się indeks h do oznaczania poszczególnych warstw, $E_{hi} = BV_{hi} - CBV_{hi}, i = 1,2, ..., N_h, h = 1,2, ..., H$ i H oznacza liczbę warstw;
- AE oznacza błąd oczekiwany określony przez audytora na podstawie oczekiwany poziomu błędu na poziomie operacji (np. oczekiwany poziom błędu pomnożony przez całkowite wydatki na poziomie populacji). AE można uzyskać na podstawie danych historycznych (błąd przewidywany w poprzednim okresie) albo próby wstępnej/pilotowej o malej liczebności (tej samej, którą wykorzystano do określenia odchylenia standardowego).

W wytycznych wyżej wymienione parametry często występują z indeksami dolnymi, które mogą dotyczyć cechy danego parametru lub warstwy, której dotyczy dany parametr. W szczególności:

- r stosuje się przy odchYLENIU standardowym, gdy odnosi się do odchylenia standardowego poziomów błędu;
Jeżeli jeden parametr ma kilka indeksów dolnych, zmiana ich kolejności nie powoduje zmiany znaczenia zapisu.

6 Metody doboru próby

6.1 Dobór losowy prosty

6.1.1 Podejście standardowe

6.1.1.1 Wprowadzenie

Dobór losowy prosty jest metodą statystycznego doboru próby. Jest to najbardziej znana metoda wśród metod doboru próby na podstawie równego prawdopodobieństwa. Jej celem jest prognozowanie poziomu błędu obserwowanego w próbie dla całej populacji.

Jednostką statystyczną podlegającą doborowi do próby jest operacja (lub wniosek o płatność). Jednostki w próbie są dobierane losowo z równym prawdopodobieństwem. Dobór losowy prosty jest metodą ogólną odpowiednią dla różnych rodzajów populacji, chociaż z uwagi na niewykorzystywanie informacji pomocniczych zwykle wymaga większej liczebności próby niż metoda doboru próby na podstawie jednostki monetarnej (MUS) (ilekroć poziom wydatków znacznie się różni dla poszczególnych operacji i występuje dodatni związek między wydatkami a błędami). Prognozę błędów można przeprowadzić z zastosowaniem dwóch metod pomocniczych: estymacji wartości na podstawie średniej lub estymacji ilorazowej (zob. sekcja 6.1.1.3).

Metodę tę, podobnie jak wszystkie pozostałe, można połączyć ze stratyfikacją (warunki sprzyjające stratyfikacji omówiono w sekcji 5.2).

6.1.1.2 Liczebność próby

Liczebność próby w ramach doboru losowego prostego oblicza się w oparciu o następujące informacje:
liczność populacji N
poziom ufności określony z rozkładu normalnego na podstawie audytu systemów i powiązanego współczynnika z (zob. sekcja 5.3);
maksymalny dopuszczalny błąd TE (zwykle 2 % całkowitych wydatków);
błąd oczekiwany AE wybrany przez audytora zgodnie z jego profesjonalnym osądem i na podstawie informacji z wcześniejszych audytów;
odchylenie standardowe σ_e błędów.

Liczebność próby oblicza się następująco:\n
$$n = \left(\frac{N \times z \times \sigma_e}{TE - AE}\right)^2$$

gdzie σ_e oznacza odchylenie standardowe błędów w populacji. Należy pamiętać, że w powyższych obliczeniach zakłada się, iż to odchylenie standardowe błędów dla całej populacji jest znane. W praktyce sytuacja taka prawie nigdy nie będzie miała miejsca, dlatego też instytucje audytowe będą musiały bazować na danych historycznych (odchylenie standardowe błędów dla populacji w poprzednim okresie) albo na próbie wstępnej/pilotażowej o małej liczności (zaleca się, aby liczność próby nie była mniejsza niż 20–30 jednostek). W tym drugim przypadku wybiera się próbę wstępną o liczności n^p, a następnie oblicza się wstępny szacunek wariancji błędów (kwadrat odchylenia standardowego) za pomocą następującego wzoru:

$$\sigma_e^2 = \frac{1}{n^p - 1} \sum_{i=1}^{n^p} (E_i - \bar{E})^2,$$

gdzie E_i oznacza poszczególne błędy dla jednostek w próbie, zaś $\bar{E} = \frac{\sum_{i=1}^{n^p} E_i}{n^p}$ oznacza średni błąd próby.

Należy pamiętać, że próbę pilotażową można następnie wykorzystać jako część prób wybranej do audytu.

6.1.1.3 Błąd przewidywany

W przypadku małej liczności populacji, tj. jeżeli ostateczna liczność próby stanowi duży odsetek populacji (z reguły powyżej 10 % populacji), można zastosować dokładniejszy wzór prowadzący do

$$n = \left(\frac{N \times z \times \sigma_e}{TE - AE}\right)^2 \left(1 + \frac{\sqrt{N \times z \times \sigma_e}}{TE - AE}\right)^2.$$

Korektę taką można wykorzystać w doborze losowym prostym i estymacji różnicy. Można ją także wprowadzić w dwóch etapach, obliczając liczebność próby n za pomocą zwykłego wzoru, a następnie korzystając z przy użyciu wzoru $n' = \frac{n \times N}{n + N - 1}$.

25 W przypadku małej liczności populacji, tj. jeżeli ostateczna liczność próby stanowi duży odsetek populacji (z reguły powyżej 10 % populacji), można zastosować dokładniejszy wzór prowadzący do $n = \left(\frac{N \times z \times \sigma_e}{TE - AE}\right)^2 \left(1 + \frac{\sqrt{N \times z \times \sigma_e}}{TE - AE}\right)^2$. Korektę taką można wykorzystać w doborze losowym prostym i estymacji różnicy. Można ją także wprowadzić w dwóch etapach, obliczając liczebność próby n za pomocą zwykłego wzoru, a następnie korygując ją przy użyciu wzoru $n' = \frac{n \times N}{n + N - 1}$.

40
Istnieją dwie możliwości prognozowania błędu próby w populacji. Pierwsza metoda opiera się na estymacji wartości na podstawie średniej (błędy bezwzględne), a druga na estymacji ilorazowej (poziomy błędu).

Estymacja wartości na podstawie średniej (błędy bezwzględne)
Należy pomnożyć średni błąd na operację obserwowany w próbie przez liczbę operacji w populacji, co daje błąd przewidywany:

\[
EE_1 = N \times \frac{\sum_{i=1}^{n} E_i}{n}.
\]

Estymacja ilorazowa (poziomy błędu)
Należy pomnożyć średni poziom błędu obserwowany w próbie przez wartość księgową na poziomie populacji:

\[
EE_2 = BV \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i}.
\]

W powyższym wzorze poziom błędu próby stanowi po prostu iloraz całkowitej kwoty błędu w próbie i całkowitej kwoty wydatków dla jednostek w próbie (wydatki objęte audytom).

Nie można z góry przewidzieć, która metoda ekstrapolacji jest najlepsza, ponieważ zalety każdej z nich są zależne od poziomu związku między błędami a wydatkami. Z reguły tę drugą metodę należy stosować jedynie w przypadkach, gdy oczekuje się silnego związku między błędami a wydatkami (vyższe wartości pozycji wykazują zazwyczaj większe błędy), natomiast pierwszą metodę (wartość na podstawie średniej), gdy oczekuje się, że błędy są stosunkowo niezależne od poziomu wydatków (większe błędy mogą występować zarówno w jednostkach o wysokim, jak i o niskim poziomie wydatków). W praktyce oceny takiej można dokonać, wykorzystując dane z próby, ponieważ decyzję w sprawie metody ekstrapolacji można podjąć po dobrym próby i przeprowadzaniu audytu. Aby wybrać najodpowiedniejszą metodę ekstrapolacji, należy wykorzystać dane z próby do obliczenia wariancji wartości księgowych jednostek próby (VARBV) i kowariancji między błędami a wartościami księgowymi w odniesieniu do tych samych jednostek (COV_{EBV}). Formalnie należy zawsze wybierać estymację ilorazową gdy
\[
\frac{\text{COV}_{EBV}}{\text{VAR}_{BV}} > \frac{ER}{2},
\]

gdzie ER oznacza poziom błędu próby, tj. stosunek sumy błędów w próbie do wydatków objętych audytom. Zawsze gdy poprzedni warunek nie jest sprawdzony, do prognozowania błędów w populacji należy stosować estymację wartości na podstawie średniej.

6.1.1.4 **Dokładność**
Należy pamiętać, że dokładność (błąd próby) jest miarą niepewności związanej z prognozowaniem (ekstrapolacją). Oblicza się ją na różne sposoby w zależności od zastosowanej metody ekstrapolacji.

Estymacja wartości na podstawie średniej (błędy bezwzględne)

Dokładność oblicza się za pomocą następującego wzoru:

\[SE_1 = N \times z \times \frac{s_e}{\sqrt{n}} \]

gdzie \(s_e \) oznacza odchylenie standardowe błędów w próbie (tym razem obliczone na podstawie tej samej próby, którą wykorzystano do prognozowania błędów dla danej populacji):

\[s_e^2 = \frac{1}{n-1} \sum_{i=1}^{n} (E_i - \bar{E})^2 \]

Estymacja ilorazowa (poziomy błędu)

Dokładność oblicza się za pomocą następującego wzoru:

\[SE_2 = N \times z \times \frac{s_q}{\sqrt{n}} \]

gdzie \(s_q \) oznacza odchylenie standardowe zmiennej \(q \):

\[q_i = E_i - \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i} \times BV_i. \]

Zmienną tę oblicza się dla każdej jednostki w próbie jako różnicę między jej błędem a iloczynem jej wartości księgowej i poziomu błędu w próbie.

6.1.1.5 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego \(EE \) i dokładności ekstrapolacji:

\[ULE = EE + SE \]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.
jeżeli błąd przewidywany jest większy niż maksymalny dopuszczalny błąd,
oznacza to, że audytor stwierdzi, iż istnieją wystarczające dowody na poparcie
 twierdzenia, że błędy w populacji są większe niż próg istotności:

jeżeli górna granica błędu jest niższa niż maksymalny dopuszczalny błąd,
wówczas audytor powinien stwierdzić, że błędy w populacji są niższe niż próg
istotności:

jeżeli błąd przewidywany jest niższy niż maksymalny dopuszczalny błąd, ale
górna granica błędu jest większa niż maksymalny dopuszczalny błąd, oznacza
 to, że wyniki doboru próby mogą być niejednoznaczne. Zob. dalsze wyjaśnienia
w sekcji 4.12.

6.1.1.6 Przykład

Załóżmy populację wydatków zadeklarowanych Komisji w danym roku dla operacji w
ramach programu lub grupy programów. Audyty systemu przeprowadzone przez
instytucję audytową dały umiarkowany poziom pewności. W związku z tym poziom
ufności w wysokości 80 % wydaje się odpowiedni w odniesieniu do audytu operacji. W
poniższej tabeli przedstawiono główne cechy populacji.

<table>
<thead>
<tr>
<th>Liczebność populacji (liczba operacji)</th>
<th>3 852</th>
</tr>
</thead>
</table>
| Wartość księgowa (suma wydatków w okresie
odniesienia) | 46 501 186 EUR |
Próba wstępna obejmująca 20 operacji dała wstępny szacunek odchylenia standardowego błędów w wysokości 518 EUR (obliczony w programie MS Excel jako „:=STDEV.S(D2:D21)”):

Pierwszym krokiem jest obliczenie wymaganej liczebności próby za pomocą wzoru:

\[
n = \left(\frac{N \times z \times \sigma_e}{T_E - AE} \right)^2
\]

gdzie z wynosi 1,282 (współczynnik odpowiadający poziomowi ufności wynoszącemu 80 %), \(\sigma_e \) wynosi 518 EUR, zaś \(T_E \), błąd dopuszczalny, wynosi 2 % (maksymalny poziom istotności wyznaczony w rozporządzeniu) wartości księgowej, tj. 2 % x 46 501 186 EUR = 930 024 EUR. Ta próba wstępna daje poziom błędu próby w wysokości 1,24 %. Ponadto na podstawie doświadczeń z poprzednich lat i wniosków ze sprawozdania dotyczącego systemów zarządzania i kontroli instytucja audytowa oczekuje, że poziom błędu nie przekroczy 1,24 %, w związku z czym \(AE \), błąd oczekiwany, wynosi 1,24 % całkowitych wydatków, tj. 1,24 % x 46 501 186 EUR = 576 615 EUR:
\[n = \left(\frac{3,852 \times 1.282 \times 518}{930,024 - 576,615} \right)^2 \approx 53 \]

Minimalna liczebność próby wynosi zatem 53 operacje.

Poprzednią próbę wstępną obejmującą 20 operacji wykorzystuje się jako część głównej próby. Audytor musi zatem wybrać losowo jeszcze tylko 33 operacji. W poniższej tabeli przedstawiono wyniki dla całej próby obejmującej 53 operacji:

<table>
<thead>
<tr>
<th>A</th>
<th>Operation</th>
<th>B</th>
<th>Book Value (BV)</th>
<th>C</th>
<th>Correct Value (AV)</th>
<th>D</th>
<th>Error</th>
<th>Error rate</th>
<th>E</th>
<th>Error rate</th>
<th>(4)/(2)</th>
<th>F</th>
<th>(4)/(SUM(4))/(SUM(2)^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>74</td>
<td>9,083 €</td>
<td>9,083 €</td>
<td>- €</td>
<td>0.00%</td>
<td>107.17 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>98</td>
<td>13,054 €</td>
<td>13,054 €</td>
<td>- €</td>
<td>0.00%</td>
<td>153.85 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>10,758 €</td>
<td>10,758 €</td>
<td>- €</td>
<td>0.00%</td>
<td>126.79 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>153</td>
<td>16,194 €</td>
<td>16,194 €</td>
<td>- €</td>
<td>0.00%</td>
<td>190.86 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>223</td>
<td>11,662 €</td>
<td>11,662 €</td>
<td>- €</td>
<td>0.00%</td>
<td>137.45 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>246</td>
<td>16,331 €</td>
<td>16,331 €</td>
<td>- €</td>
<td>0.00%</td>
<td>192.48 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>542</td>
<td>8,714 €</td>
<td>8,264 €</td>
<td>450 €</td>
<td>5.17%</td>
<td>347.61 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>554</td>
<td>8,645 €</td>
<td>8,645 €</td>
<td>- €</td>
<td>0.00%</td>
<td>101.88 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>587</td>
<td>9,297 €</td>
<td>9,297 €</td>
<td>- €</td>
<td>0.00%</td>
<td>109.57 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>915</td>
<td>7,999 €</td>
<td>7,999 €</td>
<td>- €</td>
<td>0.00%</td>
<td>94.28 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1014</td>
<td>11,906 €</td>
<td>11,906 €</td>
<td>- €</td>
<td>0.00%</td>
<td>140.32 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1114</td>
<td>15,505 €</td>
<td>15,505 €</td>
<td>- €</td>
<td>0.00%</td>
<td>182.74 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1156</td>
<td>7,908 €</td>
<td>7,908 €</td>
<td>- €</td>
<td>0.00%</td>
<td>93.20 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1325</td>
<td>6,717 €</td>
<td>6,717 €</td>
<td>- €</td>
<td>0.00%</td>
<td>79.17 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1403</td>
<td>9,730 €</td>
<td>9,730 €</td>
<td>- €</td>
<td>0.00%</td>
<td>114.68 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1453</td>
<td>16,585 €</td>
<td>16,585 €</td>
<td>- €</td>
<td>0.00%</td>
<td>194.88 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1577</td>
<td>17,728 €</td>
<td>17,728 €</td>
<td>- €</td>
<td>0.00%</td>
<td>208.88 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1621</td>
<td>16,095 €</td>
<td>16,095 €</td>
<td>- €</td>
<td>0.00%</td>
<td>189.69 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1624</td>
<td>15,171 €</td>
<td>15,171 €</td>
<td>- €</td>
<td>0.00%</td>
<td>178.80 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>(=)</td>
<td>(=)</td>
<td>(=)</td>
<td>(=)</td>
<td>(=)</td>
<td>(=)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>3749</td>
<td>9971</td>
<td>9971</td>
<td>0</td>
<td>0.00%</td>
<td>117.52 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Total</td>
<td>661,580 €</td>
<td>653,783 €</td>
<td>7,797 €</td>
<td>0.00%</td>
<td>755 €</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Całkowita wartość księgowa 53 operacji objętych próbą wynosi 661 580 EUR (obliczona w programie MS Excel jako „=SUM(B3:B55)”). Całkowita kwota błędu w próbie wynosi 7 797 EUR (obliczona w programie MS Excel jako „=SUM(D3:D55)”). Kwota ta podzielona przez liczebność próby stanowi średni błąd operacji w ramach próby.

Aby określić, czy najlepszą metodą estymacji jest estymacja wartości na podstawie średniej lub estymacja ilorazowa, instytucja audytowa oblicza stosunek kowariancji między błędkami a wartościami księgowymi do wariancji wartości księgowych operacji objętych próbą, wynoszącej 0,02078. Ponieważ stosunek jest większy niż połowa poziomu błędu ((7 797 EUR/661 580)/2 = 0,0059), instytucja audytowa może być pewna, że estymacja ilorazowa jest najbardziej wiarygodną metodą estymacji. Ze względów pedagogicznych poniżej przedstawiono obie metody estymacji.
W przypadku zastosowania estymacji wartości na podstawie średniej prognozę błędu dla populacji oblicza się, mnożąc ten średni błąd przez liczebność populacji (3 852 w tym przykładzie). Otrzymana wartość liczbowa stanowi błąd przewidywany na poziomie programu:

\[EE_1 = N \times \frac{1}{n} \sum_{i=1}^{53} E_i = 3,852 \times \frac{7,797}{53} = 566,703. \]

W przypadku zastosowania estymacji ilorazowej prognozę błędów dla populacji można uzyskać, mnożąc średni poziom błędu obserwowany w danej próbie przez wartość księgową na poziomie populacji:

\[EE_2 = BV \times \frac{1}{n} \sum_{i=1}^{53} E_i = 46,501,186 \times \frac{7,797}{661,580} = 548,058. \]

W powyższym wzorze poziom błędu próby stanowi po prostu iloraz całkowitej kwoty błędu w próbie i całkowitej kwoty wydatków objętych audytem.

Przewidywany poziom błędu oblicza się jako stosunek między błędem przewidywanym a wartością księgową populacji (całkowite wydatki). Przy zastosowaniu estymacji wartości na podstawie średniej przewidywany poziom błędu wynosi:

\[r_1 = \frac{566,703}{46,501,186} = 1.22\% \]

natomiast przy zastosowaniu estymacji ilorazowej wynosi on:

\[r_2 = \frac{548,058}{46,501,186} = 1.18\% \]

W obu przypadkach błąd przewidywany jest mniejszy niż poziom istotności. Wnioski końcowe można jednak wyciągnąć dopiero po uwzględnieniu błędu próby (dokładności).

Pierwszym krokiem do ustalenia dokładności jest obliczenie odchylenia standardowego błędów w próbie (obliczone w programie MS Excel jako „:=STDEV.S(D3:D55)”):

\[s_e = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (E_i - \bar{E})^2} = \sqrt{\frac{1}{52} \sum_{i=1}^{53} (E_i - \bar{E})^2} = 758. \]
Dokładność szacowania wartości na podstawie średniej oblicza się zatem za pomocą następującego wzoru:

$$SE_1 = N \times z \times \frac{s_e}{\sqrt{n}} = 3,852 \times 1.282 \times \frac{758}{\sqrt{53}} = 514,169.$$

W przypadku estymacji ilorazowej konieczne jest ustalenie zmiennej:

$$q_i = E_i - \frac{\sum_{i=1}^{53} E_i}{\sum_{i=1}^{53} BV_i} \times BV_i.$$

Zmienna ta jest podana w ostatniej kolumnie tabeli (kolumna F). Na przykład wartość komórki F3 oblicza się, odejmując od wartości błędu pierwszej operacji (0 EUR) sumę błędów próby z kolumny D, 7 797 EUR („:=SUM(D3:D55)”), podzieloną przez kwotę wydatków objętych audytem z kolumny B, 661 580 EUR („:=SUM(B3:B55)”), i pomnożoną przez wartość księgową operacji (9 093 EUR):

$$q_1 = 0 - \frac{7,797}{661,580} \times 9,093 = -107.17.$$

Biorąc pod uwagę odchylenie standardowe tej zmiennej, $$s_q = 755$$ (obliczone w programie MS Excel jako „:=STDEV.S(F3:F55)”), dokładność w odniesieniu do estymacji ilorazowej oblicza się według następującego wzoru:

$$SE_2 = N \times z \times \frac{s_q}{\sqrt{n}} = 3,852 \times 1.282 \times \frac{755}{\sqrt{53}} = 512,134$$

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego $$EE$$ i dokładności prognozy:

$$ULE = EE + SE$$

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.

$$ULE_1 = EE_1 + SE_1 = 566,703 + 514,169 = 1,080,871$$

lub

$$ULE_2 = EE_2 + SE_2 = 548,058 + 512,134 = 1,060,192$$

Wreszcie, porównując próg istotności w wysokości 2 % całkowitej wartości księgowej programu (2 % x 46 501 186 EUR = 930 024 EUR) z błędem przewidywanym i górną granicą błędu w przypadku estymacji ilorazowej (czyli wybranej metody prognozowania), można wyciągnąć wniosek, że błąd przewidywany jest mniejszy niż...
maksymalny dopuszczalny błąd, ale góra granica błędu jest wyższa niż maksymalny
dopuszczalny błąd. Audytor może stwierdzić, że konieczne jest przeprowadzenie
dodatkowych czynności, ponieważ nie istnieją wystarczające dowody na poparcie
twierdzenia, iż populacja nie zawiera istotnych nieprawidłowości. Dodatkowe
czynności, które należy przeprowadzić, są wyszczególnione w sekcji 5.11.
6.1.2 Dobór losowy warstwowy

6.1.2.1 Wprowadzenie

W doborze losowym warstwowym populację dzieli się na subpopulacje zwane warstwami, a następnie z każdej warstwy losuje się niezależne próbki z zastosowaniem standardowego podejścia doboru losowego prostego.

W kryteriach kwalifikowalności do przeprowadzenia stratyfikacji należy uwzględnić, że celem stratyfikacji jest znalezienie grup (warstw) wykazujących mniejszą zmienność niż cała populacja. Przy zastosowaniu doboru losowego prostego stratyfikacja według poziomu wydatków na operację jest zazwyczaj dobrym podejściem zawsze, ilekroć oczekuje się, że poziom błędu jest związany z poziomem wydatków. Inne zmienne, które zgodnie z oczekiwaniami mogą wyjaśnić poziom błędu w operacjach, również kwalifikują się do stratyfikacji. Można także wybrać na przykład programy, regiony, instytucje pośredniczące, kategorie oparte na ryzyku operacji itp.

W przypadku stratyfikacji według poziomu wydatków należy rozważyć zidentyfikowanie warstwy o wysokiej wartości 26, objąć te pozycje audytem w 100 % oraz zastosować dobór losowy prosty w odniesieniu do doboru próbki z pozostałych pozycji o niskiej wartości, które są uwzględnione w dodatkowej warstwie lub dodatkowych warstwach. Jest to przydatne w sytuacji, gdy poprawność gałęzi operacyjnych zależy od poziomu wydatków. W takim przypadku pozycje należące do warstwy objętej audytem w 100 % należy wyłączyć z populacji, a wszystkie etapy, o których mowa w pozostałych sekcjach, będą miały zastosowanie jedynie do populacji obejmującej pozycje o niskiej wartości. Należy pamiętać, że objęcie audytem 100 % jednostek z warstwy o wysokiej wartości nie jest obowiązkowe. Instytucja audytowa może opracować stratę opartą na kilku warstwach odpowiadających różnym poziomom wydatków i objąć audytem wszystkie warstwy, stosując dobór próby. Jeżeli istnieje warstwa objęta audytem w 100 %, należy podkreślić, że planowana dokładność w

26 Nie istnieje ogólna zasada identyfikowania wartości granicznej dla warstwy o wysokiej wartości. Z reguły uwzględnia się w niej wszystkie operacje, w których wydatki są większe niż iloraz istotności (2%) i całkowitych wydatków populacji. W bardziej konserwatywnych podejściach stosuje się mniejszą wartość graniczną, zwykle dzieląc istotność przez 2 lub 3, ale wartość graniczna zależy od cech charakterystycznych populacji i powinna opierać się na profesjonalnym osądzie.
odniesieniu do określenia liczebności próby powinna być jednak oparta na całkowitej wartości księgowej populacji. Ze względu na to, że jedyny źródło błędu sanowi warstwa pozycji o niskiej wartości, a planowana dokładność dotyczy poziomu populacji, należy również obliczyć błąd dopuszczalny i błąd oczekiwany na poziomie populacji.

6.1.2.2 Liczebność próby

Liczebność próby oblicza się następująco:

\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 \]

gdzie \(\sigma_w^2 \) oznacza średnią ważoną wariancji błędów dla całego zbioru warstw:

\[\sigma_w^2 = \sum_{i=1}^{H} \frac{N_h}{N} \sigma_{eh}^2, h = 1, 2, ..., H; \]

zaś \(\sigma_{eh}^2 \) oznacza wariancję błędów w każdej warstwie. Wariancję błędów oblicza się dla każdej warstwy jako niezależnej populacji w następujący sposób:

\[\sigma_{eh}^2 = \frac{1}{n_h^p - 1} \sum_{i=1}^{n_h^p} (E_{hi} - \bar{E}_h)^2, h = 1, 2, ..., H \]

gdzie \(E_{hi} \) oznacza poszczególne błędy dla jednostek w próbie warstwy \(h \), zaś \(\bar{E}_h \) oznacza średni błąd próby w warstwie \(h \).

Wartości te można oprzeć na wiedzy historycznej lub na próbie wstępnej/piłotażowej o małej liczebności, jak już omówiono wcześniej w odniesieniu do standardowej metody doboru losowego prostego. W tym drugim przypadku próbę pilotażową można, jak zwykle, wykorzystać później jako część próby wybranej do audytu. Jeżeli na początku okresu programowania nie są dostępne żadne dane historyczne i niemożliwe jest uzyskanie dostępu do próby pilotażowej, liczebność próby można obliczyć za pomocą podejścia standardowego (w odniesieniu do pierwszego roku danego okresu). Dane zgromadzone w próbie objętej audytem dotyczącej takiego pierwszego roku można wykorzystać w celu udoskonalenia sposobu obliczania liczebności próby w latach następnych. Cena, jaką trzeba będzie ponieść za ten brak informacji, jest fakt, że liczebność próby dla pierwszego roku będzie prawdopodobnie większa niż byłaby wymagana w przypadku, gdyby były dostępne informacje pomocnicze na temat warstw.

Po obliczeniu całkowitej liczebności próby, \(n \), alokacja próby według warstw odbywa się następująco:

\[n_h = \frac{N_h}{N} \times n. \]
Jest to ogólna metoda alokacji, znana powszechnie jako alokacja proporcjonalna. Dostępnych jest również wiele innych metod alokacji. Bardziej dostosowana alokacja może w niektórych przypadkach przynieść dodatkowe zyski pod względem dokładności lub zmniejszyć liczebność próby. Ocena adekwatności innych metod alokacji w odniesieniu do każdej konkretnej populacji wymaga pewnej wiedzy technicznej z zakresu teorii doboru próby. Częstym jest zdarzać się, że w wyniku zastosowanej metody alokacji uzyskuje się bardzo małą liczebność próby, co w odniesieniu do jednej warstwy lub większej ich liczby. W praktyce zaleca się, aby minimalna liczebność próby wynosiła 3 jednostki w przypadku każdej warstwy w danej populacji, aby możliwe było obliczenie wartości odczytnienia standardowego potrzebnych do obliczenia dokładności.

6.1.2.3 Błąd przewidywany

Na podstawie \(H \) losowo dobranych prób operacji, gdzie liczebność każdej z nich obliczono zgodnie z powyższym wzorem, błąd przewidywany na poziomie populacji można obliczyć za pomocą dwóch zwykłych metod: estymacji wartości na podstawie średniej i estymacji ilorazowej.

Estymacja wartości na podstawie średniej

W każdej grupie populacji (warstwie) należy pomnożyć średnią błędów obserwowanych w próbie na operację przez liczbę operacji w warstwie (\(N_h \)), a następnie zsumować wszystkie wyniki uzyskane dla każdej warstwy, aby uzyskać błąd przewidywany:

\[
EE_1 = \sum_{h=1}^{H} N_h \times \frac{\sum_{i=1}^{n_h} E_i}{n_h}.
\]

Estymacja ilorazowa

W każdej grupie populacji (warstwie) należy pomnożyć średni poziom błędu obserwowany w próbie przez wartość księgową populacji na poziomie warstwy (\(BV_h \)):

\[
EE_2 = \sum_{h=1}^{H} BV_h \times \frac{\sum_{i=1}^{n_h} E_i}{\sum_{i=1}^{n_h} BV_i}.
\]

Poziom błędu próbny w każdej warstwie stanowi po prostu iloraz całkowitej kwoty błędu w próbie warstwy i całkowitej kwoty wydatków w tej samej próbie.

Wyboru między tymi dwiema metodami należy dokonać na podstawie czynników przedstawionych w odniesieniu do standardowej metody doboru losowego prostego.
Jeżeli zidentyfikowano warstwę objętą audytem w 100 % i wyłączono ją wcześniej z populacji, wówczas całkowitą kwotę błędu obserwowanego w tej warstwie wyczerpującej należy dodać do powyższego szacunku (EE₁ lub EE₂), aby uzyskać ostateczną prognozę kwoty błędu w całej populacji.

6.1.2.4 Dokładność

Podobnie jak w przypadku metody standardowej, dokładność (błąd próby) jest miarą niepewności związanej z prognozowaniem (ekstrapolacją). Oblicza się ją na różne sposoby w zależności od zastosowanej metody ekstrapolacji.

Estymacja wartości na podstawie średniej (błędy bezwzględne)

Dokładność oblicza się za pomocą następującego wzoru:

\[
SE_1 = N \times z \times \frac{s_w}{\sqrt{n}}
\]

gdzie \(s_w^2 \) oznacza średnią ważoną wariancji błędów dla całego zbioru warstw (tym razem obliczoną na podstawie tej samej próby, którą wykorzystano do prognozowania błędów dla danej populacji):

\[
s_w^2 = \sum_{h=1}^{H} \frac{N_h}{N} s_{eh}^2, \quad h = 1,2, ..., H;
\]

zaś \(s_{eh}^2 \) oznacza oszacowaną wariancję błędów dla próby warstwy \(h \):

\[
s_{eh}^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (E_{hi} - \bar{E}_h)^2, \quad h = 1,2, ..., H
\]

Estymacja ilorazowa (poziomy błędu)

Dokładność oblicza się za pomocą następującego wzoru:

\[
SE_2 = N \times z \times \frac{s_{qw}}{\sqrt{n}}
\]

gdzie

\[
s_{qw}^2 = \sum_{h=1}^{H} \frac{N_h}{N} s_{qh}^2
\]

jest średnią ważoną wariancji zmiennej próby \(q_h \), którą oblicza się w następujący sposób:
\[q_{ih} = E_{ih} - \frac{\sum_{i=1}^{n_{ih}} E_{ih} \times BV_{ih}}{\sum_{i=1}^{n_{ih}} BV_{ih}}. \]

Zmienną tę oblicza się dla każdej jednostki w próbie jako różnicę między jej błędem a iloczynem jej wartości księgowej i poziomu błędu w próbie.

6.1.2.5 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego \(EE \) i dokładności ekstrapolacji:

\[ULE = EE + SE \]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli, stosując dokładnie takie samo podejście jak podejście przedstawione w sekcji 6.1.1.5.

6.1.2.6 Przykład

Załóżmy populację wydatków zadeklarowanych Komisji w danym roku w odniesieniu do operacji w grupie programów. System zarządzania i kontroli jest wspólny dla grupy programów, a audyty systemu przeprowadzone przez instytucję audytową dały umiarkowany poziom pewności. W związku z tym instytucja audytowa postanowiła przeprowadzić audyty operacji, stosując poziom ufności w wysokości 80 %.

Instytucja audytowa ma powody sądzić, że istnieje poważne ryzyko wystąpienia błędu w przypadku operacji o wysokiej wartości, niezależnie od programu, do którego należą. Ponadto istnieją powody, dla których można oczekiwać, że w poszczególnych programach występują różne poziomy błędu. Mając na uwadze wszystkie te informacje, instytucja audytowa decyduje się na stratyfikację populacji według programu i według wydatków (wyodrębniając wszystkie operacje o wartości księgowej większej niż poziom istotności w warstwie objętej audytem w 100 %).

Poniższa tabela zawiera podsumowanie dostępnych informacji.

<table>
<thead>
<tr>
<th>Liczebność populacji (liczba operacji)</th>
<th>4 807</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji – warstwa 1 (liczba operacji w ramach programu 1)</td>
<td>3 582</td>
</tr>
<tr>
<td>Liczebność populacji – warstwa 2 (liczba operacji w ramach)</td>
<td>1 225</td>
</tr>
<tr>
<td>programu 2)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Liczebność populacji – warstwa 3 (liczba operacji o BV > poziom istotności)</td>
<td>5</td>
</tr>
<tr>
<td>Wartość księgowa (suma wydatków w okresie odniesienia)</td>
<td>1 396 535 319 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – warstwa 1 (całkowite wydatki w ramach programu 1)</td>
<td>43 226 801 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – warstwa 2 (całkowite wydatki w ramach programu 2)</td>
<td>1 348 417 361 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – warstwa 3 (całkowite wydatki w ramach operacji o BV > poziom istotności)</td>
<td>4 891 156 EUR</td>
</tr>
</tbody>
</table>

Warstwę objętą audytom w 100% zawierającą 5 operacji o wysokiej wartości należy traktować osobno, jak określono w sekcji 6.1.2.1. W związku z tym w dalszej części niniejszych wytycznych wartość N odpowiada całkowitej liczbie operacji w populacji pomniejszonej o liczbę operacji zawartych w warstwie objętej audytom w 100%, tj. 4 802 (= 4 807 – 5) operacji.

Pierwszym krokiem jest obliczenie wymaganej liczebności próby za pomocą wzoru:

$$ n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 $$

gdzie z wynosi 1,282 (współczynnik odpowiadający poziomowi ufności wynoszącemu 80%), zaś TE, błąd dopuszczalny, wynosi 2% (maksymalny poziom istotności wyznaczony w rozporządzeniu) wartości księgowej, tj. 2% x 1 396 535 319 EUR = 27 930 706 EUR. Ponadto na podstawie doświadczeń z poprzednich lat i wniosków ze sprawozdania dotyczącego systemów zarządzania i kontroli instytucja audytowa oczekuje, że poziom błędu nie przekroczy 1,8%, w związku z czym AE, błąd oczekiwany, wynosi 1,8% całkowitych wydatków, tj. 1,8% x 1 396 535 319 EUR = 25 137 636 EUR.

 Ponieważ trzecia warstwa jest warstwą objętą audytom w 100%, liczebność próby dla tej warstwy jest stała i równa liczebności populacji, tzn. 5 operacjom o wysokiej wartości. Liczebność próby dla pozostałych dwóch warstw oblicza się za pomocą powyższego wzoru, gdzie σ_w^2 oznacza średnią ważoną wariancję błędów dla dwóch pozostałych warstw:

$$ \sigma_w^2 = \sum_{i=1}^{2} \frac{N_h}{N} \sigma_{eh}, h = 1,2; $$

zaś σ_{eh} oznacza wariancję błędów w każdej warstwie. Wariancję błędów oblicza się dla każdej warstwy jako niezależnej populacji w następujący sposób:
\[
\sigma^2_{eh} = \frac{1}{n_h^p - 1} \sum_{i=1}^{n_h^p} (E_{hi} - \bar{E}_h)^2, \ h = 1,2,\ldots,H
\]

gdzie \(E_{hi}\) oznacza poszczególne błędy dla jednostek w próbie warstwy \(h\), zaś \(\bar{E}_h\) oznacza średni błąd próby w warstwie \(h\).

Próba wstępna obejmująca 20 operacji z 1 warstwy dała szacunek odchylenia standardowego błędów w wysokości 444 EUR:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Book Value (BV)</th>
<th>Correct Value (AV)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>708</td>
<td>6,533 €</td>
<td>1,584 €</td>
</tr>
<tr>
<td>3</td>
<td>3084</td>
<td>7,009 €</td>
<td>- €</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>7,948 €</td>
<td>- €</td>
</tr>
<tr>
<td>5</td>
<td>878</td>
<td>8,910 €</td>
<td>- €</td>
</tr>
<tr>
<td>6</td>
<td>2101</td>
<td>8,937 €</td>
<td>- €</td>
</tr>
<tr>
<td>7</td>
<td>3117</td>
<td>9,708 €</td>
<td>- €</td>
</tr>
<tr>
<td>8</td>
<td>1856</td>
<td>9,728 €</td>
<td>- €</td>
</tr>
<tr>
<td>9</td>
<td>734</td>
<td>9,985 €</td>
<td>- €</td>
</tr>
<tr>
<td>10</td>
<td>1333</td>
<td>10,160 €</td>
<td>- €</td>
</tr>
<tr>
<td>11</td>
<td>668</td>
<td>11,008 €</td>
<td>- €</td>
</tr>
<tr>
<td>12</td>
<td>3394</td>
<td>12,116 €</td>
<td>- €</td>
</tr>
<tr>
<td>13</td>
<td>1307</td>
<td>12,515 €</td>
<td>- €</td>
</tr>
<tr>
<td>14</td>
<td>189</td>
<td>12,553 €</td>
<td>- €</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>12,798 €</td>
<td>- €</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>16,414 €</td>
<td>- €</td>
</tr>
<tr>
<td>17</td>
<td>2621</td>
<td>16,420 €</td>
<td>- €</td>
</tr>
<tr>
<td>18</td>
<td>2118</td>
<td>16,729 €</td>
<td>- €</td>
</tr>
<tr>
<td>19</td>
<td>3344</td>
<td>16,798 €</td>
<td>- €</td>
</tr>
<tr>
<td>20</td>
<td>1551</td>
<td>17,330 €</td>
<td>- €</td>
</tr>
<tr>
<td>21</td>
<td>1243</td>
<td>17,592 €</td>
<td>- €</td>
</tr>
<tr>
<td>Total</td>
<td>241,191 €</td>
<td>239,207 €</td>
<td>1,984 €</td>
</tr>
</tbody>
</table>

Taką samą procedurę przeprowadzono w odniesieniu do populacji warstwy 2.

Próba wstępna obejmująca 20 operacji z warstwy 2 dała szacunek odchylenia standardowego błędów w wysokości 9 818 EUR:

| Warstwa 1 – wstępny szacunek odchylenia standardowego błędów | 444 EUR |
| Warstwa 2 – wstępny szacunek odchylenia standardowego błędów | 9 818 EUR |

W związku z tym średnia ważona wariancji błędów dla tych dwóch warstw wynosi:
$$\sigma^2_w = \frac{3,582}{4,802} \times 444^2 + \frac{1,225}{4,802} \times 9,818^2 = 24,737,134$$

Liczebność próby oblicza się za pomocą następującego wzoru:

$$n = \left(\frac{4,802 \times 1.282 \times \sqrt{24,734,134}}{27,930,706 - 25,137,636} \right)^2 \approx 121$$

Całkowitą liczebność próby oblicza się dodając otrzymane 121 operacji do 5 operacji z warstwy objętej audytem w 100%, co daje 126 operacje.

Alokacja próby między warstwy odbywa się następująco:

$$n_1 = \frac{N_1}{N_1 + N_2} \times n = \frac{3,582}{4,802} \times 121 \approx 90,$$

oraz

$$n_2 = n - n_1 = 31$$

$$n_3 = N_3 = 5$$

Po przeprowadzeniu audytu 90 operacji w warstwie 1, 31 operacji w warstwie 2 i 5 operacji w warstwie 3 audytor otrzyma całkowity błąd dla operacji objętych próbą. Poprzednie próby wstępne obejmujące 20 operacji w warstwie 1 i 2 wykorzystuje się jako część głównej prób. Audytor musi zatem wybrać losowo jeszcze tylko 70 dodatkowych operacji w warstwie 1 oraz 11 w warstwie 2. W poniższej tabeli przedstawiono wyniki próby dla operacji objętych audytem:

<table>
<thead>
<tr>
<th>Wyniki próby – warstwa 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Wartość księgowa próby</td>
<td>1 055 043 EUR</td>
</tr>
<tr>
<td>B Całkowity błąd próby</td>
<td>11 378 EUR</td>
</tr>
<tr>
<td>C Średni błąd prób (C=B/90)</td>
<td>126 EUR</td>
</tr>
<tr>
<td>D Odchylenie standardowe błędów próby</td>
<td>698 EUR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wyniki próby – warstwa 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E Wartość księgowa próby</td>
<td>35 377 240 EUR</td>
</tr>
<tr>
<td>F Całkowity błąd próby</td>
<td>102 899 EUR</td>
</tr>
<tr>
<td>G Średni błąd prób (G=F/31)</td>
<td>3 319 EUR</td>
</tr>
<tr>
<td>H Odchylenie standardowe błędów próby</td>
<td>13 012 EUR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wyniki próby – warstwa 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I Wartość księgowa próby</td>
<td>4 891 156 EUR</td>
</tr>
</tbody>
</table>
W poniższej tabeli przedstawiono wyniki dla warstwy 1:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>559</td>
<td>6,106 €</td>
<td>6,106 €</td>
<td>- €</td>
<td>0.0%</td>
</tr>
<tr>
<td>4</td>
<td>1833</td>
<td>6,196 €</td>
<td>6,196 €</td>
<td>- €</td>
<td>0.0%</td>
</tr>
<tr>
<td>5</td>
<td>2759</td>
<td>6,441 €</td>
<td>6,441 €</td>
<td>- €</td>
<td>0.0%</td>
</tr>
<tr>
<td>6</td>
<td>708</td>
<td>6,533 €</td>
<td>4,549 €</td>
<td>1,984 €</td>
<td>30.4%</td>
</tr>
<tr>
<td>7</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
</tr>
</tbody>
</table>

Aby określić, czy najlepszą metodą estymacji jest estymacja wartości na podstawie średniej, czy estymacja ilorazowa, instytucja audytowa oblicza stosunek kowariancji między błędami a wartościami księgowymi do wariancji wartości księgowych operacji objętych próbą. Ponieważ stosunek jest większy niż połowa poziomu błędu, instytucja audytowa może być pewna, że estymacja ilorazowa jest najbardziej wiarygodną metodą estymacji. Ze względów pedagogicznych poniżej przedstawiono obie metody estymacji.

Przy zastosowaniu estymacji wartości na podstawie średniej ekstrapolację błędu na obie warstwy próby uzyskuje się, mnożąc średni błąd próby przez liczebność populacji. Sumę tych dwóch wartości należy dodać do błędu wykrytego w warstwie objętej audytem w 100 %, aby dokonać prognozy błędu dla populacji:
\[
EE_1 = \sum_{h=1}^{3} N_h \times \frac{\sum_{i=1}^{n_h} E_i}{n_h} = 3,582 \times 126 + 1,225 \times 3,319 + 889 = 4,519,900
\]

Przy zastosowaniu estymacji ilorazowej można otrzymać alternatywny szacunek, mnożąc średni poziom błędu obserwowany w próbie warstwy przez wartość księgową na poziomie warstwy (dla obu warstw próbki). Następnie sumę tych dwóch wartości należy dodać do błędu wykrytego w warstwie objętej audytem w 100 %, aby dokonać prognozy błędu dla populacji:

\[
EE_2 = \sum_{h=1}^{3} BV_h \times \frac{\sum_{i=1}^{n_h} E_i}{\sum_{i=1}^{n_h} BV_i} \\
= 43,226,802 \times \frac{11,378}{1,055,043} + 1,348,417,361 \times \frac{102,899}{35,377,240} + 889 \\
= 4,389,095.
\]

Przewidywany poziom błędu oblicza się jako stosunek między błędem przewidywanym a wartością księgową populacji (całkowite wydatki). Przy zastosowaniu estymacji wartości na podstawie średniej przewidywany poziom błędu wynosi:

\[r_1 = \frac{4,519,900}{1,396,535,319} = 0.32\%
\]

natomiast przy zastosowaniu estymacji ilorazowej wynosi on:

\[r_2 = \frac{4,389,095}{1,396,535,319} = 0.31\%
\]

W obu przypadkach błąd przewidywany jest mniejszy niż poziom istotności. Wnioski końcowe można jednak wyciągnąć dopiero po uwzględnieniu błędu próby (dokładności). Należy pamiętać, że jedynymi źródłami błędu próby są warstwy 1 i 2, ponieważ warstwa o wysokiej wartości objęta jest doborem próby w 100 %. W związku z tym uwzględnia się tylko te dwie warstwy próbki.

Biorąc pod uwagę odchylenia standardowe błędów w próbie obu warstw (tabela z wynikami próbki), średnia ważona wariancji błędów dla całego zbioru warstw wynosi:

\[
s^2_w = \sum_{i=1}^{2} \frac{N_h}{N} s^2_{e_i} = \frac{3,582}{4,802} \times 698^2 + \frac{1,225}{4,802} \times 13,012^2 = 43,507,225.
\]

Dlatego też dokładność błędu bezwzględnego oblicza się za pomocą następującego wzoru:
\[SE_1 = N \times z \times \frac{s_w}{\sqrt{n}} = 4.802 \times 1.282 \times \frac{\sqrt{43,507.225}}{\sqrt{121}} = 3,695.304. \]

W przypadku estymacji ilorazowej konieczne jest ustalenie zmiennej:

\[q_{ih} = E_{ih} - \frac{\sum_{i=1}^{n_h} E_{ih}}{\sum_{i=1}^{n_h} BV_{ih}} \]

Zmienną dla warstwy 1 przedstawiono w ostatniej kolumnie poprzedniej tabeli (kolumna F). Na przykład wartość komórki F3 oblicza się, odejmując od wartości błędu pierwszej operacji (0 EUR) sumę błędów prób z kolumny D, 11 378 EUR (\(=\text{SUM(D3:D92)}\)), podzielona przez sumę wartości księgowych prób z kolumny B, 1 055 043 EUR (\(=\text{SUM(B3:B92)}\)), i pomnożoną przez wartość księgową operacji (6 106 EUR):

\[q_{11} = 0 - \frac{11,378}{1,055,043} \times 6,106 = -65.85. \]

Odchylenie standardowe tej zmiennej dla warstwy 1 wynosi \(s_{q1} = 695 \) (obliczone w programie MS Excel jako \(=\text{STDEV.S(F3:F92)}\)). Przy zastosowaniu metody opisanej powyżej odchylenie standardowe dla warstwy 2 wynosi \(s_{q2} = 13,148 \). Suma ważona wariancji \(q_{ih} \) wynosi zatem:

\[s_{qw}^2 = \sum_{h=1}^{3} \frac{N_h}{N} s_{qh}^2 = \frac{3,582}{4,802} \times 695^2 + \frac{1,225}{4,802} \times 13,148^2 = 44,412,784. \]

W przypadku zastosowania estymacji ilorazowej dokładność oblicza się za pomocą następującego wzoru:

\[SE_2 = N \times z \times \frac{s_{qw}}{\sqrt{n}} = 4.802 \times 1.282 \times \frac{\sqrt{44,412,784}}{\sqrt{59}} = 3,733,563. \]

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górná granica jest równa sumie samego błędu przewidywanego \(EE \) i dokładności ekstrapolacji:

\[ULE = EE + SE \]

Następnie błąd przewidywany i górná granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.
\[ULE_1 = EE_1 + SE_1 = 4,519,900 + 3,695,304 = 8,215,204 \]

lub

\[ULE_2 = EE_2 + SE_2 = 4,389,095 + 3,733,563 = 8,122,658 \]

Wreszcie, porównując próg istotności w wysokości 2 % całkowitej wartości księgowej populacji (2 % x 1 396 535 319 EUR = 27 930 706 EUR) z oczekawanymi wynikami w przypadku estymacji ilorazowej (czyli wybranej metody prognozowania), obserwujemy, że zarówno błąd przewidywany, jak i góra granica błędu są większe niż maksymalny dopuszczalny błąd. Stwierdzamy zatem, że istnieją wystarczające dowody na poparcie twierdzenia, iż populacja nie zawiera istotnych nieprawidłości.

\[
\begin{align*}
\text{EE}_2 &= 4\,389\,095 \\
\text{ULE}_2 &= 8\,122\,658 \\
\text{TE} &= 27\,930\,706
\end{align*}
\]

6.1.3 Dobór losowy prosty – dwa okresy

6.1.3.1 Wprowadzenie

Instytucja audytowa może podjąć decyzję o przeprowadzeniu procesu doboru próby w kilku okresach w ciągu roku (zazwyczaj dwa półrocza). Największa korzyść wynikająca z tego podejścia wiąże się nie ze zmniejszeniem liczebności próby, ale głównie z możliwością rozłożenia czynności audytowych na cały rok, a tym samym zmniejszenia nakładu pracy, która zostałaby wykonana pod koniec roku na podstawie zaledwie jednej obserwacji.

Przy takim podejściu populację z danego roku dzieli się na dwie subpopulacje, z których każda odpowiada operacjom i wydatkom z każdego półrocza. Dla każdego półrocza losuje się niezależne próby, stosując standardową metodę doboru losowego prostego.

6.1.3.2 Liczebność próbby

Pierwsze półrocze
W pierwszym okresie przeprowadzania audytu (np. półroczu) ogólną liczebność próby (dla zbioru dwóch półroczy) oblicza się następująco:

$$n = \left(\frac{N \times z \times \sigma_{ew}}{TE - AE} \right)^2$$

gdzie σ_{ew}^2 oznacza średnią ważoną wariancję błędów w każdym półroczu:

$$\sigma_{ew}^2 = \frac{N_1}{N} \sigma_{e1}^2 + \frac{N_2}{N} \sigma_{e2}^2$$

zaś σ_{et}^2 oznacza wariancję błędów w każdym okresie t (półroczu). Wariancję błędów dla każdego półroczu oblicza się jako niezależną populację w następujący sposób:

$$\sigma_{et}^2 = \frac{1}{n_t^p - 1} \sum_{i=1}^{n_t^p} (E_{ti} - \bar{E}_t)^2, t = 1,2$$

gdzie E_{ti} oznacza poszczególne błędy dla jednostek w próbie półroczu t, zaś \bar{E}_t oznacza średni błąd próby w półroczu t.

Należy zwrócić uwagę, że wartości oczekiwanych wariancji w obu półroczych muszą być ustalone w oparciu o profesjonalny osąd i wiedzę historyczną. Opcja polegająca na zastosowaniu próby wstępnej/pilotażowej o małej liczebności, omówiona powyżej w odniesieniu do standardowej metody doboru losowego prostego, jest w dalszym ciągu dostępna, ale można z niej korzystać wyłącznie w odniesieniu do pierwszego półrocza. Na początku obserwacji wydatki dla drugiego półrocza nie zostały jeszcze poniesione, w związku z czym żadne obiektywne dane (poza historycznymi) nie są dostępne. Jeżeli zastosowano próby pilotażowe, można je, jak zwykle, wykorzystać później jako część próby wybranej do audytu.

Audytor może uznać, że oczekiwana wariancja błędów w drugim półroczu odpowiada oczekiwanej wariancji błędów w pierwszym półroczu. Można więc zastosować uproszczone podejście, obliczając ogólną liczebność próby w następujący sposób:

$$n = \left(\frac{N \times z \times \sigma_{e1}}{TE - AE} \right)^2$$

Należy pamiętać, że przy takim uproszczonym podejściu potrzebne są jedynie informacje dotyczące zmienności błędów w pierwszym okresie obserwacji. Zgodnie z podstawowym założeniem zmienność błędów w obu półroczych utrzyma się na podobnym poziomie.
Należy również zwrócić uwagę, że wzory na obliczanie liczebności próby wymagają podstawienia wartości N_1 i N_2, tj. liczby operacji w populacji pierwszego i drugiego półrocza. Przy obliczaniu liczebności próby wartość N_1 będzie znana, ale wartość N_2 będzie nieznana i trzeba będzie ją przyjąć zgodnie z oczekiwaniom audytora (również opartymi na informacjach historycznych). Zazwyczaj nie stanowi to problemu, ponieważ wszystkie operacje aktywne w drugim półroczu istnieją już w pierwszym półroczu i w związku z czym $N_1 = N_2$.

Po obliczeniu całkowitej liczebności próby n alokacja próby według półroczy odbywa się następująco:

$$n_1 = \frac{N_1}{N} n$$

oraz

$$n_2 = \frac{N_2}{N} n$$

Drugi półrocze

W pierwszym okresie obserwacji poczyniono pewne założenia dotyczące kolejnych okresów obserwacji (zwykle następnego półroczu). Jeżeli cechy charakterystyczne populacji w kolejnych okresach znacznie odbiegają od przyjętych założeń, konieczne może być skorygowanie liczebności próby w odniesieniu do kolejnego okresu.

W drugim okresie audytu (np. półroczu) dostępnych będzie więcej informacji:

- znana jest prawidłowa liczba operacji aktywnych w półroczu N_2;
- może być już dostępne odchylenie standardowe błędów w próbie s_{e1} obliczone na podstawie próby z pierwszego półroczu;
- można teraz dokładnie ocenić odchylenie standardowe błędów dla drugiego półroczu σ_{e2}, stosując dane faktyczne.

Jeżeli wspomniane parametry nie różnią się znacznie od tych oszacowanych w pierwszym półroczu pod względem oczekiwań analityka, pierwotnie znanana liczebność próby dla drugiego półroczu (n_2) nie będzie wymagać żadnych korekt. Jeżeli audytor stwierdzi jednak, że pierwotne oczekiwania znacznie odbiegają od faktycznych cech charakterystycznych populacji, liczebność próby może wymagać skorygowania, tak aby uwzględnić te niedokładne szacunki. W tym przypadku należy ponownie obliczyć liczebność próby drugiego półroczu za pomocą następującego wzoru:

$$n_2 = \frac{\left(z \cdot N_2 \cdot \sigma_{e2} \right)^2}{(TE - AE)^2 - z^2 \cdot \frac{N_1^2}{n_1} \cdot s_{e1}^2}$$
gdzie s_{e1} oznacza odchylenie standardowe błędów obliczonych na podstawie próby pierwszego półrocza, natomiast σ_{e2} oznacza szacunek odchylenia standardowego błędów w drugim półroczu na podstawie wiedzy historycznej (ostatecznie dostosowany na podstawie informacji z pierwszego półrocza) lub próby wstępnej/pilotażowej drugiego półrocza.

6.1.3.3 Błąd przewidywany

Na podstawie dwóch prób z każdego półrocza można obliczyć błąd przewidywany na poziomie populacji za pomocą dwóch zwykłych metod: estymacji wartości na podstawie średniej i estymacji ilorazowej.

Estymacja wartości na podstawie średniej

W przypadku którego półrocza należy pomnożyć średnią błędów obserwowanych w próbie na operację przez liczbę operacji w populacji (N_t), a następnie zsumować wszystkie wyniki uzyskane dla obu półroczy, aby uzyskać błąd przewidywany:

$$EE_1 = \frac{N_1}{n_1} \sum_{i=1}^{n_1} E_{1i} + \frac{N_2}{n_2} \sum_{i=1}^{n_2} E_{2i}$$

Estymacja ilorazowa

W przypadku każdego półrocza należy pomnożyć średni poziom błędu obserwowany w próbie przez wartość księgową populacji z poszczególnych półroczy (BV_t):

$$EE_2 = BV_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{\sum_{i=1}^{n_1} BV_{1i}} + BV_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{\sum_{i=1}^{n_2} BV_{2i}}$$

Pozioł błędu próby w każdym półroczu stanowi po prostu iloraz całkowitej kwoty błędu w próbę półroczta i całkowitej kwoty wydatków w tej samej próbie.

Wyboru między tymi dwiema metodami należy dokonać na podstawie czynników przedstawionych w odniesieniu do standardowej metody doboru losowego prostego.

6.1.3.4 Dokładność

Podobnie jak w przypadku metody standardowej, dokładność (błąd próby) jest mianą niepewności związanej z prognozowaniem (ekstrapolacją). Oblicza się ją na różne sposoby w zależności od zastosowanej metody ekstrapolacji.
Estymacja wartości na podstawie średniej (błędy bezwzględne)
Dokładność oblicza się za pomocą następującego wzoru:

\[SE = z \times \sqrt{\left(\frac{N_1^2 \times s_{et}^2}{n_1} + \frac{N_2^2 \times s_{et}^2}{n_2} \right)} \]

gdzie \(s_{et} \) oznacza odchylenie standardowe błędów w próbie półrocza t (tym razem obliczone na podstawie tych samych prób, które wykorzystano do prognozowania błędów dla danej populacji).

\[s_{et}^2 = \frac{1}{n_t - 1} \sum_{i=1}^{n_t} (E_{ti} - \bar{E}_t)^2 \]

Estymacja ilorazowa (poziomy błędu)
Dokładność oblicza się za pomocą następującego wzoru:

\[SE = z \times \sqrt{\left(\frac{N_1^2 \times s_{qt}^2}{n_1} + \frac{N_2^2 \times s_{qt}^2}{n_2} \right)} \]

gdzie \(s_{qt} \) oznacza odchylenie standardowe zmiennej \(q \) w próbie z półrocza t, gdzie:

\[q_{ti} = E_{ti} - \frac{\sum_{i=1}^{n_t} E_{ti}}{\sum_{i=1}^{n_t} BV_{ti}} \times BV_{ti}. \]

6.1.3.5 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górná granica jest równa sumie samego błędu przewidywanego \(EE \) i dokładności ekstrapolacji:

\[ULE = EE + SE \]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli, stosując dokładnie takie samo podejście jak podejście przedstawione w sekcji 6.1.1.5.
Instytucja audytowa postanowiła rozłożyć czynności audytowe na dwa okresy. Po zakończeniu pierwszego półrocza instytucja audytowa analizuje populację podzielną na dwie grupy odpowiadające obu półrocjom. Na koniec pierwszego półrocza cechy charakterystyczne populacji są następujące:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane na koniec pierwszego półrocza</th>
<th>1 237 952 015 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocze)</td>
<td>3 852</td>
</tr>
</tbody>
</table>

Na podstawie zgromadzonych doświadczeń instytucja audytowa wie, że zazwyczaj wszystkie operacje zawarte w programach na koniec okresu odniesienia są już aktywne w populacji pierwszego półrocza. Ponadto oczekuje się, że wydatki zadeklarowane na koniec pierwszego półrocza będą stanowiły około 30% całkowitych wydatków zadeklarowanych na koniec okresu odniesienia. Na podstawie tych założeń w poniższej tabeli przedstawiono podsumowanie populacji:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane za pierwsze półrocze</th>
<th>1 237 952 015 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wydatki zadeklarowane za drugie półrocze</td>
<td>2 888 554 702 EUR</td>
</tr>
<tr>
<td>(przewidywane)</td>
<td></td>
</tr>
<tr>
<td>Liczebność populacji (operacje – okres 1)</td>
<td>3 852</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – okres 2, przewidywana)</td>
<td>3 852</td>
</tr>
</tbody>
</table>

Audyty systemu przeprowadzone przez instytucję audytową dały wysoki poziom pewności. W związku z tym dobór próby dla tego programu można przeprowadzić przy poziomie ufności wynoszącym 60%.

W pierwszym okresie ogólną liczebność próby (dla zbioru dwóch półroczy) oblicza się następująco:

\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 \]

gdzie \(\sigma_w^2 \) oznacza średnią ważoną wariancję błędów w każdym półroczu:

\[\sigma_w^2 = \frac{N_1}{N} \sigma_{e1}^2 + \frac{N_2}{N} \sigma_{e2}^2 \]

zaś \(\sigma_{e_t}^2 \) oznacza wariancje błędów w każdym okresie \(t \) (półroczu). Wariancję błędów dla każdego półrocza oblicza się jako niezależną populację w następujący sposób:

\[\sigma_{e_t}^2 = \frac{1}{n_t - 1} \sum_{i=1}^{n_t} (E_{ti} - \bar{E}_t)^2, \ t = 1,2 \]
gdzie E_t oznacza poszczególne błędy dla jednostki w próbie półrocza t, zaś \bar{E}_t oznacza średni błąd próby w półroczu t.

Ponieważ wartość σ^2_{et} jest nieznana, instytucja audytowa postanowiła wylosować próbę wstêpną składającą się z 20 operacji po zakończeniu pierwszego półrocza bieżącego roku. Odchylone błędy próby w tej próbie wstêpnej w pierwszym półroczu wynosi 72 091 EUR. W oparciu o profesjonalny osąd i wiedząc, że wydatki w drugim półroczu są zazwyczaj większe niż w pierwszym, instytucja audytowa dokonała wstêpnej prognozy odchylenia standardowego błędów dla drugiego półrocza, zgodnie z którą odchylenie będzie o 40% większe niż w pierwszym półroczu i wyniesie 100 927,4 EUR. W związku z tym średnia ważona wariancji błędów wynosi:

$$\sigma^2_w = \frac{N_1}{N_1 + N_2} \sigma^2_{e1} + \frac{N_2}{N_1 + N_2} \sigma^2_{e2}$$

$$\quad = \frac{3852}{3852 + 3852} \times 72,091^2 + \frac{3852}{3852 + 3852} \times 100,927.4^2$$

$$\quad = 7,691,726,176.$$

Należy pamiętać, że liczebność populacji w każdym półroczu jest równa liczbie aktywnych operacji (łącznie z wydatkami) w każdym półroczu.

W pierwszym półroczu ogólna liczebność próby planowana dla całego roku wynosi:

$$n = \frac{(N_1 + N_2) \times z \times \sigma_w}{TE - AE}^2$$

gddie z wynosi 0,842 (współczynnik odpowiadający poziomowi ufności wynoszącemu 60%), zaś TE, błąd dopuszczalny, wynosi 2% (maksymalny poziom istotności wyznaczony w rozporządzeniu) wartości księgowej. Całkowita wartość księgowa obejmuje faktyczną wartość księgową na koniec pierwszego półrocza oraz przewidywaną wartość księgową dla drugiego półrocza (1 237 952 015 EUR + 2 888 554 702 EUR = 4 126 506 717 EUR), co oznacza, że błąd dopuszczalny wynosi 2% x 4 126 506 718 EUR = 82 530 134 EUR. Próba wstêpna populacji pierwszego półrocza daje poziom błędu próby w wysokości 0,6%. Instytucja audytowa oczekuje, że ten poziom błędu będzie stały przez cały rok. Dlatego też AE, błąd oczekiwany, wynosi 0,6% x 4 126 506 718 EUR = 24 759 040 EUR. Planowana liczebność prób dla całego roku wynosi:

$$n = \left(\frac{(3852 + 3852) \times 0.842 \times \sqrt{7,691,726,176}}{82,530,134 - 24,759,040}\right)^2 \approx 97$$

Alokacja prób do półrocza odbywa się następująco:
\[n_1 = \frac{N_1}{N_1 + N_2} \approx 49 \]

oraz

\[n_2 = n - n_1 = 49 \]

Próba pierwszego półrocza dała następujące wyniki:

<table>
<thead>
<tr>
<th>Wartość księgowa próby – pierwsze półrocze</th>
<th>13 039 581 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Całkowity błąd próby – pierwsze półrocze</td>
<td>199 185 EUR</td>
</tr>
<tr>
<td>Odchylenie standardowe błędów próby – pierwsze półrocze</td>
<td>69 815 EUR</td>
</tr>
</tbody>
</table>

Na koniec drugiego półrocza dostępnych jest więcej informacji, w szczególności znana jest prawidłowa liczba operacji aktywnych w drugim półroczu, dostępna jest już wariancja błędów próby \(s_e_1 \) obliczona na podstawie próby z pierwszego półrocza i możliwa jest dokładniejsza ocena odchylenia standardowego błędów dla drugiego półrocza \(s_e_2 \) z wykorzystaniem próby wstępnej składającej się z danych faktycznych.

Instytucja audytowa zauważa, że założenie przyjęte na koniec pierwszego półrocza dotyczące całkowitej liczby operacji jest nadal prawidłowe. Istnieją jednak dwa parametry, w przypadku których należy stosować uaktualnione wartości.

Po pierwsze, szacunki odchylenia standardowego błędów na podstawie próby pierwszego półrocza obejmującej 49 operacji dały szacunkową kwotę 69 815 EUR. Stosując tę nową wartość, należy teraz dokonać ponownej oceny planowanej liczebności próby. Po drugie, na podstawie nowej próby wstępnej obejmującej 20 operacji z populacji drugiego półrocza instytucja audytowa szacuje, że odchylenie standardowe błędów w odniesieniu do drugiego półrocza wyniesie 108 369 EUR (jest to wartość bliska wartości przewidywanej na koniec pierwszego okresu, ale bardziej precyzyjna). Stwierdza się, że odchylenia standardowe błędów obu półroczy, które wykorzystano do planowania liczebności próby, nie różnią się znacznie od wartości otrzymanych na koniec pierwszego półrocza. Instytucja audytowa postanowiła jednak ponownie obliczyć liczebność próby, stosując dostępne uaktualnione dane. W rezultacie próba dla drugiego półrocza zostaje zmieniona.

Ponadto przewidywaną całkowitą wartość księgową populacji drugiego półrocza należy zastąpić wartością faktyczną wynoszącą 2 961 930 008 EUR i nie należy stosować wartości przewidywanej wynoszącej 2 888 554 703 EUR.
Odchylenie standardowe błędów w pierwszym półroczu | 72 091 EUR | 69 815 EUR
Odchylenie standardowe błędów w drugim półroczu | 100 475 EUR | 108 369 EUR
Całkowite wydatki w drugim półroczu | 2 888 554 703 EUR | 2 961 930 008 EUR

Uwzględniając te korekty, ponownie obliczona liczebność próby drugiego półrocza wynosi:

\[
n_2 = \left(\frac{z \times N_2 \times \sigma_2}{(TE - AE)^2 - z^2 \times \frac{N_2^2}{n_1} \times s_{e_1}^2} \right)^2 \times (0.842 \times 3,852 \times 108,369)^2
= \frac{(83,997,640 - 25,199,292)^2 - 0.842^2 \times \frac{3,852^2}{49} \times 69,815^2}{(83,997,640 - 25,199,292)^2 - 0.842^2 \times \frac{3,852^2}{49} \times 69,815^2} = 52
\]

Przeprowadzenie audytu 49 operacji w pierwszym półroczu i 52 operacji w drugim półroczu dostarczy audytorowi informacji dotyczących błędu całkowitego w odniesieniu do operacji objętych próbą. Poprzednią próbę wstępną obejmującą 20 operacji wykorzystuje się jako część głównej próby. Audytor musi zatem wybrać jeszcze tylko 32 operacje w drugim półroczu.

Próba drugiego półrocza dała następujące wyniki:

Wartość księgowa próby – drugie półpocze	34 323 574 EUR
Całkowity błąd próby – drugie półpocze	374 790 EUR
Odchylenie standardowe błędów próby – drugie półpocze	59 489 EUR

Na podstawie obu prób można obliczyć błąd przewidywany na poziomie populacji za pomocą dwóch zwykłych metod: estymacji wartości na podstawie średniej i estymacji ilorazowej. Aby określić, czy najlepszą metodą estymacji jest estymacja wartości na podstawie średniej lub estymacja ilorazowa, instytucja audytowa oblicza stosunek kowariancji między błędami a wartościami księgowymi do wariancji wartości księgowych operacji objętych próbą. Ponieważ stosunek ten jest większy niż połowa poziomu błędu, instytucja audytowa może być pewna, że estymacja ilorazowa jest najbardziej wiarygodną metodą estymacji. Ze względów pedagogicznych poniżej przedstawiono obie metody estymacji.

W ramach estymacji wartości na podstawie średniej należy pomnożyć średnią błędów obserwowanych w próbie na operację przez liczbę operacji w populacji (N₂), a
następnie zsumować wszystkie wyniki uzyskane dla obu półroczy, aby uzyskać błąd przewidywany:

\[EE_1 = \frac{N_1}{n_1} \sum_{i=1}^{49} E_{1i} + \frac{N_2}{n_2} \sum_{i=1}^{52} E_{2i} = \frac{3,852}{49} \times 199,185 + \frac{3,852}{52} \times 374,790 \]
\[= 43,421,670 \]

W ramach estymacji ilorazowej należy pomnożyć średni poziom błędu obserwowany w próbie przez wartość księgową populacji z poszczególnych półroczy (\(BV_t\)):

\[EE_2 = BV_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{\sum_{i=1}^{n_1} BV_{1i}} + BV_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{\sum_{i=1}^{n_2} BV_{2i}} \]
\[= 1,237,952,015 \times \frac{199,185}{13,039,581} + 2,961,930,008 \times \frac{374,790}{34,323,574} \]
\[= 51,252,484 \]

Przy zastosowaniu estymacji wartości na podstawie średniej przewidywany poziom błędu wynosi:

\[r_1 = \frac{43,421,670}{1,237,952,015 + 2,961,930,008} = 1.03\% \]

natomiast przy zastosowaniu estymacji ilorazowej wynosi on:

\[r_2 = \frac{51,252,451}{1,237,952,015 + 2,961,930,008} = 1.22\%. \]

Dokładność oblicza się na różne sposoby w zależności od zastosowanej metody ekstrapolacji. Przy zastosowaniu estymacji wartości na podstawie średniej dokładność oblicza się za pomocą następującego wzoru:

\[SE_1 = z \times \sqrt{\left(\frac{N_1^2}{n_1} \times \frac{s_{E1}^2}{n_1} + \frac{N_2^2}{n_2} \times \frac{s_{E2}^2}{n_2} \right)} \]
\[= 0.842 \times \sqrt{\left(3,852^2 \times \frac{69,815^2}{49} + 3,852^2 \times \frac{59,489^2}{52} \right)} = 41,980,051 \]

Przy zastosowaniu estymacji ilorazowej należy obliczyć odchylenie standardowe zmiennej \(q\) (sekcja 6.1.3.4):

\[q_{ti} = E_{ti} - \frac{\sum_{i=1}^{n_t} E_{ti}}{\sum_{i=1}^{n_t} BV_{ti}} \times BV_{ti}. \]
To odchylenie standardowe dla każdego półrocza wynosi odpowiednio 54 897 EUR i 57 659 EUR. Dokładność oblicza się za pomocą następującego wzoru:

\[
SE_2 = z \times \sqrt{\left(N_1^2 \times \frac{s^2_{q1}}{n_1} + N_2^2 \times \frac{s^2_{q2}}{n_2} \right)}
\]

\[
= 0.842 \times \sqrt{3,852^2 \times \frac{54,897^2}{49} + 3,852^2 \times \frac{57,659^2}{52}} = 36,325,544
\]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.

\[
ULE_1 = EE_1 + SE_1 = 43,421,670 + 41,980,051 = 85,401,721
\]

lub

\[
ULE_2 = EE_2 + SE_2 = 51,252,484 + 36,325,544 = 87,578,028
\]

Na koniec, porównując próg istotności w wysokości 2 % całkowitej wartości księgowej populacji (2 % x 4 199 882 023 EUR = 83 997 640 EUR) z oczekiwanymi wynikami w przypadku estymacji ilorazowej (czyli wybranej metody prognozowania), obserwujemy, że maksymalny dopuszczalny błąd jest większy niż błędy przewidywane, ale mniejszy niż góra granica. W celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić, należy zapoznać się z sekcją 4.12.

6.2 Estymacja różnicy

6.2.1 Podejście standardowe

6.2.1.1 Wprowadzenie

Estymacja różnicy również jest metodą statystycznego doboru próby opartą na doborze próbki na podstawie równego podobieństwa. Metoda ta polega na ekstrapolacji błędu występującego w próbie i odcieńiu błędu przewidywanego od całkowitych wydatków
zadeklarowanych w populacji w celu dokonania oceny prawidłowości wydatków w populacji (tj. wydatków, które otrzymano by w przypadku, gdyby objęto audytorem wszystkie operacje w populacji).

Metoda ta jest bardzo zbliżona do doboru losowego prostego z jedną główną różnicą, jaką jest wykorzystanie bardziej zaawansowanej metody ekstrapolacji.

Metoda ta jest szczególnie przydatna w przypadku, gdy chce się prognozować prawidłowość wydatków w populacji, gdy poziom błędu w populacji jest stosunkowo stały oraz gdy wartość księgową różnych operacji jest podobna (niska zmienność). Jest ona zwykle lepsza niż metoda doboru próby na podstawie jednostki monetarnej (MUS) w przypadku błędów o niskiej zmienności, które mają słabą albo ujemny związek z wartościami księgowymi. Z drugiej strony metoda ta daje gorsze wyniki niż metoda MUS w przypadku błędów o dużej zmienności, które mają dodatni związek z wartościami księgowymi.

Metodę tę, podobnie jak wszystkie pozostałe, można połączyć ze stratyfikacją (warunki sprzyjające stratyfikacji omówiono w sekcji 5.2).

6.2.1.2 Liczebność próby

Liczebność próby \(n \) w ramach estymacji różnicy oblicza się na podstawie dokładnie tych samych informacji i wzorów, które stosuje się w doborze losowym prostym:

- liczebność populacji \(N \);
- poziom ufności określony z rozkładu normalnego na podstawie audytu systemów i powiązanej współczynnika \(z \) (zob. sekcja 5.3);
- maksymalny dopuszczalny błąd \(TE \) (zwykle 2% całkowitych wydatków);
- błąd oczekiwany \(AE \) wybrany przez audytora zgodnie z jego profesjonalnym osądem i na podstawie informacji z wcześniejszych audytów;
- odchylenie standardowe \(\sigma_e \) błędów.

Liczebność próby oblicza się następująco:

\[
\begin{align*}
n = & \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2
\end{align*}
\]

gdzie \(\sigma_e \) oznacza odchylenie standardowe błędów w populacji. Jak już zauważono w odniesieniu do doboru losowego prostego, należy pamiętać, że takie odchylenie standardowe rzadko kiedy jest znane z wyprzedzeniem, dlatego też instytucje audytowe będą musiały ustalić tę wartość na podstawie danych historycznych lub na próbie wstępnej/pilotażowej o małej liczebności (zaleca się, aby liczebność próby nie była mniejsza niż 20–30 jednostek). Należy również pamiętać, że próbę pilotażową można
następnie wykorzystać jako część próby wybranej do audytu. Aby uzyskać dodatkowe informacje o sposobie obliczania odchylenia standardowego, zobacz sekcja 6.1.1.2.

6.2.1.3 Ekstrapolacja

Na podstawie losowo wybranej próby operacji, której liczebność obliczono zgodnie z powyższym wzorem, można obliczyć błąd przewidywany na poziomie populacji, mnożąc średni błąd obserwowany na operację w próbie przez liczbę operacji w populacji:

\[EE = N \times \frac{\sum_{i=1}^{n} E_i}{n}. \]

gdzie \(E_i \) oznacza poszczególne błędy dla jednostek w próbie, zaś \(\bar{E} \) oznacza średni błąd próby.

W ramach drugiego etapu można dokonać prognozy prawidłowej wartości księgowej (prawidłowość wydatków, która zostałaby ustalona, gdyby objęto audytem wszystkie operacje w populacji), odejmując błąd przewidywany (EE) od wartości księgowej (BV) w populacji (wydatki zadeklarowane). Prognozę prawidłowej wartości księgowej (CBV) oblicza się za pomocą następującego wzoru:

\[CBV = BV - EE \]

6.2.1.4 Dokładność

Dokładność prognozy (miarę niepewności związanej z prognozą) oblicza się za pomocą następującego wzoru:

\[SE = N \times z \times \frac{s_e}{\sqrt{n}} \]

gdzie \(s_e \) oznacza odchylenie standardowe błędów w próbie (tym razem obliczone na podstawie tej samej próby, którą wykorzystano do prognozowania błędów dla danej populacji):

\[s_e^2 = \frac{1}{n-1} \sum_{i=1}^{n} (E_i - \bar{E})^2 \]
6.2.1.5 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy najpierw obliczyć dolną granicę dla skorygowanej wartości księgowej. Ta dolna granica jest równa:

\[LL = CBV - SE \]

Zarówno prognozę prawidłowej wartości księgowej, jak i jej dolną granicę należy porównać z różnicą między wartością księgową (wydatkami zadeklarowanymi) a maksymalnym dopuszczalnym błędem (TE), co odpowiada iloczynowi poziomu istotności i wartości księgowej:

\[BV - TE = BV - 2\% \times BV = 98\% \times BV \]

- Jeżeli różnica \(BV - TE \) jest większa niż \(CBV \), audytor powinien wyciągnąć wniosek, że istnieją wystarczające dowody na poparcie twierdzenia, iż błędy w programie są większe niż próg istotności:

- Jeżeli różnica \(BV - TE \) jest mniejsza niż dolna granica \(CBV - SE \), oznacza to, że istnieją wystarczające dowody na poparcie twierdzenia, iż błędy w programie są niższe niż próg istotności:

jeżeli różnica \(BV - TE \) mieści się w przedziale między dolną granicą \(CBV - SE \) a \(CBV \), należy zapoznać się z sekcją 4.12 w celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić.
6.2.1.6 Przykład

Załóżmy, że populację stanowią wydatki zadeklarowane Komisji w danym roku w odniesieniu do operacji w ramach programu. Audyty systemu przeprowadzone przez instytucję audytową dały wysoki poziom pewności. W związku z tym dobór próby dla tego programu można przeprowadzić przy poziomie ufności wynoszącym 60%.

W poniższej tabeli zestawiono dane dotyczące populacji:

| Liczebność populacji (liczba operacji) | 3 852 |
| Wartość księgowa (suma wydatków w okresie odniesienia) | 4 199 882 024 EUR |

Na podstawie zeszłoroczkiego audytu instytucja audytowa spodziewa się poziomu błędu wynoszącego 0,7% (zeszłoroczny poziom błędu) i szacuje, że odchylenie standardowe błędów wyniesie 168 397 EUR.

Pierwszym krokiem jest obliczenie wymaganej liczebności próby za pomocą wzoru:

\[n = \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2 \]

gdzie \(z \) wynosi 0,842 (współczynnik odpowiadający poziomowi ufności wynoszącemu 60%), \(\sigma_e \) wynosi 168 397 EUR, \(TE \), błąd dopuszczalny, wynosi 2% (maksymalny poziom istotności ustanowiony na mocy rozporządzenia) wartości księgowej, tj. 2% x 4 199 882 024 EUR = 83 997 640 EUR a \(AE \), błąd oczekiwany, wynosi 0,7%, tj. 0,7% x 4 199 882 024 EUR = 29 399 174 EUR:

\[n = \left(\frac{3,852 \times 0.842 \times 168,397}{83,997,640 - 29,399,174} \right)^2 \approx 101 \]

Zatem minimalna liczebność próby wynosi 101 operacji.

Przeprowadzając audyt tych 101 operacji, audytor obliczy błąd całkowity dla operacji objętych próbą.

W poniższej tabeli przedstawiono wyniki przeprowadzonej próby:
Wartość księgowa próby | 124 944 535 EUR
Całkowity błąd próby | 1 339 765 EUR
Odchylenie standardowe błędów próby | 162 976 EUR

Błąd przewidywany na poziomie populacji wynosi:

$$ EE = N \times \frac{\sum_{i=1}^{101} E_i}{n} = 3,852 \times \frac{1,339,765}{101} = 51,096,780, $$

co odpowiada przewidywanej wartości błędu, którą wynosi:

$$ r = \frac{51,096,780}{4,199,882,024} = 1.22\% $$

Prawidłową wartość księgową (prawidłowe wydatki, które zostałyby ustalone w przypadku objęcia audytem wszystkich operacji w populacji) można przewidzieć, odejmując błąd przewidywany (EE) od wartości księgowej (BV) w populacji (wydatki zadeklarowane). Prognoza prawidłowej wartości księgowej (CBV) wynosi

$$ CBV = 4,199,882,024 - 51,096,780 = 4,148,785,244 $$

Dokładność prognozy oblicza się za pomocą następującego wzoru:

$$ SE = N \times z \times \frac{s_e}{\sqrt{n}} = 3,852 \times 0.842 \times \frac{162,976}{\sqrt{101}} = 52,597,044. $$

Istnieje możliwość obliczenia górnej granicy poziomu błędu poprzez zsumowanie błędu przewidywanego i dokładności. Górną granicę stanowi stosunek górnej granicy błędu do wartości księgowej populacji. W związku z tym góra granica poziomu błędu wynosi:

$$ r_{UL} = \frac{EE + SE}{BV} = \frac{51,096,780 + 52,597,044}{4,199,882,024} = 2.47\% $$

Aby wyciągnąć wniosek co do istotności błędów, należy najpierw obliczyć dolną granicę dla prawidłowej wartości księgowej. Ta dolna granica jest równa:

$$ LL = CBV - SE = 4,148,785,244 - 52,597,044 = 4,096,188,200 $$
Zarówno prognozę prawidłowej wartości księgowej, jak i dolną granicę należy porównać z różnicą między wartością księgową (wydatkami zadeklarowanymi) a maksymalnym dopuszczalnym błędem \((TE)\):

\[
BV - TE = 4,199,882,024 - 83,997,640 = 4,115,884,384
\]

Ponieważ różnica \(BV - TE\) mieści się w przedziale między dolną granicą \(LL = CBV - SE\) a \(CBV\), należy zapoznać się z sekcją 4.12 w celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić.

6.2.2 Stratyfikowana estymacja różnicy

6.2.2.1 Wprowadzenie

W stratyfikowanej estymacji różnicy populację dzieli się na subpopulacje zwane warstwami, a następnie z każdej warstwy losuje się niezależne próby z zastosowaniem metody estymacji różnicy.

Przesłanki przemawiające za stratyfikację oraz kryteria kwalifikowalności do przeprowadzenia stratyfikacji są identyczne jak w przypadku doboru losowego prostego (zob. sekcja 6.1.2.1). Podobnie jak w przypadku doboru losowego prostego, stratyfikacja według poziomu wydatków na operację jest zazwyczaj dobrym podejściem w każdym przypadku, w którym oczekuje się, że poziom błędu jest związany z poziomem wydatków.

W przypadku stratyfikacji według poziomu wydatków, jeżeli istnieje możliwość znalezienia kilku operacji o bardzo wysokiej wartości, zaleca się włączenie ich do warstwy o wysokiej wartości, która zostanie objęta audytem w 100 %. W takim przypadku pozycje należące do warstwy objętej audytem w 100 % należy traktować osobno, a etapy doboru prób były miały zastosowanie jedynie do populacji
obejmującej pozycje o niskiej wartości. Należy pamiętać, że planowana dokładność w
odniesieniu do określenia liczebności próby powinna być jednak oparta na całkowitej
wartości księgowej populacji. Faktycznie ze względu na to, że warstwa pozycji o niskiej
wartości stanowi źródło błędu, a planowana dokładność jest wymagana na poziomie
populacji, należy również obliczyć błąd dopuszczalny i błąd oczekiwany na poziomie
populacji.

6.2.2.2 Liczebność próby

Liczebność próby oblicza się z zastosowaniem takiego samego podejścia jak w
przypadku doboru losowego prostego

\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE}\right)^2 \]

gdzie \(\sigma_w^2 \) oznacza średnią ważoną wariancję błędów dla całego zbioru warstw (w celu
uzyskania szczegółowych informacji zob. sekcja 6.1.2.2).

Jak zwykle wariancje można oprzeć na wiedzy historycznej lub na próbie
wstępnej/pilotażowej o małej liczebności. W tym drugim przypadku próbę pilotażową
można, jak zwykle, wykorzystać później jako część próby głównej do celów audytu.

Po obliczeniu całkowitej liczebności próby, \(n \), alokacja próby według warstw odbywa
się następująco:

\[n_h = \frac{N_h}{N} \times n. \]

Jest to ogólna metoda alokacji, stosowana również w przypadku doboru losowego
prostego, znana jako alokacja proporcjonalna. Podobnie jak poprzednio, dostępne są
również inne metody alokacji i można je stosować.

6.2.2.3 Ekstrapolacja

Na podstawie \(H \) losowo dobranych prób operacji, gdzie liczebność każdej z nich
obliczono zgodnie z powyższym wzorem, błąd przewidywany na poziomie populacji
oblicza się następująco:

\[EE = \sum_{h=1}^{H} \frac{N_h}{N} \sum_{i=1}^{n_h} \frac{E_i}{n_h} \]
W praktyce w każdej grupie populacji (warstwie) należy pomnożyć średnią błędów obserwowanych w próbie przez liczbę operacji w warstwie \(N_h \), a następnie zsumować wszystkie wyniki uzyskane dla każdej warstwy.

W ramach drugiego etapu można dokonać prognozy prawidłowej wartości księgowej (prawidłowość wydatków, która zostałaby ustalona, gdyby objęto audytem wszystkie operacje w populacji) za pomocą następującego wzoru:

\[
CBV = BV - \sum_{h=1}^{H} N_h \frac{\sum_{i=1}^{n_h} E_i}{n_h}
\]

W powyższym wzorze: 1) W każdej warstwie należy obliczyć średnią błędów obserwowanych w próbie. 2) W każdej warstwie należy pomnożyć średni błąd próby przez liczebność warstwy \(N_h \). 3) Należy zsumować wyniki otrzymane dla wszystkich warstw. 4) Należy odjąć tę wartość od całkowitej wartości księgowej populacji (BV). Wynik sumowania stanowi prognozę prawidłowej wartości księgowej (CBV) w populacji.

6.2.2.4 Dokładność

Należy pamiętać, że dokładność (błąd próby) jest miarą niepewności związanej z prognozowaniem (ekstrapolacją). W przypadku stratyfikowanej estymacji różnicy stosuje się następujący wzór:

\[
SE = N \times z \times \frac{s_w}{\sqrt{n}}
\]

gdzie \(s_w^2 \) oznacza średnią ważoną wariancję błędów dla całego zbioru warstw obliczoną na podstawie tej samej próbki, którą wykorzystano do prognozowania błędów dla danej populacji:

\[
s_w^2 = \sum_{i=1}^{H} \frac{N_h}{N} s_{eh}^2, h = 1, 2, \ldots, H;
\]

zaś \(s_{eh}^2 \) oznacza oszacowaną wariancję błędów dla próby warstwy \(h \):

\[
s_{eh}^2 = \frac{1}{n_h - 1} \sum_{i=1}^{n_h} (E_{hi} - \bar{E}_h)^2, h = 1, 2, \ldots, H
\]
6.2.2.5 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy najpierw obliczyć dolną granicę dla skorygowanej wartości księgowej. Ta dolna granica jest równa:

\[LL = CBV - SE \]

Zarówno prognozę prawidłowej wartości księgowej, jak i dolną granicę należy porównać z różnicą między wartością księgową (wydatkami zadeklarowanymi) a maksymalnym dopuszczalnym błędem (\(TE \)):

\[BV - TE = BV - 2\% \times BV = 98\% \times BV \]

Ponadto wnioski z kontroli należy wyciągnąć, stosując dokładnie takie samo podejście jak podejście przedstawione w sekcji 6.2.1.5 dla standardowej estymacji różnicy.

6.2.2.6 Przykład

Załóżmy populację wydatków zadeklarowanych Komisji w danym roku w odniesieniu do operacji w grupie programów. System zarządzania i kontroli jest wspólny dla grupy programów, a audyty systemu przeprowadzone przez instytucję audytową dały wysoki poziom pewności. W związku z tym dobór próby dla tego programu można przeprowadzić przy poziomie ufności wynoszącym 60%.

Instytucja audytowa ma powody sądzić, że istnieje poważne ryzyko wystąpienia błędu w przypadku operacji o wysokiej wartości, niezależnie od programu, do którego należą. Ponadto istnieją powody, dla których można oczekiwać, że w poszczególnych programach występują różne poziomy błędu. Mając na uwadze wszystkie te informacje, instytucja audytowa decyduje się na stratyfikację populacji według programu i według wydatków (wyodrębniając wszystkie operacje o wartości księgowej większej niż poziom istotności w warstwie objętej audytem w 100%).

W poniższej tabeli zestawiono dostępne informacje:

<table>
<thead>
<tr>
<th>Liczebność populacji (liczba operacji)</th>
<th>4 872</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji – warstwa 1 (liczba operacji w ramach programu 1)</td>
<td>1 520</td>
</tr>
<tr>
<td>Liczebność populacji – warstwa 2 (liczba operacji w ramach programu 2)</td>
<td>3 347</td>
</tr>
<tr>
<td>Liczebność populacji – warstwa 3 (liczba operacji o BV ></td>
<td>5</td>
</tr>
</tbody>
</table>
Warstwę objętą audytem w 100 % zawierającą 5 operacji o wysokiej wartości należy traktować osobno, jak określono w sekcji 6.2.2.1. W związku z tym w dalszej części niniejszych wytycznych wartość N odpowiada całkowitej liczbie operacji w populacji pomniejszonej o liczbę operacji zawartych w warstwie objętej audytem w 100 %, tj. 4 867 (= 4 872 – 5) operacji.

Pierwszym krokiem jest obliczenie wymaganej liczebności próby za pomocą wzoru:

\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 \]

gdzie \(z = 0,842 \) (współczynnik odpowiadający poziomowi ufności wynoszącemu 60 %), zaś \(TE \), błąd dopuszczalny, wynosi 2 % (maksymalny poziom istotności wyznaczony w rozporządzeniu) wartości księgowej, tj. 2% x 6 440 727 190 EUR = 128 814 544 EUR Na podstawie doświadczeń z poprzednich lat i wniosków ze sprawozdania dotyczącego systemów zarządzania i kontroli instytucja audytowa oczekuje, że poziom błędu nie przekroczy 0,4 %, w związku z czym \(AE \), błąd oczekiwany, wynosi 0,4 %, tj. 0,4 % x 6 440 727 190 EUR = 25 762 909 EUR.

Ponieważ trzecia warstwa jest warstwą objętą audytem w 100 %, liczebność próby dla tej warstwy jest stała i równa liczebności populacji, tzn. 5 operacjom o wysokiej wartości. Liczebność próby dla pozostałych dwóch warstw oblicza się za pomocą powyższego wzoru, gdzie \(\sigma_w^2 \) oznacza średnią ważoną wariancję błędów dla dwóch pozostałych warstw:

\[\sigma_w^2 = \sum_{h=1}^{2} \frac{N_h}{N} \sigma_{eh}^2, \ h = 1,2; \]

zaś \(\sigma_{eh}^2 \) oznacza wariancję błędów w każdej warstwie. Wariancję błędów oblicza się dla każdej warstwy jako niezależnej populacji w następujący sposób:

\[\sigma_{eh}^2 = \frac{1}{n_h^p - 1} \sum_{i=1}^{n_h^p} (E_{hi} - \bar{E}_h)^2, \ h = 1,2, ..., H \]
gdzie E_{hi} oznacza poszczególne błędy dla jednostek w próbie warstwy h, zaś \bar{E}_h oznacza średni błąd próbny w warstwie h. Próba wstępna obejmująca 20 operacji z 1 warstwy dała szacunek odchylenia standardowego błędów w wysokości 21 312 EUR:

Taką samą procedurę przeprowadzono w odniesieniu do populacji warstwy 2. Próba wstępna obejmująca 20 operacji z warstwy 2 dała szacunek odchylenia standardowego błędów w wysokości 215 546 EUR:

<table>
<thead>
<tr>
<th>Warstwa 1 – wstępny szacunek odchylenia standardowego błędów</th>
<th>21 312 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warstwa 2 – wstępny szacunek odchylenia standardowego błędów</td>
<td>215 546 EUR</td>
</tr>
</tbody>
</table>

W związku z tym średnia ważona wariancji błędów dla tych dwóch warstw wynosi

$$\sigma_w^2 = \frac{1,520}{4,867} \times 21,312^2 + \frac{3,347}{4,867} \times 215,546^2 = 32,092,103,451$$

Minimalną liczebność próby oblicza się następująco:

$$n = \left(\frac{4,867 \times 0.845 \times \sqrt{32,092,103,451}}{128,814,544 - 25,762,909}\right)^2 \approx 51$$

Alokacja tych 51 operacji między warstwy odbywa się następująco:

$$n_1 = \frac{1,520}{4,867} \times 51 \approx 16,$$

$$n_2 = n - n_1 = 35$$

oraz

$$n_3 = N_3 = 5$$

Całkowita liczebność próby wynosi zatem 60 operacji:

- 20 operacji z warstwy 1 próby wstępnej; oraz
- 35 operacji z warstwy 2 (20 operacji z próby wstępnej oraz próba dodatkowa obejmująca 15 operacji); oraz
- 5 operacji o wysokiej wartości.

W poniższej tabeli przedstawiono wyniki próby dla całej próby obejmującej 60 operacji:
Wyniki próby – warstwa 1

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wartość księgowa próby</td>
<td>37 344 981 EUR</td>
</tr>
<tr>
<td>B</td>
<td>Całkowity błąd próby</td>
<td>77 376 EUR</td>
</tr>
<tr>
<td>C</td>
<td>Średni błąd próby (C=B/16)</td>
<td>3 869 EUR</td>
</tr>
<tr>
<td>D</td>
<td>Odchylenie standardowe błędów próby</td>
<td>16 783 EUR</td>
</tr>
</tbody>
</table>

Wyniki próby – warstwa 2

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Wartość księgowa próby</td>
<td>722 269 643 EUR</td>
</tr>
<tr>
<td>F</td>
<td>Całkowity błąd próby</td>
<td>264 740 EUR</td>
</tr>
<tr>
<td>G</td>
<td>Średni błąd próby (G=F/35)</td>
<td>7 564 EUR</td>
</tr>
<tr>
<td>H</td>
<td>Odchylenie standardowe błędów próby</td>
<td>117 335 EUR</td>
</tr>
</tbody>
</table>

Wyniki próby – warstwa audytu wynosząca 100 %

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Wartość księgowa próby</td>
<td>584 359 223 EUR</td>
</tr>
<tr>
<td>J</td>
<td>Całkowity błąd próby</td>
<td>7 240 855 EUR</td>
</tr>
<tr>
<td>K</td>
<td>Średni błąd próby (I=J/5)</td>
<td>1 448 171 EUR</td>
</tr>
</tbody>
</table>

Prognozę błędu dla obu warstw próby oblicza się, mnożąc średni błąd próby przez liczebność populacji. Suma tych dwóch wartości dodana do błędu wykrytego w warstwie objętej audytem w 100 % stanowi błąd oczekiwany na poziomie populacji:

\[
EE = \sum_{h=1}^{3} \frac{1520 \times 3,869 + 3,347 \times 7,564 + 7,240,855}{3} = 38,438,139
\]

Przewidywany poziom błędu oblicza się jako stosunek między błędem ekstrapolowanym a wartością księgową populacji (całkowite wydatki):

\[
r_1 = \frac{39,908,283}{6,440,727,190} = 0.60\%
\]

Można dokonać prognozy prawidłowej wartości księgowej (prawidłowość wydatków, która zostałaby ustalona, gdyby objęto audytem wszystkie operacje w populacji) za pomocą następującego wzoru:

\[
CBV = BV - EE = 6,440,727,190 - 39,908,283 = 6,402,289,051
\]

Biorąc pod uwagę odchylenia standardowe błędów w próbie obydwu warstw (tabela z wynikami próby), średnia ważona wariancji błędów dla całego zestawu warstw wynosi:

\[
s^2_w = \sum_{h=1}^{2} \frac{N_h}{N} s^2_{eh} = \frac{1,520}{4,867} \times 16,783^2 + \frac{3,347}{4,867} \times 117,335^2 = 9,555,777,062
\]
Dokładność prognozy oblicza się za pomocą następującego wzoru:

\[SE = N \times z \times \frac{s_w}{\sqrt{n}} = 4,867 \times 0.842 \times \frac{\sqrt{9,555,777,062}}{\sqrt{55}} = 54,016,333 \]

Aby wyciągnąć wniosek co do istotności błędów, należy najpierw obliczyć dolną granicę dla skorygowanej wartości księgowej. Ta dolna granica jest równa:

\[LL = CBV - SE = 6,402,289,051 - 54,016,333 = 6,348,272,718 \]

Zarówno prognozę prawidłowej wartości księgowej, jak i dolną granicę należy porównać z różnicą między wartością księgową (wydatkami zadeklarowanymi) a maksymalnym dopuszczalnym błędem (TE):

\[BV - TE = 6,440,727,190 - 128,814,544 = 6,311,912,646 \]

Ponieważ różnica \(BV - TE \) jest mniejsza niż dolna granica \(CBV - SE \), oznacza to, że istnieją wystarczające dowody na poparcie twierdzenia, iż błędy w programie są niższe niż próg istotności:

\[LL = 6,348,272,718 \]

\[BV - TE = 6,311,912,646 \]

\[CBV = 6,402,289 \]

6.2.3 Estymacja różnicy – dwa okresy

6.2.3.1 Wprowadzenie

Instytucja audytowa może podjąć decyzję o przeprowadzeniu procesu doboru próby w kilku okresach w ciągu roku (zazwyczaj dwa półrocza). Największa korzyść wynikająca z tego podejścia wiąże się nie ze zmniejszeniem liczebności próby, ale głównie z możliwością rozłożenia czynności audytowych na cały rok, a tym samym zmniejszenia nakładu pracy, która zostałaby wykonana pod koniec roku na podstawie zaledwie jednej obserwacji.
Przy takim podejściu populację z danego roku dzieli się na dwie subpopulacje, z których każda odpowiada operacjom i wydatkom z każdego półrocza. Dla każdego półrocza losuje się niezależne próby, stosując standardową metodę doboru losowego prostego.

6.2.3.2 Liczebność próby

Liczebność próby oblicza się z zastosowaniem takiego samego podejścia jak w przypadku doboru losowego prostego w dwóch półroczach. W celu uzyskania szczegółowych informacji zobacz sekcja 6.1.3.2.

6.2.3.3 Ekstrapolacja

Na podstawie dwóch prób z każdego półrocza, błąd przewidywany na poziomie populacji można obliczyć jako:

$$EE = N_1 \cdot \frac{\sum_{i=1}^{n_1} E_{1i}}{n_1} + N_2 \cdot \frac{\sum_{i=1}^{n_2} E_{2i}}{n_2}$$

W praktyce w przypadku każdego półrocza należy pomnożyć średnią błędów obserwowanych w próbie przez liczbę operacji w populacji (N_c), a następnie zsumować wyniki uzyskane dla obu półroczów.

W ramach drugiego etapu można dokonać prognozy prawidłowej wartości księgowej (prawidłowość wydatków, która zostałaby ustalona, gdyby objęto audytem wszystkie operacje w populacji) za pomocą następującego wzoru:

$$CBV = BV - EE$$

dzie BV oznacza roczną wartość księgową (obejmującą oba półrocza), zaś EE oznacza powyższy błąd przewidywany.

6.2.3.4 Dokładność

Należy pamiętać, że dokładność (błąd próby) jest miarą niepewności związanej z prognozowaniem (ekstrapolacją). Oblicza się ją za pomocą następującego wzoru:

$$SE = z \times \sqrt{\left(\frac{N_1^2}{n_1} \times \frac{s_{e1}^2}{n_1} + \frac{N_2^2}{n_2} \times \frac{s_{e2}^2}{n_2}\right)}$$
gdzie \(s_{et} \) oznacza odchylenie standardowe błędów w próbie półrocza \(t \) (tym razem obliczone na podstawie tych samych prób, które wykorzystano do prognozowania błędów dla danej populacji).

\[
s^2_{et} = \frac{1}{n_t - 1} \sum_{i=1}^{n_t} (E_{ti} - \bar{E}_t)^2
\]

6.2.3.5 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy najpierw obliczyć dolną granicę dla skorygowanej wartości księgowej. Ta dolna granica jest równa:

\[
LL = CBV - SE
\]

Zarówno prognozę prawidłowej wartości księgowej, jak i dolną granicę należy porównać z różnicą między wartością księgową (wydatkami zadeklarowanymi) a maksymalnym dopuszczalnym błędem (TE):

\[
BV - TE = BV - 2\% \times BV = 98\% \times BV
\]

Ponadto wnioski z kontroli należy wyciągnąć, stosując dokładnie takie samo podejście jak podejście przedstawione w sekcji 6.2.1.5 dla standardowej estymacji różnicy.

6.2.3.6 Przykład

Instytucja audytowa postanowiła rozłożyć czynności audytowe na dwa półrocza. Na koniec pierwszego półrocza cechy charakterystyczne populacji są następujące:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane (DE) na koniec pierwszego półrocza</th>
<th>1 237 952 015 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocze)</td>
<td>3 852</td>
</tr>
</tbody>
</table>

Na podstawie zgromadzonych wcześniej doświadczeń instytucja audytowa wie, że zazwyczaj wszystkie operacje zawarte w programach na koniec okresu odniesienia są już aktywne w populacji pierwszego półrocza. Ponadto oczekuje się, że wydatki zadeklarowane na koniec pierwszego półrocza będą stanowiły około 30 % całkowitych wydatków zadeklarowanych na koniec okresu odniesienia. Na podstawie tych założeń w poniższej tabeli przedstawiono podsumowanie populacji:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane (DE) za pierwsze półrocze</th>
<th>1 237 952 015 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wydatki zadeklarowane (DE) za drugie półrocze</td>
<td>2 888 554 702 EUR</td>
</tr>
</tbody>
</table>
Audyty systemu przeprowadzone przez instytucję audytową dały niski poziom pewności. W związku z tym doboru próby dla tego programu należy dokonać przy poziomie ufności wynoszącym 90%.

Na koniec pierwszego półrocza ogólną liczebność próby (w odniesieniu do zbioru dwóch półroczy) oblicza się następująco:

\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 \]

gdzie \(\sigma_w^2 \) oznacza średnią ważoną wariancji błędów w każdym półroczu:

\[\sigma_w^2 = \frac{N_1}{N} \sigma_{e1}^2 + \frac{N_2}{N} \sigma_{e2}^2 \]

zaś \(\sigma_{et}^2 \) oznacza wariancję błędów w każdym okresie \(t \) (półroczu). Wariancję błędów dla każdego półroczu oblicza się jako niezależną populację w następujący sposób:

\[\sigma_{et}^2 = \frac{1}{n_t^p - 1} \sum_{i=1}^{n_t^p} (E_{ti} - \bar{E}_t)^2 \]

gdzie \(E_{ti} \) oznacza poszczególne błędy dla jednostek w próbie półroczu \(t \), zaś \(\bar{E}_t \) oznacza średni błąd próby w półroczu \(t \).

Ponieważ wartość \(\sigma_{et}^2 \) jest nieznana, instytucja audytowa postanowiła wylosować próbę wstępną składającą się z 20 operacji po zakończeniu pierwszego półroczca bieżącego roku. Odchylenie standardowe błędów próby w tej próbie wstępnej w pierwszym półroczu wynosi 49 534 EUR. W oparciu o profesjonalny osąd i wiedząc, że wydatki w drugim półroczu są zazwyczaj większe niż w pierwszym, instytucja audytowa dokonała wstępnej prognozy odchylenia standardowego błędów dla drugiego półroczca, zgodnie z którą odchylenie będzie o 20% większe niż w pierwszym półroczu, tj. wyniesie 59 441 EUR. W związku z tym średnia ważona wariancji błędów wynosi:

\[\sigma_w^2 = \frac{N_1}{N_1 + N_2} \sigma_{e1}^2 + \frac{N_2}{N_1 + N_2} \sigma_{e2}^2 = 0.5 \times 69,534^2 + 0.5 \times 59,441^2 = 2,993,412,930. \]

Należy pamiętać, że liczebność populacji w każdym półroczu jest równa liczbie aktywnych operacji (łącznie z wydatkami) w każdym półroczu.

Na koniec pierwszego półroczca ogólna liczebność próby dla całego roku wynosi:

<table>
<thead>
<tr>
<th>(przewidywane)</th>
<th>Liczebność populacji (operacje – okres 1)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>(przewidywane)</td>
<td>Liczebność populacji (operacje – okres 2, przewidywana)</td>
<td>3 852</td>
</tr>
</tbody>
</table>
\[n = \left(\frac{N \times z \times \sigma_w}{TE - AE} \right)^2 \]

gdzie \(\sigma_w^2 \) oznacza średnią ważoną wariancji błędów dla całego zbioru warstw (w celu uzyskania szczegółowych informacji zob. sekcja 7.1.2.2), \(z \) wynosi 1,645 (współczynnik odpowiadający poziomowi ufności wynoszącemu 90 %), zaś \(TE \), błąd dopuszczalny, wynosi 2 % (maksymalny poziom istotności wyznaczony w rozporządzeniu) wartości księgowej. Całkowita wartość księgową obejmuje faktyczną wartość księgową na koniec pierwszego półrocza oraz przewidywaną wartość księgową dla drugiego półrocza, 4 126 506 717, co oznacza, że błąd dopuszczalny wynosi 2 % x 4 126 506 717 EUR = 82 530 134 EUR. Próba wstępna populacji pierwszego półrocza daje poziom błędu próby w wysokości 0,6 %. Instytucja audytowa oczekuje, że ten poziom błędu będzie stały przez cały rok. Dlatego też \(AE \), błąd oczekiwany, wynosi 0,6 % x 4 126 506 717 EUR = 24 759 040 EUR. Liczebność próby dla całego roku wynosi:

\[n = \left(\frac{3852 \times 2 \times 1.645 \times \sqrt{5,898,672,130}}{82,530,134 - 24,759,040} \right)^2 \approx 145 \]

Alokacja próby według półrocza odbywa się następująco:

\[n_1 = \frac{N_1}{N_1 + N_2} n \approx 73 \]

oraz

\[n_2 = n - n_1 = 72 \]

Próba pierwszego półrocza dała następujące wyniki:

<table>
<thead>
<tr>
<th>Wartość księgowa próby – pierwsze półrocze</th>
<th>41 009 806 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Całkowity błąd próby – pierwsze półrocze</td>
<td>577 230 EUR</td>
</tr>
<tr>
<td>Odchylenie standardowe błędów próby – pierwsze półrocze</td>
<td>52 815 EUR</td>
</tr>
</tbody>
</table>

Na koniec drugiego półrocza dostępnych jest więcej informacji, w szczególności znana jest prawidłowa liczba operacji aktywnych w drugim półroczu, dostępna jest już wariancja błędów próby \(s_{e1} \) obliczona na podstawie próby z pierwszego półrocza i możliwa jest dokładniejsza ocena odchylenia standardowego błędów dla drugiego półrocza \(\sigma_{e2} \) z wykorzystaniem próby wstępnej składającej się z danych faktycznych.

Instytucja audytowa zauważa, że założenie przyjęte na koniec pierwszego półrocza dotyczące całkowitej liczby operacji jest nadal prawidłowe. Istniej jednak dwa parametry, w przypadku których należy stosować uaktualnione wartości.
Po pierwsze, szacunki odchylenia standardowego błędów na podstawie próby pierwszego półrocza obejmującej 73 operacji dało szacunkową kwotę 52 815 EUR. Stosując tę nową wartość, należy teraz dokonać ponownej oceny planowanej liczebności próby. Po drugie, na podstawie nowej próby wstępnej obejmującej 20 operacji z populacji drugiego półrocza instytucja audytowa szacuje, że odchylenie standardowe błędów w odniesieniu do drugiego półrocza wyniesie 87 369 EUR (wartość ta zdecydowanie odbiega od wartości przewidywanej na koniec pierwszego okresu). Stwierdza się, że odchylenie standardowe błędów w pierwszym półroczu wykorzystane do planowania liczebności próby nie różni się znacznie od wartości otrzymanej na koniec pierwszego półrocza. Odchylenie standardowe błędu w drugim półroczu, wykorzystane do planowania liczebności próby, odbiega jednak znacznie od wartości osiągniętej na podstawie nowej próby wstępnej. W rezultacie próbę dla drugiego półrocza należy zmienić.

Ponadto przewidywaną całkowitą wartość księgową populacji drugiego półrocza należy zastąpić wartością faktyczną wynoszącą 5 202 775 175 EUR i nie należy stosować wartości przewidywanej wynoszącej 2 888 554 702 EUR.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Koniec pierwszego półrocza</th>
<th>Koniec drugiego półrocza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odchylenie standardowe błędów w pierwszym półroczu</td>
<td>49 534 EUR</td>
<td>52 815 EUR</td>
</tr>
<tr>
<td>Odchylenie standardowe błędów w drugim półroczu</td>
<td>59 441 EUR</td>
<td>87 369 EUR</td>
</tr>
<tr>
<td>Całkowite wydatki w drugim półroczu</td>
<td>2 888 554 702 EUR</td>
<td>5 202 775 175 EUR</td>
</tr>
</tbody>
</table>

Uwzględniając te dwie korekty, ponownie obliczona liczebność próby drugiego półrocza wynosi

\[
n_2 = \frac{(z \times N_2 \times \sigma_{e2})^2}{(TE - AE)^2 - z^2 \times \frac{N_2^2}{n_1} \times s_{e1}^2}
\]

\[
= \frac{(1.645 \times 3,852 \times 107,369)^2}{(128,814,544 - 38,644,363)^2 - 1.645^2 \times \frac{3,852^2}{142} \times 65,815^2} \approx 47
\]

Przeprowadzenie audytu 73 operacji w pierwszym półroczu i 47 operacji w drugim półroczu dostarczy audytorowi informacji dotyczących błędu całkowitego w odniesieniu do operacji objętych próbą. Poprzednią próbę wstępną obejmującą 20
operacji wykorzystuje się jako część głównej próby. Audytor musi zatem wybrać jeszcze tylko 27 operacji w drugim półroczu.

Próba drugiego półrocza dała następujące wyniki:

Wartość księgowa próby – drugie półrocy	59 312 212 EUR
Całkowity błąd próby – drugie półrocy	588 336 EUR
Odchylenie standardowe błędów próby – pierwsze półrocy	78 489 EUR

Na podstawie obu prób błąd przewidywany na poziomie populacji można obliczyć jako:

\[EE = N_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{n_1} + N_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{n_2} = 3,852 \times \frac{577,230}{142} + 3,852 \times \frac{588,336}{68} = 78,677,283 \]

co odpowiada przewidywanemu poziomowi błędu, który wynosi 1,22 %.

W ramach drugiego etapu można dokonać prognozy prawidłowej wartości księgowej (prawidłowość wydatków, która zostałaby ustalona, gdyby objęto audytem wszystkie operacje w populacji) za pomocą następującego wzoru:

\[CBV = BV - EE = 6,440,727,190 - 78,677,283 = 6,362,049,907 \]

gdzie \(BV \) oznacza roczną wartość księgową (włącznie z wartością z dwóch półroczy), zaś \(EE \) oznacza powyższy błąd przewidywany.

Dokładność (błąd próby) jest miarą niepewności związanej z prognozowaniem (ekstrapolacją) i oblicza się ją następująco:

\[SE = z \times \sqrt{\left(N_1^2 \times \frac{s_{e1}^2}{n_1} + N_2^2 \times \frac{s_{e2}^2}{n_2} \right)} = 1.645 \times \sqrt{\left(3852^2 \times \frac{52,815^2}{73} + 3852^2 \times \frac{78,849^2}{47} \right)} = 82,444,754 \]

Aby wyciągnąć wniosek co do istotności błędów, należy najpierw obliczyć dolną granicę dla skorygowanej wartości księgowej. Ta dolna granica jest równa:

\[LL = CBV - SE = 6,362,049,907 - 82,444,754 = 6,279,605,153 \]

Zarówno prognozę prawidłowej wartości księgowej, jak i dolną granicę należy porównać z różnicą między wartością księgową (wydatkami zadeklarowanymi) a maksymalnym dopuszczalnym błędem (\(TE \)):

\[BV - TE = 6,440,727,190 - 128,814,544 = 6,311,912,646 \]
Ponieważ różnica $BV - TE$ mieści się w przedziale między dolną granicą $LL = CBV - SE$ a CBV, należy zapoznać się z sekcją 4.12 w celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić.

$$LL = 6\,279\,605\,153$$

6.3 Metoda doboru próby na podstawie jednostki monetarnej

6.3.1 Podejście standardowe

6.3.1.1 Wprowadzenie

Metoda doboru próby na podstawie jednostki monetarnej jest to metoda statystycznego doboru próby, w której jednostkę monetarną stosuje się jako zmienną pomocniczą do celów doboru próby. Podejście to opiera się zazwyczaj na systematycznym doborze próby z prawdopodobieństwem proporcjonalnym do wielkości (PPS), tj. proporcjonalnym do wartości monetarnej jednostki próby (w przypadku pozycji o wyższej wartości istnieje większe prawdopodobieństwo wyboru).

Metoda ta jest prawdopodobnie najpopularniejszą metodą doboru próby do celów audytów i jest szczególnie przydatna, gdy wartości księgowe wykazują wysoką zmienność oraz gdy między błędami i wartościami księgowymi występuje dodatnia korelacja (związek). Innymi słowy, jest ona przydatna zawsze, ilekroć przewiduje się, że jednostki o wyższych wartościach będą wykazywały większe błędy, a więc w sytuacji, która często utrzymuje się w trakcie całego procesu audytu.

Zawsze, gdy utrzymują się powyższe warunki, tj. wartości księgowe wykazują wysoką zmienność, a błędy są dodatnio skorelowane (powiązane) z wartościami księgowymi, wówczas przy zastosowaniu metody MUS otrzymuje się zwykle próby o mniejszej liczebności niż w przypadku metod opartych na równym prawdopodobieństwie, w odniesieniu do tego samego poziomu dokładności.

Należy również zauważyć, że próby uzyskiwane tą metodą będą się zwykle charakteryzowały nadmierną reprezentacją pozycji o wysokiej wartości i niedostateczną reprezentacją pozycji o niskiej wartości. Nie jest to problemem samo w sobie, ponieważ
metoda uwzględnia ten fakt w procesie ekstrapolacji, ale sprawia, że wyników próby (np. poziomu błędu próby) nie można zinterpretować (interpretacji podlegają jedynie wyniki ekstrapolowane).

Metodę tę, podobnie jak metody oparte na równym prawdopodobieństwie, można połączyć ze stratyfikacją (warunki sprzyjające stratyfikacji omówiono w sekcji 5.2).

6.3.1.2 Liczebność próby

Liczebność próby n w ramach metody doboru na podstawie jednostki monetarnej oblicza się w oparciu o następujące informacje:

- wartość księgową populacji (całkowite wydatki zadeklarowane) BV;
- poziom ufności określony z rozkładu normalnego na podstawie audytu systemów i powiązanego współczynnika z (zob. sekcja 5.3);
- maksymalny dopuszczalny błąd TE (zwykle 2 % całkowitych wydatków);
- błąd oczekiwany AE wybrany przez audytora zgodnie z jego profesjonalnym osądem i na podstawie informacji z wcześniejszych audytów;
- Odchylenie standardowe σ_r poziomów błędu (uzyskane z próby wybranej na podstawie MUS).

Liczebność próby oblicza się następująco:

$$ n = \left(\frac{z \times BV \times \sigma_r}{TE - AE} \right)^2 $$

gdzie σ_r oznacza odchylenie standardowe poziomów błędu uzyskane z próby wybranej na podstawie MUS. Aby uzyskać przybliżenie tego odchylenia standardowego, przed przeprowadzeniem audytu państwa członkowskie będą musiały bazować na wiedzy historycznej (wariancja poziomów błędu w próbie z poprzedniego okresu) lub na próbie wstępnej/pilotażowej o niskiej liczebności n_p (zaleca się, aby liczebność próby w odniesieniu do próby wstępnej nie była mniejsza niż 20–30 operacji). W każdym przypadku wariancję poziomów błędu (kwadrat odchylenia standardowego) oblicza się za pomocą następującego wzoru:

$$ \sigma_r^2 = \frac{1}{n_p - 1} \sum_{i=1}^{n_p} (r_i - \bar{r})^2 ; $$
gdzie \(r_i = \frac{E_i}{BV_i} \) oznacza poziom błędu operacji \(^{27}\) i jest zdefiniowane jako stosunek \(E_i \) do wartości księgowej (wydatki zadeklarowane Komisji, \(BV_i \)) operacji i zawartej w próbie, a \(\bar{r} \) oznacza średni poziom błędu w próbie, mianowicie:

\[
\bar{r} = \frac{1}{np} \sum_{i=1}^{np} \frac{E_i}{BV_i}
\]

Jak zwykle, jeżeli odchylenie standardowe opiera się na próbie wstępnej, próbę tę można następnie wykorzystać jako część pełnej próbę wybranej do audytu. Wybór i obserwowanie prób wstępnej w ramach metody MUS jest jednak znacznie bardziej skomplikowanym zadaniem niż w ramach doboru losowego prostego czy estymacji różnic. Wynika to z faktu, że pozycje o wysokiej wartości są częściej wybierane do próby. Obserwowanie prób obejmującej 20–30 operacji będzie zatem często stanowić trudne zadanie. Z tego powodu w ramach metody doboru próby na podstawie jednostki monetarnej zdecydowanie zaleca się, aby estymację odchylenia standardowego \(\sigma_r \) oprzeć na danych historycznych w celu uniknięcia konieczności wyboru próby wstępnej.

6.3.1.3 Dobór próby

Po określeniu liczności próby konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytem w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej (\(BV \)) i planowanej liczności próby (\(n \)). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_i > BV/n \)), zostaną umieszczone w warstwie objętej audytem w 100 %.

Liczność próby, która zostanie przydzielona do warstwy niewyczerpującej, \(n_s \), oblicza się jako różnicę \(n \) i liczby jednostek próby (np. operacji) w warstwie wyczerpującej (\(n_e \)).

Dobór próby w warstwie niewyczerpującej zostanie przeprowadzony z zastosowaniem prawdopodobieństwa proporcjonalnego do wielkości, tj. proporcjonalnie do wartości księgowej pozycji \(BV_i \).\(^{28}\) Popularnym sposobem przeprowadzenia doboru jest dobór

\(^{27}\) Ilekroć wartość księgowa jednostki \(BV_i \) jest większa niż wartość graniczna \(BV/n \), stosunek \(\frac{E_i}{BV_i} \) należy zastąpić \(\frac{E_i}{BV/n} \), gdzie BV oznacza wartość graniczną bieżącej populacji w przypadku zastosowania prób wstępnej albo wartość graniczną populacji historycznej w przypadku zastosowania prób historycznej. Ponadto \(n \) oznacza liczebność prób wstępnej (jeżeli została zastosowana) albo liczebność próby historycznej.

\(^{28}\) Do tego celu można wykorzystać specjalistyczne oprogramowanie, dowolny pakiet statystyczny, a nawet podstawowe oprogramowanie, takie jak program Excel. Należy zauważyć, że w przypadku niektórych rodzajów oprogramowania nie ma potrzeby wprowadzania podziału na wyczerpującą warstwę.
systematyczny, w którym wykorzystuje się interwał losowania równy ilorazowi całkowitych wydatków w warstwie niewyczerpującej \((BV_s)\) i liczebności próby \((n_s)\), tj.

\[
SI = \frac{BV_s}{n_s}
\]

W praktyce próbę wybiera się z randomizowanej listy pozycji (zwyczłe operacje), wybierając każdą pozycję zawierającą \(x\)-tą jednostkę monetarną, przy czym \(x\) jest równe interwalowi losowania oraz posiada losowy punkt startowy między 1 a interwałem losowania \((SI)\). Przykładowo, jeżeli populacja ma wartość księgową w wysokości 10 000 000 EUR i wybieramy próbę obejmującą 40 operacji, wówczas wybrana zostanie każda operacja o wartości będącej wielokrotnością 250 000 EUR.

Należy zauważyć, że w praktyce może się zdarzyć, iż po obliczeniu interwału losowania na podstawie wydatków i liczebności próby warstwy objętej próbą niektóre jednostki próbny nadal będą wykazywać wydatki wyższe od danego interwału losowania \((BV_s/n_s)\) (mimo że wcześniej nie wykazywały wydatków wyższych od wartości granicznej \((BV/n)\)). W rzeczywistości wszystkie pozycje, których wartość księgowa jest nadal wyższa od tego interwału \((BV_i > BV_s/n_s)\), także należy dodać do warstwy o wysokiej wartości. Jeżeli ma miejsce taka sytuacja, po przeniesieniu nowych pozycji do warstwy o wysokiej wartości należy ponownie obliczyć interwał losowania dla warstwy doboru próby, uwzględniając nowe wartości dla stosunku \(BV_s/n_s\). Tę metodę iteracyjną można stosować kilka razy, aż do momentu, gdy żadna jednostka nie będzie wykazywać wydatków wyższych od interwału losowania.

6.3.1.4 Błąd przewidywany

Prognozę błędów dla populacji należy sporządzić w inny sposób dla jednostek w warstwie wyczerpującej oraz dla pozycji w warstwie niewyczerpującej.

W przypadku warstwy wyczerpującej, tj. warstwy zawierającej jednostki próby o wartości księgowej wyższej niż wartość graniczna, \(BV_i > \frac{BV}{n}\), błąd przewidywany stanowi po prostu sumę błędów wykrytych w pozycjach należących do tej warstwy:

\[
EE_e = \sum_{i=1}^{n_e} E_i
\]

o wysokiej wartości i warstwę niewyczerpującą, gdyż takie oprogramowanie samo automatycznie przeprowadza dobór jednostek o prawdopodobieństwie doboru równym 100 %.

93
W przypadku warstwy niewyczerpującej, tj. warstwy zawierającej jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, \(BV_i \leq \frac{BV}{n} \), błąd przewidywany wynosi:

\[
EE_s = SI \sum_{i=1}^{n_s} \frac{E_i}{BV_i}
\]

Aby obliczyć ten błąd przewidywany, należy:
1) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie: \(\frac{E_i}{BV_i} \)
2) zsumować te poziomy błędu dla wszystkich jednostek w próbie;
3) pomnożyć poprzedni wynik przez interwał losowania (SI).

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[
EE = EE_e + EE_s
\]

6.3.1.5 Dokładność

Dokładność jest miarą niepewności związanej z ekstrapolacją. Odzwierciedla ona bład próby i należy ją obliczyć, aby następnie ustalić przedział ufności.

Dokładność oblicza się za pomocą następującego wzoru:

\[
SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r
\]

gdzie \(s_r \) oznacza odchylenie standardowe poziomów błędu występujących w próbie warstwy niewyczerpującej (obliczone na podstawie tej samej próby, którą wykorzystano do ekstrapolacji błędów na populację),

\[
s_r^2 = \frac{1}{n_s - 1} \sum_{i=1}^{n_s} (r_i - \bar{r}_s)^2
\]

zaś \(\bar{r}_s \) jest równe średniej arytmetycznej poziomów błędu w próbie danej warstwy:

\[
\bar{r}_s = \frac{\sum_{i=1}^{n_s} E_i}{n_s\ BV_i}
\]

Należy pamiętać, że błąd próby oblicza się wyłącznie dla warstwy niewyczerpującej, ponieważ w warstwie wyczerpującej błędy próby nie występują.
6.3.1.6 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta góra granica jest równa sumie samego błędu przewidywanego EE i dokładności ekstrapolacji:

$$ULE = EE + SE$$

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.

- jeżeli błąd przewidywany jest większy niż maksymalny dopuszczalny błąd, oznacza to, że audytor stwierdzi, iż istnieją wystarczające dowody na poparcie twierdzenia, że błędy w populacji są większe niż próg istotności:

- jeżeli góra granica błędu jest niższa niż maksymalny dopuszczalny błąd, wówczas audytor powinien stwierdzić, że błędy w populacji są niższe niż próg istotności:

Jeżeli błąd przewidywany jest niższy niż maksymalny dopuszczalny błąd, ale góra granica błędu jest wyższa, należy zapoznać się z sekcją 4.12 w celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić.
6.3.1.7 Przykład

Załóżmy, że populację stanowią wydatki zadeklarowane Komisji w danym roku w odniesieniu do operacji w ramach programu. Audyty systemu przeprowadzone przez instytucję audytową dały niski poziom pewności. W związku z tym doboru próby dla tego programu należy dokonać przy poziomie ufności wynoszącym 90%.

Poniższa tabela zawiera podsumowanie populacji:

| Liczebność populacji (liczba operacji) | 3 852 |
| Wartość księgowa (suma wydatków w okresie odniesienia) | 4 199 882 024 EUR |

Liczebność próby oblicza się następująco:

\[n = \left(\frac{z \times BV \times \sigma_r}{TE - AE} \right)^2 \]

gdzie \(\sigma_r \) oznacza odchylenie standardowe poziomów błędu uzyskane z próby wybranej na podstawie MUS. Aby uzyskać przybliżenie tego odchylenia standardowego, instytucja audytowa postanowiła wykorzystać odchylenie standardowe z poprzedniego roku. Próba z poprzedniego roku obejmowała 50 operacji, z czego 5 miało wartość księgową wyższą niż interwał losowania.

Poniższa tabela zawiera wyniki z zeszłorocznego audytu dla tych pięciu operacji.

<table>
<thead>
<tr>
<th>Nr identyfikacyjny operacji</th>
<th>Wartość księgowa (BV)</th>
<th>Prawidłowa wartość księgowa (CBV)</th>
<th>Błąd</th>
<th>Poziom błędu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850</td>
<td>115 382 867 EUR</td>
<td>115 382 867 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>4327</td>
<td>129 228 811 EUR</td>
<td>129 228 811 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>4390</td>
<td>142 151 692 EUR</td>
<td>138 029 293 EUR</td>
<td>4 122 399 EUR</td>
<td>0,0491</td>
</tr>
<tr>
<td>1065</td>
<td>93 647 323 EUR</td>
<td>93 647 323 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>1817</td>
<td>103 948 529 EUR</td>
<td>100 830 073 EUR</td>
<td>3 118 456 EUR</td>
<td>0,0371</td>
</tr>
</tbody>
</table>

Należy zauważyć, że poziom błędu (ostatnia kolumna) oblicza się jako \(r_i = \frac{E_i}{BV/n} \), tj. stosunek między błędem operacji a ilorazem BV i wstępnej liczebności próby, która wynosi 50, ponieważ operacje te mają wartość księgową wyższą niż interwał losowania (więcej danych szczegółowych przedstawiono w sekcji 6.3.1.2).
Poniższa tabela zawiera podsumowanie wyników zeszłorocznego audytu dla próby obejmującej 45 operacji o wartości księgowej mniejszej niż wartość graniczna.

<table>
<thead>
<tr>
<th>A</th>
<th>Operation ID</th>
<th>B</th>
<th>Book Value (BV)</th>
<th>C</th>
<th>Audit Value (AV)</th>
<th>Error</th>
<th>Error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>239</td>
<td></td>
<td>10,173,875 $,€$</td>
<td></td>
<td>9,962,918 $,€$</td>
<td>210,956 $,€$</td>
<td>0.0207</td>
</tr>
<tr>
<td>3</td>
<td>424</td>
<td></td>
<td>23,014,045 $,€$</td>
<td></td>
<td>23,014,045 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2327</td>
<td></td>
<td>32,886,198 $,€$</td>
<td></td>
<td>32,886,198 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5009</td>
<td></td>
<td>34,595,201 $,€$</td>
<td></td>
<td>34,595,201 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1491</td>
<td></td>
<td>78,695,230 $,€$</td>
<td></td>
<td>78,695,230 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(...)</td>
<td></td>
<td>(...)</td>
<td></td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
</tr>
<tr>
<td>39</td>
<td>2596</td>
<td></td>
<td>8,912,999 $,€$</td>
<td></td>
<td>8,909,491 $,€$</td>
<td>3,508 $,€$</td>
<td>0.0039</td>
</tr>
<tr>
<td>40</td>
<td>779</td>
<td></td>
<td>26,009,790 $,€$</td>
<td></td>
<td>26,009,790 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1250</td>
<td></td>
<td>264,950 $,€$</td>
<td></td>
<td>264,950 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3895</td>
<td></td>
<td>30,949,004 $,€$</td>
<td></td>
<td>30,949,004 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2011</td>
<td></td>
<td>617,668 $,€$</td>
<td></td>
<td>617,668 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4796</td>
<td></td>
<td>335,916 $,€$</td>
<td></td>
<td>335,916 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>3632</td>
<td></td>
<td>7,971,113 $,€$</td>
<td></td>
<td>7,971,113 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>2451</td>
<td></td>
<td>17,470,048 $,€$</td>
<td></td>
<td>17,470,048 $,€$</td>
<td>- $,€$</td>
<td></td>
</tr>
</tbody>
</table>

Sample standard deviation:=STDEV.S(E2:E46;0;0;0.0491;0;0.0371) \rightarrow 0.085

Na podstawie tej próby wstępnej odchylenie standardowe poziomów błędu, σ_r, wynosi 0,085 (obliczone w programie MS Excel jako „:=STDEV.S(E2:E46;0;0.0491;0;0.0371)”).

Znając ten szacunek odchylenia standardowego poziomów błędu, maksymalny dopuszczalny błąd i błąd oczekiwany, możemy obliczyć liczebność próby. Zakładając, że błąd dopuszczalny wynosi 2 % całkowitej wartości księgowej, 2 % x 4 199 882 024 = 83 997 640, (wartość istotności określona w rozporządzeniu), a oczekiwany poziom błędu wynosi 0,4 %, 0,4 % x 4 199 882 024 = 16 799 528 (co odpowiada silnemu przekonaniu instytucji audytowej, opartemu zarówno na informacjach z zeszłego roku, jak i wynikach sprawozdania z oceny systemów zarządzania i kontroli),

$$n = \left(\frac{1.645 \times 4,199,882,024 \times 0.085}{83,997,640 - 16,799,528} \right)^2 \approx 77$$

W pierwszej kolejności konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytem w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej (BV) i planowanej liczebności próby (n). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli $BV_i > BV/n$), zostaną umieszczone w warstwie objętej audytem w 100 %. W omawianym przypadku wartość graniczna wynosi 4 199 882 024/77 = 54 593 922 EUR.
Instytucja audytowa umieszcza w odrębnej warstwie wszystkie operacje o wartości księgowej wyższej niż 54 593 922, co odpowiada 8 operacjom o wartości 786 837 081 EUR.

Interwał losowania dla pozostajej populacji jest równy wartości księgowej w warstwie niewyzerpującej \((BV_s) \) (różnica całkowitej wartości księgowej i wartości księgowej ośmiu operacji należących do górnej warstwy) podzielonej przez liczbę operacji, z których się losuje (77 minus 8 operacji w górnej warstwie).

\[
Sampling \ interval = \frac{BV_s}{n_s} = \frac{4,199,882,024 - 786,837,081}{69} = 49,464,419
\]

Instytucja audytowa sprawdziła, że nie występowały operacje o wartości księgowej wyższej niż interwał, w związku z czym góra warstwa obejmuje tylko 8 operacji o wartości księgowej wyższej niż wartość graniczna. Próbę dobiera się z randomizowanego wykazu operacji, wybierając każdą pozycję zawierającą co 49 464 419. jednostkę monetarną.

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 3 844 operacje populacji (3 852 – 8 operacji o wysokiej wartości), a następnie tworzy się sekwencyjną łączną zmienną wartości księgowej. Wartość próby obejmującej 69 operacji (77 minus 8 operacji o wysokiej wartości) uzyskuje się za pomocą poniższej procedury.

Wygenerowano wartość losową w przedziale między 1 a interwałem losowania 49 464 419 (wynoszącą 22 006 651). Ten pierwszy wybór odpowiada pierwszej operacji w zbiorze o skumulowanej wartości księgowej większej lub równej 22 006 651.

<table>
<thead>
<tr>
<th>Nr identyfikacyjny operacji</th>
<th>Wartość księgowa (BV)</th>
<th>Skumulowana wartość księgowa (AcumBV)</th>
<th>Próba</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>10 173 875 EUR</td>
<td>10 173 875 EUR</td>
<td>Nie</td>
</tr>
<tr>
<td>424</td>
<td>23 014 045 EUR</td>
<td>33 187 920 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>2 327</td>
<td>32 886 198 EUR</td>
<td>66 074 118 EUR</td>
<td>Nie</td>
</tr>
<tr>
<td>5 009</td>
<td>34 595 201 EUR</td>
<td>100 669 319 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>1 491</td>
<td>78 695 230 EUR</td>
<td>179 364 549 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>(…)</td>
<td>(…)</td>
<td>(…)</td>
<td>(…)</td>
</tr>
<tr>
<td>2 596</td>
<td>8 912 999 EUR</td>
<td>307 654 321 EUR</td>
<td>Nie</td>
</tr>
</tbody>
</table>
Po przeprowadzeniu audytu 77 operacji instytucja audytowa jest w stanie przewidzieć błąd.

Spośród ośmiu operacji o wysokiej wartości (całkowita wartość księgowa wynosi 786 837 081 EUR) trzy operacje zawierają błąd odpowiadający kwocie błędu w wysokości 7 616 805 EUR.

W odniesieniu do pozostałej części próby sposób postępowania w przypadku błędu jest inny. W przypadku tego rodzaju operacji należy:
1) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie: \(\frac{E_i}{BV_i} \)
2) zsumować te poziomy błędu dla wszystkich jednostek w próbie (obliczone w programie MS Excel jako „:=SUM(E2:E70)”);
3) pomnożyć poprzedni wynik przez interwał losowania (SI).

\[
EE_s = SI \sum_{i=1}^{n_s} \frac{E_i}{BV_i}
\]
Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[EE = 7,616,805 + 54,213,004 = 61,829,809 \]

Przewidywany poziom błędu to stosunek błędu przewidywanego do całkowitych wydatków:

\[r = \frac{61,829,809}{4,199,882,024} = 1.47\% \]

Odczynienie standardowe poziomów błędu w warstwie doboru próby wynosi 0,09 (obliczone w programie MS Excel jako „:=STDEV.S(E2:E70)”).

Dokładność oblicza się za pomocą następującego wzoru:

\[SE = z \times \frac{BV}{\sqrt{n_s}} \times s_r = 1.645 \times \frac{4,199,882,024 - 786,837,081}{\sqrt{69}} \times 0.09 = 60,831,129 \]

Należy pamiętać, że błąd próby oblicza się wyłącznie dla warstwy niewyczerpującej, ponieważ w warstwie wyczerpującej błędy próbki nie występują.
Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego EE i dokładności ekstrapolacji:

$$ULE = 61,829,809 + 60,831,129 = 122,660,937$$

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem wynoszącym 83 997 640 EUR w celu wyciągnięcia wniosków z kontroli.

Ponieważ maksymalny dopuszczalny błąd jest większy niż błąd przewidywany, ale mniejszy niż góra granica błędu, należy zapoznać się z sekcją 4.12 w celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić.

6.3.2 Stratyfikowana metoda doboru próby na podstawie jednostki monetarnej

6.3.2.1 Wprowadzenie

W ramach stratyfikowanej metody doboru próby na podstawie jednostki monetarnej populację dzieli się na subpopulacje zwane warstwami, a następnie z każdej warstwy losuje się niezależne próby z zastosowaniem standardowego podejścia do metody doboru próby na podstawie jednostki monetarnej.

Jak zwykle, w kryteriach kwalifikowalności do przeprowadzenia stratyfikacji należy uwzględnić fakt, że dążymy do znalezienia grup (warstw) o mniejszej zmienności niż cała populacja. Dlatego też wszelkie zmienne, które zgodnie z oczekiwaniami mogą wyjaśniać poziom błędu w operacjach, również kwalifikują się do stratyfikacji. Można także wybrać programy, regiony, odpowiedzialne organy, kategorie oparte na ryzyku operacji itp.

W ramach stratyfikowanej metody MUS stratyfikacja według poziomu wydatków nie jest przedmiotem zainteresowania, ponieważ w tej metodzie uwzględnia się poziom wydatków już na etapie doboru jednostek próby.
6.3.2.2 Liczebność próby

Liczebność próby oblicza się następująco:

\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

gdzie \(\sigma_{rw}^2 \) oznacza średnią ważoną wariancję poziomów błędu dla całego zbioru warstw, przy czym waga dla każdej z warstw jest równa stosunkowi wartości księgowej warstwy \((BV_h)\) i wartości księgowej całej populacji \((BV)\):

\[\sigma_{rw}^2 = \sum_{h=1}^{H} \frac{BV_h}{BV} \sigma_{rhw}^2, \quad h = 1,2, \ldots, H; \]

zaś \(\sigma_{rhw}^2 \) oznacza wariancję poziomów błędu w każdej warstwie. Wariancję poziomów błędu oblicza się dla każdej warstwy jako niezależnej populacji za pomocą następującego wzoru:

\[\sigma_{rhw}^2 = \frac{1}{n_h^p - 1} \sum_{i=1}^{n_h^p} (r_{hi} - \bar{r}_h)^2, \quad h = 1,2, \ldots, H \]

gdzie \(r_{hi} = \frac{E_i}{BV_i} \) oznacza poszczególne poziomy błędu dla jednostek w próbie warstwy \(h \), zaś \(\bar{r}_h \) oznacza średni poziom błędu próby w warstwie \(h \).

Jak stwierdzono powyżej w odniesieniu do standardowej metody doboru próby na podstawie jednostki monetarnej, wartości te można oprzeć na wiedzy historycznej lub na próbie wstępnej/pilotażowej o małej liczebności. W tym drugim przypadku próbę pilotażową można, jak zwykle, wykorzystać później jako część próby wybranej do audytu. Zalecenie dotyczące obliczania tych parametrów na podstawie danych historycznych nadal obowiązuje w celu uniknięcia konieczności wyboru próby wstępnej. Możliwe jest, że przy pierwszym zastosowaniu stratyfikowanej metody MUS stratyfikowane dane historyczne będą niedostępne. W takim przypadku liczebność próby można określić za pomocą wzorów stosowanych w odniesieniu do standardowej metody MUS (zob. sekcja 6.3.1.2). Oczywistą konsekwencją braku wiedzy historycznej jest fakt, że w pierwszym okresie audytu liczebność próby będzie większa niż byłaby

29 Ilekroć wartość księgowej jednostki \(i \ BV_i \) jest większa niż wartość graniczna \(BV_h/n_h \), stosunek \(\frac{E_i}{BV_i} \) należy zastąpić \(\frac{E_i}{BV_h/n_h} \).
wymagana w przypadku, gdyby informacje te były dostępne. Informacje zebrane w trakcie tego pierwszego okresu stosowania stratyfikowanej metody MUS można stosować w późniejszych okresach do określania liczebności próby.

Po obliczeniu całkowitej liczebności próby, \(n \), alokacja próby według warstw odbywa się następująco:

\[
\hat{n}_h = \frac{BV_h}{BV} n.
\]

Jest to ogólna metoda alokacji, zgodnie z którą alokacja próby między warstwy odbywa się proporcjonalnie do wydatków (wartości księgowej) warstw. Dostępne są również inne metody alokacji. Bardziej dostosowana alokacja może w niektórych przypadkach przynieść dodatkowe zyski pod względem dokładności lub zmniejszyć liczebność próby. Ocena adekwatności innych metod alokacji w odniesieniu do każdej konkretnej populacji wymaga pewnej wiedzy technicznej z zakresu teorii doboru próby.

6.3.2.3 Dobór próby

W przypadku każdej warstwy \(h \) występować będą dwa elementy: grupa wyczerpująca wewnątrz warstwy \(h \) (tj. grupa zawierająca jednostki próby o wartości księgowej przekraczającej wartość graniczną, \(BV_{hi} > \frac{BV_h}{n_h} \)); oraz grupa próby wewnątrz warstwy \(h \) (tj. grupa zawierająca jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, \(BV_{hi} \leq \frac{BV_h}{n_h} \)).

Po określeniu liczebności próby konieczne jest zidentyfikowanie w każdej pierwotnej warstwie (\(h \)) ewentualnych jednostek populacji o wysokiej wartości, które będą należały do grupy o wysokiej wartości objętej audytom w 100 %. Wartość graniczna służąca do określenia tej górnej grupy jest równa stosunkowi wartości księgowej warstwy (\(BV_h \)) i planowanej liczebności próby (\(n_h \)). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_{hi} > \frac{BV_h}{n_h} \)), zostaną umieszczone w grupie objętej audytom w 100 %.

Liczebność próby, która zostanie przydzielona do grupy niewyczerpującej, \(n_{hs} \), oblicza się jako różnicę \(n_h \) i liczby jednostek próby (np. operacji) w grupie wyczerpującej warstwy (\(n_{he} \)).

Na koniec dobór prób w grupie niewyczerpującej każdej z warstw przeprowadza się z zastosowaniem prawdopodobieństwa proporcjonalnego do wielkości, tj. proporcjonalnie do wartości księgowej pozycji \(BV_i \). Popularnym sposobem przeprowadzania doboru jest dobór systematyczny, w którym wykorzystuje się interwał
losowania równy ilorazowi całkowitych wydatków w grupie niewyczerpującej warstwy \((BV_{hs})\) i liczebności próby \((n_{hs})\)\(^{30}\), tj.

\[
SI_h = \frac{BV_{hs}}{n_{hs}}
\]

Należy pamiętać, że wybranych zostanie kilka niezależnych prób, po jednej dla każdej z pierwotnych warstw.

6.3.2.4 Błąd przewidywany

Prognozę błędów dla populacji sporządza się inny sposób dla jednostek należących do grup wyczerpujących niż dla pozycji w grupach niewyczerpujących.

W przypadku grup wyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej wyższej niż wartość graniczna, \(BV_{hi} > \frac{BV_{hs}}{n_{hs}}\), błąd przewidywany stanowi sumę błędów wykrytych w pozycjach należących do tych grup:

\[
EE_e = \sum_{h=1}^{H} \sum_{i=1}^{n_h} E_{hi}
\]

W praktyce:
1) w przypadku każdej warstwy \(h\) należy zidentyfikować jednostki należące do grupy wyczerpującej i zsumować ich błędy;
2) należy zsumować poprzednie wyniki dla całego zbioru warstw \(H\).

W przypadku grup niewyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, \(BV_{hi} \leq \frac{BV_{hs}}{n_{hs}}\), błąd przewidywany wynosi:

\[
EE_s = \sum_{h=1}^{H} \frac{BV_{hs}}{n_{hs}} \sum_{i=1}^{n_{hs}} \frac{E_{hi}}{BV_{hi}}
\]

Aby obliczyć ten błąd przewidywany, należy:
1) w każdej warstwie \(h\) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie; \(\frac{E_{hi}}{BV_{hi}}\);
2) w każdej warstwie \(h\) zsumować te poziomy błędu dla wszystkich jednostek w próbie;

\(^{30}\) Jeżeli niektóre jednostki populacji nadal będą wykazywać wydatki wyższe od danego interwału losowania, wówczas należy zastosować procedurę wyjaśnioną w sekcji 6.3.1.3.
3) w każdej warstwie \(h \) pomnożyć poprzedni wynik przez całkowite wydatki populacji grupy niewyczerpującej (\(BV_{hs} \)); wydatki te będą także równie całkowitym wydatkom w warstwie poniedzieszonym o wydatki pozycji należących do grupy wyczerpującej;
4) w każdej warstwie \(h \) podzielić poprzedni wynik przez liczebność próby w grupie niewyczerpującej (\(n_{hs} \));
5) zsumować poprzednie wyniki dla całego zbioru warstw \(H \).

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[
EE = EE_e + EE_s
\]

6.3.2.5 **Dokładność**

Podobnie jak w przypadku standardowej metody MUS, dokładność stanowi miarę niepewności związanej z ekstrapolacją. Odzwierciedla ona błąd próby i należy ją obliczyć, aby następnie ustalić przedział ufności.

Dokładność oblicza się za pomocą następującego wzoru:

\[
SE = z \times \sqrt{\sum_{h=1}^{H} \frac{BV_{hs}^2}{n_{hs}} \cdot s_{rhs}^2}
\]

gdzie \(s_{rhs} \) oznacza odchylenie standardowe poziomów błędu w próbie grupy niewyczerpującej warstwy \(h \) (obliczone na podstawie tej samej próby, którą wykorzystano do ekstrapolacji błędów na populację),

\[
s_{rhs}^2 = \frac{1}{n_{hs} - 1} \sum_{i=1}^{n_{hs}} (r_{hi} - \bar{r}_{hs})^2 , h = 1,2, ..., H
\]

zaś \(\bar{r}_{hs} \) jest równe średniej arytmetycznej poziomów błędu w próbie danej grupy niewyczerpującej warstwy \(h \).

Błąd próby oblicza się wyłącznie dla grup niewyczerpujących, ponieważ w przypadku grup wyczerpujących błędy próby nie występują.

6.3.2.6 **Ocena**
Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego EE i dokładności ekstrapolacji:

$$ULE = EE + SE$$

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli, stosując dokładnie takie samo podejście jak podejście przedstawione w sekcji 6.3.1.6.

6.3.2.7 Przykład

Załóżmy populację wydatków zadeklarowanych Komisji w danym roku dla operacji w ramach grupy dwóch programów. Audyty systemu przeprowadzone przez instytucję audytową dały niski poziom pewności. W związku z tym doboru próby dla tego programu należy dokonać przy poziomie ufności wynoszącym 90%.

Instytucja audytowa ma powody, aby sądzić, że istnieją różne poziomy błędu w zależności od programu. Mając na uwadze wszystkie te informacje, instytucja audytowa postanowiła dokonać stratyfikacji populacji według programu.

Poniższa tabela zawiera podsumowanie dostępnych informacji.

Liczebność populacji (liczba operacji)	6 252
Liczebność populacji – warstwa 1	4 520
Liczebność populacji – warstwa 2	1 732
Wartość księgowa (suma wydatków w okresie odniesienia)	4 199 882 024 EUR
Wartość księgową – warstwa 1	2 506 626 292 EUR
Wartość księgową – warstwa 2	1 693 255 732 EUR

Pierwszym krokiem jest obliczenie wymaganej liczebności próby za pomocą wzoru:

$$n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2$$

gdzie σ_{rw}^2 oznacza średnią ważoną wariancji poziomów błędu dla całego zbioru warstw, przy czym waga dla każdej z warstw jest równa stosunkowi wartości księgowej warstwy (BV_h) i wartości księgowej całej populacji (BV):
\[\sigma_{rw}^2 = \sum_{i=1}^{H} \frac{BV_h}{BV} \sigma_{rh}^2, h = 1,2,\ldots,H; \]

gdzie \(\sigma_{rh} \) oznacza odchylenie standardowe poziomów błędu uzyskane z próby wybranej na podstawie MUS. Aby uzyskać przybliżenie tego odchylenia standardowego, instytucja audytowa postanowiła wykorzystać odchylenie standardowe z poprzedniego roku. Próba z poprzedniego roku obejmowała 110 operacji: 70 operacji z pierwszego programu (warstwy) i 40 z drugiego programu.

Na podstawie zeszłorocznej próby obliczamy wariancję poziomów błędu (w celu uzyskania szczegółowych informacji zob. sekcja 7.3.1.7) jako:

\[\sigma_{r1}^2 = \frac{1}{70-1} \sum_{i=1}^{70} (r_{1i} - \bar{r}_1)^2 = 0.000045 \]

oraz

\[\sigma_{r2}^2 = \frac{1}{40-1} \sum_{i=1}^{40} (r_{2i} - \bar{r}_2)^2 = 0.010909 \]

Otrzymujemy następujący wynik:

\[\sigma_{rw}^2 = \frac{2,506,626,292}{4,199,882,024} \times 0.000045 + \frac{1,693,255,732}{4,199,882,024} \times 0.010909 = 0.004425 \]

Znając ten szacunek wariancji poziomów błędu, możemy obliczyć liczebność próby. Jak już wcześniej stwierdzono, instytucja audytowa oczekuje znacznych różnic między obiema warstwami. Ponadto na podstawie sprawozdania z funkcjonowania systemu zarządzania i kontroli instytucja audytowa oczekuje, że poziom błędu wyniesie około 1,1 %. Przy założeniu, że błąd dopuszczalny wynosi 2 % całkowitej wartości księgowej (poziom istotności wyznaczony w rozporządzeniu), tj. \(TE = 2 \% \times 4\,199\,882\,024 = 83\,997\,640 \), a błąd oczekiwany \(AE = 1,1 \% \times 4\,199\,882\,024 = 46\,198\,702 \), liczebność próby wynosi:

\[n = \left(\frac{1.645 \times 4,199,882,024 \times \sqrt{0.004425}}{83,997,640 - 46,198,702} \right)^2 \approx 148 \]

Alokacja próby między warstwy odbywa się następująco:

\[n_1 = \frac{BV_1}{BV} \times n = \frac{2,506,626,292}{4,199,882,024} \times 148 \approx 89 \]
\[n_2 = n - n_1 = 148 - 89 = 59. \]

Te dwie liczebności próbę dają następujące wartości graniczne dla warstw o wysokiej wartości:

\[
\text{Cut } - \text{ of } f_1 = \frac{BV_1}{n_1} = \frac{2,506,626,292}{89} = 28,164,340
\]

oraz

\[
\text{Cut } - \text{ of } f_2 = \frac{BV_2}{n_2} = \frac{1,693,255,731}{59} = 28,699,250
\]

Stosując te dwie wartości graniczne, w warstwach 1 i 2 można znaleźć odpowiednio 16 i 12 operacji o wysokiej wartości.

Liczebność próby dla części warstwy 1 objętej losowaniem stanowi różnicę całkowitej liczebności próbki (89) i 16 operacji o wysokiej wartości, tj. 73 operacje. Stosując te same zasady w odniesieniu do warstwy 2, liczebność próby dla części warstwy 2 objętej losowaniem wynosi 59-12=47 operacji.

Kolejnym etapem będzie obliczenie interwału losowania dla warstw objętych losowaniem. Interwały losowania uzyskuje się odpowiednio za pomocą wzorów:

\[
SI_1 = \frac{BV_{1s}}{n_{1s}} = \frac{1,643,963,924}{73} = 22,520,054
\]

oraz

\[
SI_2 = \frac{BV_{2s}}{n_{2s}} = \frac{1,059,467,667}{47} = 22,541,865
\]

Poniższa tabela zawiera podsumowanie poprzednich wyników:

<table>
<thead>
<tr>
<th>Liczebność populacji (liczba operacji)</th>
<th>6 252</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji – warstwa 1</td>
<td>4 520</td>
</tr>
<tr>
<td>Liczebność populacji – warstwa 2</td>
<td>1 732</td>
</tr>
<tr>
<td>Wartość księgowa (suma wydatków w okresie odniesienia)</td>
<td>4 199 882 024 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – warstwa 1</td>
<td>2 506 626 292 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – warstwa 2</td>
<td>1 693 255 732 EUR</td>
</tr>
<tr>
<td>Wyniki próby – warstwa 1</td>
<td></td>
</tr>
<tr>
<td>Wartość graniczna</td>
<td>28 164 340 EUR</td>
</tr>
<tr>
<td>Liczba operacji wyższa od wartości granicznej</td>
<td>16</td>
</tr>
<tr>
<td>Wartość księgowa operacji wyższa od wartości</td>
<td>862 662 369 EUR</td>
</tr>
</tbody>
</table>
W przypadku warstwy 1 przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 4 504 operacje populacji (4 520 – 16 operacji o wysokiej wartości), a następnie tworzy się sekwencyjną łączną zmienią wartości księgowej. Próbę obejmującą 73 operacje (89 minus 16 operacji o wysokiej wartości) losuje się stosując dokładnie taką samą procedurę jak procedura opisana w sekcji 7.3.1.7. Jeżeli chodzi o warstwę 1, w 16 operacjach o wysokiej wartości nie znaleziono błędów.

Jeżeli chodzi o warstwę 2, w 6 z 12 operacji o wysokiej wartości znaleziono błędy o wartości 15 460 340 EUR.

W przypadku warstwy 2 przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 1 720 operacji populacji (1 732 – 12 operacji o wysokiej wartości), a następnie tworzy się sekwencyjną łączną zmienią wartości księgowej. Próbę obejmującą 47 operacji (59 – 12 operacji o wysokiej wartości) losuje się w sposób opisany w poprzednim punkcie.

Jeżeli chodzi o warstwę 2, w 6 z 12 operacji o wysokiej wartości znaleziono błędy o wartości 15 460 340 EUR.

W odniesieniu do pozostałej części próbny sposób postępowania w przypadku błędu jest inny. W przypadku tego rodzaju operacji należy:
1) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie: \(\frac{E_i}{BV_i} \)
2) zsumować te poziomy błędu dla wszystkich jednostek w próbie;
3) pomnożyć poprzedni wynik przez interwał losowania (SI).

Wartość księgowa operacji (populacja niewyczerpująca)	1 643 963 923 EUR
EUR Interwał losowania (populacja niewyczerpująca)	22 520 054 EUR
Liczba operacji (populacja niewyczerpująca)	4 504

Wyniki próby – warstwa 2

Wartość graniczna	28 699 250 EUR
Liczba operacji wyższa od wartości granicznej	12
Wartość księgowa operacji wyższa od wartości granicznej	633 788 064 EUR
Wartość księgowa operacji (populacja niewyczerpująca)	1 059 467 668 EUR
EUR Interwał losowania (populacja niewyczerpująca)	22 541 865 EUR
Liczba operacji (populacja niewyczerpująca)	1 720
\[EE_{hs} = SI_{hs} \sum_{i=1}^{n_{hs}} \frac{E_{hi}}{BV_{hi}} \]

Suma poziomów błędu dla populacji niewyczerpującej w warstwie 1 wynosi 1,0234,

\[EE_{1s} = 22,520,054 \times 1.0234 = 23,047,023 \]

zaś w warstwie 2 wynosi 1,176,

\[EE_{2s} = 22,541,865 \times 1.176 = 26,509,234. \]

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych wszystkich elementów, tj. kwoty błędu wykrytej w części wyczerpującej obu warstw, która wynosi 15 460 340 EUR i błędu przewidywanego w odniesieniu do obu warstw:

\[EE = 15,460,340 + 23,047,023 + 26,509,234 = 65,016,597 \]

co odpowiada przewidywanemu poziomowi błędu, który wynosi 1,55 %.

Aby obliczyć dokładność, należy uzyskać wariancje poziomów błędu dla obu warstw objętych losowaniem, stosując taką samą procedurę jak ta opisana w sekcji 7.3.1.7:

\[s_{r1}^2 = \frac{1}{72-1} \sum_{i=1}^{72} (r_{1i} - \bar{r}_{1s})^2 = 0.000036 \]

oraz

\[s_{r2}^2 = \frac{1}{48-1} \sum_{i=1}^{48} (r_{2i} - \bar{r}_{2s})^2 = 0.0081 \]

Dokładność oblicza się za pomocą następującego wzoru:

\[SE = z \times \sqrt{\sum_{h=1}^{H} \frac{BV_{hs}^2}{n_{hs}} \times s_{rhs}^2} \]

\[SE = 1.645 \times \sqrt{\frac{1,643,963,923^2}{73} \times 0.000036 + \frac{1,059,467,668^2}{47} \times 0.0081} \]

\[= 22,958,216 \]
Należy pamiętać, że błąd próby oblicza się wyłącznie dla części niewyczerpujących populacji, ponieważ w warstwie wyczerpującej błędy próby nie występują.

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego EE i dokładności ekstrapolacji:

$$ULE = 65,016,597 + 22,958,216 = 87,974,813$$

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.

Porównując próg istotności w wysokości 2% całkowitej wartości księgowej populacji (2% x 4 199 882 024 EUR = 83 997 640 EUR) z oczekiwanymi wynikami, obserwujemy, że maksymalny dopuszczalny błąd jest większy niż błąd przewidywany, ale mniejszy niż górna granica. W celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić, należy zapoznać się z sekcją 4.12.

6.3.3 Metoda doboru próby na podstawie jednostki monetarnej – dwa okresy

6.3.3.1 Wprowadzenie

Instytucja audytowa może podjąć decyzję o przeprowadzeniu procesu doboru próby w kilku okresach w ciągu roku (zazwyczaj dwa półrocza). Podobnie jak w przypadku wszystkich pozostałych metod doboru próby, największa korzyść wynikająca z tego podejścia wiąże się nie ze zmniejszeniem liczebności próby, ale głównie z możliwością rozłożenia czynności audytowych na cały rok, a tym samym zmniejszenia nakładu pracy, która zostałaby wykonana pod koniec roku na podstawie zaledwie jednej obserwacji.

Przy takim podejściu populację z danego roku dzieli się na dwie subpopulacje, z których każda odpowiada operacjom i wydatkom z każdego półrocza. Dla każdego
półrocza losuje się niezależne próby, stosując podejście standardowe w ramach metody doboru próby na podstawie jednostki monetarnej.

6.3.3.2 Liczebność próby

Pierwsze półrocze
W pierwszym okresie przeprowadzania audytu (np. półroczu) ogólną liczebność próby (dla zbioru dwóch półroczy) oblicza się następująco:

\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

gdzie \(\sigma_{rw}^2 \) oznacza średnią ważoną wariancję poziomów błędu w każdym półroczu, przy czym waga dla każdego półrocza jest równa stosunkowi wartości księgowej półrocza \((BV_t)\) i wartości księgowej całej populacji \((BV)\).

\[\sigma_{rw}^2 = \frac{BV_1}{BV} \sigma_{r1}^2 + \frac{BV_2}{BV} \sigma_{r2}^2 \]

zaś \(\sigma_{rt}^2 \) oznacza wariancję poziomów błędu w każdym półroczu. Wariancję poziomów błędu dla każdego półrocza oblicza się następująco:

\[\sigma_{rt}^2 = \frac{1}{n_t^p - 1} \sum_{i=1}^{n_t^p} (r_{ti} - \bar{r}_t)^2, t = 1,2 \]

gdzie \(r_{ti} = \frac{E_{ti}}{BV_{ti}} \) oznacza poszczególne poziomy błędu dla jednostek w próbie półrocza t, zaś \(\bar{r}_t \) oznacza średni poziom błędu próby w półroczu \(t \), \(t \geq 31 \).

Wartości oczekiwanych odchyleń standardowych poziomów błędu w obu półroczech muszą być ustalone w oparciu o profesjonalny osąd i wiedzę historyczną. Opcja polegająca na zastosowaniu próby wstępnej/pilotażowej o małej liczebności, omówiona powyżej w odniesieniu do standardowej metody doboru próby na podstawie jednostki monetarnej, jest w dalszym ciągu dostępna, ale można z niej korzystać wyłącznie w odniesieniu do pierwszego półroczu. Na początku obserwacji wydatki dla drugiego półrocza nie zostały jeszcze poniesione, w związku z czym żadne obiektywne dane (poza historycznymi) nie są dostępne. Jeżeli zastosowano próby pilotażowe, można je, jak zwykle, wykorzystać później jako część prób wybranej do audytu.

\[31 \text{ Ilekroć wartość księgowa jednostki } (BV_i) \text{ jest wyższa niż } \frac{BV_t}{n_t}, \text{ stosunek } \frac{E_{ti}}{BV_{ti}} \text{ należy zastąpić } \frac{E_{ti}}{BV_t/n_t} \]
Jeżeli nie są dostępne żadne dane historyczne ani wiedza historyczna pozwalające ocenić zmienność danych w drugim półroczu, można zastosować uproszczone podejście, obliczając ogólną liczebność próby w następujący sposób:

\[n = \left(\frac{z \times BV \times \sigma_{r_1}}{TE - AE} \right)^2 \]

Należy pamiętać, że przy takim uproszczonym podejściu potrzebne są jedynie informacje dotyczące zmienności poziomów błędu w pierwszym okresie obserwacji. Zgodnie z podstawowym założeniem zmienność poziomów błędu w obu półroczyach utrzyma się na podobnym poziomie.

Należy pamiętać, że problemy związane z brakiem pomocniczych informacji historycznych zwykle będą dotyczyły pierwszego roku okresu programowania. Informacje zgromadzone w ciągu pierwszego roku audytu można wykorzystać w kolejnym roku do określenia liczebności próby.

Należy również pamiętać, że wzory na obliczanie liczebności próby wymagają podstawienia wartości \(BV_1 \) i \(BV_2 \), tj. całkowitej wartości księgowej (deklarowane wydatki) pierwszego i drugiego półrocza. Przy obliczaniu liczebności próby wartość \(BV_1 \) będzie znana, ale wartość \(BV_2 \) będzie nieznana i trzeba będzie ją przyjąć zgodnie z oczekiwaniami audytora (również opartymi na informacjach historycznych).

Po obliczeniu całkowitej liczebności próby \(n \) alokacja próby według półroczy odbywa się następująco:

\[n_1 = \frac{BV_1}{BV} n \]

oraz

\[n_2 = \frac{BV_2}{BV} n \]

Drugie półroczce

W pierwszym okresie obserwacji poczyniono pewne założenia dotyczące kolejnych okresów obserwacji (zwykle następnego półrocza). Jeżeli cechy charakterystyczne populacji w kolejnych okresach znacznie odbiegają od przyjętych założeń, konieczne może być skorygowanie liczebności próby w odniesieniu do kolejnego okresu.

W drugim okresie audytu (np. półroczu) dostępnych będzie więcej informacji:

- znana jest prawidłowa całkowita wartość księgowa w drugim półroczu \(BV_3 \);
- może być już dostępne odchylenie standardowe poziomów błędu w próbie \(s_{r_1} \) obliczone na podstawie próby z pierwszego półrocza;
można teraz dokładniej ocenić odchylenie standardowe poziomów błędu dla drugiego półrocza \(\sigma_{r2} \), stosując dane faktyczne.

Jeżeli wspomniane parametry nie różnią się znacznie od oszacowanych w pierwszym półroczu pod względem oczekiwań audytor, pierwotnie zaplanowana liczebność próby dla drugiego półrocza \((n_2) \) nie będzie wymagała żadnych korekt. Jeżeli audytor stwierdzi jednak, że pierwotne oczekiwania znacznie odbiegają od faktycznych cech charakterystycznych populacji, liczebność próby może wymagać skorygowania, tak aby uwzględnić te niedokładne szacunki. W tym przypadku należy ponownie obliczyć liczebność próby drugiego półrocza za pomocą następującego wzoru:

\[
n_2 = \frac{(z \times BV_2 \times \sigma_{r2})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2}
\]

gdzie \(s_{r1} \) oznacza odchylenie standardowe poziomów błędu obliczonych na podstawie próby pierwszego półrocza, natomiast \(\sigma_{r2} \) oznacza szacunek odchylenia standardowego poziomów błędu w drugim półroczu na podstawie wiedzy historycznej (ostatecznie dostosowany na podstawie informacji z pierwszego półrocza) lub próby wstępnej/pilotażowej drugiego półrocza.

6.3.3.3 Dobór próby

W każdym półroczu dobór próby będzie przebiegał dokładnie zgodnie z procedurą opisaną w odniesieniu do podejścia standardowego w ramach metody doboru próby na podstawie jednostki monetarnej. Procedura ta zostanie ponownie opisana w tym miejscu z uwagi na czytelników.

Dla każdego półrocza po określeniu liczebności próby konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do grupy o wysokiej wartości objętej audytem w 100%. Wartość graniczna służąca do określenia tej grupy jest równa stosunkowi wartości księgowej za dane półrocze \((BV_t) \) i planowanej liczebności próby \((n_t) \). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_{ti} > \frac{BV_t}{n_t} \)), zostaną umieszczone w grupie objętej audytem w 100%.

Liczebność próby, która zostanie przydzielona do grupy niewyczerpującej, \(n_{ts} \), oblicza się jako różnicę \(n_t \) i liczby jednostek próby (np. operacji) w grupie wyczerpującej \((n_{te}) \).

Na koniec w przypadku każdego półrocza dobór prób w grupie niewyczerpującej przeprowadza się z zastosowaniem prawdopodobieństwa proporcjonalnego do
wielkości, tj. proporcjonalnie do wartości księgowych pozycji BV_{ti}. Popularnym sposobem przeprowadzania doboru jest dobór systematyczny, w którym wykorzystuje się interwał losowania równy ilorazowi całkowitych wydatków w grupie niewyczerpującej (BV_{ts}) i liczebności próby (n_{ts})\(^{32}\), tj.

$$SI_t = \frac{BV_{ts}}{n_{ts}}$$

6.3.3.4 Błąd przewidywany

Prognozę błędów dla populacji oblicza się w inny sposób dla jednostek należących do grup wyczerpujących oraz dla pozycji w grupach niewyczerpujących.

W przypadku grup wyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej wyższej niż wartość graniczna, $BV_{ti} > \frac{BV_{ts}}{n_{ts}}$, błąd przewidywany stanowi sumę błędów wykrytych w pozycjach należących do tych grup:

$$EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i}$$

W praktyce:

1) w przypadku każdego półrocza t należy zidentyfikować jednostki należące do grupy wyczerpującej i zsumować ich błędy;
2) należy zsumować poprzednie wyniki dla obu półroczy.

W przypadku grup niewyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, $BV_{ti} \leq \frac{BV_{ts}}{n_{ts}}$, błąd przewidywany wynosi:

$$EE_s = \frac{BV_{1s}}{n_{1s}} \times \sum_{i=1}^{n_1} \frac{E_{1i}}{BV_{1i}} + \frac{BV_{2s}}{n_{2s}} \times \sum_{i=1}^{n_2} \frac{E_{2i}}{BV_{2i}}$$

Aby obliczyć ten błąd przewidywany, należy:

\(^{32}\) Jeżeli niektóre jednostki populacji nadal będą wykazywać wydatki wyższe od danego interwału losowania, wówczas należy zastosować procedurę wyjaśnioną w sekcji 6.3.1.3.
1) w przypadku każdego półrocza \(t \) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie; \(E_{tt} \)

2) w przypadku każdego półrocza \(t \) zsumować te poziomy błędu ze wszystkich jednostek w próbie;

3) w każdym półroczu \(t \) pomnożyć poprzedni wynik przez całkowite wydatki populacji grupy niewyczerpującej \((BV_{ts})\); wydatki te będą także równe całkowitym wydatkom w półroczu pomniejszonym o wydatki pozycji należących do grupy wyczerpującej;

4) w przypadku każdego półrocza \(t \) podzielić poprzedni wynik przez liczebność próby w grupie niewyczerpującej \((n_{ts})\);

5) zsumować poprzednie wyniki dla obu półrocz.

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[
EE = EE_{e} + EE_{s}
\]

6.3.3.5 Dokładność

Podobnie jak w przypadku standardowej metody MUS, dokładność stanowi miarę niepewności związanej z ekstrapolacją. Odzwierciedla ona błąd próby i należy ją obliczyć, aby następnie ustalić przedział ufności.

Dokładność oblicza się za pomocą następującego wzoru:

\[
SE = z \times \sqrt{\frac{BV_{1s}^2}{n_{1s}} \times s_{r1s}^2 + \frac{BV_{2s}^2}{n_{2s}} \times s_{r2s}^2}
\]

gdzie \(s_{r2s} \) oznacza odchylenie standardowe poziomów błędu w próbie grupy niewyczerpującej półrocza \(t \) (obliczone na podstawie tej samej próby, którą wykorzystano do ekstrapolacji błędów na populację),

\[
s_{r_{ts}}^2 = \frac{1}{n_{ts} - 1} \sum_{i=1}^{n_{ts}} (r_{ti} - \bar{r}_{ts})^2, t = 1,2
\]

zaś \(\bar{r}_{ts} \) jest równe średniej arytmetycznej poziomów błędu w próbie danej grupy niewyczerpującej półrocza \(t \).

Błąd próby oblicza się wyłącznie dla grup niewyczerpujących, ponieważ w przypadku grup wyczerpujących błędy próby nie występują.
6.3.3.6 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego EE i dokładności ekstrapolacji:

$$ULE = EE + SE$$

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli, stosując dokładnie takie samo podejście jak podejście przedstawione w sekcji 6.3.1.6.

6.3.3.7 Przykład

Wiedząc, że obciążenie czynnościami audytowymi koncentruje się zwykle pod koniec roku audytowego, instytucja audytowa postanowiła rozłożyć czynności audytowe na dwa okresy. Po zakończeniu pierwszego półrocza instytucja audytowa przeanalizowała populację podzieloną na dwie grupy odpowiadające każdemu z dwóch półroczy. Na koniec pierwszego półrocza cechy charakterystyczne populacji są następujące:

| Wydatki zadeklarowane na koniec pierwszego półrocza | 1 827 930 259 EUR |
| Liczebność populacji (operacje – pierwsze półrocze) | 2 344 |

Na podstawie zgromadzonych wcześniej doświadczeń instytucja audytowa wie, że zazwyczaj wszystkie operacje zawarte w programach na koniec okresu odniesienia są już aktywne w populacji pierwszego półrocza. Ponadto oczekuje się, że wydatki zadeklarowane na koniec pierwszego półrocza będą stanowiły około 35 % całkowitych wydatków zadeklarowanych na koniec okresu odniesienia. Na podstawie tych założeń w poniższej tabeli przedstawiono podsumowanie populacji:

Wydatki zadeklarowane (DE) na koniec pierwszego półrocza	1 827 930 259 EUR
Wydatki zadeklarowane (DE) na koniec drugiego półrocza (przewidywane)	3 394 727 624 EUR
Wydatki zadeklarowane (DE) na koniec drugiego półrocza (przewidywane)	3 394 727 624 EUR
Liczebność populacji (operacje – pierwsze półrocze)	2 344
Liczebność populacji (operacje – drugie półrocze, przewidywana)	2 344

| Całkowite wydatki przewidywane na dany rok | 5 222 657 883 EUR |

Dla pierwszego okresu ogólną liczebność próby (w odniesieniu do zbioru dwóch półroczy) oblicza się następująco:
\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

gdzie \(\sigma_{rw}^2 \) oznacza średnią ważoną wariancji poziomów błędu w każdym półroczu, przy czym waga dla każdego półrocza jest równa stosunkowi wartości księgowej półrocza \((BV_t)\) i wartości księgowej całej populacji \((BV)\),

\[\sigma_{rw}^2 = \frac{BV_1}{BV} \sigma_{r1}^2 + \frac{BV_2}{BV} \sigma_{r2}^2 \]

zaś \(\sigma_{rt}^2 \) oznacza wariancję poziomów błędu w każdym półroczu. Wariantcję poziomów błędu dla każdego półrocza oblicza się następująco:

\[\sigma_{rt}^2 = \frac{1}{n_t - 1} \sum_{i=1}^{n_p} (r_{ti} - \bar{r}_t)^2, \quad t = 1, 2, ..., T \]

Ponieważ wariancje są nieznane, instytucja audytowa postanowiła wylosować próbę wstępną składającą się z 20 operacji po zakończeniu pierwszego półrocza bieżącego roku. Odchylenie standardowe poziomów błędu w tej próbie wstępnej w pierwszym półroczu wynosi 0,12. W oparciu o profesjonalny osąd i wiedząc, że wydatki w drugim półroczu są zazwyczaj większe niż w pierwszym, instytucja audytowa dokonała wstępnej prognozy odchylenia standardowego poziomów błędu dla drugiego półrocza, zgodnie z którą odchylenie będzie o 110% większe niż w pierwszym półroczu i wyniesie 0,25. W związku z tym średnia ważona wariancji poziomów błędu wynosi:

\[\sigma_{rw}^2 = \frac{1,827,930,259}{1,827,930,259 + 3,394,727,624} \times 0.12^2 + \frac{3,394,727,624}{1,827,930,259 + 3,394,727,624} \times 0.25^2 = 0.0457 \]

W pierwszym półroczu instytucja audytowa, z uwagi na poziom funkcjonowania systemu zarządzania i kontroli, uznaje, że odpowiedni jest poziom ufności wynoszący 60%. Ogólna liczebność próbki dla całego roku wynosi:

\[n = \left(\frac{0.842 \times (1,827,930,259 + 3,394,727,624) \times \sqrt{0.0457}}{104,453,158 - 20,890,632} \right)^2 \approx 127 \]

gdzie \(z = 0.842 \) (współczynnik odpowiadający poziomowi ufności wynoszącemu 60%), zaś \(TE \), błąd dopuszczalny, wynosi 2% (maksymalny poziom istotności wyznaczony w rozporządzeniu) wartości księgowej. Całkowita wartość księgowa obejmuje faktyczną wartość księgową na koniec pierwszego półrocza oraz przewidywaną wartość księgową dla drugiego półrocza, 3 394 727 624 EUR, co oznacza, że błąd dopuszczalny wynosi 2% x 5 222 657 883 EUR = 104,453,158 EUR.
W ramach zeszłorocznego audytu prognozowano poziom błędu 0,4 %. Zatem AE, błąd oczekiwany, wynosi $0,4 \% \times 5,222,657,883 \text{ EUR} = 20,890,632 \text{ EUR}$.

Alokacja próby według półrocza odbywa się następująco:

$$n_1 = \frac{BV_1}{BV_1 + BV_2} = \frac{1,827,930,259}{1,827,930,259 + 3,394,727,624} \times 127 \approx 45$$

oraz

$$n_2 = n - n_1 = 82$$

W odniesieniu do pierwszego półrocza konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytem w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej (BV_1) i planowanej liczebności próby (n_1). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli $BV_i > BV_1/n_1$), zostaną umieszczone w warstwie objętej audytem w 100 %. W omawianym przypadku wartość graniczna wynosi 40 620 672 EUR. Istnieje 11 operacji, których wartość księgowa jest wyższa niż wartość graniczna. Całkowita wartość księgowa tych operacji wynosi 891 767 519 EUR.

Liczebność próby, która zostanie przydzielona do warstwy niewyczerpującej (n_{1s})), oblicza się jako różnicę n_1 i liczby jednostek próby w warstwie wyczerpującej (n_e), tj. 34 operacje.

Dobór próby w warstwie niewyczerpującej zostanie przeprowadzony z zastosowaniem prawdopodobieństwa proporcjonalnego do wielkości, tj. proporcjonalnie do wartości księgowych pozycji BV_{1s1}, za pomocą doboru systematycznego, przy użyciu interwału losowania równego ilorazowi całkowitych wydatków w warstwie niewyczerpującej (BV_{1s}) i liczebności próby (n_{1s}), tj.

$$SI_{1s} = \frac{BV_{1s}}{n_{1s}} = \frac{1,827,930,259 - 891,767,519}{34} = 27,534,198$$

Wartość księgowa w warstwie niewyczerpującej (BV_{1s}) stanowi po prostu różnicę całkowitej wartości księgowej i wartości księgowej 11 operacji należących do górnej warstwy.

Poniższa tabela zawiera podsumowanie tych wyników:

<table>
<thead>
<tr>
<th>Wartość graniczna – pierwsze półrocze</th>
<th>40 620 672 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba operacji o wartości księgowej wyższej niż wartość</td>
<td>11</td>
</tr>
</tbody>
</table>
Spośród 11 operacji o wartości księgowej wyższej niż interwał losowania sześć zawierało błąd. Całkowity błąd wykryty w tej warstwie wynosi 19 240 855 EUR.

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 2 333 operacje populacji, a następnie tworzy się sekwencyjną łączną zmienną wartości księgowej. Próbę obejmującą 34 operacje losuje się z zastosowaniem systematycznej procedury proporcjonalnej do wielkości. Wartość 34 operacji stanowi przedmiot audytu. Suma poziomów błędu dla pierwszego półrocza wynosi:

\[
\sum_{i=1}^{34} \frac{E_{1s}}{BV_{1s}} = 1.4256
\]

Odczylenie standardowe poziomów błędu w próbie populacji niewyczerpującej pierwszego półrocza wynosi (w celu uzyskania szczegółowych informacji zob. sekcja 6.3.1.7):

\[
s_{r_{1s}} = \sqrt{\frac{1}{34 - 1} \sum_{i=1}^{34} (r_{1is} - \bar{r}_{1s})^2} = 0.085
\]

zaś \(\bar{r}_{1s} \) jest równą średnią arytmetyczną poziomów błędu w próbie danej grupy niewyczerpującej półrocza pierwszego.

Na koniec drugiego półrocza dostępnych jest więcej informacji, w szczególności znana jest prawidłowa kwota łącznych wydatków w ramach operacji aktywnych w drugim półroczu, dostępne są informacje na temat wariancji próby poziomów błędu \(s_{r_{1}} \) obliczonej na podstawie próby pierwszego półrocza i możliwa jest dokładniejsza ocena odchylenia standardowego poziomów błędu dla drugiego półrocza \(\sigma_{r_{2}} \) z wykorzystaniem próby wstępnej składającej się z danych faktycznych.

Instytucja audytowa zdaje sobie sprawę, że w przyjętym na koniec pierwszego półrocza założeniu dotyczącym całkowitych wydatków, 3 394 727 624 EUR, zawyżono ich faktyczną wartość wynoszącą 2 961 930 008 EUR. Istnieją również dwa dodatkowe parametry, w przypadku których należy stosować uaktualnione wartości.
Po pierwsze, szacunki odchylenia standardowego błędów na podstawie próby pierwszego półrocza obejmującej 34 operacje dały szacunkową wartość 0,085. Stosując tę nową wartość, należy teraz dokonać ponownej oceny planowanej liczebności próby.

Po drugie, w związku z większymi wydatkami drugim półroczu w porównaniu z pierwotnymi szacunkami instytucja audytowa uważa, że rozsądniej jest oszacować odchylenie standardowe poziomów błędu dla drugiego półrocza na poziomie 0,30 zamiast pierwotnej wartości wynoszącej 0,25. Uaktualnione wartości odchylenia standardowego poziomów błędu w przypadku obu półroczu znacznie odbiegają od pierwotnych szacunków. W rezultacie próbę dla drugiego półrocza należy zmienić.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Prognoza sporządzona w pierwszym półroczu</th>
<th>Koniec drugiego półrocza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odchylenie standardowe poziomów błędu w pierwszym półroczu</td>
<td>0,12</td>
<td>0,085</td>
</tr>
<tr>
<td>Odchylenie standardowe poziomów błędu w drugim półroczu</td>
<td>0,25</td>
<td>0,30</td>
</tr>
<tr>
<td>Całkowite wydatki w drugim półroczu</td>
<td>3 394 727 624 EUR</td>
<td>2 961 930 008 EUR</td>
</tr>
</tbody>
</table>

Uwzględniając te trzy korekty, ponownie obliczona liczebność próby drugiego półrocza wynosi:

\[
n_2 = \frac{(z \times BV_2 \times \sigma_{r_2})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r_1}^2}
\]

gdzie \(s_{r_1}\) oznacza odchylenie standardowe poziomów błędu obliczone na podstawie próby z pierwszego półrocza (próbę wykorzystano również do ustalenia błędu przewidywanego), natomiast \(\sigma_{r_2}\) oznacza szacunek odchylenia standardowego poziomów błędu w drugim półroczu:

\[
n_2 = \frac{(0.842 \times 2 961 930 008 \times 0.30)^2}{(95,797,205 - 19,159,441)^2 - 0.842^2 \times \frac{1,827,930,259^2}{45} \times 0.085^2} \approx 102
\]

gdzie:
- \(TE = (1 827 930 259 EUR + 2 961 930 008 EUR) \times 2 \% = 95,797,205 \€ \)
- \(AE = (1 827 930 259 EUR + 2 961 930 008 EUR) \times 0.4 \% = 19,159,441 \EUR \)

Konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytem w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej (\(BV_2\)) i planowanej liczebności próbki (\(n_2\)). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_{i_2} >

121
BV_2/n_2), zostaną umieszczone w warstwie objętej audytem w 100 %. W omawianym przypadku wartość graniczna wynosi 29 038 529 EUR. Istnieje sześć operacji, których wartość księgowa jest wyższa niż wartość graniczna. Całkowita wartość księgowa tych operacji wynosi 415 238 983 EUR.

Liczebność próby, która zostanie przydzielona do warstwy niewyczerpującej n_{2s}, oblicza się jako różnicę n_2 i liczby jednostek próby (np. operacji) w warstwie wyczerpującej (n_{2e}), tj. 96 operacji (liczebność próby wynosząca 102 pomniejszona o 6 operacji o wysokiej wartości). W związku z tym audytor musi dokonać doboru próby z zastosowaniem interwału losowania:

$$SI_{2s} = \frac{BV_{2s}}{n_{2s}} = \frac{2,961,930,008 - 415,238,983}{96} = 26,528,032$$

Wartość księgowa w warstwie niewyczerpującej (BV_{2s}) stanowi po prostu różnicę całkowitej wartości księgowej i wartości księgowej 6 operacji należących do górnej warstwy.

Poniższa tabela zawiera podsumowanie tych wyników:

<table>
<thead>
<tr>
<th>Wartość graniczna – drugie półrocze</th>
<th>29 038 529 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba operacji o wartości księgowej wyższej niż wartość graniczna – drugie półrocze</td>
<td>6</td>
</tr>
<tr>
<td>Wartość księgowa operacji o wartości księgowej wyższej niż wartość graniczna – drugie półrocze</td>
<td>415 238 983 EUR</td>
</tr>
<tr>
<td>BV_{2s} – drugie półrocze</td>
<td>2 546 691 025 EUR</td>
</tr>
<tr>
<td>n_{2s} – drugie półrocze</td>
<td>96</td>
</tr>
<tr>
<td>SI_{2s} – drugie półrocze</td>
<td>26 528 032 EUR</td>
</tr>
</tbody>
</table>

Spośród sześciu operacji o wartości księgowej wyższej niż wartość graniczna cztery zawierały błąd. Całkowity błąd wykryty w tej warstwie wynosi 9 340 755 EUR.

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 2 338 operacji populacji z drugiego półrocza, a następnie tworzy się sekwencyjną łączną zmienną wartości księgowej. Próbę składającą się z 96 operacji losuje się z zastosowaniem systematycznej procedury proporcjonalnej do wielkości.

Wartość 96 operacji stanowi przedmiot audytu. Suma poziomów błędu dla drugiego półrocza wynosi:
Odchylenie standardowe poziomów błędu w próbie populacji niewyczerpującej z drugiego półrocza wynosi:

\[
s_{r_{2s}} = \sqrt{\frac{1}{96 - 1} \sum_{i=1}^{96} (r_{i_{2s}} - \bar{r}_{2s})^2} = 0.29
\]

zaś \(\bar{r}_{2s} \) jest równe średniej arytmetycznej poziomów błędu w próbie danej grupy niewyczerpującej z drugiego półrocza.

Prognozę błędów dla populacji sporządza się w inny sposób dla jednostek należących do warstw wyczerpujących oraz dla pozycji w warstwach niewyczerpujących.

W przypadku warstw wyczerpujących, tj. warstw zawierających jednostki próby o wartości księgowej wyższej niż wartość graniczna, \(BV_{ti} > \frac{BV_{t}}{n_{t}} \), błąd przewidywany stanowi sumę błędów wykrytych w pozycjach należących do tych warstw:

\[
EE_v = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} = 19,240,855 + 9,340,755 = 28,581,610
\]

W praktyce:
1) w przypadku każdego półrocza \(t \) należy zidentyfikować jednostki należące do grupy wyczerpującej i zsumować ich błędy;
2) należy zsumować poprzednie wyniki dla obu półroczy.

W przypadku grupy niewyczerpującej, tj. warstw zawierających jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, \(BV_{ti} \leq \frac{BV_{t}}{n_{t}} \), błąd przewidywany wynosi:

\[
EE_s = \frac{BV_{1s}}{n_{1s}} \times \sum_{i=1}^{n_1} \frac{E_{1i}}{BV_{1i}} + \frac{BV_{2s}}{n_{2s}} \times \sum_{i=1}^{n_2} \frac{E_{2i}}{BV_{2i}}
\]

\[
= \frac{936,162,740}{34} \times 1.4256 + \frac{2,546,691,025}{96} \times 1.1875 = 70,754,790
\]

Aby obliczyć ten błąd przewidywany, należy:
1) w przypadku każdego półrocza \(t \) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie; \(\frac{E_{ti}}{BV_{ti}} \)
2) w przypadku każdego półrocza \(t \) zsumować te poziomy błędu ze wszystkich jednostek w próbie;
3) w każdym półroczu \(t \) pomnożyć poprzedni wynik przez całkowite wydatki populacji grupy niewyczerpującej \((BV_{t,s}) \); wydatki te będą także równe całkowitym wydatkom w półroczu pomniejszonym o wydatki pozycji należących do grupy wyczerpującej;
4) w przypadku każdego półroczu \(t \) podzielić poprzedni wynik przez liczebność próby w grupie niewyczerpującej \((n_{t,s}) \);
5) zsumować poprzednie wyniki dla obu półroczy.

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[
EE = EE_e + EE_s = 28,581,610 + 70,754,790 = 99,336,400
\]
i odpowiada przewidywanyemu poziomowi błędu, który wynosi 2,07 %.

Dokładność jest miarą niepewności związanej z prognozą. Dokładność oblicza się za pomocą następującego wzoru:

\[
SE = z \times \sqrt{\frac{BV_{1s}^2}{n_{1s}} + \frac{BV_{2s}^2}{n_{2s}} + \frac{BV_{1s}^2}{n_{1s}^2} \times s_{rs_2}^2 + \frac{BV_{2s}^2}{n_{2s}^2} \times s_{rs_2}^2}
\]

\[
= 0.842 \times \sqrt{\frac{936,162,740^2}{34} \times 0.085^2 + \frac{2,546,691,025^2}{96} \times 0.29^2}
\]

\[
= 64,499,188
\]

gdzie \(s_{rs_2} \) oznacza obliczone już odchylenie standardowe poziomów błędu.

Błąd próby oblicza się wyłącznie dla warstw niewyczerpujących, ponieważ w przypadku grup wyczerpujących błędy próby nie występują.

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta góra granica jest równa sumie samego błędu przewidywanego \(EE \) i dokładności prognozy:

\[
ULE = EE + SE = 99,336,400 + 64,499,188 = 163,835,589
\]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.

W tym konkretnym przypadku błąd przewidywany jest większy niż maksymalny dopuszczalny błąd. Oznacza to, że audytor stwierdzi, iż istnieją wystarczające dowody na poparcie twierdzenia, że błędy w populacji są większe niż próg istotności:
6.3.4 Stratyfikowana metoda doboru na podstawie jednostki monetarnej obejmująca dwa okresy

6.3.4.1 Wprowadzenie

Instytucja audytowa może podjąć decyzję o zastosowaniu stratyfikowanego schematu doboru próby i jednoczesnym rozłożeniu działań audytowych na kilka okresów w ciągu roku (zazwyczaj dwa półrocza, ta sama zasada miałaby również zastosowanie do większej liczby okresów). Z formalnego punktu widzenia takie rozwiązanie będzie stanowić nowy schemat doboru próby łączący w sobie elementy stratyfikowanej metody MUS i dwuokresowej metody MUS. W niniejszej sekcji zaproponowana zostanie metoda połączenia tych dwóch elementów w jeden schemat doboru próby.

Po pierwsze należy zauważyć, że stosując ten połączony schemat, instytucja audytowa będzie miała możliwość korzystania z zalet zarówno stratyfikacji, jak i doboru próby obejmującego wiele okresów. Wykorzystanie stratyfikacji potencjalnie umożliwi poprawę dokładności w porównaniu ze schematem nieobejmującym stratyfikacji (lub zastosowanie mniejszej liczebności próby w odniesieniu do tego samego poziomu dokładności). Dzięki jednoczesnemu wykorzystaniu podejścia obejmującego wiele okresów instytucja audytowa będzie mogła rozłożyć czynności audytowe na cały rok, a tym samym zmniejszyć nakład pracy, która zostałaby wykonana pod koniec roku na podstawie zaledwie jednego okresu obserwacji.

Przy takim podejściu populację z danego okresu odniesienia dzieli się na dwie subpopulacje, z których każda odpowiada operacjom i wydatkom z każdego półrocza. Dla każdego półrocza losuje się niezależne próby, stosując podejście stratyfikowanej metody doboru na podstawie jednostki monetarnej. Należy zauważyć, że w poszczególnych okresach audytu nie trzeba stosować dokładnie takiej samej stratyfikacji. W praktyce poszczególne okresy audytu mogą różnić się pod względem zastosowanego rodzaju stratyfikacji, a nawet pod względem liczby warstw.
6.3.4.2 Liczebność próby

Pierwsze półrocze

W pierwszym okresie przeprowadzania audytu (np. półroczu) ogólną liczebność próby (dla zbioru dwóch półroczy) oblicza się następująco:

\[
 n = \left(\frac{z \times \text{BV} \times \sigma_{rw}}{\text{TE} - \text{AE}} \right)^2
\]

gdzie \(\sigma_{rw}^2 \) oznacza średnią ważoną wariancję poziomów błędu dla całego zbioru warstw oraz dla obu okresów: Waga dla każdej z warstw w każdym półroczu jest równa stosunkowi wartości księgowej warstwy \(\text{BV}_{ht} \) i wartości księgowej całej populacji \(\text{BV} = \text{BV}_1 + \text{BV}_2 \) (z uwzględnieniem obu półroczu):

\[
 \sigma_{rw}^2 = \sigma_{rw1}^2 + \sigma_{rw2}^2
\]

\[
 \sigma_{rw1}^2 = \sum_{i=1}^{H_1} \frac{\text{BV}_{h1}}{\text{BV}} \sigma_{rh1}^2, h = 1,2, ..., H_1;
\]

\[
 \sigma_{rw2}^2 = \sum_{i=1}^{H_2} \frac{\text{BV}_{h2}}{\text{BV}} \sigma_{rh2}^2, h = 1,2, ..., H_2;
\]

\(\text{BV}_{ht} \) oznacza wydatki w warstwie \(h \) w okresie \(t \), \(H_t \) oznacza liczbę warstw w okresie \(t \), \(\sigma_{rht}^2 \) zaś oznacza wariancję poziomów błędu w poszczególnych warstwach w każdym półroczu. Wariancję poziomów błędu dla każdego półroczca oblicza się w następujący sposób:

\[
 \sigma_{rht}^2 = \frac{1}{n_{ht}^p - 1} \sum_{i=1}^{n_{ht}^p} (r_{hti} - \bar{r}_{ht})^2, h = 1,2, ..., H_t, t = 1,2
\]

gdzie \(r_{hti} = \frac{E_{hti}}{\text{BV}_{hti}} \) oznacza poszczególne poziomy błędu dla jednostek w próbie warstwy \(h \) w półroczu \(t \), zaś \(\bar{r}_{ht} \) oznacza średni poziom błędu próby w warstwie \(h \) i w półroczu \(t \).

Wartości oczekiwanych odchyleń standardowych poziomów błędu w obu półroczech muszą być ustalone w oparciu o profesjonalny osąd i wiedzę historyczną. W dalszym ciągu dostępna jest opcja polegająca na zastosowaniu próby wstępnej/piłotażowej o małej liczebności próby w celu otrzymania przybliżeń parametrów z pierwszego

\[\frac{E_{hti}}{n_{ht}} \]

Ilekroć wartość księgowa jednostki \(i \) \(\text{BV}_i \) jest większa niż \(\text{BV}_{hti} / n_{ht} \), stosunek \(\frac{E_{hti}}{n_{ht}} \) należy zastąpić \(\frac{E_{hti}}{\text{BV}_{hti} / n_{ht}} \).
półrocza, omówiona powyżej w odniesieniu do standardowej metody doboru próby na podstawie jednostki monetarnej obejmującej dwa okresy. Ponownie na początku obserwacji wydatki dla drugiego półrocza nie zostały jeszcze poniesione, w związku z czym żadne obiektywne dane (poza historycznymi) nie są dostępne. Jeżeli zastosowano próby pilotażowe, można je, jak zwykle, wykorzystać później jako część próby wybranej do audytu.

Jeżeli nie są dostępne żadne dane historyczne ani wiedza historyczna pozwalające ocenić zmienność danych w drugim półroczu, można zastosować uproszczone podejście, obliczając ogólną liczebność próby w następujący sposób:

\[n = \left(\frac{z \times BV \times \sigma_{rw1}}{TE - AE} \right)^2 \]

Należy pamiętać, że przy takim uproszczonym podejściu potrzebne są jedynie informacje dotyczące zmienności poziomów błędu w pierwszym okresie obserwacji. Zgodnie z podstawowym założeniem zmienność poziomów błędu w obu półrocach utrzyma się na podobnym poziomie.

Należy pamiętać, że problemy związane z brakiem pomocniczych informacji historycznych zwykle będą dotyczyły pierwszego roku okresu programowania. Informacje zgromadzone w ciągu pierwszego roku audytu można wykorzystać w kolejnym roku do określenia liczebności próby.

Należy również pamiętać, że wzory na obliczanie liczebności próby wymagają wartości \(BV_{h1} (h = 1,2, ..., H_1) \) i \(BV_{h2} (h = 1,2, ..., H_2) \) tj. całkowitej wartości księgowej (deklarowane wydatki) w każdej warstwie pierwszego i drugiego półrocza. Przy obliczaniu liczebności próby wartości \(BV_{h1} (h = 1,2, ..., H_1) \) będą znane, ale wartości \(BV_{h2} (h = 1,2, ..., H_2) \) będą nieznane i trzeba będzie je przyjąć zgodnie z oczekiwaniiami audytora (również opartymi na informacjach historycznych lub prognozach instytucji certyfikującej lub instytucji zarządzającej w ramach danego programu).

Po obliczeniu całkowitej liczebności próby, \(n \), alokacja próby według warstw i półrocza odbywa się następująco:

\[n_{h1} = \frac{BV_{h1}}{BV} \cdot n \]

oraz

\[n_{h2} = \frac{BV_{h2}}{BV} \cdot n \]

gdzie \(BV=BV_1+BV_2 \) oznacza całkowite prognozowane wydatki dla okresu odniesienia.
Ponownie należy zauważyć, że jest to ogólna metoda alokacji, zgodnie z którą alokacja próby między warstwy odbywa się proporcjonalnie do wydatków (wartości księgowej) warstw, przy czym dostępne są jednak inne metody alokacji. Bardziej dostosowana alokacja może w niektórych przypadkach przynieść dodatkowe zyski pod względem dokładności lub zmniejszyć liczebność próby. Ocena adekwatności innych metod alokacji w odniesieniu do każdej konkretnej populacji wymaga pewnej wiedzy technicznej z zakresu teorii doboru próby, co wykracza poza zakres niniejszych wytycznych.

Drugie półrocze

W pierwszym okresie obserwacji poczyniono pewne założenia dotyczące kolejnych okresów obserwacji (zwłaszcza następnego półrocza). Jeżeli cechy charakterystyczne populacji w kolejnych okresach znacznie odbiegają od przyjętych założeń, konieczne może być dostosowanie liczebności próby w odniesieniu do kolejnego okresu.

W drugim okresie audytu (np. półroczy) dostępnych będzie więcej informacji:

- znana jest prawidłowa całkowita wartość księgowa w każdej warstwie w drugim półroczu BV_{h2} ($h = 1, 2, ..., H_2$);
- może być już dostępne odchylenie standardowe poziomów błędu w próbie s_{rh1} ($h = 1, 2, ..., H_1$) obliczone na podstawie próby z pierwszego półrocza;
- można teraz dokładniej ocenić odchylenie standardowe poziomów błędu w warstwach w drugim półroczu σ_{rh2} ($h = 1, 2, ..., H_2$), stosując dane faktyczne (np. na podstawie prób pilotażowych).

Jeżeli pierwotne prognozy dotyczące tych parametrów populacji znacznie odbiegają od faktycznych cech charakterystycznych populacji, liczebność próby może wymagać dostosowania w odniesieniu do drugiego półrocza, tak aby uwzględnić te niedokładne szacunki. W tym przypadku należy ponownie obliczyć liczebność próby drugiego półrocza za pomocą następującego wzoru:

$$n_2 = \frac{z^2 \times BV_2 \times \sum_{h=1}^{H_2} (BV_{h2} \cdot \sigma^2_{rh2})}{(TE - AE)^2 - z^2 \times \sum_{h=1}^{H_2} (\frac{BV_{h1}^2}{n_{h1}} \cdot s^2_{rh1})}$$

gdzie s_{rh1} oznacza odchylenia standardowe poziomów błędu obliczonych na podstawie podprób pierwszego półrocza dla każdej warstwy h (jeżeli są już one dostępne), natomiast σ_{rh2} oznacza szacunki odchyleń standardowych poziomów błędu w każdej warstwie w drugim półroczu na podstawie wiedzy historycznej (ostatecznie dostosowane na podstawie informacji z pierwszego półrocza) lub próby wstępnej/pilotażowej drugiego półrocza.

Po ponownym obliczeniu ogólnej liczebności próby dla drugiego półrocza alokacja według warstwy przebiega w prosty sposób:
\[n_{h2} = \frac{BV_{h2}}{BV_2} n_2, (h = 1,2, ..., H_2) \]

6.3.4.3 Dobór próby

W przypadku każdego półrocza dobór prób będzie przebiegał dokładnie zgodnie z procedurą opisaną w odniesieniu do podejścia stratyfikowanej metody doboru próby na podstawie jednostki monetarnej. Procedura ta zostanie ponownie opisana w tym miejscu, aby ułatwić porównywanie.

W przypadku każdego półrocza i każdej warstwy \(h \) występować będą dwa elementy: grupa wyczerpująca wewnątrz warstwy \(h \) (tj. grupa zawierająca jednostki próby o wartości księgowej przekraczającej wartość graniczną, \(BV_{hti} > \frac{BV_{ht}}{n_{ht}} \)), oraz grupa próby wewnątrz warstwy \(h \) (tj. grupa zawierająca jednostki próby o wartości księgowej mniejnej lub równej wartości granicznej, \(BV_{hti} \leq \frac{BV_{ht}}{n_{ht}} \), lub innej ponownie obliczonej wartości granicznej, jeżeli istnieją pozycje o wartościach księgowych większych niż ten przedział i mniejszych niż wartości graniczne).

W przypadku każdego półrocza po określeniu liczebności próby audytem należy objąć wszystkie ewentualne jednostki populacji o wysokiej wartości w każdej pierwotnej warstwie (\(h \)). Wartość graniczna służąca do określenia tej górnej grupy jest równa stosunkowi wartości księgowej warstwy (\(BV_{ht} \)) i planowanej liczebności próby (\(n_{ht} \)). W każdej warstwie \(h \) wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_{hti} > \frac{BV_{ht}}{n_{ht}} \)), zostaną umieszczone w grupie objętej audytem w 100%.

Liczebność próby, która zostanie przydzielona do grupy niewyczerpującej, \(n_{hts} \), oblicza się jako różnicę \(n_{ht} \) i liczby jednostek próby (np. operacji) w grupie wyczerpującej warstwy (\(n_{hte} \)).

Na koniec przypadku każdego półrocza dobór prób w grupie niewyczerpującej w każdej warstwie przeprowadza się z zastosowaniem prawdopodobieństwa proporcjonalnego do wielkości, tj. proporcjonalnie do wartości księgowych pozycji \(BV_{hti} \). Popularnym sposobem przeprowadzania doboru jest dobór systematyczny, w którym wykorzystuje się interwał losowania równy ilorazowi całkowitych wydatków w grupie niewyczerpującej warstwy (\(BV_{hts} \)) i liczebności próby (\(n_{hts} \))\(^{34}\), tj.

\[SI_{hts} = \frac{BV_{hts}}{n_{hts}} \]

\(^{34}\) Jeżeli niektóre jednostki populacji nadal będą wykazywać wydatki wyższe od danego interwału losowania, wówczas należy zastosować procedurę wyjaśnioną w sekcji 6.3.1.3.
Należy pamiętać, że w przypadku każdego półroczu wybranych zostanie kilka niezależnych prób, po jednej dla każdej z pierwotnych warstw.

6.3.4.4 Błąd przewidywany

Prognozę błędów dla populacji oblicza się w inny sposób dla jednostek należących do grup wyczerpujących oraz dla pozycji w grupach niewyczerpujących.

W przypadku grup wyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej wyższej niż wartości granicznej, $BV_{hti} > \frac{BV_{ht}}{n_{ht}}$, błąd przewidywany stanowi sumę błędów wykrytych w pozycjach należących do tych grup:

$$EE_e = \sum_{h=1}^{H_1} \sum_{i=1}^{n_{h1}} E_{h1i} + \sum_{h=1}^{H_2} \sum_{i=1}^{n_{h2}} E_{h2i}$$

W praktyce:

1) w przypadku każdego półroczu t i każdej warstwy h należy zidentyfikować jednostki należące do grupy wyczerpującej i zsumować ich błędy;
2) należy zsumować poprzednie wyniki dla zbioru warstw $H_1 + H_2$.

W przypadku grup niewyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej mniejszej lub równej wartościom granicznym, $BV_{hti} \leq \frac{BV_{ht}}{n_{ht}}$, błąd przewidywany wynosi:

$$EE_e = \sum_{h=1}^{H_1} \left(\frac{BV_{h1s}}{n_{h1s}} \sum_{i=1}^{n_{h1s}} E_{h1i} \right) + \sum_{h=1}^{H_2} \left(\frac{BV_{h2s}}{n_{h2s}} \sum_{i=1}^{n_{h2s}} E_{h2i} \right)$$

Aby obliczyć ten błąd przewidywany, należy:

1) w każdej warstwie h w każdym półroczu t obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie; $\frac{E_{hti}}{BV_{hti}}$
2) w każdej warstwie h w każdym półroczu t zsumować te poziomy błędu ze wszystkich jednostek w próbie;
3) w każdej warstwie h w każdym półroczu t pomnożyć poprzedni wynik przez całkowite wydatki populacji grupy niewyczerpującej (BV_{hts}); wydatki te będą także równe całkowitym wydatkom pomniejszonym o wydatki pozycji należących do grupy wyczerpującej warstwy;
4) w każdej warstwie h w każdym półroczu t podzielić poprzedni wynik przez liczebność próby w grupie niewyczerpującej (n_{hts});
5) należy zsumować poprzednie wyniki dla całego zbioru warstw $H_1 + H_2$.

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

$$EE = EE_e + EE_s$$

6.3.4.5 Dokładność

Podobnie jak w przypadku standardowej metody MUS obejmującej dwa okresy dokładność stanowi miarę niepewności związanej z ekstrapolacją (prognozowaniem). Odzwierciedla ona błąd próby i należy ją obliczyć, aby następnie ustalić przedział ufności.

Dokładność oblicza się za pomocą następującego wzoru:

$$SE = z \times \sqrt{\sum_{h=1}^{H_1} \left(\frac{BV_{h1s}}{n_{h1s}} \cdot s^2_{r_{h1s}} \right) + \sum_{h=1}^{H_2} \left(\frac{BV_{h2s}}{n_{h2s}} \cdot s^2_{r_{h2s}} \right)}$$

gdzie $s_{r_{hts}}$ oznacza odchylenie standardowe poziomów błędu w próbie grupy niewyczerpującej warstwy h półroczu t (obliczone na podstawie tej samej próby, którą wykorzystano do ekstrapolacji błędów na populację),

$$s_{r_{hts}}^2 = \frac{1}{n_{hts} - 1} \sum_{i=1}^{n_{hts}} \left(r_{hti} - \bar{r}_{hts} \right)^2$$

zaś \bar{r}_{hts} jest równe średniej arytmetycznej poziomów błędu w próbie danej grupy niewyczerpującej warstwy h półroczu t.

Błąd próby oblicza się wyłącznie dla grup niewyczerpujących, ponieważ w przypadku grup wyczerpujących błędy próby nie występują.

6.3.4.6 Ocena
Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górną granicę jest równa sumie samego błędu przewidywanego EE i dokładności ekstrapolacji:

$$ULE = EE + SE$$

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli, stosując dokładnie takie samo podejście jak podejście przedstawione w sekcji 6.3.3.6.

6.3.4.7 Przykład

Wiedząc, że obciążenie czynnościami audytowymi koncentruje się zwykle pod koniec roku audytowego, instytucja audytowa postanowiła rozłożyć czynności audytowe na dwa okresy. Po zakończeniu pierwszego półrocza instytucja audytowa analizuje populację podzieloną na dwie grupy odpowiadające każdemu z dwóch półrocz. Ponadto populacja obejmuje dwa różne programy a instytucja audytowa ma powody, aby sądzić, że istnieją różne poziomy błędu w zależności od programu. Mając na uwadze wszystkie te informacje, instytucja audytowa nie tylko rozłożyła nakład pracy na dwa okresy, lecz także postanowiła dokonać stratyfikacji populacji według programu.

Na koniec pierwszego półrocza cechy charakterystyczne populacji są następujące:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane na koniec pierwszego półrocza</th>
<th>42 610 732 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>27 623 498 EUR</td>
</tr>
<tr>
<td>Program 2</td>
<td>14 987 234 EUR</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocze)</td>
<td></td>
</tr>
<tr>
<td>Program 1</td>
<td>5 603</td>
</tr>
<tr>
<td>Program 2</td>
<td>3 257</td>
</tr>
</tbody>
</table>

Na podstawie zgromadzonych wcześniej doświadczeń instytucja audytowa wie, że zazwyczaj wszystkie operacje zawarte w programach na koniec okresu odniesienia są już aktywne w populacji pierwszego półrocza. Ponadto na podstawie zgromadzonych wcześniej doświadczeń instytucja audytowa oczekuje, że w drugim półroczu zadeklarowane wydatki będą wyższe w przypadku obu programów, przy czym poziom wzrostu będzie inny. Oczekuje się wzrostu wydatków zadeklarowanych w drugim półroczu odpowiednio w przypadku programu 1 o 40 %, a w przypadku programu 2 – o 10 %. Na podstawie tych założeń w poniższej tabeli przedstawiono podsumowanie populacji:
<table>
<thead>
<tr>
<th>Wydatki zadeklarowane na koniec pierwszego półrocza</th>
<th>42 610 732 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>27 623 498 EUR</td>
</tr>
<tr>
<td>Program 2</td>
<td>14 987 234 EUR</td>
</tr>
<tr>
<td>Wydatki zadeklarowane na koniec drugiego półrocza (przewidywane)</td>
<td>55 158 855 EUR</td>
</tr>
<tr>
<td>Program 1 (27 623 498 EUR x 1,4)</td>
<td>38 672 897 EUR</td>
</tr>
<tr>
<td>Program 2 (14 987 234 EUR x 1,1)</td>
<td>16 485 957 EUR</td>
</tr>
<tr>
<td>Całkowite wydatki przewidywane na dany rok</td>
<td>97 769 587 EUR</td>
</tr>
<tr>
<td>Program 1</td>
<td>66 296 395 EUR</td>
</tr>
<tr>
<td>Program 2</td>
<td>31 473 191 EUR</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – pierwsze półczone)</td>
<td>5 603</td>
</tr>
<tr>
<td>Program 1</td>
<td>3 257</td>
</tr>
<tr>
<td>Program 2</td>
<td>2 346</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – drugie półczone, przewidywana)</td>
<td>5 603</td>
</tr>
<tr>
<td>Program 1</td>
<td>3 257</td>
</tr>
<tr>
<td>Program 2</td>
<td>2 346</td>
</tr>
</tbody>
</table>

W przypadku pierwszego półrocza audytu ogólną liczebność próby (w odniesieniu do zbioru dwóch półroczy) oblicza się następująco:

\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

gdzie \(\sigma_{rw}^2 \) oznacza średnią ważoną wariancji poziomów błędu dla całego zbioru warstw oraz dla obu okresów: Waga dla każdej z warstw w każdym półroczu jest równa stosunkowi wartości księgowej warstwy \((BV_{ht}) \) i wartości księgowej całej populacji \(BV=BV_1+BV_2 \) (z uwzględnieniem obu półroczy):

\[\sigma_{rw}^2 = \sigma_{rw1}^2 + \sigma_{rw2}^2 \]

\[\sigma_{rw1}^2 = \sum_{i=1}^{2} \frac{BV_{h1}}{BV} \sigma_{rh1, h=1,2}^2 \]

\[\sigma_{rw2}^2 = \sum_{i=1}^{2} \frac{BV_{h2}}{BV} \sigma_{rh2, h=1,2}^2 \]

\(BV_{ht} \) oznacza wydatki w warstwie \(h, h=1,2 \) w okresie \(t \), zaś \(\sigma_{ht}^2 \) oznacza wariancję poziomów błędu w poszczególnych warstwach w każdym półroczu. Wariancję poziomów błędu dla każdego półrocza oblicza się w następujący sposób:

\[\sigma_{ht}^2 = \frac{1}{n_{ht}^p - 1} \sum_{i=1}^{n_{ht}^p} (r_{hti} - \bar{r}_{ht})^2, h=1,2, t = 1,2 \]
gdzie \(r_{hti} = \frac{E_{hti}}{BV_{hti}} \) oznacza poszczególne poziomy błędu dla jednostek w próbie warstwy \(h \) w półroczu \(t \), zaś \(\overline{r}_h \) oznacza średni poziom błędu próby w warstwie \(h \) i w półroczu \(t \).35

Ponieważ wariancje te są nieznane, instytucja audytowa postanowiła wylosować, w przypadku każdej warstwy (każdego programu), próbę wstępna składającą się z 20 operacji po zakończeniu pierwszego półroczca bieżącego okresu odniesienia. Odchylenie standardowe poziomów błędu w tej próbie wstępnej w pierwszym półroczu wynosi odpowiednio 0,0924 w przypadku programu 1 i 0,0515 w przypadku programu 2. W oparciu o profesjonalny osąd instytucja audytowa oczekuje, że odchylenia standardowe poziomów błędu dla drugiego półroczca wzrosną o 40 % i 10 %, tj. do 0,1294 i 0,0567. W związku z tym średnia ważona wariancji poziomów błędu wynosi:

\[
\sigma_{rw}^2 = 0.0028188 + 0.0071654 = 0.009984,
\]

pod warunkiem, że średnie ważne dla obu półroczy wynoszą:

\[
\begin{align*}
\sigma_{rw1}^2 &= \frac{27,623,498}{97,769,587} \times 0.0924^2 + \frac{14,987,234}{97,769,587} \times 0.0515^2 = 0.0028188 \\
\sigma_{rw2}^2 &= \frac{38,672,897}{97,769,587} \times 0.1294^2 + \frac{16,485,957}{97,769,587} \times 0.0567^2 = 0.0071654
\end{align*}
\]

W pierwszym półroczu instytucja audytowa, z uwagi na poziom funkcjonowania systemu zarządzania i kontroli, uznaje, że odpowiedni jest poziom ufności wynoszący 90 %. Ogólna liczebność próby dla całego roku wynosi:

\[
n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2
\]

\[
n = \left(\frac{1.645 \times 97,769,587 \times \sqrt{0.009984}}{1,955,392 - 391,078} \right)^2 \approx 106
\]

35 Ilekroć wartość księgowa jednostki \(i \) \(BV_i \) jest większa niż \(BV_{hi} \), stosunek \(E_{hti} \) należy zastąpić \(BV_{hti} \).
gdzie z wynosi 1,645 (współczynnik odpowiadający poziomowi ufności wynoszącemu 90 %), zaś TE, błąd dopuszczalny, wynosi 2 % (maksymalny poziom istotności wyznaczony w rozporządzeniu) wartości księgowej. Całkowita wartość księgowa obejmuje faktyczną wartość księgową na koniec pierwszego półrocza oraz przewidywaną wartość księgową dla drugiego półrocza, co oznacza, że błąd dopuszczalny wynosi 2 % x 97 769 587 EUR = 1 955 392 EUR. W ramach zeszlączkowego audytu prognozowano poziom błędu 0,4 %. Dlatego też AE, błąd oczekiwany, wynosi 0,4 % x 97 769 587 EUR = 391 078 EUR.

Alokacja próby między półrocza i warstwy odbywa się następująco:

\[n_{h1} = \frac{BV_{h1}}{BV} n, h = 1,2; \quad n_{11} = \frac{27,623,498}{97,769,587} \times 106 \cong 30; \quad n_{21} = \frac{14,987,234}{97,769,587} \times 106 \cong 17 \]

oraz

\[n_{h2} = \frac{BV_{h2}}{BV} n, h = 1,2; \quad n_{12} = \frac{38,672,897}{97,769,587} \times 106 \cong 42; \quad n_{22} = \frac{16,485,957}{97,769,587} \times 106 \cong 18 \]

W odniesieniu do pierwszego półrocza konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości w obu programach, które to jednostki będą należały do warstwy o wysokiej wartości objętej działaniami audytowymi w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej (\(BV_{h1} \)) i planowanej liczebności próby (\(n_{h1} \)). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_{ih1} > BV_{h1}/n_{h1} \)), zostaną umieszczone w warstwie objętej audytem w 100 %.

Te dwie wartości liczebności prób w pierwszym półroczu (30 i 17) dają następujące wartości graniczne dla warstw o wysokiej wartości w przypadku obu programów:

\[Cut - off_{11} = \frac{BV_{11}}{n_{11}} = \frac{27,623,498}{30} = 920,783 \]

oraz

\[Cut - off_{21} = \frac{BV_{21}}{n_{21}} = \frac{14,987,234}{17} = 881,602 \]

Na podstawie tych dwóch wartości granicznych w programie 1 i 2 wykryto 3 i 4 operacje o wysokiej wartości o łącznej wartości księgowej wynoszącej odpowiednio 3 475 552 EUR i 4 289 673 EUR.

Liczebność próby, która zostanie przydzielona do warstwy niewyczerpującej \(n_{h1s} \), oblicza się jako różnicę \(n_{h1} \) i liczby jednostek próbny w warstwie wyczerpującej. Liczebność próbny dla części programu 1 objętej doborom stanowi różnicę całkowitej
liczebności próby (30) i 3 operacji o wysokiej wartości, tj. 27 operacji. Stosując te same zasady w odniesieniu do programu 2, liczebność próby dla części objętej doborem wynosi 17-4=13 operacji.

Kolejnym etapem będzie obliczenie interwału losowania dla warstw objętych losowaniem. Interwały losowania uzyskuje się odpowiednio za pomocą wzorów:

\[S_{I1} = \frac{BV_{11s}}{n_{11s}} = \frac{27,623,498 - 3,475,552}{27} = 894,368 \]

oraz

\[S_{I2} = \frac{BV_{21s}}{n_{21s}} = \frac{14,987,234 - 4,289,673}{13} = 822,889 \]

Poniższa tabela zawiera podsumowanie tych wyników:

<table>
<thead>
<tr>
<th>Wartość księgowa (suma wydatków zadeklarowanych na koniec pierwszego półrocza)</th>
<th>42 610 732 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość księgowa – program 1</td>
<td>27 623 498 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – program 2</td>
<td>14 987 234 EUR</td>
</tr>
</tbody>
</table>

Wyniki próby – program 1

<table>
<thead>
<tr>
<th>Wartość graniczna</th>
<th>920 783 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba operacji wyższa od wartości granicznej</td>
<td>3</td>
</tr>
<tr>
<td>Wartość księgowa operacji wyższa od wartości granicznej</td>
<td>3 475 552 EUR</td>
</tr>
<tr>
<td>Wartość księgowa operacji (populacja niewyczerpująca)</td>
<td>24 147 946 EUR</td>
</tr>
<tr>
<td>EUR Interwał losowania (populacja niewyczerpująca)</td>
<td>894 368 EUR</td>
</tr>
<tr>
<td>Liczba operacji (populacja niewyczerpująca)</td>
<td>3 254</td>
</tr>
</tbody>
</table>

Wyniki próby – program 2

<table>
<thead>
<tr>
<th>Wartość graniczna</th>
<th>881 602 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba operacji wyższa od wartości granicznej</td>
<td>4</td>
</tr>
<tr>
<td>Wartość księgowa operacji wyższa od wartości granicznej</td>
<td>4 289 673 EUR</td>
</tr>
<tr>
<td>Wartość księgowa operacji (populacja niewyczerpująca)</td>
<td>10 697 561 EUR</td>
</tr>
<tr>
<td>EUR Interwał losowania (populacja niewyczerpująca)</td>
<td>822 889 EUR</td>
</tr>
<tr>
<td>Liczba operacji (populacja niewyczerpująca)</td>
<td>2 342</td>
</tr>
</tbody>
</table>
Dobór próby w warstwach niewyczerpujących zostanie przeprowadzony z zastosowaniem prawdopodobieństwa proporcjonalnego do wielkości, tj. proporcjonalnie do wartości księgowej pozycji BV_{th1s}, za pomocą doboru systematycznego.

W odniesieniu do programu 1 na koniec pierwszego półrocza przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 3 254 operacje populacji (3 257 minus 3 operacje o wysokiej wartości), a następnie tworzy się sekwencyjną łączną zmieną wartości księgowej. Próbę obejmującą 27 operacje (30 minus 3 operacji o wysokiej wartości) losuje się stosując dokładnie taką samą procedurę jak procedura opisana w sekcji 6.3.1.7.

W odniesieniu do programu 2 na koniec pierwszego półrocza przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 2 342 operacje populacji (2 346 minus 4 operacje o wysokiej wartości), a następnie tworzy się sekwencyjną łączną zmieną wartości księgowej. Próbę obejmującą 13 operacji (17 – 4 operacji o wysokiej wartości) losuje się w sposób opisany w poprzednim punkcie.

W odniesieniu do programu 1 w przypadku trzech operacji o wysokiej wartości stwierdzono błąd na łączną kwotę 13 768 EUR. W odniesieniu do programu 2 nie stwierdzono żadnych błędów w warstwie o wysokiej wartości.

Wydatki poniesione w ramach 40 operacji objętych próbą (27+13) stanowią przedmiot audytu. Suma poziomów błędu objętych próbą w odniesieniu do programu 1 na koniec pierwszego półrocza wynosi:

$$\sum_{i=1}^{27} \frac{E_{i11s}}{BV_{i11s}} = 0.0823.$$

Suma poziomów błędu objętych próbą w odniesieniu do programu 2 na koniec pierwszego półrocza wynosi:

$$\sum_{i=1}^{13} \frac{E_{i21s}}{BV_{i21s}} = 0.1145$$

Odczynienie standardowe poziomów błędu w próbie populacji niewyczerpującej z pierwszego półrocza w przypadku obu programów wynosi:

$$s_{r11s} = \sqrt{\frac{1}{27 - 1} \sum_{i=1}^{27} (r_{i11s} - \bar{r}_{11s})^2} = 0.0868$$

137
\[s_{r21s} = \sqrt{\frac{1}{13-1} \sum_{i=1}^{13} (r_{i21s} - \bar{r}_{21s})^2} = 0.0696 \]

zaś \(\bar{r}_{h1s}, h = 1,2 \), jest równe średniej arytmetycznej poziomów błędu w próbie danej grupy niewyczerpującej półrocza pierwszego.

Na koniec drugiego półrocza dostępnych jest więcej informacji, w szczególności znana jest prawidłowa kwota łącznych wydatków w ramach operacji aktywnych w drugim półroczu, dostępne są informacje na temat wariancji próby poziomów błędu w odniesieniu do obu programów \(s_{r11} \) oraz \(s_{r21} \); na podstawie warstwy z pierwszego półrocza dostępne są już próby i możliwa jest dokładniejsza ocena odchylenia standardowego poziomów błędu dla drugiego półrocza w odniesieniu do obu programów, \(\sigma_{r12} \) i \(\sigma_{r22} \), z wykorzystaniem prób wstępnych składających się z danych faktycznych.

Instytucja audytowa zdaje sobie sprawę, że w przyjętym na koniec pierwszego półrocza założeniu dotyczącym wydatków w drugim półroczu, 55 158 855 EUR, zawyżono ich faktyczną wartość wynoszącą 49 211 269 EUR. Istnieją również dwa dodatkowe parametry, w przypadku których należy stosować uaktualnione wartości.

Po pierwsze, szacowanie odchylenia standardowego błędów na podstawie prób programowych pierwszego półrocza obejmujących 27 i 13 operacji dało odpowiednio szacunki w wysokości 0,0868 i 0,0696. Stosując te nowe wartości, należy teraz dokonać ponownej oceny planowanej liczebności próby. Po drugie, w związku z dwiema próbami wstępными w drugim półroczu, w odniesieniu do obu programów, instytucja audytowa uważa, że rozsądniej jest oszacować odchylenie standardowe poziomów błędu dla drugiego półrocza na poziomie 0,0943 i 0,0497 zamiast pierwotnych wartości wynoszących 0,1294 i 0,0567. Uaktualnione wartości odchylenia standardowego poziomów błędu w przypadku obu programów w obu półroczech znacznie odbiegają od pierwotnych szacunków. W rezultacie próbę dla drugiego półrocza należy zmienić.

Poniższa tabela zawiera podsumowanie tych wyników

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Prognoza przeprowadzona na koniec pierwszego półrocza</th>
<th>Koniec drugiego półrocza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

138
<table>
<thead>
<tr>
<th>Odchylenie standardowe poziomów błędu w pierwszym półroczu</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>0,0924</td>
<td>0,0868</td>
</tr>
<tr>
<td>Program 2</td>
<td>0,0515</td>
<td>0,0696</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odchylenie standardowe poziomów błędu w drugim półroczu</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>0,1294</td>
<td>0,0943</td>
</tr>
<tr>
<td>Program 2</td>
<td>0,0567</td>
<td>0,0497</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Całkowite wydatki w drugim półroczu</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>38 672 897 EUR</td>
<td>32 976 342 EUR</td>
</tr>
<tr>
<td>Program 2</td>
<td>16 485 957 EUR</td>
<td>16 234 927 EUR</td>
</tr>
</tbody>
</table>

Uwzględniając te trzy rodzaje korekt, ponownie obliczona liczebność próby drugiego półrocza wynosi:

\[
n_2 = \frac{z^2 \times BV_2 \times \sum_{h=1}^2 (BV_{h2}.\sigma_{rh2}^2)}{(TE - AE)^2 - z^2 \times \sum_{h=1}^2 \left(\frac{BV_{h1}^2}{n_{h1}} \cdot s_{rh1}^2\right)}
\]

gdzie \(s_{rh1} \) oznacza odchylenia standardowe poziomów błędu obliczone na podstawie podprób pierwszego półrocza dla każdej warstwy \(h, h=1,2 \), natomiast \(\sigma_{rh2} \) oznacza szacunki odchyleń standardowych poziomów błędu w każdej warstwie w drugim półroczu na podstawie prób wstępnych:

\[
n_2 = \frac{1,645^2 \times 49,211,269 \times (32,976,342 \times 0,0943^2 + 16,234,927 \times 0,0497^2)}{(1,836,440 - 367,288)^2 - 1,645^2 \times \left(\frac{27,623,498^2}{30} \times 0,0868^2 + \frac{14,987,234^2}{17} \times 0,0696^2\right)} \approx 31
\]

Na podstawie tych uaktualnionych wartości, aby osiągnąć pożądaną dokładność wielkość prób musi wynosić 31 operacje, zamiast 60 planowanych operacji na koniec pierwszego półrocza. Przydział według programu przebiega obecnie w prosty sposób:

\[
n_{12} = \frac{BV_{12}}{BV_2} n_2 = \frac{32,976,342}{49,211,269} \times 31 \approx 21
\]

\[
n_{22} = 31 - 21 = 10
\]

Konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstw o wysokiej wartości objętej audytem w 100 %. Wartości graniczne służące do określenia tych górnych warstw jest równa stosunkowi wartości księgowej \(BV_{h2} \) i planowanej liczebności próby \(n_{h2} \). Wszystkie pozycje,
których wartość księgowa jest wyższa niż te wartości graniczne (jeżeli \(BV_{h2} > BV_{h2}/n_h, \ h = 1,2 \)), zostaną umieszczone w warstwie objętej audytem w 100%. W takich przypadkach wartości graniczne wynoszą:

Dwie uaktualnione liczebności próby w drugim półroczu (21 i 10) dają następujące wartości graniczne dla warstw o wysokiej wartości w przypadku obu programów:

\[
Cut_{-off_{12}} = \frac{BV_{12}}{n_{12}} = \frac{32,976,342}{21} = 1,570,302
\]

oraz

\[
Cut_{-off_{22}} = \frac{BV_{22}}{n_{22}} = \frac{16,243,927}{10} = 1,624,393
\]

Istnieją trzy operacje w programie 1 oraz dwie operacje w programie 2, których wartość księgowa jest większa niż odpowiednia wartość graniczna. Całkowita wartość księgowa tych operacji wynosi 7 235 619 EUR w programie 1 oraz 4 329 527 EUR w programie 2.

Liczebności próby, które zostaną przydzielone do warstw niewyczerpujących, \(n_{12s} \) i \(n_{22s} \), oblicza się jako różnicę między \(n_{h2}, h = 1,2 \) i liczbą jednostek próby (np. operacji) w odpowiedniej warstwie wyczerpującej, co daje 14 operacji w przypadku programu 1 (uaktualniona liczebność prób wynosząca 21 w programie 1 w drugim półroczu, pomniejszona o siedem operacji o wysokiej wartości) oraz sześć operacji w przypadku programu 2 (uaktualniona liczebność prób wynosząca 10 w programie 2 w drugim półroczu, pomniejszona o cztery operacje o wysokiej wartości). W związku z tym audytor musi dokonać doboru pozostałych prób z zastosowaniem interwałów losowania:

\[
SI_{12s} = \frac{BV_{12s}}{n_{12s}} = \frac{32,976,342 - 7,235,619}{18} = 1,430,040
\]

\[
SI_{22s} = \frac{BV_{22s}}{n_{22s}} = \frac{16,243,927 - 4,329,527}{8} = 1,489,300
\]

Wartość księgowa w warstwach niewyczerpujących (\(BV_{12s} \) i \(BV_{22s} \)) stanowi po prostu różnicę całkowitej wartości księgowej warstwy i wartości księgowej odpowiednich operacji o wysokiej wartości.

Poniższa tabela zawiera podsumowanie tych wyników:

<table>
<thead>
<tr>
<th>Wartość księgowa (zadeklarowane całkowite wydatki w drugim półroczu)</th>
<th>49 211 269 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość księgowa – program 1</td>
<td>32 976 342 EUR</td>
</tr>
</tbody>
</table>

140
<table>
<thead>
<tr>
<th>Wartość księgowa – program 2</th>
<th>16 234 927 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyniki próby – program 1</td>
<td></td>
</tr>
<tr>
<td>Wartość graniczna</td>
<td>1 570 302 EUR</td>
</tr>
<tr>
<td>Liczba operacji wyższa od wartości granicznej</td>
<td>3</td>
</tr>
<tr>
<td>Wartość księgowa operacji wyższa od wartości granicznej</td>
<td>7 235 619 EUR</td>
</tr>
<tr>
<td>Wartość księgowa operacji (populacja niewyczerpująca)</td>
<td>25 740 723 EUR</td>
</tr>
<tr>
<td>EUR Interwał losowania (populacja niewyczerpująca)</td>
<td>1 430 040 EUR</td>
</tr>
<tr>
<td>Liczba operacji (populacja niewyczerpująca)</td>
<td>3 254</td>
</tr>
<tr>
<td>Wyniki próby – program 2</td>
<td></td>
</tr>
<tr>
<td>Wartość graniczna</td>
<td>1 623 493 EUR</td>
</tr>
<tr>
<td>Liczba operacji wyższa od wartości granicznej</td>
<td>2</td>
</tr>
<tr>
<td>Wartość księgowa operacji wyższa od wartości granicznej</td>
<td>4 329 527 EUR</td>
</tr>
<tr>
<td>Wartość księgowa operacji (populacja niewyczerpująca)</td>
<td>11 914 400 EUR</td>
</tr>
<tr>
<td>EUR Interwał losowania (populacja niewyczerpująca)</td>
<td>1 489 300 EUR</td>
</tr>
<tr>
<td>Liczba operacji (populacja niewyczerpująca)</td>
<td>2 344</td>
</tr>
</tbody>
</table>

Nie stwierdzono żadnych błędów w przypadku operacji o wysokiej wartości prowadzonych w ramach obu programów.

W odniesieniu do programu 1 przeprowadza się losowe sortowanie zbioru zawierającego 3 254 operacje (3 257 minus trzy operacje o wysokiej wartości) i odpowiednie wydatki zadeklarowane w drugim półroczu, a następnie tworzy się sekwencyjną łączną zmienną wartości księgowej. Próbę obejmującą 18 operacji (21 minus 3 operacje o wysokiej wartości) losuje się, stosując dokładnie taką samą procedurę jak procedura opisana powyżej.

W odniesieniu do programu 2 przeprowadza się losowe sortowanie zbioru zawierającego 2 344 operacje (2 346 minus 2 operacje o wysokiej wartości) i odpowiednie wydatki zadeklarowane w drugim półroczu, a następnie tworzy się sekwencyjną łączną zmienną wartości księgowej. Wartość próby obejmującej osiem operacji (10 minus 3 operacje o wysokiej wartości) uzyskuje się za pomocą prawdopodobieństwa proporcjonalnego do wielkości.

Wydatki poniesione w ramach 26 operacji (18+8) stanowią przedmiot audytu. Soma poziomów błędu objętych próbą w odniesieniu do programu 1 na koniec drugiego półroczca wynosi:
\[\sum_{i=1}^{18} \frac{E_{i12s}}{BV_{i12s}} = 0.1345. \]

Suma poziomów błędu objętych próbą w odniesieniu do programu 2 na koniec pierwszego półrocza wynosi:

\[\sum_{i=1}^{8} \frac{E_{i22s}}{BV_{i22s}} = 0.0934 \]

Odchylenie standardowe poziomów błędu w próbie populacji niewyczerpującej z pierwszego półrocza w przypadku obu programów wynosi:

\[
s_{r_{12s}} = \sqrt{\frac{1}{18-1} \sum_{i=1}^{18} (r_{i12s} - \bar{r}_{12s})^2} = 0.0737
\]

\[
s_{r_{22s}} = \sqrt{\frac{1}{8-1} \sum_{i=1}^{8} (r_{i22s} - \bar{r}_{22s})^2} = 0.0401
\]

zaś \(\bar{r}_{h2s} \), \(h = 1,2 \), jest równe średniej arytmetycznej poziomów błędu w próbie danej grupy niewyczerpującej z drugiego półrocza.

Prognozę błędów dla populacji oblicza się w inny sposób dla jednostek należących do grup wyczerpujących oraz dla pozycji w grupach niewyczerpujących.

W przypadku warstw o wysokiej wartości, tj. grup zawierających jednostki próby o wartości księgowej wyższej niż wartości graniczne, \(BV_{hti} > \frac{BV_{ht}}{n_{ht}} \) błąd przewidywany stanowi sumę błędów wykrytych w pozycjach należących do tych grup:

\[EE_o = \sum_{h=1}^{2} \sum_{i=1}^{n_{h1}} E_{h1i} + \sum_{h=1}^{2} \sum_{i=1}^{n_{h2}} E_{h2i} = 13,768 \]

W praktyce:

1) w przypadku każdego półrocza i każdej warstwy \(h \) należy zidentyfikować jednostki należące do grupy wyczerpującej i zsumować ich błędy;
2) zsumować poprzednie wyniki dla całego zbioru warstw.
W przypadku grup niewyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej mniejszej lub równej wartościom granicznym, \(BV_{hti} \leq \frac{BV_{ht}}{n_{ht}} \), błąd przewidywany wynosi:

\[
EE_z = \sum_{h=1}^{2} \left(\frac{BV_{h1s}}{n_{h1s}} \cdot \sum_{i=1}^{n_{h1s}} \frac{E_{h1i}}{BV_{h1i}} \right) + \sum_{h=1}^{2} \left(\frac{BV_{h2s}}{n_{h2s}} \cdot \sum_{i=1}^{n_{h2s}} \frac{E_{h2i}}{BV_{h2i}} \right)
\]

\[
= 894,368 \times 0.0823 + 822,889 \times 0.1145 + 1,430,040 \times 0.1345 + 1,489,300 \times 0.0934 = 499,268
\]

Aby obliczyć ten błąd przewidywany, należy:

1) w każdej warstwie \(h \) w każdym półroczu \(t \) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie; \(\frac{E_{hti}}{BV_{hti}} \);

2) w każdej warstwie \(h \) w każdym półroczu \(t \) zsumować te poziomy błędu ze wszystkich jednostek w próbie;

3) w każdej warstwie \(h \) w każdym półroczu \(t \) pomnożyć poprzedni wynik przez całkowite wydatki populacji grupy niewyczerpującej (\(BV_{hts} \)); wydatki te będą także równe całkowitym wydatkom pomniejszonym o wydatki pozycji należących do grupy wyczerpującej warstwy;

4) w każdej warstwie \(h \) w każdym półroczu \(t \) podzielić poprzedni wynik przez liczebność próby w grupie niewyczerpującej (\(n_{hts} \));

5) zsumować poprzednie wyniki dla całego zbioru warstw.

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[
EE = 13,768 + 499,268 = 513,036,
\]

co odpowiada przewidywanemu poziomowi błędu, który wynosi 0,56 %.

Dokładność jest miarą niepewności związanej z prognozą. Dokładność oblicza się za pomocą następującego wzoru:
\[
SE = z \times \sqrt{\sum_{h=1}^{2} \left(\frac{BV_{h1s}^2}{n_{h1s}} \cdot S_{rh1s}^2 \right) + \sum_{h=1}^{2} \left(\frac{BV_{h2s}^2}{n_{h2s}} \cdot S_{rh2s}^2 \right)}
\]

\[
= 1.645 \times \sqrt{\frac{24,147,946^2}{27} 0.0823^2 + \frac{10,697,561^2}{13} 0.0696^2 \\
+ \frac{25,740,723^2}{18} 0.0737^2 + \frac{11,914,400^2}{8} 0.0401^2}
\]

\[
= 1,062,778
\]

gdzie \(s_{rhts} \) oznacza obliczone już odchylenie standardowe poziomów błędu grupy niewyczerpującej warstw \(h \) w półroczu \(t \).

Błąd próby oblicza się wyłącznie dla grup niewyczerpujących, ponieważ w przypadku grup wyczerpujących błędy próby nie występują.

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górną granicę jest równa sumie samego błędu przewidywanego \(EE \) i dokładności prognozy:

\[
ULE = EE + SE = 513,036 + 1,062,778 = 1,575,814
\]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.

W tym konkretnym przypadku zarówno błąd przewidywany, jak i górną granicę błędu są niższe niż maksymalny dopuszczalny błąd. Oznacza to, że audytor stwierdzi, iż nie istnieją wystarczające dowody na poparcie twierdzenia, że błędy w populacji są większe niż próg istotności:
6.3.5 **Podejście konserwatywne**

6.3.5.1 **Wprowadzenie**

W kontekście audytu zwykle stosuje się podejście konserwatywne do metody doboru próby na podstawie jednostki monetarnej. Zaletą podejścia konserwatywnego jest to, że nie wymaga dużej wiedzy na temat populacji (np. informacje na temat zmienności populacji nie są konieczne, aby obliczyć liczebność próby). Ponadto niektóre pakiety oprogramowania wykorzystywane do celów audytu automatycznie wybierają to podejście, ułatwiając tym samym jego stosowanie. W praktyce stosowanie metody konserwatywnej, przy odpowiednim wsparciu takimi pakietami, wymaga znacznie mniejszej wiedzy technicznej i statystycznej niż tak zwane podejście standardowe. Główna wada tego podejścia konserwatywnego wiąże się właśnie z łatwością stosowania: ponieważ w ramach tego podejścia wykorzystuje się mniej szczegółowe informacje do obliczenia liczebności próby i ustalenia dokładności, zazwyczaj uzyskuje się próby o większej liczebności i większe szacowane błędy próby niż w przypadku dokładniejszych formuł stosowanych w podejściu standardowym. Jeżeli liczebność próby utrzymuje się jednak na rozsądnym poziomie i nie stanowi głównego problemu dla audytora, wówczas takie podejście może być dobrym rozwiązaniem z uwagi na jego prostotę. Należy również podkreślić, że ta metoda ma zastosowanie tylko do sytuacji, w których częstotliwość występowania błędów jest mała, a poziomy błędów są wyraźnie poniżej istotności. Ponadto należy zauważyć, że z racji prób o dużej liczebności, które metoda ta zwykle generuje, użytkownicy odczuwają niewielkie pokusy wypełnienia ich bardzo małymi i nierealistycznymi błędami oczekującymi. Praktyka ta będzie nieuchronnie przynosi niejednoznaczne wyniki audytu z powodu zbyt wysokiej górnej granicy błędu, przy czym trzeba pamiętać, że podobnie jak w przypadku każdej innej metody doboru próby należy wybrać realistyczny błąd oczekiwany w oparciu o najlepszą wiedzę i opinię audytora.

Metody tej nie można łączyć ze stratyfikacją ani rozłożeniem czynności audytowych na dwa okresy lub większą ich liczbę w okresie odniesienia, ponieważ uzyskane wzory uniemożliwiałyby określenie dokładności. W związku z tym zachęca się instytucje audytowe do stosowania podejścia standardowego w tych celach.

6.3.5.2 **Liczność próby**

Liczność próby n w ramach podejścia konserwatywnego do metody doboru próby na podstawie jednostki monetarnej oblicza się w oparciu o następujące informacje:

- wartość księgową populacji (całkowite wydatki zadeklarowane) BV;

36 W szczególności nie jest możliwe obliczenie liczebności próby, jeżeli błąd oczekiwany jest większy od istotności lub prawie jej równy.
• stałą zwaną współczynnikiem wiarygodności \((RF)\), określoną na podstawie poziomu ufności;
• maksymalny dopuszczalny błąd \(TE\) (zwykle 2% całkowitych wydatków);
• błąd oczekiwany \(AE\) wybrany przez audytora zgodnie z jego profesjonalnym osądem i na podstawie informacji z wcześniejszych audytów;
• współczynnik rozszerzenia \(EF\), który jest stałą również powiązaną z poziomem ufności i stosowaną w przypadku, gdy oczekiwane są błędy.

Liczebność próby oblicza się następująco:

\[
n = \frac{BV \times RF}{TE - (AE \times EF)}
\]

Współczynnik wiarygodności \(RF\) stanowi stałą z rozkładu Poissona dla oczekiwanej braku błędu. Zależy on od poziomu ufności, a wartości stosowane w danej sytuacji można znaleźć w poniższej tabeli.

<table>
<thead>
<tr>
<th>Poziom ufności</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>85%</th>
<th>80%</th>
<th>75%</th>
<th>70%</th>
<th>60%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Współczynnik wiarygodności (RF)</td>
<td>4,61</td>
<td>3,00</td>
<td>2,31</td>
<td>1,90</td>
<td>1,61</td>
<td>1,39</td>
<td>1,21</td>
<td>0,92</td>
<td>0,70</td>
</tr>
</tbody>
</table>

Współczynnik rozszerzenia \(EF\), stanowi współczynnik wykorzystywany w obliczeniach doboru próby metodą MUS, gdy istnieje prawdopodobieństwo wystąpienia błędów, przy czym opiera się na ryzyku błędnej akceptacji. Współczynnik ten zmniejsza błąd próby. Jeżeli nie przewiduje się wystąpienia błędów, błąd oczekiwany \((AE)\) wyniesie zero, a współczynnik rozszerzenia nie zostanie zastosowany. Wartości współczynnika rozszerzenia znajdują się w poniższej tabeli.

<table>
<thead>
<tr>
<th>Poziom ufności</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>85%</th>
<th>80%</th>
<th>75%</th>
<th>70%</th>
<th>60%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Współczynnik rozszerzenia</td>
<td>1,9</td>
<td>1,6</td>
<td>1,5</td>
<td>1,4</td>
<td>1,3</td>
<td>1,25</td>
<td>1,2</td>
<td>1,1</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Tabela 5. Współczynnik rozszerzenia według poziomu ufności.

Wzór na określenie liczebności próby wskazuje, dlaczego podejście to jest nazywane podejściem konserwatywnym. Zasadniczo liczebność próby nie zależy ani od liczebności populacji, ani od zmienności populacji. Oznacza to, że wzór ten ma pasować do każdego rodzaju populacji niezależnie od konkretnych cech charakterystycznych, w związku z czym otrzymane liczebności próby są zwykle większe od tych koniecznych w praktyce.
6.3.5.3 Dobór próby

Po określeniu liczebności próby dobór próbny przeprowadza się z zastosowaniem prawdopodobieństwa proporcjonalnego do wielkości, tj. proporcjonalnie do wartości księgowych pozycji BV_i. Popularnym sposobem przeprowadzania doboru jest dobór systematyczny, w którym wykorzystuje się interwał losowania równy ilorazowi całkowitych wydatków (BV) i liczebności próbny (n), tj.

$$SI = \frac{BV}{n}$$

Zazwyczaj próbę wybiera się z randomizowanej listy wszystkich pozycji, wybierając każdą pozycję zawierającą x-tą jednostkę monetarną, przy czym x odpowiada wartości księgowej dzielonej przez liczebność próby, czyli interwałowi losowania.

Niektóre pozycje można wybierać wielokrotnie (jeżeli ich wartość jest wyższa niż liczebność interwału losowania). W takim przypadku audytor tworzy warstwę wyczerpującą, do której powinny należeć wszystkie pozycje o wartości księgowej wyższej niż interwał losowania. Jak zwykle, sposób postępowania w przypadku tej warstwy w kontekście prognozy błędu jest inny.

6.3.5.4 Błąd przewidywany

Prognoza błędów populacji przebiega zgodnie z procedurą przedstawioną w kontekście standardowego podejścia w ramach metody doboru próbny na podstawie jednostki monetarnej. Ekstrapolację przeprowadza się w inny sposób dla jednostek w warstwie wyczerpującej niż dla pozycji w warstwie niewyczerpującej.

W przypadku warstwy wyczerpującej, tj. warstwy zawierającej jednostki próby o wartości księgowej wyższej niż interwał losowania, $BV_i > \frac{BV}{n}$, błąd przewidywany stanowi po prostu sumę błędów wykrytych w pozycjach należących do warstwy:

$$EE_e = \sum_{i=1}^{n_e} E_i$$

W przypadku warstwy niewyczerpującej, tj. warstwy zawierającej jednostki próby o wartości księgowej mniejszej lub równej interwałowi losowania, $BV_i \leq \frac{BV}{n}$, błąd przewidywany wynosi:
Aby obliczyć ten błąd przewidywany, należy:
1) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie: \(\frac{E_i}{BV_i} \)
2) zsumować te poziomy błędu dla wszystkich jednostek w próbie;
3) pomnożyć poprzedni wynik przez interwał losowania (SI).

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[
EE = EE_e + EE_s
\]

6.3.5.5 Dokładność

Dokładność, która stanowi miarę błędu próby, składa się z dwóch elementów: dokładności podstawowej \(BP \), i rezerwy dodatkowej \(IA \).

Dokładność podstawowa stanowi po prostu iloczyn interwału losowania i współczynnika wiarygodności (wykorzystanego już wcześniej do obliczenia liczebności próby):

\[
BP = SI \times RF.
\]

Rezerwę dodatkową oblicza się dla każdej jednostki próby należącej do warstwy niewyczerpującej, która zawiera błąd.

Po pierwsze, pozycje z błędami należy uporządkować według malejącej wartości błędu przewidywanego.

Po drugie, rezerwę dodatkową oblicza się dla wszystkich pozycji (zawierających błędy) za pomocą następującego wzoru:

\[
IA_i = (RF(n) - RF(n - 1) - 1) \times SI \times \frac{E_i}{BV_i},
\]

gdzie \(RF(n) \) oznacza współczynnik wiarygodności w odniesieniu do błędu, który pojawia się w kolejności \(n^{th} \) na danym poziomie ufności (zazwyczaj ten sam co przy obliczaniu liczebności próby), zaś \(RF(n - 1) \) oznacza współczynnik wiarygodności w
odniesieniu do błędu w kolejności \((n - 1)^{th}\) na danym poziomie ufności. Na przykład, gdy poziom ufności wynosi 90 %, zastosowanie ma następująca tablica współczynników wiarygodności:

<table>
<thead>
<tr>
<th>Kolejność błędu</th>
<th>Współczynnik wiarygodności (RF)</th>
<th>(RF(n) - RF(n - 1) - 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>2,31</td>
<td></td>
</tr>
<tr>
<td>pierwszy</td>
<td>3,89</td>
<td>0,58</td>
</tr>
<tr>
<td>drugi</td>
<td>5,33</td>
<td>0,44</td>
</tr>
<tr>
<td>trzeci</td>
<td>6,69</td>
<td>0,36</td>
</tr>
<tr>
<td>czwarty</td>
<td>8,00</td>
<td>0,31</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 7. Współczynniki wiarygodności według kolejności błędu

Przykładowo, jeżeli większy błąd przewidywany w próbie jest równy kwocie 10 000 EUR (25 % wydatków wynoszących 40 000 EUR), a interwał losowania wynosi 200 000 EUR, pojedyncza rezerwa dodatkowa dla tego błędu jest równa 0,58 x 0,25 x 200 000=29 000 EUR.

Tablicę z współczynnikami wiarygodności dla kilku poziomów ufności i różną liczbę błędów wykrytych w próbie można znaleźć w załączniku.

Ponadto rezerwa dodatkowa stanowi sumę rezerw dodatkowych dla wszystkich pozycji:

\[
IA = \sum_{i=1}^{n_s} IA_i.
\]

Całkowita dokładność \((SE)\) będzie równa sumie dwóch elementów: dokładności podstawowej \((BP)\) i rezerwy dodatkowej \((IA)\).

\[
SE = BP + IA
\]

6.3.5.6 Ocena

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu \((ULE)\). Ta góra granica jest równa sumie samego błędu przewidywanego \(EE\) i całkowitej dokładności ekstrapolacji:

\[
ULE = EE + SE
\]
Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.

- Jeżeli błąd przewidywany jest większy niż maksymalny dopuszczalny błąd, oznacza to, że audytor stwierdzi, iż istnieją wystarczające dowody na poparcie twierdzenia, że błędy w populacji są większe niż próg istotności:

- Jeżeli górna granica błędu jest niższa niż maksymalny dopuszczalny błąd, wówczas audytor powinien stwierdzić, że błędy w populacji są niższe niż próg istotności:

Jeżeli błąd przewidywany jest niższy niż maksymalny dopuszczalny błąd, ale górna granica błędu jest wyższa, należy zapoznać się z sekcją 4.12 w celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić.

6.3.5.7 Przykład

Załóżmy, że populację stanowią wydatki zadeklarowane Komisji w danym roku w odniesieniu do operacji w ramach programu. Audyty systemu przeprowadzone przez instytucję audytową dały niski poziom pewności. W związku z tym doboru próby dla tego programu należy dokonać przy poziomie ufności wynoszącym 90%.

Poniższa tabela zawiera podsumowanie populacji:
Liczebność próby oblicza się następująco:

\[n = \frac{BV \times RF}{TE - (AE \times EF)} \]

gdzie \(BV \) oznacza całkowitą wartość księgową populacji, tj. całkowite wydatki zadeklarowane Komisji w danym okresie odniesienia, \(RF \) oznacza współczynnik wiarygodności odpowiadający poziomowi ufności 90 \%, tj. 2,31, a \(EF \), oznacza współczynnik rozszerzenia odpowiadający poziomowi ufności 1,5, jeżeli oczekiwane są błędy. Jeżeli chodzi o tę konkretną populację, instytucja audytowa w oparciu o doświadczenie zdobyte w poprzednich latach i wiedzę na temat ulepszeń systemów zarządzania i kontroli postanowiła, że oczekiwany poziom błędu wynoszący 0,2 \% jest wiarygodny.

\[n = \frac{4,199,882,024 \times 2.31}{0.02 \times 4,199,882,024 - (0.002 \times 4,199,882,024 \times 1.5)} \approx 136 \]

Dobór próby przeprowadza się z zastosowaniem prawdopodobieństwa proporcjonalnego do wielkości, tj. proporcjonalnie do pozycji wartości księgowych, \(BV_i \), poprzez dobór systematyczny, przy użyciu interwału losowania równego całkowitym wydatkom (\(BV \)) podzielonym przez liczebność próby (\(n \)), tj.

\[SI = \frac{BV}{n} = \frac{4,199,882,024}{136} = 30,881,485 \]

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 3 852 operacje populacji, a następnie tworzy się sekwencyjną łączną zmienną wartości księgowej.

Próbę dobiera się z randomizowanej listy operacji, wybierając każdą pozycję zawierającą 30 881 485. jednostkę monetarną.

<table>
<thead>
<tr>
<th>Operacja</th>
<th>Wartość księgowa (BV)</th>
<th>Skumulowana wartość księgową (AcumBV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>10 173 875 EUR</td>
<td>10 173 875 EUR</td>
</tr>
<tr>
<td>424</td>
<td>23 014 045 EUR</td>
<td>33 187 920 EUR</td>
</tr>
<tr>
<td>2 327</td>
<td>32 886 198 EUR</td>
<td>66 074 118 EUR</td>
</tr>
<tr>
<td>5 009</td>
<td>34 595 201 EUR</td>
<td>100 669 319 EUR</td>
</tr>
<tr>
<td>1 491</td>
<td>78 695 230 EUR</td>
<td>179 364 549 EUR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operacja</th>
<th>Wartość księgowa (BV)</th>
<th>Skumulowana wartość księgowa (AcumBV)</th>
<th>Próba</th>
</tr>
</thead>
<tbody>
<tr>
<td>239</td>
<td>10 173 875 EUR</td>
<td>10 173 875 EUR</td>
<td>Nie</td>
</tr>
<tr>
<td>424</td>
<td>23 014 045 EUR</td>
<td>33 187 920 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>2 327</td>
<td>32 886 198 EUR</td>
<td>66 074 118 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>5 009</td>
<td>34 595 201 EUR</td>
<td>100 669 319 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>1 491</td>
<td>78 695 230 EUR</td>
<td>179 364 549 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
</tr>
<tr>
<td>2 596</td>
<td>8 912 999 EUR</td>
<td>307 654 321 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>779</td>
<td>26 009 790 EUR</td>
<td>333 664 111 EUR</td>
<td>Nie</td>
</tr>
<tr>
<td>1 250</td>
<td>264 950 EUR</td>
<td>333 929 061 EUR</td>
<td>Nie</td>
</tr>
<tr>
<td>3 895</td>
<td>30 949 004 EUR</td>
<td>364 878 065 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>2 011</td>
<td>617 668 EUR</td>
<td>365 495 733 EUR</td>
<td>Nie</td>
</tr>
<tr>
<td>4 796</td>
<td>335 916 EUR</td>
<td>365 831 649 EUR</td>
<td>Nie</td>
</tr>
<tr>
<td>3 632</td>
<td>7 971 113 EUR</td>
<td>373 802 762 EUR</td>
<td>Nie</td>
</tr>
<tr>
<td>2 451</td>
<td>17 470 048 EUR</td>
<td>391 272 810 EUR</td>
<td>Tak</td>
</tr>
<tr>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
</tr>
</tbody>
</table>

Istnieją 24 operacje o wartości księgowej wyższej niż interwał losowania, co oznacza, że każdą z nich wybrano co najmniej raz (np. operację 1 491 wybrano trzykrotnie, por. poprzednia tabela). Wartość księgowa tych 24 operacji wynosi 1 375 130 377 EUR. Spośród tych 24 operacji cztery zawierają błędy odpowiadające kwocie błędu 7 843 574 EUR.

W odniesieniu do pozostałej części próby sposób postępowania w przypadku błędu jest inny. W przypadku tego rodzaju operacji należy:
1) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie: $E_{i}^{BV_{i}}$
2) zsumować te poziomy błędu dla wszystkich jednostek w próbie;
3) pomnożyć poprzedni wynik przez interwał losowania (SI).

$$EE_{s} = SI \sum_{i=1}^{n_{s}} \frac{E_{i}}{BV_{i}}$$
<table>
<thead>
<tr>
<th>Operacja</th>
<th>Wartość księgowa (BV)</th>
<th>Prawidłowa wartość księgowa (CBV)</th>
<th>Błąd</th>
<th>Poziom błędu</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 596</td>
<td>8 912 999 EUR</td>
<td>8 912 999 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>459</td>
<td>869 080 EUR</td>
<td>869 080 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>2 073</td>
<td>859 992 EUR</td>
<td>859 992 EUR</td>
<td>210 956 EUR</td>
<td>0,02</td>
</tr>
<tr>
<td>239</td>
<td>10 173 875 EUR</td>
<td>9 962 918 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>989</td>
<td>394 316 EUR</td>
<td>394 316 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>65</td>
<td>25 234 699 EUR</td>
<td>25 125 915 EUR</td>
<td>108 784 EUR</td>
<td>0,00</td>
</tr>
<tr>
<td>5 010</td>
<td>34 595 201 EUR</td>
<td>34 595 201 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>3 632</td>
<td>7 971 113 EUR</td>
<td>7 971 113 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>3 672</td>
<td>624 882 EUR</td>
<td>624 882 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>2 355</td>
<td>343 462 EUR</td>
<td>301 886 EUR</td>
<td>41 576 EUR</td>
<td>0,12</td>
</tr>
<tr>
<td>959</td>
<td>204 847 EUR</td>
<td>204 847 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>608</td>
<td>15 293 716 EUR</td>
<td>15 293 716 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>4 124</td>
<td>6 773 014 EUR</td>
<td>6 773 014 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>262</td>
<td>662 EUR</td>
<td>662 EUR</td>
<td>– EUR</td>
<td>–</td>
</tr>
<tr>
<td>Ogółem</td>
<td></td>
<td></td>
<td>1,077</td>
<td></td>
</tr>
</tbody>
</table>

$EE_s = 30,881,485 \times 1.077 = 33,259,360$

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

$EE = 7,843,574 + 33,259,360 = 41,102,934$

i odpowiada przewidywanemu poziomowi błędu, który wynosi 0,98 %.

Aby uzyskać górę granicę błędu, należy obliczyć dwa elementy dokładności, dokładność podstawową BP, i rezerwę dodatkową IA.

Dokładność podstawowa stanowi po prostu iloczyn interwału losowania i współczynnika wiarygodności (wykorzystanego już wcześniej do obliczenia liczebności próby):

$BP = 30,881,485 \times 2.31 = 71,336,231$

Rezerwę dodatkową oblicza się dla każdej jednostki próby należącej do warstwy niewyczerpującej, która zawiera błąd.
Po pierwsze, pozycje z błędami należy przyporządkować według malejącej wartości błędu przewidywanego. Po drugie, rezerwę dodatkową oblicza się dla wszystkich pozycji (zawierających błędy) za pomocą następującego wzoru:

\[IA_i = (RF(n) - RF(n - 1) - 1) \times SI \times \frac{E_i}{BV_i} \]

gdzie \(RF(n) \) oznacza współczynnik wiarygodności w odniesieniu do błędu, który pojawia się w kolejności \(n^{th} \) na danym poziomie ufności (zazwyczaj ten sam co przy obliczaniu liczebności próby), a \(RF(n-1) \) oznacza współczynnik wiarygodności w odniesieniu do błędu w kolejności \((n-1)^{th} \) na danym poziomie ufności (zob. tabela w załączniku).

Ponadto rezerwa dodatkowa stanowi sumę rezerw dodatkowych dla wszystkich pozycji:

\[IA = \sum_{i=1}^{n_s} IA_i. \]

Poniższa tabela zawiera podsumowanie tych wyników w odniesieniu do 16 operacji zawierających błędy:

| Kolejność | Błąd (A) | Poziom błędu (B):=(A)/BV | Błąd przewidywany:=(B)*SI | RF(n) | (RF(n)-RF(n-1))-1 | IA \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,30</td>
</tr>
<tr>
<td>1</td>
<td>4 705 321 EUR</td>
<td>0,212</td>
<td>6 546 875 EUR</td>
<td>3,89</td>
<td>0,59</td>
<td>3 862 656 EUR</td>
</tr>
<tr>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
<td>(...)</td>
</tr>
<tr>
<td>12</td>
<td>12 332 EUR</td>
<td>0,024</td>
<td>741 156 EUR</td>
<td>17,78</td>
<td>0,18</td>
<td>133,408 EUR</td>
</tr>
<tr>
<td>13</td>
<td>6 822 EUR</td>
<td>0,02</td>
<td>617 630 EUR</td>
<td>18,96</td>
<td>0,18</td>
<td>111 173 EUR</td>
</tr>
<tr>
<td>14</td>
<td>7 706 EUR</td>
<td>0,012</td>
<td>370 578 EUR</td>
<td>20,13</td>
<td>0,17</td>
<td>62 998 EUR</td>
</tr>
<tr>
<td>15</td>
<td>4 787 EUR</td>
<td>0,008</td>
<td>247 052 EUR</td>
<td>21,29</td>
<td>0,16</td>
<td>39 528 EUR</td>
</tr>
<tr>
<td>16</td>
<td>26 952 EUR</td>
<td>0,001</td>
<td>29 488 EUR</td>
<td>22,45</td>
<td>0,16</td>
<td>4 718 EUR</td>
</tr>
<tr>
<td>Ogółem</td>
<td>1,077</td>
<td>38 264 277 EUR</td>
<td></td>
<td></td>
<td></td>
<td>14 430 761 EUR</td>
</tr>
</tbody>
</table>

Całkowita dokładność (SE) będzie równa sumie dwóch elementów: dokładności podstawowej (BP) i rezerwy dodatkowej (IA).

\[SE = 71,336,231 + 14,430,761 = 85,766,992 \]
Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego EE i całkowitej dokładności prognozy:

$$ULE = 41,102,933 + 85,766,992 = 126,869,926$$

Następnie maksymalny dopuszczalny błąd $TE = 2\% \times 4\,199\,882\,024 = 83\,997\,640$ EUR należy porównać z błędem przewidywanym i górną granicą błędu. Maksymalny dopuszczalny błąd jest większy niż błąd przewidywany, ale mniejszy niż górna granica błędu. W celu uzyskania szczegółowych informacji na temat analizy, którą należy przeprowadzić, należy zapoznać się z sekcją 4.12.

6.4 Niestatystyczny dobór próby

6.4.1 Wprowadzenie

Niestatystyczne metody doboru próby mogą być stosowane na podstawie profesjonalnego osądu instytucji audytowej w uzasadnionych przypadkach zgodnie z przyjętymi na szczeblu międzynarodowym standardami audytu oraz w każdym razie gdy liczba operacji jest niewystarczająca do zastosowania metod statystycznych.

Jak wyjaśniono powyżej w sekcji 5.2, statystyczny dobór próby należy, co do zasady, stosować w celu przeprowadzenia audytu wydatków i wyciągnięcia wniosków dotyczących kwoty błędu w populacji. Metody niestatystycznego doboru próby nie pozwalają na obliczenie dokładności, w związku z czym nie ma żadnej kontroli nad ryzykiem kontroli. W konsekwencji metodę niestatystycznego doboru próby należy stosować tylko wtedy, gdy nie można wdrożyć statystycznego doboru próby.

W praktyce szczególne sytuacje, które mogą uzasadniać zastosowanie niestatystycznego doboru próby, są związane z liczebnością populacji. W rzeczywistości konieczna może być praca z wykorzystaniem bardzo małej populacji, której liczebność jest niewystarczająca, aby umożliwić stosowanie metod statystycznych (populacja jest mniejsza lub bardzo zbliżona do zalecanej liczebności próby).
Podsumowując, metodę niestatystycznego dobór próby uznaje się za właściwą w przypadkach, gdy nie można uzyskać odpowiedniej liczebności próby wymaganej do wsparcia statystycznego doboru próby. Wskazanie dokładnego progu liczebności populacji, poniżej którego zachodzi konieczność zastosowania niestatystycznego doboru próby, nie jest możliwe, ponieważ zależy to od szeregu cech charakterystycznych populacji, chociaż zazwyczaj wysokość tego progu wynosi mniej więcej 50–150 jednostek próby. Ostateczna decyzja powinna oczywiście uwzględniać równowagę między kosztami i korzyściami związanymi z każdą z tych metod. Zaleca się, aby instytucja audytowa zasięgnęła opinii Komisji przed podjęciem decyzji o zastosowaniu metody niestatystycznego doboru próby w określonych okolicznościach, tj. w przypadkach gdy przekroczony zostanie próg 150 jednostek. Komisja może zgodzić się na zastosowanie metody niestatystycznego doboru próby na podstawie analizy poszczególnych przypadków.

W odniesieniu do lat 2014–2020 w rozporządzeniu określa się również kryteria, których należy przestrzegać podczas stosowania metody niestatystycznego doboru próby, a mianowicie w celu objęcia co najmniej 5% operacji i 10% zadeklarowanych wydatków (art. 127 ust. 1 rozporządzenia w sprawie wspólnych przepisów). W praktyce może to prowadzić do liczebności próby odpowiadającej liczebności uzyskanej za pomocą statystycznych metod doboru próby. W takich sytuacjach zachęca się instytucje audytowe do stosowania metod statystycznych.

Nawet w sytuacjach, w których instytucja audytowa zastosowała niestatystyczną metodę doboru próby, próbę dobiera się, stosując metodę losową37 38. Liczebność próby musi zostać określona z uwzględnieniem poziomu pewności zapewnianego przez system i musi być wystarczająca, aby umożliwić instytucji audytowej sporządzenie ważnej opinii o audytu dotyczącej legalności i prawidłowości wydatków. **Instytucja audytowa powinna móc ekstrapolować wyniki na populację, z której pobrano próbę losową.**

Podczas wdrażania metody niestatystycznego doboru próby instytucja audytowa powinna rozważyć stratyfikację populacji, dzieląc ją na subpopulacje, z których każda stanowi grupę jednostek próby o podobnych cechach, w szczególności pod względem ryzyka lub oczekiwanej wskazówej błędów, bądź w przypadku gdy populacja obejmuje określone rodzaje operacji (np. instrumenty finansowe). Stratyfikacja jest bardzo skutecznym narzędziem poprawiającym jakość prognoz, dlatego zdecydowanie zaleca

37 tj. stosując statystyczną (probabilistyczną) metodę por. sekcja 4.1 i 4.2 w celu rozróżnienia metody doboru próby i metody doboru. Dodatkowo należy pamiętać o ogólnie zasadzie, według której minimalna liczebność próby do celów statystycznych metod doboru próby wynosi 30.

38 Nielosowy (np. oparty na ryzyku) niestatystyczny dobór próby można wykorzystać jedynie w odniesieniu do dodatkowej próby przewidzianej w art. 17 (§5 i §6) rozporządzenia (WE) nr 1828/2006 (lata 2007–2013) i art. 28 rozporządzenia (UE) nr 480/2014 (lata 2014–2020).
się korzystanie z pewnego rodzaju stratyfikacji w ramach niestatystycznego doboru próby.

6.4.2 **Stratyfikowany i niestratyfikowany niestatystyczny dobór próby**

Instytucja audytowa powinna rozważyć warstwowy, niestatystyczny dobór prób jako pierwszą opcję w przypadku braku możliwości zastosowania statystycznego doboru próby. Jak wyjaśniono w odniesieniu do stratyfikacji schematów doboru próby, kryteria stosowane na potrzeby stratyfikacji są związane z oczekiwaniami audytora co do jego udziału w wyjaśnianiu poziomu błędu w populacji. Ilekroć oczekujemy, że poziom błędu będzie różny dla różnych grup w populacji, klasyfikacja taka kwalifikuje się do zastosowania stratyfikacji.

Podczas stosowania metody doboru próby na podstawie równego prawdopodobieństwa (gdzie każda jednostka próby ma jednakową szansę na to, że zostanie wybrana, niezależnie od kwoty wydatków zadeklarowanych w jednostce próby) zaleca się użycie stratyfikacji według poziomu wydatków, jako bardzo skutecznego narzędzia poprawiającego jakość szacunków. Należy zauważyć, że chociaż stratyfikacja nie jest obowiązkowa, taki schemat może również pomóc instytucji audytowej w zapewnieniu zalecanego pokrycia zadeklarowanych wydatków wymaganych w okresie programowania 2014–2020.

Dla tej stratyfikacji (której można by użyć zarówno podczas stosowania metody doboru próby na podstawie równego prawdopodobieństwa, jak i podczas prawdopodobieństwa proporcjonalnego do wielkości):

- należy określić wartość graniczną wydatków w odniesieniu do pozycji, które zostaną ujęte w warstwie pozycji o wysokiej wartości. Nie istnieje ogólna zasada określania wartości granicznej. W związku z tym, jeżeli powszechnie stosowana praktyka określania wartości granicznej różna się maksymalnemu dopuszczalnemu błędowi (2% całkowitych wydatków) populacji, o ile w ogóle jest stosowana, powinna być traktowana jako punkt startowy, który należy dostosować do specyfiki populacji. Można i należy dostosować tę wartość graniczną do cech charakterystycznych populacji. Krótko mówiąc, tę wartość graniczną należy zasadniczo ustalać w oparciu o profesjonalny osąd. W każdym przypadku, w którym audytor może zidentyfikować niewielką liczbę pozycji, w których wydatki są znacznie wyższe niż wydatki obserwowane w pozostałych pozycjach, powinien on rozważyć utworzenie warstwy obejmującej te elementy; Ponadto zachęca się audytora do stosowania większej liczby warstw opartych na wydatkach niż dwie, jeżeli podział na dwie warstwy wydaje się niewystarczający, aby osiągnąć pożądaną poziom jednorodności każdej z warstw;
• Podstawową metodą jaką należy rozważyć jest objęcie audytem pozycji o wysokiej wartości w 100%. W praktyce mogą jednak wystąpić sytuacje, w których określona wartość graniczna tworzy zbyt dużą warstwę o wysokiej wartości, którą trudno obserwować w wyczerpujący sposób. W takich sytuacjach możliwe jest również obserwowanie doboru próby w przewidywanej warstwie o wysokiej wartości, ale co do zasady częstotliwość próbkowania (tj. odsetek jednostek i wydatków tej warstwy, która została wybrana do próbkowania) musi być większa lub równa tej stosowanej w przypadku warstwy o niskiej wartości.

• Liczebność próby, która zostanie alokowana do warstwy niewyczerpującej, oblicza się jako różnicę całkowitej liczebności próby i liczby jednostek próby (np. operacji) w warstwie o wysokiej wartości. Jeżeli instytucja audytowa chciałaby zastosować stratyfikację także w odniesieniu do jednostek o niskiej wartości, należy dokonać alokacji obliczonej liczebności próby do poszczególnych warstw zgodnie z metodami sugerowanymi w sekcji 6.1.2.2 (jeżeli dobór opiera się na równym prawdopodobieństwie) lub 6.3.2.2 (jeżeli dobór opiera na prawdopodobieństwie proporcjonalnym do wielkości).

Jeżeli niemożliwe jest określenie kryteriów stratyfikacji (które zdaniem audytora mogą przyczynić się do tworzenia większej ilości jednorodnych subpopulacji pod względem oczekiwanych błędów lub poziomów błędu) oraz przede wszystkim jeżeli nie można zaobserwować istotnej zmienności wydatków pozycji populacji, wówczas można zastosować schemat niestratyfikowanego niestatystycznego doboru próby. W takim przypadku próbę wybiera się bezpośrednio z całej populacji bez uwzględniania jakichkolwiek subpopulacji.

6.4.3 Liczebność próby

W przypadku niestatystycznego doboru próby liczebność próby oblicza się w oparciu o profesjonalny osąd i z uwzględnieniem poziomu pewności otrzymanego w ramach audytów systemu. Ostatecznym celem jest uzyskanie liczebności próby wystarczającej, aby umożliwić instytucji audytowej osiągnięcie prawdopodobnych wniosków dotyczących populacji i opracowanie ważnej opinii z audytu (por. art. 127 ust. 1 rozporządzenia w sprawie wspólnych przepisów).

Jeżeli chodzi o okres programowania 2014–2020 oraz zgodnie z art. 127 ust. 1 rozporządzenia w sprawie wspólnych przepisów niestatystyczny dobor próby powinien obejmować co najmniej 5% operacji39 i 10% wydatków. Ponieważ w rozporządzeniu

39 W przypadku okresu programowania 2007–2013 Komisja twierdzi, że liczebność próby w ramach niestatystycznego doboru próby powinna obejmować co najmniej 10% operacji (por. sekcja 7.4.1 wytycznych dotyczących metod doboru próby COCOF_08-0021-03_EN z 4.4.2013 r.).
jest mowa o minimalnym pokryciu, progi te odpowiadają „najlepszemu możliwemu scenariuszowi” o wysokim poziomie pewności zapewnionym przez system. Zgodnie z załącznikiem 3 do MSRF 530 im wyższa jest ocena audytora w odniesieniu do ryzyka wystąpienia istotnej nieprawidłowości, tym większa musi być liczebność próby. Wymóg dotyczący 10 % zadeklarowanych wydatków (art. 127 ust. 1 rozporządzenia w sprawie wspólnych przepisów) odnosi się do wydatków w próbie, niezależnie od zastosowania doboru podpróbki. Oznacza to, że próba odpowiada co najmniej 10 % zadeklarowanych wydatków, jednak w przypadku zastosowania doboru podpróbki wydatki skutecznie poddane audytowi mogą być w rzeczywistości mniejsze, pod warunkiem, że instytucja audytowa może sporządzić ważną opinię z audytu (por. sekcja 6.4.10).

Nie obowiązuje żadna stała reguła wyboru liczebności próby w oparciu o poziom pewności ze strony audytów systemu, ale jako odniesienie, więc podczas określania liczebności próby w ramach niestatystycznego doboru próby instytucja audytowa może rozważyć następujące orientacyjne progi

<table>
<thead>
<tr>
<th>Poziom pewności z audytów systemu</th>
<th>Zalecane pokrycie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w odniesieniu do operacji</td>
</tr>
<tr>
<td>Działa dobrze. Nie wymaga żadnych lub wymaga jedynie niewielkich usprawnień usprawnień.</td>
<td>5 %</td>
</tr>
<tr>
<td>System funkcjonuje. Wymaga usprawnień.</td>
<td>5–10 % (określone przez instytucję audytową w oparciu o profesjonalny osąd)</td>
</tr>
<tr>
<td>Działa częściowo. Wymaga usprawnień.</td>
<td>10–15 % (określone przez instytucję audytową w</td>
</tr>
</tbody>
</table>

40 Te wartości odniesienia można oczywiście zmienić zgodnie z profesjonalnym osądem instytucji audytowej i wszelkimi dodatkowymi informacjami, jakie instytucja ta może posiadać na temat ryzyka wystąpienia istotnej nieprawidłowości.
Poziom pewności z audytów systemu	Zalecane pokrycie
oparciu o profesjonalny osąd | profesjonalny osąd
zasadniczo nie działa. | 15–20 % (określone przez instytucję audytową w oparciu o profesjonalny osąd)
10–20 % (określone przez instytucję audytową w oparciu o profesjonalny osąd)

Tabela 6. Zalecane pokrycie w przypadku niestatystycznego doboru próby

6.4.4 Dobór próby

Próbę z dodatniej populacji dobiera się metodą losową. W szczególności doboru można dokonać, stosując albo:

- metodę doboru próby na podstawie równego prawdopodobieństwa (gdy każda jednostka próby ma jednakową szansę na to, że zostanie wybrana, niezależnie od kwoty wydatków zadeklarowanych w jednostce próby), jak w przypadku doboru losowego prostego (por. sekcje 6.1.1 i 6.1.2 zawierające odniesienie do doboru losowego prostego i objętego stratyfikacją doboru losowego prostego); lub
- prawdopodobieństwo proporcjonalne do wielkości (wydatki) (gdy dokonuje się wyboru losowego pierwszego elementu próby, a następnie wybiera się kolejne elementy za pomocą interwalu, aż do osiągnięcia pożądaną liczności próby; podczas takiego wyboru stosuje się jednostkę monetarną jako zmienną pomocniczą do celów doboru próby), jak w przypadku MUS (por. sekcje 6.3.1 i 6.3.2 zawierające odniesienie do metody doboru próby na podstawie jednostki monetarnej i objętej stratyfikacją metody doboru próby na podstawie jednostki monetarnej).

6.4.5 Prognozowanie

Należy pamiętać, że stosowanie metody niestatystycznego doboru próby nie wyklucza konieczności prognozowania błędów obserwowanych w próbie w odniesieniu do populacji. Podczas prognozowania należy uwzględnić schemat doboru próby tj. ewentualne istnienie stratyfikacji, rodzaj doboru (równie prawdopodobieństwo lub prawdopodobieństwo proporcjonalne do wielkości) oraz wszelkie inne istotne cechy schematu. Wykorzystanie statystyk doboru prostego (takich jak poziom błędu próby) jest możliwe tylko w bardzo szczególnych okolicznościach, gdy próbkowanie jest zgodne z takimi statystykami. Na przykład poziom błędu próby można wykorzystać jedynie w celu prognozowania błędów w stosunku do populacji w ramach schematu bez jakiegokolwiek poziomu stratyfikacji, w oparciu o dobór próby na podstawie równego prawdopodobieństwa i estymację ilorazową. Jedyna istotna różnica między
statystycznym a niestatystycznym doborem próby jest zatem taka, że w przypadku tego drugiego nie oblicza się poziomu dokładności i w rezultacie górnej granicy błędu.

6.4.5.1 Dobór próby na podstawie równego prawdopodobieństwa

Jeżeli jednostki dobrano z równym prawdopodobieństwem, błąd przewidywany powinien opierać się na jednej z metod prognozowania opisanych w sekcji 6.1.1.3 tj. estymacji wartości na podstawie średniej lub estymacji ilorazowej.

Estymacja wartości na podstawie średniej (błędy bezwzględne)
Należy pomnożyć średni błąd na operację obserwowany w próbie przez liczbę operacji w populacji, co daje błąd przewidywany:

\[EE_1 = N \times \frac{\sum_{i=1}^{n} E_i}{n} \]

Estymacja ilorazowa (poziomy błędu)
Należy pomnożyć średni poziom błędu obserwowany w próbie przez wartość księgową na poziomie populacji:

\[EE_2 = BV \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i} \]

W powyższym wzorze poziom błędu próby stanowi po prostu iloraz całkowitej kwoty błędu w próbie i całkowitej kwoty wydatków dla jednostek w próbie (wydatki objęte audytem).

Zaleca się, aby wyboru między tymi dwiema metodami prognozowania dokonywano na podstawie zalecenia zawartego w sekcji 6.1.1.3 w odniesieniu do doboru losowego prostego.

6.4.5.2 Stratyfikowany dobór próby na podstawie równego prawdopodobieństwa

Na podstawie losowo wybranych prób operacji \(H \) (warstwy \(H \)) można ponownie obliczyć błąd przewidywany na poziomie populacji za pomocą dwóch zwykle stosowanych metod: estymacji wartości na podstawie średniej i estymacji ilorazowej. Prognozowanie opiera się na procedurze opisanej w sekcji 6.1.2.3 dotyczącej stratyfikowanego doboru losowego prostego.

Estymacja wartości na podstawie średniej
W każdej grupie populacji (warstwie) należy pomnożyć średnią błędów obserwowanych w próbie na operację przez liczbę operacji w warstwie \((N_h) \), a
następnie zsumować wszystkie wyniki uzyskane dla każdej warstwy, aby uzyskać błąd przewidywany:

\[EE_1 = \sum_{h=1}^{H} N_h \times \frac{\sum_{i=1}^{n_h} E_i}{n_h}. \]

Estymacja ilorazowa

W każdej grupie populacji (warstwie) należy pomnożyć średni poziom błędu obserwowany w próbie przez wartość księgową populacji na poziomie warstwy \((BV_h)\):

\[EE_2 = \sum_{h=1}^{H} BV_h \times \frac{\sum_{i=1}^{n_h} E_i}{\sum_{i=1}^{n_h} BV_i}. \]

Zaleca się, aby wybór między tymi dwiema metodami dokonywano na podstawie czynników przedstawionych w odniesieniu do metody nieobjętej stratyfikacją.

Jeżeli zidentyfikowano warstwę objętą audytem w 100% i wyłączono ją wcześniej z populacji, wówczas całkowitą kwotę błędu obserwowanego w tej warstwie wyczerpującej należy dodać do powyższego szacunku (\(EE_1\) lub \(EE_2\)), aby uzyskać ostateczną prognozę kwoty błędu w całej populacji.

6.4.5.3 Dobór na podstawie prawdopodobieństwa proporcjonalnego do wydatków

Jeżeli jednostki dobrano z prawdopodobieństwem proporcjonalnym do wartości wydatków, błąd przewidywany należy określić na podstawie metody prognozowania przedstawionej w sekcji 6.3.1.4 (metody doboru próby na podstawie jednostki monetarnej).

W przypadku warstwy wyczerpującej, tj. warstwy zawierającej jednostki próby o wartości księgowej wyższej niż wartość graniczna, \(BV_i > \frac{BV}{n}\), błąd przewidywany stanowi po prostu sumę błędów wykrytych w pozycjach należących do tej warstwy:

\[EE_e = \sum_{i=1}^{n_e} E_i \]

W przypadku warstwy niewyczerpującej, tj. warstwy zawierającej jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, \(BV_i \leq \frac{BV}{n}\), błąd przewidywany wynosi:

\[EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_i}{BV_i} \]
Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[EE = EE_e + EE_s \]

6.4.5.4 Stratyfikowany dobór na podstawie prawdopodobieństwa proporcjonalnego do wydatków

Jeżeli jednostki dobrano z prawdopodobieństwem proporcjonalnym do wartości wydatków, a populację poddano stratyfikacji zgodnie z określonymi kryteriami, błąd przewidywany należy określić na podstawie metody prognozowania przedstawionej w sekcji 6.3.2.4 (metoda stratyfikowanego doboru próby na podstawie jednostki monetarnej).

Prognozę błędów dla populacji sporządza się w inny sposób dla jednostek należących do grup wyczerpujących niż dla pozycji w grupach niewyczerpujących.

W przypadku grup wyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej wyższej niż wartość graniczna, \(BV_{hi} > \frac{BV_h}{n_h} \), błąd przewidywany stanowi sumę błędów wykrytych w pozycjach należących do tych grup:

\[EE_e = \sum_{h=1}^{H} \sum_{i=1}^{n_h} E_{hi} \]

W przypadku grup niewyczerpujących, tj. grup zawierających jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, \(BV_{hi} \leq \frac{BV_h}{n_h} \), błąd przewidywany wynosi:

\[EE_s = \sum_{h=1}^{H} \sum_{i=1}^{n_{sh}} \sum_{i=1}^{n_{sh}} \frac{E_{hi}}{BV_{hi}} \]

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[EE = EE_e + EE_s \]
6.4.6 Ocena

W każdej z wcześniej wymienionych strategii błąd przewidywany porównuje się następnie z maksymalnym dopuszczalnym błędem (iloraz istotności i wydatków populacji):

- jeżeli nie przekracza błędu dopuszczalnego, stwierdzamy wówczas, że populacja nie zawiera istotnego błędu;
- jeżeli przekracza błąd dopuszczalny, stwierdzamy wówczas, że populacja zawiera istotny błąd.

Pomimo ograniczeń (polegających na tym, że obliczenie górnej granicy błędu nie jest możliwe i w związku z tym nie ma żadnej kontroli nad ryzykiem audytu) przewidywany poziom błędu stanowi najdokładniejszy szacunek błędu w populacji, w związku z czym można go porównać z progiem istotności w celu stwierdzenia, czy populacja zawiera istotne nieprawidłowości.

6.4.7 Przykład 1 – dobór próby z prawdopodobieństwem proporcjonalnym do wielkości

Załóżmy dodatnią populację obejmującą 36 operacji, w odniesieniu do której zadeklarowano wydatki w wysokości 22 031 228 EUR.

Populacja ta ma zwykle niewystarczającą liczebność, aby dokonać audytu z zastosowaniem statystycznego doboru próby. Ponadto dobór próby wniosków o płatność w celu zwiększenia liczebności populacji jest niemożliwy. W związku z tym instytucja audytowa podejmuje decyzję o zastosowaniu niestatystycznego podejścia. Ze względu na dużą zmienność w wydatkach w odniesieniu do tej populacji instytucja audytowa podejmuje decyzję o doborze próby z zastosowaniem proporcjonalnego do wielkości.

Instytucja audytowa stwierdza, że system zarządzania i kontroli „zasadniczo nie działa” i w związku z tym podejmuje decyzję o doborze liczebności próby stanowiącej 20 % populacji operacji. W tym przypadku jest to 20 % x 36= 7,2 zaokrągленne w górę do 8.

Chociaż dostęp do pokrycia wydatków populacji można uzyskać jedynie po doborze próby, należy oczekiwać, że dobór 20 % jednostek populacji dokonany wraz z wyborem prawdopodobieństwa proporcjonalnego do wielkości, da w efekcie pokrycie wydatków co najmniej w 20 %.

Po pierwsze, konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytorem.
w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej \((BV)\) i planowanej liczebności próby \((n)\). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_i > BV/n\)), zostaną umieszczone w warstwie objętej audytem w 100 %. W omawianym przypadku wartość graniczna wynosi 22 031 228/8=2 753 904 EUR\(^{41}\).

Poniższa tabela zawiera podsumowanie tych wyników:

<table>
<thead>
<tr>
<th>Zadeklarowane wydatki (DE) w okresie odniesienia</th>
<th>22 031 228 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji (liczba operacji)</td>
<td>36</td>
</tr>
<tr>
<td>Poziom istotności (maksymalnie 2 %)</td>
<td>2 %</td>
</tr>
<tr>
<td>Dopuszczalna nieprawidłowość (TE)</td>
<td>440 625 EUR</td>
</tr>
<tr>
<td>Wartość graniczna</td>
<td>2 753 904 EUR</td>
</tr>
<tr>
<td>Liczba jednostek powyżej wartości granicznej</td>
<td>4</td>
</tr>
<tr>
<td>Wartość księgowa populacji powyżej wartości granicznej</td>
<td>12 411 965 EUR</td>
</tr>
<tr>
<td>Liczebność pozostałej populacji (liczba operacji)</td>
<td>32</td>
</tr>
<tr>
<td>Pozostała wartość populacji</td>
<td>9 619 263,00 EUR</td>
</tr>
</tbody>
</table>

IA umieszcza w odrębnej warstwie wszystkie operacje o wartości księgowej wyższej niż 2 753 904 EUR, co odpowiada 4 operacjom o wartości 12 411 965 EUR. Kwota błędu zidentyfikowanego w tych czterech kwotach operacji wynosi

\[EE_e = 80,028. \]

Interwał losowania dla pozostałej populacji jest równy wartości księgowej w warstwie niewyczerpującej \((BV_s)\) (różnica całkowitej wartości księgowej i wartości księgowej czterech operacji należących do górnej warstwy) podzielonej przez liczbę operacji, z których się losuje (8 minus 4 operacje w górnej warstwie).

\[\text{Sampling interval} = \frac{BV_s}{n_s} = \frac{22,031,228 - 12,411,965}{4} = 2,404,816^{42} \]

\(^{41}\) Należy zauważyć, że instytucja audytowa może również podjąć decyzję o zastosowaniu niższej wartości granicznej, niż ta obliczona na podstawie stosunku dodatniej populacji do liczby wybranych operacji w celu zwiększenia pokrycia zadeklarowanych wydatków.

\(^{42}\) W praktyce może się zdarzyć, że po obliczeniu interwału losowania na podstawie wydatków i liczebności próby warstwy objętej próbą niektóre jednostki próby nadal będą wykazywać wydatki wyższe od danego interwału losowania \(BV_s/n_s\) (mimo że wcześniej nie wykazywały wydatków wyższych od wartości granicznej \((BV/n)\)). W rzeczywistości wszystkie pozycje, których wartość księgowa jest nadal wyższa od tego interwału \(BV_i > BV_s/n_s\), także należy dodać do warstwy o wysokiej wartości. Jeżeli ma miejsce taka sytuacja, po przemieszczeniu nowych pozycji do warstwy o wyższej wartości należy ponownie obliczyć interwał losowania dla warstwy doboru próby, uwzględniając nowe wartości dla stosunku \(BV_i/n_i\). Tę metodę iteracyjną można stosować kilka razy, aż do momentu, gdy żadna jednostka nie będzie wykazywać wydatków wyższych od interwału losowania.

165
Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 32 operacje populacji, a następnie tworzy sekwencyjną łączną zmienią wartości księgowej. Następnie dobiera się próbę, wybierając każdą pozycję zawierającą 2 404 816 jednostkę monetarną. Wydatki objęte audytem stanowią całkowitą wartość księgową projektów o wysokiej wartości, tj. 12 411 965 EUR, powiększającą o wydatki objęte audytem w pozostałą próbę populacji, tj. 1 056 428 EUR. Całkowite wydatki objęte audytem wynoszą 13 468 393 EUR, co stanowi 61,1 % całkowitych wydatków zadeklarowanych zgodnie z wnioskiem. Mając na uwadze poziom pewności systemu zarządzania i kontroli, instytucja audytowa uważa, że poziom wydatków objętych audytem jest wystarczający, aby zapewnić wiarygodność wniosków z audytu.

Wartość błędu ekstrapolowanego dla warstwy o niskiej jakości wynosi:

\[EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} EE_{si} \]

gdzie \(BV_s \) oznacza całkowitą wartość księgową pozostałą populacji, zaś \(n_s \) oznacza odpowiadającą jej liczebność próbki pozostałą populacji. Należy zauważyć, że wspomniany błąd przewidywany jest równy sumie poziomów błędów pomnożonej przez interwał losowania. Suma poziomów błędów wynosi 0,0272:

\[EE_s = \frac{9,619,623}{4} \times 0,0272 = 65,411. \]

Całkowity błąd ekstrapolowany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[EE = EE_e + EE_s = 80,028 + 65,411 = 145,439 \]

Błąd przewidywany porównuje się następnie z maksymalnym dopuszczalnym błędem (2 % z 22 031 228 EUR=440 625 EUR). Błąd przewidywany jest mniejszy niż poziom istotności.

43 W przypadku gdyby wybrana operacja musiała zostać zastąpiona z powodu ograniczeń nałożonych przepisami zawartymi w art. 148, nową operację lub nowe operacje należy wybrać na podstawie prawdopodobieństwa proporcjonalnego do wielkości. Przykład takiego zastąpienia przedstawiono w sekcji 7.10.3.1.
Na podstawie tych wyników audytor może racjonalnie stwierdzić, że populacja nie zawiera istotnego błędu. Nie można jednak określić osiągniętej dokładności, a poziom ufności tego wniosku jest nieznany.

Postępowanie w przypadku niewystarczającego pokrycia wydatków

Należy zauważyć, że jeżeli ze względu na specyfikę populacji nie osiągnięto progu wymaganego pokrycia wydatków, instytucja audytowa powinna wybrać dodatkową operację lub dodatkowe operacje na podstawie prawdopodobieństwa proporcjonalnego do wielkości. W takiej sytuacji nowe operacje / jednostki próbne, które zostaną objęte dodatkowym audytom należy wybrać z populacji, z wyłączeniem już wybranych operacji. Interwał wykorzystany do dokonania takiego wyboru należy obliczyć za pomocą interwału losowania $\frac{BV'}{n'}$, gdzie BV' odpowiada wartości księgowej warstwy o niskiej wartości, z wyłączeniem operacji już wybranych w tej warstwie, a n' odpowiada liczbie operacji, które chcemy dodać na potrzeby audytu warstwy o niskiej wartości.

6.4.8 Przykład 2 – dobór próby na podstawie równego prawdopodobieństwa

Załóżmy dodatnią populację obejmującą 48 operacji, w odniesieniu do której zadeklarowano wydatki w wysokości 10 420 247 EUR.

Populacja ta ma zwykle niewystarczającą liczebność, aby dokonać audytu z zastosowaniem statystycznego doboru próby. Ponadto dobór próby wniosków o płatność w celu zwiększenia liczebności populacji nie jest możliwy. W związku z tym instytucja audytowa podejmuje decyzję o zastosowaniu niestatystycznego podejścia i stratyfikacji operacji o wysokiej wartości, ponieważ zidentyfikowano kilka operacji o wyjątkowo dużymi wydatkami. Instytucja audytowa postanowiła zidentyfikować te operacje, ustanawiając poziom graniczny na 5% z kwoty 10 420 247 EUR, czyli 521 012 EUR.

Cechy charakterystyczne populacji podsumowano w poniższej tabeli:

Zadeklarowane wydatki w okresie odniesienia	10 420 247 EUR
Liczebność populacji (liczba operacji)	48
Poziom istotności (maksymalnie 2%)	2%
Dopuszczalna nieprawidłowość (TE)	208 405 EUR
Wartość graniczna (5% całkowitej wartości księgowej)	521 012 EUR

W poniższej tabeli podsumowano wyniki:

| Liczba jednostek powyżej wartości granicznej | 12 |
Wartość księgowa populacji powyżej wartości granicznej 8 785 634 EUR
 liczebność pozostałej populacji (liczba operacji) 36
 Pozostała wartość populacji 1 634 613 EUR

System zarządzania i kontroli zaklasyfikowano do kategorii 3 „Działa częściowo, potrzebne są znaczne usprawnienia”, w związku z tym podjęto decyzję o doborze liczebności próby w wysokości 15% pozostałej populacji operacji. Tj. 15% x 48 = 7,2 zaokrąglone w górę do 8. Instytucja audytowa podejmuje decyzję o pobraniu większej części operacji w warstwie o wysokiej wartości. Instytucja audytowa podejmuje decyzję o objęciu audytem 50% operacji w warstwie o wysokiej wartości, czyli sześciu operacji. Pozostałe operacje (8-6=2) wybiera się z pozostałości populacji. Instytucja audytowa postanawia jednak powiększyć tę próbę z dwóch na trzy operacje w celu osiągnięcia lepszej reprezentacji tej warstwy. Ze względu na małą zmienność w wydatkach w odniesieniu do tej populacji w każdej warstwie audytor podejmuje decyzję o doborze próby w populacji z zastosowaniem równego prawdopodobieństwa w obu warstwach. Chociaż na podstawie równego prawdopodobieństwa oczekuje się, że próba ta doprowadzi do pokrycia co najmniej 20% wydatków populacji ze względu na wysokie pokrycie warstwy o wysokiej wartości. Rzeczywiście poprzez pomnożenie liczebności próby przez średnią wartość księgową operacji w każdej warstwie instytucja audytowa planuje dokonać audytu kwoty 4 392 817 EUR w warstwie o wysokiej wartości i kwoty 136 218 EUR w pozostałej populacji, która stanowi około 43,5% całkowitych wydatków. Próba sześciu operacji jest losowo wybierana w warstwie o wysokiej wartości. Wydatki w próbce objętej audytem wynoszą 4 937 894 EUR. Nie stwierdzono żadnych błędów w tych sześciu operacjach. Dokonuje się również doboru próby trzech operacji pozostałej populacji operacji. Próba wydatków objętych audytem w pozostałojej populacji wynosi 153 647 EUR. Zidentyfikowany całkowity błąd próby w tej warstwie wynosi 4 374 EUR. Całkowite wydatki objęte audytem wynoszą 153 647 EUR + 4 937 894 EUR = 5 091 541 EUR, co stanowi 48,9% całkowitych zadeklarowanych wydatków. Mając na uwadze poziom pewności systemu zarządzania i kontroli, instytucja audytowa uważa, że poziom wydatków objętych audytem jest wystarczający, aby zapewnić wiarygodność wniosków z audytu. Aby podjąć decyzję dotyczącą zastosowania estymacji wartości na podstawie średniej lub estymacji ilorazowej, instytucja audytowa sprawdziła dane z próby w celu
zweryfikowania warunku $\frac{\text{COVE}_{\text{BV}}}{\text{VAR}_{\text{BV}}} > ER/2$, który został potwierdzony. Następnie podjęła decyzję o zastosowaniu estymacji ilorazowej.

Wartość błędu ekstrapolowanego dla obu warstw wynosi:

$$EE = BV_e \times \frac{\sum_{i=1}^{6} E_i}{\sum_{i=1}^{6} BV_i} + BV_s \times \frac{\sum_{i=1}^{3} E_i}{\sum_{i=1}^{3} BV_i} = 0 + 1,634,613 \times \frac{4,374}{153,647} = 46,534.$$

gdzie BV_e i BV_s stanowią całkowite wartości księgowe warstw o wysokiej i niskiej wartości. Należy zauważyć, że błąd przewidywany jest równy poziomowi błędu w próbie pomnożonymu przez wartość księgową warstwy.

Błąd przewidywany porównuje się następnie z maksymalnym dopuszczalnym błędem (2 % z 10 420 247 EUR=208 405 EUR). Błąd przewidywany jest mniejszy niż poziom istotności.

Wniosek, jaki może zostać wyciągnięty z powyższego przykładu jest taki, że audytor może racjonalnie stwierdzić, że populacja nie zawiera istotnego błędu. Nie można jednak określić osiągniętej dokładności, a poziom ufności tego wniosku jest nieznany.

6.4.9 Niestatystyczny dobór próby – dwa okresy

Podobnie jak w przypadku statystycznych metod doboru próby instytucja audytowa może podjąć decyzję o przeprowadzeniu procesu doboru próby w kilku okresach w ciągu roku (zazwyczaj dwa półroczka), stosując podejście oparte na niestatystycznym doborze próby. Największa korzyść wynikająca z tego podejścia nie wiąże się ze zmniejszeniem liczebności próby, ale głównie z możliwością rozłożenia czynności audytowych na cały rok, a tym samym zmniejszenia nakładu pracy, która zostałaby wykonana pod koniec roku na podstawie jednej obserwacji.

Przy takim podejściu populację z danego okresu odniesienia / roku obrachunkowego dzieli się na dwie subpopulacje, z których każda odpowiada operacjom / wnioskom o płatności i wydatkom z każdego półroczca. W każdym półroczu losuje się niezależne próbę z zastosowaniem albo doboru próby na podstawie równego prawdopodobieństwa albo prawdopodobieństwa proporcjonalnego do wielkości (wydatki), określonego mianem PPS.

Dwa przykłady opisane poniżej (jeden dotyczący doboru próby na podstawie równego prawdopodobieństwa i drugi dotyczący doboru próby na podstawie prawdopodobieństwa proporcjonalnego do wielkości) przedstawiają dobór próby obejmujący dwa okresy i opierający się na niestatystycznych metodach doboru próby. Należy zauważyć, że schemat doboru próby i metody prognozowania stosowane w odniesieniu do doboru próby obejmującego dwa okresy w ramach niestatystycznego
doboru próby są takie same jak te wykorzystywane w statystycznym doborze próby tj. doborze losowym prostym w przypadku doboru próby na podstawie równego prawdopodobieństwa oraz MUS (podejście standardowe) w przypadku doboru próby na podstawie prawdopodobieństwa proporcjonalnego do wielkości. Jedyne różnice są następujące:
 – liczebność próby nie jest obliczana za pomocą określonego wzoru,
 – dokładność nie jest obliczana.

Należy jednak zwrócić uwagę na szczególny wymóg w odniesieniu do niestatystycznego doboru próby nałożony przepisami prawnymi w odniesieniu do okresu programowania 2014–2020, który dotyczy pokrycia co najmniej 10% wydatków zadeklarowanych Komisji w ciągu roku obrachunkowego i 5% operacji. W przypadku doboru próby obejmującego jeden okres, dobór próby na podstawie równego prawdopodobieństwa skutkuje poziomem pokrycia wydatków zbliżonym do frakcji próby stosowanej w celu określenia liczby operacji. W przypadku doboru próby obejmującego dwa lub wiele okresów poziom pokrycia jest zwykle mniejszy ze względu na fakt, że niektóre operacje (tj. operacje zadeklarowane w więcej niż jednym okresie audytu) są sprawdzane tylko pod kątem kosztów zadeklarowanych w ciągu roku.

W związku z tym zastosowanie doboru próby obejmującego dwa okresy lub wiele okresów może wymagać pokrycia większej liczby operacji niż w przypadku doboru próby obejmującego jeden okres w celu osiągnięcia wymaganego progu pokrycia wydatków.

Należy zauważyć, że ponieważ audyt operacji będzie dotyczył wydatków zadeklarowanych w części okresu odniesienia, średnie obciążenie pracami audytowymi w doborze próby obejmującym dwa okresy i wiele okresów powinno być mniej czasochłonne. Pomimo to całkowite obciążenie pracami audytowymi w danym roku obrachunkowym powinno jednak wzrosnąć w celu osiągnięcia pożadanego pokrycia wydatków.

Aby rozwiązać ten problem instytucja audytowa może podjąć decyzję o zastosowaniu warstwy o wysokiej wartości, która mogłaby ograniczyć liczbę operacji sprawdzanych w danym roku obrachunkowym do wymaganego minimum (ponieważ operacje z większymi wydatkami będą bardziej reprezentatywne w próbie).

6.4.9.1 Niestatystyczny dobór próby – dwa okresy – dobór próby na podstawie równego prawdopodobieństwa

44 Zob. także sekcja 6.4.3 powyżej.
Aby zmniejszyć obciążenie pracami audytowymi pod koniec okresu odniesienia, instytucja audytowa postanowiła rozłożyć prace audytowe na dwa okresy. Po zakończeniu pierwszego półrocza instytucja audytowa przeanalizowała populację podzieloną na dwie grupy odpowiadające każdemu z dwóch półrocz. Populację na koniec pierwszego półrocza można podsumować w następujący sposób:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane na koniec pierwszego półrocza</th>
<th>19 930 259 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocz)</td>
<td>41</td>
</tr>
</tbody>
</table>

Na podstawie zgromadzonych doświadczeń instytucja audytowa wie, że zazwyczaj nie wszystkie operacje zawarte w programie na koniec okresu odniesienia są aktywne w populacji pierwszego półrocza. Ponadto oczekuje się, że wydatki zadeklarowane w drugim półroczu będą dwukrotnie wyższe niż wydatki zadeklarowane w pierwszym półroczu. Tym wzrostom wydatków między dwoma półroczami towarzyszy mniejszy wzrost liczby operacji. Instytucja audytowa spodziewa się 62 aktywnych operacji w drugim półroczu (jedna operacja zostanie zakończona w pierwszym półroczu, pozostałe 40 operacji pierwszego półrocza będą kontynuowanych w drugim półroczu, przy czym oczekuje się, że wydatki zostaną zadeklarowane dla 22 nowych operacji w drugim półroczu). Dobór próby według wniosku o płatność nie zwiększyłby liczebności populacji, ponieważ w naszym hipotetycznym przykładzie opartym na przepisach dotyczących programów krajowych istnieje jeden wniosek o płatność w danym półroczu. Instytucja audytowa podejmuje decyzję o zastosowaniu niestatystycznego podejścia poprzez dobór próby na podstawie równego prawdopodobieństwa.

Na podstawie tych założeń w poniższej tabeli przedstawiono podsumowanie populacji:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane na koniec pierwszego półrocza</th>
<th>19 930 259 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wydatki zadeklarowane w drugim półroczu (prognoza) (19 930 259 EUR*2 = 39 860 518 EUR)</td>
<td>39 860 518 EUR</td>
</tr>
<tr>
<td>Całkowite wydatki przewidywane na dany okres odniesienia</td>
<td>59 790 777 EUR</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocz)</td>
<td>41</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – drugie półrocz, przewidywana)</td>
<td>62(40+22)</td>
</tr>
<tr>
<td>Poziom istotności (maksymalnie 2 %)</td>
<td>2 %</td>
</tr>
<tr>
<td>Błąd dopuszczalny (TE)</td>
<td>1 195 816 EUR</td>
</tr>
</tbody>
</table>

Instytucja audytowa stwierdza, że system zarządzania i kontroli „Działa częściowo, potrzebne są znaczne usprawnienia” i w związku z tym podejmuje decyzję o doborze liczebności próby stanowiącej 15 % liczby operacji (zob. sekcja 6.4.3). W tym przypadku w okresie odniesienia przeprowadzono w sumie 63 operacje45, w ramach

45 62 aktywne operacje i jedna operacja zakończona w pierwszym półroczu.
których wydatki zadeklarowano w obu okresach doboru próby (41 operacji rozpoczętych w pierwszym półroczu i 22 nowe operacje rozpoczęte w drugim półroczu). Ogólna liczebność próby dla całego roku wynosi więc:

\[n = 0.15 \times 63 \approx 10 \]

Alokacja próby według półrocza odbywa się następująco:

\[n_1 = \frac{N_1}{N_1 + N_2} = \frac{41}{41 + 62} \times 10 \approx 4 \]

oraz

\[n_2 = n - n_1 = 6 \]

Instytucja audytowa podjęła decyzję o zastosowaniu warstwy o wysokiej wartości, co mogłoby ograniczyć liczbę operacji sprawdzanych w danym roku obrachunkowym do wymaganego minimum (ponieważ operacje z większymi wydatkami będą bardziej reprezentatywne w próbie).

Jeżeli chodzi o populacje pierwszego półrocza, przedstawiony przykład obejmuje jedną dużą operację o całkowitej wartości 3 388 144 EUR, przy czym pozostałe 40 operacji ma o wiele mniejszą wartość. Na podstawie profesjonalnego osądu instytucja audytowa postanowiła zastosować warstwę o wysokiej wartości z jedną operacją (tj. największą operacją w populacji pierwszego półrocza). Za pomocą tej stratyfikacji instytucja audytowa spodziewała się pokryć co najmniej 20% całkowitych wydatków w pierwszym półroczu poprzez objęcie czterech operacji audytu.

Pozostałe trzy operacje próby wybrano losowo z populacji pierwszego semestru, z wyłączeniem operacji z warstwy o wysokiej wartości (tj. z populacji o wartości 16 542 115 EUR). Wartość całkowita trzech operacji wyniosła 1 150 398 EUR.

Próba złożona z czterech operacji z pierwszego półrocza pokryła 22,77% wydatków zadeklarowanych w pierwszym półroczu.

Instytucja audytowa wykryła błąd w wysokości 127 EUR w ramach operacji z warstwy o wysokiej wartości i błąd o łącznej kwocie 4 801 EUR w ramach trzech wybranych losowo operacji.

46 Błąd ten można wykryć podczas weryfikacji wszystkich faktur (pozycje wydatków) w ramach danej operacji z warstwy o wysokiej wartości zadeklarowanej w pierwszym półroczu. Ewentualnie można wybrać podpróbę obejmującą co najmniej 30 faktur (pozycje wydatków). W przypadku podprób wydatków błąd ten dotyczyłby błędu ekstrapolowanego na podstawie wybranych pozycji wydatków do poziomu operacji. Należy zapewnić, aby podpróbą faktur wybieraną była losowo lub ewentualnie aby można było zastosować stratyfikację na poziomie operacji, przeprowadzając wyczerpującą weryfikację niektórych warstw i losowo wybranych pozycji wydatków w pozostałych warstwach.
Na koniec drugiego półrocza dostępnych jest więcej informacji, w szczególności znana jest prawidłowa kwota łącznych wydatków i liczba operacji aktywnych w drugim półroczu.

Instytucja audytowa zdaje sobie sprawę, że w przyjętym na koniec pierwszego półrocza założeniu dotyczącym wydatków całkowitych wynoszących 39 860 518 EUR, nieznacznie zaniżono ich faktyczną wartość wynoszącą 40 378 264 EUR. Liczba operacji aktywnych w drugim półroczu jest nieco mniejsza niż pierwotnie oczekiwano. W rezultacie instytucja audytowa nie musi zmieniać liczebności próby w drugim półroczu, ponieważ pierwotnie prognozowana liczba operacji w drugim półroczu jest zbliżona do liczby rzeczywistej. W poniższej tabeli podsumowano dane liczbowe:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Prognoza sporządzona w pierwszym półroczu</th>
<th>Koniec drugiego półroczu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba operacji w drugim półroczu</td>
<td>62</td>
<td>61</td>
</tr>
<tr>
<td>Całkowite wydatki w drugim półroczu</td>
<td>39 860 518 EUR</td>
<td>40 378 264 EUR</td>
</tr>
</tbody>
</table>

Uwzględniając specyfikę populacji instytucja audytowa postanawia ponownie zastosować stratyfikację według wydatków, określając warstwę o wysokiej wartości na podstawie progu 5% wydatków populacji drugiego półrocza. Trzy operacje przekraczają ten próg, a ich łączna wartość wynosi 6 756 739 EUR. Pozostałe trzy operacje (6 operacji pokrytych w drugim półroczu minus 3 operacje z warstwy o wysokiej wartości) wybrano losowo z populacji 58 operacji z warstwy o niskiej wartości w drugim półroczu, tj. populacji o wartości 33 621 525 EUR. Wartość całkowita próby losowej w drugim półroczu wynosi 1 200 987 EUR. Instytucja audytowa ustaliła, że wartość całkowita próby w drugim półroczu (7 957 726 EUR=1 200 987+6 756 739) jest nieznacznie poniżej progu 20% w drugim półroczu. Ponieważ całkowita wartość próby w obu półroczech przekracza wymagane minimum 20%, stwierdzono, że nie jest potrzebna żadna dodatkowa próba w celu zapewnienia pokrycia wydatków.

Instytucja audytowa wykryła błąd w wysokości 432 076 EUR w trzech operacjach z warstwy o wysokiej wartości i błąd w wysokości 5 287 EUR w warstwie o niskiej wartości.

Uwzględniając korelację między błędami warstw o niższej wartości a wydatkami, instytucja audytowa decyduje się prognozować błąd przy użyciu estymacji ilorazowej.
Wartość błędu ekstrapolowanego w obu półrocach określona za pomocą estymacji ilorazowej47 wynosi:

\[
EE = EE_{e1} + EE_{e2} + BV_{s1} \times \frac{\sum_{i=1}^{n_{s1}} E_{s1i}}{\sum_{i=1}^{n_{s1}} BV_{s1i}} + BV_{s2} \times \frac{\sum_{i=1}^{n_{s2}} E_{s2i}}{\sum_{i=1}^{n_{s2}} BV_{s2i}}
\]

gdzie:
– \(EE_{e1} \) i \(EE_{e2} \) odnoszą się do błędów wykrytych w warstwach o wysokiej wartości w pierwszym i drugim półroczu;
– \(BV_{s1} \) i \(BV_{s2} \) odnoszą się do wartości księgowych warstw niewyczerpujących w pierwszym i drugim półroczu;
– \(\frac{\sum_{i=1}^{n_{s1}} E_{s1i}}{\sum_{i=1}^{n_{s1}} BV_{s1i}} \) i \(\frac{\sum_{i=1}^{n_{s2}} E_{s2i}}{\sum_{i=1}^{n_{s2}} BV_{s2i}} \) odnoszą się odpowiednio do średniego poziomu błędu zaobserwowanego w warstwach niewyczerpujących w pierwszym i drugim półroczu.

Należy zauważyć, że błąd przewidywany jest równy sumie błędów wykrytych w warstwach o wysokiej wartości w obu półrocach i poziomom błędów w próbach losowych pomnożonych przez wartości księgowych tych prób losowych w odpowiedniej warstwie.

W szczególności w tym przypadku błąd ekstrapolowany na poziomie populacji wynosi:

\[
EE = 127 + 432,076 + 16,542,115 \times \frac{4,801}{1,150,398} + 33,621,524 \times \frac{5,287}{1,200,987} = 649,247,94
\]

(tj. 1,08 % wartości populacji)

Błąd przewidywany porównuje się następnie z maksymalnym dopuszczalnym błędem (2 % z 60 308 523 EUR=1 206 170 EUR). Błąd przewidywany jest mniejszy niż poziom istotności.

Nie można jednak określić osiągniętej dokładności, a poziom ufności tego wniosku jest nieznany.

\textbf{6.4.9.2 Niestatystyczny dobór próby – dwa okresy – dobór próby na podstawie prawdopodobieństwa proporcjonalnego do wielkości}

Aby zmniejszyć obciążenie pracami audytowymi pod koniec okresu odniesienia, instytucja audytowa postanowiła rozłożyć prace audytowe na dwa okresy. Po zakończeniu pierwszego półroczca instytucja audytowa przeanalizowała populację

47 W przypadku wartości na podstawie średniej wzór będzie wyglądał następująco:

\[
EE = EE_{e1} + EE_{e2} + \frac{N_{s1}}{n_{s1}} \sum_{i=1}^{n_{s1}} E_{s1i} + \frac{N_{s2}}{n_{s2}} \sum_{i=1}^{n_{s2}} E_{s2i}
\]
podzieloną na dwie grupy odpowiadające każdemu z dwóch półroczy. Populację na koniec pierwszego półrocza można podsumować w następujący sposób:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane na koniec pierwszego półrocza</th>
<th>16 930 259 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocze)</td>
<td>34</td>
</tr>
</tbody>
</table>

Na podstawie zgromadzonych wcześniej doświadczeń instytucja audytowa wie, że zazwyczaj nie wszystkie operacje zawarte w programie na koniec okresu odniesienia są aktywne w populacji pierwszego półrocza. Ponadto oczekuje się, że wydatki zadeklarowane w drugim półroczu będą dwa i pół razy wyższe niż wydatki zadeklarowane pod koniec pierwszego półrocza. Przewiduje się również wzrost liczby aktywnych operacji pod koniec drugiego półroczu, aczkolwiek będzie on mniejszy niż przewidywany wzrost wydatków. Instytucja audytowa spodziewa się 52 aktywnych operacji w drugim półroczu (dwie operacje zostaną zakończone w pierwszym półroczu, pozostałe 32 operacje pierwszego półrocza będą kontynuowane w drugim półroczu, przy czym oczekuje się, że wydatki zostaną zadeklarowane dla 20 nowych operacji w drugim półroczu). Dobór próby wniosków o płatność w celu zwiększenia liczebności populacji jest niemożliwy. W związku z tym instytucja audytowa podejmuje decyzję o zastosowaniu niestatystycznego podejścia.

Na podstawie tych założeń w poniższej tabeli przedstawiono podsumowanie populacji:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane na koniec pierwszego półrocza</th>
<th>16 930 259 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wydatki zadeklarowane w drugim półroczu (prognoza) (16 930 259 EUR*2,5 = 42 325 648 EUR)</td>
<td>42 325 648 EUR</td>
</tr>
<tr>
<td>Całkowite wydatki przewidywane na dany rok</td>
<td>59 255 907 EUR</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocze)</td>
<td>34</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – drugie półrocze, przewidywana)</td>
<td>52(32+20)</td>
</tr>
<tr>
<td>Poziom istotności (maksymalnie 2 %)</td>
<td>2 %</td>
</tr>
<tr>
<td>Błąd dopuszczalny (TE)</td>
<td>1 185 118 EUR</td>
</tr>
</tbody>
</table>

Instytucja audytowa stwierdza, że system zarządzania i kontroli „Działa częściowo, potrzebne są znaczne usprawnienia” i w związku z tym podejmuje decyzję o doborze liczebności próby w wysokości 15 % liczby operacji. Ponadto, dążąc do maksymalnego pokrycia wydatków za pomocą próby losowej, audytor podejmuje decyzje o doborze próby na podstawie prawdopodobieństwa proporcjonalnego do wielkości. W tym przypadku w okresie odniesienia przeprowadzono w sumie 54 operacje, w ramach których wydatki zadeklarowano w obu okresach doboru próby (34 operacje rozpoczęte w pierwszym półroczu i 20 nowych operacji rozpoczętych w drugim półroczu). Ogólna liczebność próby dla całego roku wynosi:

\[n = 0.15 \times 54 \approx 9 \]
Alokacja próby według półrocza odbywa się następująco:

\[\begin{align*}
 n_1 &= \frac{BV_1}{BV_1 + BV_2} = \frac{16,930,259}{16,930,259 + 42,325,648} \times 9 \approx 3 \\
 n_2 &= n - n_1 = 6
\end{align*} \]

Chociaż pokrycie wydatków populacji można ocenić dopiero po doborze próby, fakt, że 15% operacji wybrano wraz z doborem próby na podstawie prawdopodobieństwa proporcjonalnego do wielkości, spowoduje w przypadku danej populacji pokrycie wydatków co najmniej w 20%.

Po pierwsze, konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej wyczerpującymi pracami audytowymi. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej \((BV_1)\) i planowanej liczebności próby \((n_1)\). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna, zostaną umieszczone w wyczerpującej warstwie objętej audytym. W omawianym przypadku wartość graniczna wynosi 16 930 259 EUR/3 = 5 643 420 EUR.

Nie są prowadzone żadne operacje o wartości księgowej wyższej niż 5 643 420 EUR, w związku z czym interwał losowania odpowiada wartości granicznej tj. 5 643 420 EUR.

Poniższa tabela zawiera podsumowanie tych wyników:

<table>
<thead>
<tr>
<th>Wartość graniczna – pierwsze półrocze</th>
<th>5 643 420 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba operacji o wartości księgowej wyższej niż wartość graniczna – pierwsze półrocze</td>
<td>0</td>
</tr>
<tr>
<td>Wartość księgowa operacji o wartości księgowej wyższej niż wartość graniczna – pierwsze półrocze</td>
<td>0</td>
</tr>
<tr>
<td>(BV_{s1}) – wartość księgowa populacji z warstwy niewyczerpującej w pierwszym półroczu ((jakże w pierwszym półroczu nie prowadzono operacji powyżej wartości granicznej, wartość księgowa dotyczy populacji pierwszego półroczu))</td>
<td>16 930 259 EUR</td>
</tr>
<tr>
<td>(n_{s1}) – liczebność próby z warstwy niewyczerpującej w pierwszym półroczu</td>
<td>3</td>
</tr>
<tr>
<td>(SI_{s1}) – interwał losowania w pierwszym półroczu</td>
<td>5 643 420 EUR</td>
</tr>
</tbody>
</table>

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 34 operacje populacji, a następnie tworzy się sekwencjną łączną zmiennej wartości księgowej. Następnie dobiera się próbę, wybierając każdą pozycję zawierającą 5 643 420.
jednostkę monetarną. Wartość tych trzech operacji stanowi przedmiot audytu. Suma poziomów błędu dla pierwszego półrocza wynosi:

\[\sum_{i=1}^{3} \frac{E_{1i}}{BV_{1i}} = 0.066 \]

Wydatki w próbie objęte audytem wynoszą 6 145 892 EUR, co stanowi 36,3% całkowitych zadeklarowanych wydatków. Mając na uwadze poziom pewności systemu zarządzania i kontroli, instytucja audytowa uważa, że poziom wydatków objętych audytem jest wystarczający, aby zapewnić wiarygodność wniosków z audytu.

Na koniec drugiego półrocza dostępnych jest więcej informacji, w szczególności znana jest prawidłowa kwota łącznych wydatków i liczba operacji aktywnych w drugim półroczu.

Instytucja audytowa zdaje sobie sprawę, że w przyjętym na koniec pierwszego półrocza założeniu dotyczącym wydatków całkowitych wynoszących 42 325 648 EUR, zaniżono ich faktyczną wartość wynoszącą 49 378 264 EUR. Liczba operacji aktywnych w drugim półroczu jest mniejsza niż pierwotnie oczekiwano. W wyniku zmniejszenia liczby operacji można zmniejszyć próbę z drugiego półroczca. W poniższej tabeli zestawiono populację w drugim półroczu:

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Prognoza sporządzona w pierwszym półroczu</th>
<th>Koniec drugiego półroczu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba operacji w drugim półroczu</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>Całkowite wydatki w drugim półroczu</td>
<td>42 325 648 EUR</td>
<td>49 378 264 EUR</td>
</tr>
</tbody>
</table>

Całkowita liczba operacji zadeklarowanych w obu półroczech wyniosła więc 48 operacji (34 operacje rozpoczęte w pierwszym półroczu i 14 operacji rozpoczętych w drugim półroczu).

Uwzględniając tę korektę, liczebność próby drugiego półroczca, ponownie obliczona z powodu zmiany liczby operacji, wynosi:

\[n_2 = 0.15 \times 48 - 3 \approx 5 \]

Konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytem w

48 W przypadku gdyby wybrana operacja musiała zostać zastąpiona z powodu ograniczeń nałożonych przepisami zawartymi w art. 148, nową operację lub nowe operacje należy wybrać na podstawie prawdopodobieństwa proporcjonalnego do wielkości. Przykład takiego zastąpienia przedstawiono w sekcji 7.10.3.1.

49 46 operacji plus 2 operacje zakończone w drugim półroczu.
100 %. Wartość graniczna służąca do określenia tej górnej warstwy wynosi 9 875 653 EUR (49 378 264/5)⁵⁰. Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna, stanowią przedmiot audytu. Istnieją dwie operacje, których wartość księgowa jest większa niż wartość graniczna. Całkowita wartość księgowa tych operacji wynosi 21 895 357 EUR. W przypadku tych dwóch operacji stwierdzono łączną kwotę błędu w wysokości 56 823 EUR.

Liczebność próby, która ma być alokowana do warstwy niewyczerpującej, \(n_{s_2} \), oblicza się jako różnicę \(n_2 \) i liczby jednostek próby (np. operacji) w warstwie wyczerpującej (\(n_{e_2} \)). W tym przypadku są to trzy operacje (5, liczbeennon próbny, minus 2 operacje o wysokiej wartości). W związku z tym audytor musi dokonać doboru próby losowej z zastosowaniem interwału losowania:

\[
SI_{s_2} = \frac{BV_{s_2}}{n_{s_2}} = \frac{49,378,264 - 21,895,357}{3} = 9,160,969 \text{EUR}⁵¹
\]

Poniższa tabela zawiera podsumowanie tych wyników:

<table>
<thead>
<tr>
<th>Wartość graniczna – drugie półrocze</th>
<th>9 875 653 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczba operacji o wartości księgowej wyższej niż wartość graniczna – drugie półrocze</td>
<td>2</td>
</tr>
<tr>
<td>Wartość księgowa operacji o wartości księgowej wyższej niż wartość graniczna – drugie półrocze</td>
<td>21 895 357 EUR</td>
</tr>
<tr>
<td>(BV_{s_2}) – populacja operacji o wartości księgowej niższej niż wartość graniczna (warstwa niewyczerpująca) – drugie półrocze</td>
<td>27 482 907 EUR</td>
</tr>
<tr>
<td>(n_{s_2}) – liczbeennon próbny warstwy niewyczerpującej w drugim półroczu</td>
<td>3</td>
</tr>
<tr>
<td>(SI_{s_2}) – interwał losowania w drugim półroczu</td>
<td>9 160 969 EUR</td>
</tr>
</tbody>
</table>

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 43 operacji populacji z drugiego półroczu, a następnie tworzy się sekwencyjną łączną zmiennej wartości księgowej. Próbę obejmującą trzy operacje losuje się z zastosowaniem systematycznej procedury proporcjonalnej do wielkości.

Wartość 3 operacji stanowi przedmiot audytu. Suma poziomów błędu dla drugiego półroczu wynosi:

Przez przeprowadzić losowe sortowanie zbioru zawierającego pozostałe 43 operacji populacji z drugiego półroczu, a następnie tworzyć sekwencyjną łączną zmiennej wartości księgowej. Próbę obejmującą trzy operacje losuje się z zastosowaniem systematycznej procedury proporcjonalnej do wielkości.

Wartość 3 operacji stanowi przedmiot audytu. Suma poziomów błędu dla drugiego półroczu wynosi:

⁵⁰ Należy pamiętać, że instytucja audytowa może również podjąć decyzję o zastosowaniu niższej wartości granicznej niż obliczona na podstawie stosunku populacji z danego półroczu do liczby operacji wybranych w danym półroczu. Zastosowanie niższej wartości granicznej w celu zwiększenia liczby operacji w górnej warstwie może być szczególnie przydatne dla instytucji audytowej, jeżeli w oparciu o analizę specyfiki populacji trudne wydaje się osiągnięcie progu pokrycia wydatków, nawet w przypadku zastosowania prawdopodobieństwa proporcjonalnego do wielkości.

⁵¹ Należy zauważyć, że w praktyce może się zdarzyć, iż po obliczeniu interwału losowania na podstawie wydatków i liczbeennon próbny drugiej próbby niektóre jednostki próbne nadal będą wykazywać wydatki wyższe od danego interwału losowania \(BV_i/n_i \) (mimo że wcześniej nie wykazywały wydatków wyższych od wartości granicznej \((BV/n) \)). W rzeczywistości wszystkie pozycje, których wartość księgowa jest nadal wyższa od tego interwału \((BV_i > BV/n_i) \), także należy dodać do warstwy o wysokiej wartości. Jeżeli ma miejsce taka sytuacja, po przeniesieniu nowych pozycji do warstwy o wyższej wartości należy ponownie obliczyć interwał losowania dla warstwy doboru próby, uwzględniając nowe wartości dla stosunku \(BV_i/n_i \). Tę metodę iteracyjną można stosować kilka razy, aż do momentu, gdy żadna jednostka nie będzie wykazywać wydatków wyższych od interwału losowania.
Wydatki objęte audytem w próbie przeprowadzonej w drugim półroczu stanowią całkowitą wartość księgową projektów o wysokiej wartości, tj. 21 895 357 EUR, powiększoną o wydatki objęte audytem w pozostałej próbie populacji, tj. 2 245 892 EUR. Całkowite wydatki objęte audytem w drugim półroczu wynoszą 24 141 249 EUR, co stanowi 48,89 % całkowitych zadeklarowanych wydatków. Mając na uwadze poziom pewności systemu zarządzania i kontroli, instytucja audytowa uważa, że poziom wydatków objętych audytem jest wystarczający, aby zapewnić wiarygodność wniosków z audytu52.

Prognozę błędów dla populacji sporządza się w inny sposób dla (operacji) jednostek próby należących do warstw wyczerpujących oraz dla jednostek w warstwach niewyczerpujących.

W przypadku warstw wyczerpujących, tj. warstw zawierających jednostki próby o wartości księgowej wyższej niż wartość graniczna, $BV_{ti} > \frac{BV_t}{n_t}$, błąd przewidywany stanowi sumę błędów wykrytych w pozycjach należących do tych warstw:

$$EE_o = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} = 0 + 56,823 = 56,823$$

W praktyce:
1) w przypadku każdego półrocza t należy zidentyfikować jednostki należące do grupy wyczerpującej i zsumować ich błędy;
2) należy zsumować poprzednie wyniki dla obu półroczy.

W przypadku grupy niewyczerpującej, tj. warstw zawierających jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, $BV_{ti} \leq \frac{BV_t}{n_t}$, błąd przewidywany wynosi:

$$EE_s = \frac{BV_{s1}}{n_{s1}} \times \sum_{i=1}^{n_{s1}} E_{1i} + \frac{BV_{s2}}{n_{s2}} \times \sum_{i=1}^{n_{s2}} E_{2i} = 5,643,420 \times 0.066 + 9,160,969 \times 0.0475 = 807,612$$

Aby obliczyć ten błąd przewidywany, należy:
1) w przypadku każdego półrocza t obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie; $\frac{E_{ti}}{BV_{ti}}$
2) w przypadku każdego półrocza t zsumować te poziomy błędu ze wszystkich jednostek w próbie;
3) w każdym półroczu t pomnożyć poprzedni wynik przez interwał losowania stosowany w odniesieniu do losowego wyboru operacji w warstwie niewyczerpującej;

52 Zob. przykład opisany w sekcji 6.4.7 dotyczący postępowania w przypadku niewystarczającego pokrycia wydatków
4) zsumować poprzednie wyniki dla obu półroczy.

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[EE = E_{e} + E_{s} = 56,823 + 807,612 = 864,435 \]
(tj. 1,30 % wartości populacji)

Błąd przewidywany porównuje się następnie z maksymalnym dopuszczalnym błędem
(2 % z 66 308 523 EUR=1 326 170 EUR). Błąd przewidywany jest mniejszy niż poziom istotności.
Nie można jednak określić osiągniętej dokładności, a poziom ufności tego wniosku jest nieznany.

6.4.10 Dwuetapowy dobór próby (dobór podpróby) w niestatystycznych metodach doboru próby

Ogólnie rzecz biorąc, wszystkie wydatki zadeklarowane Komisji objęte próbą zostają poddane audytowi. W przypadku gdy wybrane jednostki próbę zawierają jednak dużą liczbę odnośnych wniosków o płatność lub faktur / innych pozycji wydatków, instytucja audytowa może przeprowadzić ich audyt na podstawie podpróby. Więcej szczegółowych informacji na ten temat można znaleźć w sekcji 7.6 „Dwuetapowy dobór próby” oraz w sekcji 6.5.3.1 dotyczącej dwuetapowego i trójetapowego doboru próby w ramach programów Europejskiej współpracy terytorialnej.

Należy zauważyć, że pozycje objęte podpróbką należy wybrać metodą losową. Możliwe jest stosowanie schematu stratyfikacji na poziomie doboru podpróby z fakturami/pozycjami wydatków niektórych warstw skontrolowanych w sposób wyczerpujący i niektórych warstw skontrolowanych za pomocą losowego doboru pozycji wydatków. Stratyfikacja może być zazwyczaj przeprowadzana na podstawie rodzaju wydatków lub kwoty faktury/pozycji wydatków (np. poprzez wyczerpujące skontrolowanie wszystkich pozycji o wysokiej wartości i warstwy pozycji o niskiej wartości poprzez losowy dobór pozycji).

W przypadku okresu programowania 2014–2020 i zgodnie z art. 28 rozporządzenia delegowanego Komisji (UE) nr 480/2014, który stanowi, że doboru podpróby dokonuje się z wykorzystaniem faktur albo wniosków o płatność jako jednostek podpróby, instytucja audytowa powinna objąć audytem nie mniej niż 30 faktur/innych pozycji wydatków lub wniosków o płatność. Jeżeli inne jednostki podpróby wykorzystuje się w ramach niestatystycznego doboru próby (takie jak np. projekt w ramach operacji, partner projektu w programach Europejskiej współpracy terytorialnej), instytucja audytowa może podjąć decyzję, na podstawie profesionalnego osądu, o wystarczającym objęciu podpróby audytem. W tym przypadku, jeżeli wybranych zostanie mniej niż 30 jednostek podpróby, zaleca się, aby obejmowały one co najmniej 10 % wydatków jednostki podpróby (np. operacji).
6.5 Metody dobory próby w odniesieniu do programów Europejskiej współpracy terytorialnej

6.5.1 Wprowadzenie

Programy realizowane w ramach Europejskiej współpracy terytorialnej wyróżnia szereg cech charakterystycznych: zwykle pogrupowanie ich nie jest możliwe, ponieważ każdy system i podsystem jest inny; liczba operacji jest często niewielka. W przypadku każdej operacji istnieje na ogół partner wiodący (beneficjent wiodący zgodnie z art. 13 rozporządzenia (UE) nr 1299/2013) oraz wielu innych partnerów projektu (innych beneficjentów zgodnie z art. 13 rozporządzenia (UE) nr 1299/2013). W operacjach wybranych w ramach współpracy transgranicznej i transnarodowej uczestniczą partnerzy z co najmniej dwóch uczestniczących państw, zaś w operacjach wybranych w ramach współpracy międzyregionaalnej uczestniczą partnerzy z co najmniej trzech państw (art. 12 rozporządzenia (UE) nr 1299/2013).

6.5.2 Jednostka próby

Jednostka próby jest ustalana przez instytucję audytową w oparciu o profesjonalny osąd. Może to być operacja, projekt w ramach operacji lub wniosek o płatność złożony przez beneficjenta (art. 28 ust. 6 rozporządzenia delegowanego nr 480/2014). Jeżeli instytucja audytowa postanawia użyć wniosku o płatność jako jednostki próby, może wybrać albo zagregowany wniosek o płatność obejmujący indywidualne wnioski o płatność partnera wiodącego i innych partnerów projektu albo ewentualnie wniosek o płatność partnera projektu (bez rozróżniania na partnera wiodącego i innych partnerów projektu). Instytucja audytowa może również zdecydować się na skorzystanie z pogrupowanych wniosków o płatność partnera wiodącego i innych partnerów projektu zadeklarowanych w ramach operacji w danym okresie doboru próby. W takim przypadku wnioski o płatność pogrupowane według partnerów projektów stanowią jednostkę próby (ta jednostka próby jest wymieniana w tekście jako partner projektu).

Dobór jednostki próby warunkuje metodę prognozowania. Prognozowanie błędów zgodnie z poziomem populacji opiera się na błędach w wybranych jednostkach próby. W związku z tym, jeżeli instytucja audytowa nie skontroluje wszystkich wydatków w wybranej jednostce próby (zastosowanie doboru podpróby), musi ekstrapolować błędy podprób do poziomu jednostki podprób przed ekstrapolacją do poziomu populacji.

W szczególności jeżeli instytucja audytowa decyduje się wybrać operacje jako jednostki próby, z podpróbą partnerów projektów, musi przewidzieć błędy wykryte w wydatkach wybranych partnerów do poziomu operacji przed ekstrapolacją do poziomu populacji.

Natomiast prostsza metoda prognozowania zostałaby zapewniona dzięki wykorzystaniu partnerów projektu53 (lub wniosków o płatność partnerów projektu) jako jednostek

53 bez konieczności rozróżnienia na partnera wiodącym i innych partnerów projektu
próby. Wykorzystanie tych jednostek próby umożliwia prognozowanie błędów wykrytych w wydatkach zadeklarowanych przez wybranych partnerów projektu (lub w wybranych wnioskach o płatność partnerów projektu) bezpośrednio dla poziomu wszystkich wydatków zadeklarowanych Komisji Europejskiej, bez konieczności przechodzenia przez opisany powyżej dwuetapowy proces prognozowania. (Jako że operacja nie stanowi jednostki próby w takiej sytuacji, nie ma potrzeby ekstrapolowania wykrytych błędów do poziomu operacji).

Chociaż mogą być dostępne inne opcje, służby Komisji zalecają w szczególności korzystanie z jednej z następujących jednostek próby w ramach programów Europejskiej współpracy terytorialnej podczas opracowywania metody doboru próby:

a) wniosku o płatność (indywidualnego) partnera projektu,

b) partnera projektu (tj. wszystkich wniosków o płatność zadeklarowanych przez partnera projektu w ramach operacji w danym okresie doboru próby) lub

c) operacji.

Wszystkie powyższe jednostki próby można wykorzystać zarówno w statystycznym doborze próby, jak i w niestatystycznym doborze próby. Korzystanie z operacji jako jednostek próby w ramach statystycznej metody doboru próby może jednak wymagać dużych nakładów pracy w kontekście programów Europejskiej współpracy terytorialnej w porównaniu z pozostałymi dwiema jednostkami próby wymienionymi powyżej. Zaleca się zatem stosowanie operacji jako jednostek próby w ramach niestatystycznych metod doboru próby.

W sekcji 6.5.3 poniżej przedstawiono w kontekście dwuetapowego doboru próby bardziej szczegółowe informacje na temat ewentualnych jednostek próby i jednostek podpróby w programach Europejskiej współpracy terytorialnej wraz z dodatkowymi uwagami dotyczącymi stosownych ograniczeń metodologicznych i skutków.

6.5.3 Metodyka doboru próby

W przypadku zarówno statystycznych, jak i niestatystycznych procedur doboru próby w ramach programów Europejskiej współpracy terytorialnej zastosowanie mają ogólne metody doboru próby opisane w odpowiednich sekcjach niniejszych wytycznych. Sekcja ta zawiera dodatkowe wyjaśnienia z uwagi na specyfikę programów Europejskiej współpracy terytorialnej.

Próg 50-150 operacji może nie zostać osiągnięty w ramach programów Europejskiej współpracy terytorialnej charakteryzujących się małą liczebnością próby, w szczególności na początku okresu realizacji. Nawet jeżeli próg zostanie osiągnięty, z uwagi na określoną strukturę programów Europejskiej współpracy terytorialnej korzystanie ze statystycznego doboru próby może być jednak nieopłacalne. W związku z tym instytucja audytowa może na podstawie profesjonalnego osądu stosować
niestatystyczny dobór próby w odniesieniu do Europejskiej współpracy terytorialnej na warunkach określonych w art. 127 ust. 1 rozporządzenia w sprawie wspólnych przepisów, z jednoczesnym przestrzeganiem minimalnego pokrycia 5 % operacji i 10 % wydatków. Uzasadnienie i opcje przyjęte przez instytucję audytową powinny znaleźć odzwierciedlenie w strategii audytu, która wymaga corocznej aktualizacji zgodnie z art. 127 ust. 4 rozporządzenia w sprawie wspólnych przepisów.

W przypadku stosowania statystycznych metod doboru próby możliwe jest obliczenie dokładności, która zapewnia kontrolę nad ryzykiem kontroli. Jeżeli jednostkę próby stanowi operacja, zastosowanie statystycznej metodologii doboru próby może prowadzić do wysokich kosztów związanych z kontrolowaniem programów Europejskiej współpracy terytorialnej ze względu na ich szczególną strukturę. Zaleca się zatem, aby instytucje audytowe korzystały z innych jednostek próby (partnera lub wniosku o płatność indywidualnego partnera projektu), które mogą przyczynić się do zmniejszenia kosztów procedur kontroli za pomocą statystycznego doboru próby. Stosowanie takiego podejścia jest łatwiejsze, gdy system monitorowania (przewidziany w art. 24 rozporządzenia (UE) nr 480/2014) umożliwia podział danych dotyczących wydatków między partnerów projektu.

Ponadto należy zauważyć, że w okresie programowania 2014–2020 zgodnie z przepisami art. 127 rozporządzenia (UE) nr 1303/2013 wymagane jest objęcie audytem co najmniej 5 % operacji i 10 % zadeklarowanych wydatków w przypadku stosowania niestatystycznej metody doboru próby. Ponieważ w przypadku statystycznego doboru próby wymóg ten nie ma zastosowania, instytucja audytowa powinna uznać, że stosowanie statystycznej metody doboru próby może prowadzić w niektórych przypadkach do równoważnych, a nawet ograniczonych nakładów pracy (w porównaniu z niestatystycznym doborom próby), w szczególności, jeżeli wnioski o płatność partnerów projektu wykorzystuje się jako jednostki próby i dobór losowy prosty. Jeżeli chodzi o podobne koszty i wysiłki w zakresie audytu, zaleca się, aby instytucja audytowa wybierała statystyczny dobór próby.

Ponadto ze względu na określony system kontroli stosowany przez programy Europejskiej współpracy terytorialnej (np. systemy zdecentralizowane i scentralizowane) instytucja audytowa może rozważyć stratyfikację (np. przy użyciu wyników z audytów systemu) umożliwiającą jej w razie potrzeby wyciąganie wniosków dotyczących danej warstwy. Stratyfikacja prowadzona przez państwa członkowskie może być uznanawana a priori lub a posteriori (np. gdy poziom błędu przekracza 2 %), aby umożliwić instytucji audytowej sprawdzenie z czego wynika błąd. W związku z powyższym metodologia doboru próby może uwzględniać „strategię oddolną” opisano w sekcji 7.8 niniejszych wytycznych.

6.5.3.1 Dwu- i trójetapowy dobór próby (dobór podpróby)
W przypadku stosowania statystycznych lub niestatystycznych metod doboru próby instytucja audytowa musi ustalić błędy na poziomie wybranych jednostek próby przed prognozowaniem błędów wykrytych w próbie dla populacji. Co do zasady wszystkie wydatki zadeklarowane Komisji objęte próbą należy poddać audytowi. W przypadku gdy wybrane jednostki próby zawierają jednak dużą liczbę odnośnych wniosków o płatność lub faktur, instytucja audytowa może przeprowadzić ich audyt na podstawie doboru podprób. W takich przypadkach, aby ustalić błąd na poziomie wybranych jednostek próby, instytucja audytowa musi prognozować błędy wykryte w podpróbie dla poziomu jednostki próby. W kolejnym etapie prognozuje się błędy w wybranych jednostkach próby (określone na podstawie podprób) dla populację lub wniosków o płatność w celu obliczenia błędu przewidywanego populacji.

Jednostki podpróbwy

Zarówno w przypadku statystycznego, jak i niestatystycznego doboru próby instytucja audytowa może stosować różne jednostki podprób w ramach dwu- lub trójetapowego schematu doboru próby, takie jak faktury, projekty w ramach operacji, zagregowane wnioski o płatność obejmujące indywidualne wnioski o płatność partnerów wiodących i innych partnerów projektu, wnioski o płatność indywidualnych partnerów projektu, partnerzy projektu.

Z uwagi na strukturę operacji prowadzonych w ramach programów Europejskiej współpracy terytorialnej instytucja audytowa często stosuje schemat doboru próby z dwu- lub trójetapowym doborem próby, gdy partner projektu lub wniosek o płatność partnera projektu może stanowić jednostkę próby na jednym z etapów doboru próby.

Jeżeli jednostką próby jest operacja, instytucja audytowa może podjąć decyzję o zastosowaniu schematu doboru próby z doborem podprób wniosków o płatność indywidualnych partnerów projektu (dwuetapowy dobór próby). Inną opcją w ramach dwuetapowego schematu doboru próby, najczęściej wykorzystywaną w kontekście Europejskiej współpracy terytorialnej, jest pogrupowanie wszystkich wniosków o płatność indywidualnych partnerów projektów według partnerów projektu oraz dobór podprób partnerów projektu w ramach wybranej operacji. W takich przypadkach błędy wykryte na poziomie wniosków o płatność / partnerów projektu w pierwszej kolejności muszą być prognozowane dla poziomu operacji przed ostatecznym prognozowaniem błędów dla poziomu populacji operacji.

Faktury jako jednostka podpróbwy

Jeżeli niektóre jednostki próby wybranej podprób (wnioski o płatność / partnerzy) posiadają dużą liczbę faktur / innych pozycji wydatków, instytucja audytowa może podjąć decyzję o objęciu ich audytom na podstawie próby prowadzącej do trójetapowego schematu doboru próby. W takim przypadku należy prognozować błąd wykryty w podpróbie faktur w pierwszej kolejności dla poziomu wniosku o płatność /
partnera. Następnie należy błędy określone na poziomie wniosków o płatność/partnerów należy prognozować dla poziomu operacji, jak w przypadku dwuetapowego schematu doboru próby.

Instytucja audytowa może również korzystać z faktur jako jednostek próby w ramach dwuetapowego doboru próby, który stosuje się przede wszystkim wtedy, gdy albo wniosek o płatność indywidualnego partnera projektu, albo partner stanowią główną jednostkę próby. Jeżeli główną jednostką próby w dwuetapowym schemacie doboru próby jest operacja, podpróbę faktur wybiera się bezpośrednio z populacji wszystkich faktur operacji, bez pośredniego etapu doboru podprób na poziomie partnera/wniosku o płatność.

Dobór jednostek próby metodami statystycznymi i niestatystycznymi

Wszystkie jednostki próby w podpróbach należy dobierać metodą losową, także w przypadku niestatystycznych metod doboru próby. Jednak w przypadku zastosowania stratyfikacji na poziomie podprób instytucja audytowa może oczywiście podjąć decyzję o objęciu audytem wszystkich jednostek próby określonej warstwy.

Przykład: jeżeli instytucja audytowa zdecyduje się wykorzystać operację jako jednostkę głównej próby i partnerów projektu jako jednostki podprób wówczas może albo:

– dokonać losowego doboru partnerów projektu (bez konieczności rozróżnienia na partnera wiodącego i innych partnerów projektu) albo

– zastosować stratyfikację na poziomie operacji:

 – jedna warstwa dla wydatków partnera wiodącego i
 – druga warstwa dla wydatków innych partnerów projektu.

W związku z tym, że w tym drugim przypadku partner wiodący nie jest wybierany losowo, a jego wydatki stanowią warstwę wyczerpującą, należy wziąć pod uwagę model prognozowania. Aby obliczyć błąd na poziomie operacji, błędy pozostałych partnerów projektu wybranych metodą losową w ramach operacji należy prognozować dla warstwy innych partnerów projektu, natomiast błąd partnera wiodącego należy dodać do błędu prognozowanego w celu ustalenia całkowitego poziomu błędu przewidywanego operacji. W sekcji 6.5.3.3 poniżej opisano przykład oparty na takim schemacie doboru próby.

54 Stosując dobór próby na podstawie równego prawdopodobieństwa (gdy każda jednostka próby ma jednakową szansę na to, że zostanie wybrana, niezależnie od kwoty wydatków zadeklarowanej w jednostce próby) lub prawdopodobieństwa proporcjonalnego do wielkości (wydatki) (gdy dokonuje się wyboru losowego pierwszego elementu próby, a następnie wybiera się kolejne elementy za pomocą interwału, aż do osiągnięcia pożądaną liczebności próby) z wykorzystaniem jednostki monetarnej jako zmiennej pomocniczej do celów doboru próby, jak w przypadku metody doboru próby na podstawie jednostki monetarnej.
Należy również przypomnieć, że w przypadku zastosowania statystycznego doboru próby w odniesieniu do głównej próby, instytucja audytowa musi zapewnić stosowanie statystycznej metody doboru próby w odniesieniu do doboru jednostek próby podprób na wszystkich etapach. W szczególności gdy operacje wybiera się jako jednostki próby z podpróbą partnerów projektów w drugim etapie i podpróbą faktur w trzecim etapie, instytucja audytowa musi zapewnić obserwację co najmniej 30 jednostek w drugim etapie oraz w trzecim etapie. W rezultacie, jeżeli jednostką podpróbę wybraną w ramach operacji jest partner projektu, oznacza to, że należy wybrać 30 partnerów projektu (w niewielu przypadkach miałoby to w ogóle zastosowanie). W przeciwnym razie nadal można stosować daną metodę, przy czym może ona prowadzić do wyboru wszystkich partnerów związanych z operacją, co w praktyce skutkuje zastosowaniem dwuetapowego (operacja w pierwszym etapie i faktury w drugim etapie) zamiast trójetapowego doboru próby. Podobnie, w odniesieniu do każdego wybranego partnera należy zapewnić kontrolę podpróbę obejmującej co najmniej 30 faktur, gdy wyczerpujące audyty są zbyt kosztowne.

W przypadku okresu programowania 2014–2020 i zgodnie z art. 28 rozporządzenia delegowanego Komisji (UE) nr 480/2014, w którym doboru podprób dokonuje się z wykorzystaniem faktur albo wniosków o płatność jako jednostek podprób, instytucja audytowa powinna objąć audytem nie mniej niż 30 faktur/innych pozycji wydatków lub wniosków o płatność także w ramach niestatystycznego dobór próby. Jeżeli inne jednostki podpróbę wykorzystuje się w ramach niestatystycznego doboru próby (takie jak np. projekt w ramach operacji, partner projektu), instytucja audytowa może podjąć decyzję, na podstawie profesjonalnego osądu, o wystarczającym objęciu podpróbę audytem. W tym przypadku, jeżeli wybranych zostanie mniej niż 30 jednostek podprób, zaleca się, aby obejmowały one co najmniej 10 % wydatków jednostki podprób (np. operacji).

6.5.3.2 Główne potencjalne konfiguracje jednostek próby w przypadku dwu- i trójetapowego doboru próby

Poniższe tabele zawierają podsumowanie głównych potencjalnych konfiguracji jednostek próby w przypadku dwu- lub trójetapowego doboru próby w kontekście Europejskiej współpracy terytorialnej. W oparciu o względy statystyczne konfiguracje te można stosować zarówno w ramach statystycznej, jak i niestatystycznej metody doboru próby. Jak jednak sprecyzowano w tabeli, niektóre wymienione konfiguracje mogą być jednak niewykonalne ze względu na wysokie koszty audytu, a w niektórych przypadkach ich zastosowanie w statystycznych metodach doboru próby utrudniałyby w praktyce ograniczenia metodologiczne z uwagi na niewystarczającą liczbę jednostek podprób. W szczególności gdy w przypadku statystycznych metod doboru próby za najbardziej opłacalne uznaje się opcje 1 i 2 przedstawione w tabeli, a w przypadku niestatystycznych metod doboru próby – opcje 2 i 3, pozostałe opcje mogą wymagać znacznie większych zasobów audytowych i rezultacje mogą być często niewykonalne w praktyce.
6.5.3.2.1 Schemat dwuetapowy

<table>
<thead>
<tr>
<th>Opcja</th>
<th>Jednostka próby głównej próby</th>
<th>Jednostka podpróby (jeżeli dotyczy)</th>
<th>Zalecenie dotyczące stosowania w ramach niestatystycznych i statystycznych metod doboru próby</th>
<th>Inne uwagi/ograniczenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Wniosek o płatność partnera projektu</td>
<td>Faktura / inna pozycja wydatków</td>
<td>Statystyczny dobór próby: tak</td>
<td>Spośród przedstawionych schematów statystycznego doboru próby to konfiguracja wymaga najmniejszej ilości zasobów, umożliwiając jednocześnie obliczenie dokładności i górnej granicy błędu, co zapewnia kontrolę nad ryzykiem kontroli. Niestatystyczny dobór próby: jest to znacznie mniej opłacalne podejście, w porównaniu z wykorzystaniem partnera projektu jako głównej jednostki próby, ze względu na wymóg pokrycia co najmniej 10% wydatków zadeklarowanych Komisji Europejskiej i 5% operacji w odniesieniu do roku obrachunkowego. (Instytucja audytowa musiałaby objąć audyttem więcej jednostek próby, aby spełnić wymóg pokrycia minimalnego poziomu wydatków). W ramach niestatystycznych metod doboru próby opcje 2 i 3 są bardziej opłacalne.</td>
</tr>
<tr>
<td>2.</td>
<td>Partner projektu</td>
<td>Faktura / inna pozycja wydatków</td>
<td>Statystyczny dobór próby: tak</td>
<td>To podejście jest zalecane w ramach statystycznej metody doboru próby. Może być bardziej kosztowne niż opcja 1. Niestatystyczny dobór próby: tak (W art. 127 rozporządzenia w sprawie wspólnych przepisów określono wymóg objęcia audytom co najmniej 5% operacji i 10% zadeklarowanych wydatków.) To podejście jest zalecane w niestatystycznej metodzie doboru próby. Należy zauważyć, że w porównaniu z innym opłacalnym podejściem do niestatystycznego doboru próby (tj. opcją 3 poniżej) opcja 2 nie wymaga od partnerów projektu prognozowania dla poziomu operacji, ponieważ prognozowanie dla populacji przeprowadzone jest bezpośrednio z poziomu partnerów projektu. W przypadku partnerów projektu, których faktury/pozycje wydatków nie zostały wyczerpująco skontrolowane, błąd partnera zostałby obliczony na podstawie prognozy błędów wykrytych w podpróbie faktur/innych pozycji wydatków.</td>
</tr>
<tr>
<td>3.</td>
<td>Operacja</td>
<td>Partner projektu55</td>
<td>Statystyczny dobór próby: a) w przypadku operacji, w której uczestniczy nie więcej niż 30 partnerów</td>
<td>W przypadku statystycznych metod doboru próby opcje 1 i 2 są bardziej opłacalne.</td>
</tr>
</tbody>
</table>

55 Ta jednostka podpróbę grupuje według partnerów wszystkie wnioski o płatność zadeklarowane przez partnera projektu w ramach operacji w danym okresie doboru próby.
<table>
<thead>
<tr>
<th>Opcja</th>
<th>Jednostka próby głównej próby</th>
<th>Jednostka podpróby (jeżeli dotyczy)</th>
<th>Zalecenie dotyczące stosowania w ramach niestatystycznych i statystycznych metod doboru próby</th>
<th>Inne uwagi/ograniczenia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>projektu, schemat ten nie ma zastosowania. (W odniesieniu do metod statystycznych wymagana będzie kontrola wszystkich lub co najmniej 30 partnerów na poziomie podprób. Jeżeli liczba partnerów byłaby mniejsza lub równa 30, w ramach tej metody zostaliby wybrani wszyscy istniejący partnerzy, co doprowadziłoby do jednoetapowego schematu doboru próby.) b) W przypadku liczby partnerów projektu większej niż 30: wysokie koszty objęcia audytem co najmniej 30 partnerów.</td>
<td>W odniesieniu do wyboru partnerów projektu można zastosować dwie opcje: a) losowy dobór partnerów bez konieczności rozróżnienia na partnera wiodącego i innych partnerów projektu, b) w odniesieniu do każdej wybranej operacji – kontrola wydatków zadeklarowanych przez partnera wiodącego i wydatków zadeklarowanych przez losowo wybranych innych partnerów projektu. Podejście wymaga prognozowania błędów wybranych partnerów projektu dla poziomu operacji (zob. opcja 2 w odniesieniu do innego opłacalnego podejścia w ramach niestatystycznego doboru próby, która nie wymaga prognozowania od poziomu partnerów do poziomu operacji). W przypadku niestatystycznego doboru próby zaleca się, aby podpróba partnerów projektu obejmowała co najmniej 10 % wydatków operacji.</td>
</tr>
<tr>
<td>4.</td>
<td>Operacja / Zagregowany wniosek o płatność</td>
<td>Faktura / inna pozycja wydatków</td>
<td>Niestatystyczny dobór próby tak (W art. 127 rozporządzenia w sprawie wspólnych przepisów określono wymóg objęcia audytem co najmniej 5 % operacji i 10 % zadeklarowanych wydatków.)</td>
<td>W przypadku statystycznych metod doboru próby opcje 1 i 2 są bardziej opłacalne.</td>
</tr>
<tr>
<td>5.</td>
<td>Operacja</td>
<td>Zagregowany wniosek o</td>
<td>Statystyczny dobór próby: configuração ta jest nieopłacalna ponieważ mogłaby wymagać kontroli wydatków poniesionych przez różnych partnerów w ramach wybranej operacji (zagregowany wniosek o płatność). Wymaga większej ilości zasobów audytowych niż w przypadku opcji 1 i 2.</td>
<td>W przypadku statystycznych metod doboru próby opcje 2 i 3 są bardziej opłacalne.</td>
</tr>
</tbody>
</table>

4. Operacja / Zagregowany wniosek o płatność Faktura / inna pozycja wydatków **Niestatystyczny dobór próby:** zwykle niewykonalne ze względu na wysokie koszty związane z audytem

5. Operacja Zagregowany wniosek o **Statystyczny dobór próby:** a) w przypadku liczby zagregowanych

188
<table>
<thead>
<tr>
<th>Opcja</th>
<th>Jednostka próby głównej próby</th>
<th>Jednostka podpróby (jeżeli dotyczy)</th>
<th>Zalecenie dotyczące stosowania w ramach niestatystycznych i statystycznych metod doboru próby</th>
<th>Inne uwagi/ograniczenia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>płatność</td>
<td>wnosków o płatność nieprzekraczającej 30 ten schemat wymaga kontroli wszystkich zagregowanych wnosków o płatność, co prowadzi do jednoetapowego schematu; b) w przypadku liczby wnosków o płatność większej niż 30: wysokie koszty związane z objęciem audytem co najmniej 30 zagregowanych wnosków o płatność.</td>
<td>opłacalne.</td>
<td></td>
</tr>
</tbody>
</table>

Niestatystyczny dobór próby: zwykle niewykonalny ze względu na wysokie koszty związane z audytem

W przypadku niestatystycznych metod doboru próby opcje 2 i 3 są bardziej opłacalne.

<table>
<thead>
<tr>
<th></th>
<th>Operacja lub zagregowany wniosek o płatność</th>
<th>Wniosek o płatność partnera projektu</th>
<th>Statystyczny dobór próby: a) w przypadku liczby wnosków o płatność indywidualnych partnerów projektu nieprzekraczającej 30 ten schemat wymaga kontroli wszystkich wnosków o płatność indywidualnych partnerów projektu, co prowadzi do jednoetapowego schematu doboru próby; b) w przypadku liczby wnosków o płatność większej niż 30: wysokie koszty związane z objęciem audytem co najmniej 30 wnosków o płatność indywidualnych partnerów projektu.</th>
<th>W przypadku statystycznych metod doboru próby opcje 1 i 2 są bardziej opłacalne.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wniosek o płatność partnera projektu</td>
<td>Wniosek o płatność partnera projektu</td>
<td>Niestatystyczny dobór próby: zwykle niewykonalny ze względu na wysokie koszty związane z audytem</td>
<td>W przypadku niestatystycznych metod doboru próby opcje 2 i 3 są bardziej opłacalne.</td>
</tr>
</tbody>
</table>

6. Operator lub zagregowany wniosek o płatność

W praktyce, w kontekście Europejskiej współpracy terytorialnej do najczęściej stosowanych dwuetapowych schematów doboru próby zalicza się:
- wykorzystanie operacji jako jednostki próby i partnera projektu jako jednostki podprób w przypadku niestatystycznego doboru próby (por. opcja 3 powyżej),
- wykorzystanie wniosku o płatność indywidualnego partnera projektu jako jednostki próby i faktury/innych pozycji wydatków jako jednostki podprób w przypadku statystycznego doboru próby (por. opcja 1 powyżej).

Konfiguracja partnera projektu jako jednostki próby oraz faktury / innej pozycji wydatków jako jednostki podprób (por. opcja 2 powyżej) także jest zalecanym podejściem, które może być opłacalne zarówno w ramach statystycznych, jak i niestatystycznych metod doboru próby. W takim przypadku błąd każdego partnera można obliczyć na podstawie prognozy błędów wykrytych w podpróbie faktur. Błędy partnerów zostaną bezpośrednio ekstrapolowane do poziomu populacji (bez konieczności obliczania błędu odnośnej operacji, jako że operacja nie stanowi jednostki próby w takiej konfiguracji).
Szczególną uwagę należy zwrócić na przypadek, w którym instytucja audytowa podejmuje decyzję o wybraniu operacji na jednostkę próby w ramach statystycznej metody doboru próby. W takim przypadku można stosować różne jednostki podpróby, takie jak zagregowany wniosek o płatność (por. opcja 5 powyżej), partner projektu (por. opcja 3 powyżej) lub wniosek o płatność indywidualnego partnera projektu (por. opcja 6 powyżej). W ramach statystycznej metody doboru próby wymagane jest jednak zapewnienie co najmniej 30 obserwacji na każdym etapie doboru próbki, co z kolei może się wiązać z koniecznością przeprowadzenia kontroli wszystkich jednostek podprób (zwykle dostępnych jest mniej niż 30 jednostek podprób).

Wyjątek dotyczy wyboru operacji jako jednostki próby oraz faktury / innej pozycji wydatków jako jednostki podprób (por. opcja 4 powyżej). W tym przypadku statystyczna podpróba faktur została wybrana z populacji wszystkich faktur zadeklarowanych w odniesieniu do operacji w ramach okresu doboru próby (tj. obejmującej wszystkich partnerów projektu, którzy zadeklarowali wydatki w okresie doboru próby). Obciążenie czynnościami audytowymi w taki sposób złagodziło, a może nawet zmniejszyło w porównaniu z zastosowaniem innych jednostek podprób wspomnianych powyżej. Konfiguracja ta wymagałaby jednak znacznie większych zasobów audytowych niż w przypadku wykorzystania partnerów projektu lub wniosków o płatność partnerów projektu jako jednostek próby z podpróbą faktur (por. opcje 1 i 2 powyżej).

6.5.3.2.2 Schematy trójetapowe

<table>
<thead>
<tr>
<th>Jednostka próby głównej próby</th>
<th>Jednostka podpróby</th>
<th>Jednostka próby podpróby na najniższym etapie</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operacja</td>
<td>Partner projektu 56</td>
<td>Faktura / inna pozycja wydatków</td>
<td>Zob. opcja 3 w tabeli powyżej.</td>
</tr>
<tr>
<td>Operacja</td>
<td>Zagregowany wniosek o płatność</td>
<td>Faktura / inna pozycja wydatków</td>
<td>Zob. opcja 5 w tabeli powyżej.</td>
</tr>
<tr>
<td>Operacja</td>
<td>Wniosek o płatność indywidualnego partnera projektu</td>
<td>Faktura / inna pozycja wydatków</td>
<td>Zob. opcja 6 w tabeli powyżej.</td>
</tr>
<tr>
<td>Zagregowany wniosek o płatność</td>
<td>Wniosek o płatność indywidualnego partnera projektu</td>
<td>Faktura / inna pozycja wydatków</td>
<td>Zob. opcja 6 w tabeli powyżej.</td>
</tr>
</tbody>
</table>

W kontekście Europejskiej współpracy terytorialnej schemat trójetapowy stosuje się w niestatystycznych metodach doboru próbki, gdy operacje wybiera się jako jednostki próbki, a partnerów projektu jako jednostki podprób, w odniesieniu do których sprawdza się losowy dobór faktur.

56 Ta jednostka podprób grupuje według partnerów wszystkie wnioski o płatność zadeklarowane przez partnera projektu w ramach operacji w danym okresie doboru próby.
6.5.3.3 Możliwe podejście w ramach dwuetapowego doboru próby (operacja jako jednostka próby i podpróba partnerów projektu, w wyniku czego wybrano wiodącego partnera i próbę partnerów projektu)

6.5.3.3.1 Schemat doboru próby

Weźmy pod uwagę przypadek, w którym instytucja audytowa postanowiła, że w odniesieniu do wybranych operacji audyt partnera wiodącego będzie zawsze obejmował zarówno ich własne wydatki, jak i proces łączenia wniosków o płatność partnerów projektu. Jeżeli liczba innych partnerów projektu jest na tyle duża, że niemożliwe jest objęcie audytem wszystkich partnerów, dobiera się próbę losową. Instytucja audytowa zdecydowała się zatem na stratyfikację na poziomie jednostki próby głównej próbę z oddzielną warstwą wydatków zadeklarowanych przez partnera wiodącego i warstwą wydatków zadeklarowanych przez innych partnerów projektu. Liczębność połączonej próbby obejmującej partnera wiodącego i partnerów projektu musi być wystarczająca, aby instytucja audytowa mogła wyciągnąć miarodajne wnioski.

W takich przypadkach prognoza błędów dla populacji (lub odpowiedniej operacji) powinna uwzględniać fakt, że partner wiodący został poddany audytowi, natomiast partnerzy projektu zostali objęci audytem w ramach doboru próby.

Kolejna metodologia stosowana przez instytucję audytową w niniejszym przykładzie zakłada:

- wykorzystanie schematu niestatystycznego doboru próby;
- schemat dwuetapowy, w którym pierwszym poziomem jest dobór operacji, a drugim poziomem dobór próby partnerów w ramach każdej operacji;
- wybór wszystkich jednostek (operacji, partnerów) o równym prawdopodobieństwie (dopuszczalne są inne metody doboru próby);
- w ramach każdej operacji zawsze wybiera się partnera wiodącego;
- próbę partnerów wiodących wybiera się z listy partnerów.

Po pierwsze należy uznać, że na pierwszym etapie doboru (operacje) schemat powinien być zgodny z jedną z wcześniej zaproponowanych metod. W ramach każdej operacji strategia formalnie odpowiada schematowi podzielonymu na dwie warstwy:

- pierwsza warstwa odpowiada partnerowi wiodącemu i składa się z tylko jednej jednostki populacji, która zawsze jest dobierana w próbie. W praktyce warstwę tę należy traktować jako warstwę wyczerpującą podobną do warstw o wysokich wartościach;
- druga warstwa odpowiada zespołowi partnerów projektu i jest obserwowana poprzez dobór próby.

Możliwy jest również dobór podprób wniosków o płatność lub innych jednostek wybranych partnerów, jeżeli są zbyt duże, aby można je było objąć wyczerpującą obserwacją.
Dla jednej konkretnej operacji, \(i \), w próbie, błąd przewidywany dla warstwy wyczerpującej (odpowiadający partnerowi wiodącemu) wynosi:

\[
EE_c = E_{LP}
\]

gdzie \(E_{LP} \) oznacza kwotę błędu wykrytego w wydatkach partnera wiodącego. Innymi słowy błąd przewidywany w warstwie wyczerpującej stanowi po prostu kwotę błędu wykrytego u partnera wiodącego.

Należy pamiętać, że w odniesieniu do partnera wiodącego pełny audyt nie jest obowiązkowy; można dokonać doboru podprób wydatków partnera wiodącego, jeżeli obejmuje dużą liczbę wniosków o płatność (lub innych podjednostek). W takim przypadku należy użyć podprób wniosków o płatność (lub innych podjednostek) w celu prognozowania kwoty błędu partnera wiodącego.

Jeżeli stosuje się podpróbę i ponownie zakłada się dobór oparty na równym prawdopodobieństwie oraz estymację ilorazową\(^{58}\), błąd przewidywany partnera wiodącego wyniesie:

\[
EE_{LP} = BV_{LP} \frac{\sum_{j=1}^{n_{LP}} E_j}{\sum_{j=1}^{n_{LP}} BV_j}
\]

gdzie \(BV_{LP} \) oznacza wydatki partnera wiodącego a \(n_{LP} \) oznacza liczebność prób podjednostek objętych audytym na potrzeby tego partnera.

W przypadku warstwy obejmującej pozostałych partnerów projektu prognoza poziomu błędu musi uwzględnić fakt, że obserwacji podlega tylko próba tych partnerów.

Co więcej, jeżeli partnerzy zostali wybrani z równym prawdopodobieństwem i przy założeniu estymacji ilorazowej, błąd przewidywany wynosi:

\[
EE_{PP} = BV_{PP} \frac{\sum_{i=1}^{n_{s,PP}} E_i}{\sum_{i=1}^{n_{s,PP}} BV_i}
\]

gdzie \(BV_{PP} \) oznacza wydatki zespołu partnerów projektu, a \(n_{s,PP} \) oznacza liczebność próby w warstwie partnerów projektu.

\(^{58}\) Należy zdawać sobie sprawę, że wzór należy dostosować do konkretnego doboru i procesu ekstrapolacji, który wybrano w każdej z podprób. Nie będziemy obciążać czytelnika rozważaniami, które należy wziąć pod uwagę w przypadku tych wyborów, które szczegółowo omówiono w poprzednich sekcjach.
Powyższy błąd przewidywany jest równy poziomowi błędów w próbie partnerów projektu pomnożonej przez wydatki populacji warstwy.

Należy pamiętać, że w przypadkach, gdy partnerzy projektu wybrani do próby nie zostali objęci pełnym audytem, ale tylko audytem w ramach podpróby wniosków o płatność (lub innych jednostek), wówczas należy przewidzieć błędy E_i, jak wyjaśniono w przypadku partnera wiodącego.

Całkowity błąd przewidywany w odniesieniu do operacji I stanowi po prostu sumę tych dwóch elementów:

$$EE_i = EE_{LP} + EE_{PP}$$

Ta procedura prognozowania powinna być przestrzegana w przypadku każdej operacji w próbie w celu uzyskania błędów przewidywanych dla każdej operacji ($EE_i, i = 1, \ldots n$). Po obliczeniu błędów prognozowanych dla wszystkich operacji w próbie prognozowanie dla populacji przebiega w prosty sposób, przy użyciu odpowiednich metodologii opisanych w poprzednich sekcjach.

Błąd przewidywany (i góra granica błędu podczas stosowania schematu statystycznego) ostatecznie porównuje się z maksymalnym dopuszczalnym błędem (poziom istotności pomnożony przez wydatki populacji) w celu stwierdzenia istnienia istotnego błędu w populacji.

6.5.3.3.2 Przykład

Załóżmy populację wydatków zadeklarowanych Komisji w danym okresie odniesienia dla operacji w ramach programów Europejskiej współpracy terytorialnej. W związku z tym, że systemy zarządzania i kontroli nie są wspólne dla wszystkich zaangażowanych państw członkowskich, nie jest możliwe ich pogrupowanie. Ponadto z uwagi na fakt, że liczba operacji jest bardzo niska (tylko 47), do każdej operacji przypisany jest większa liczba partnerów projektu niż jeden (partner wiodący i co najmniej jeden inny partner projektu) oraz istnieje kilka operacji o bardzo dużych wartościach księgowych, instytucja audytowa postanowiła zastosować podejście oparte na niestatystycznym doborze próby ze stratyfikacją operacji o wysokiej wartości. Instytucja audytowa postanowiła zidentyfikować te operacje, ustanawiając poziom graniczny na 3% całkowitej wartości księgowej.

Poniższa tabela zawiera podsumowanie dostępnych informacji na temat populacji.

<table>
<thead>
<tr>
<th>Zadeklarowane wydatki (DE) w okresie odniesienia</th>
<th>113 300 285 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji (operacje)</td>
<td>47</td>
</tr>
</tbody>
</table>
Poziom istotności (maksymalnie 2 %) | 2 %
Dopuszczalna nieprawidłowość (TE) | 2 266 006 EUR
Wartość graniczna (3 % całkowitej wartości księgowej) | 3 399 009 EUR

Ten projekt o wysokiej wartości zostanie wyłączony z doboru próby i zostanie rozpatrzony osobno. Całkowita wartość tego projektu wynosi 4 411 965 EUR. Kwota błędu zidentyfikowanego w tej kwocie operacji wynosi:

\[EE_e = 80,328. \]

Poniższa tabela zawiera podsumowanie tych wyników:

| Liczba jednostek powyżej wartości granicznej | 1
| Wartość księgowa populacji powyżej wartości granicznej | 4 411 965 EUR
| Kwota błędu wykryta w operacjach o wartości księgowej wyższej niż wartość graniczna | 80 328 EUR
| Pozostała liczebność populacji (liczba operacji) | 46
| Pozostała wartość populacji | 108 888 320 EUR

Instytucja audytowa stwierdza, że system zarządzania i kontroli „zasadniczo nie działa” i w związku z tym podejmuje decyzję o doborze liczebności próby stanowiącej 20 % populacji operacji. Tj. 20 % x 47=9,4 zaokrąglone w górę do 10. Ze względu na małą zmienność w wydatkach w tej populacji audytor podejmuje decyzję o doborze próby w pozostałej części populacji z zastosowaniem równego prawdopodobieństwa. Chociaż na podstawie równego prawdopodobieństwa oczekuje się, że próba ta doprowadzi do objęcia audytem co najmniej 20 % w warstwie wydatków populacji (por. 6.4.3).

Losowo wybiera się próbę 9 operacji (10 minus operacja o wysokiej wartości). Audytem objęto 100 % wydatków dotyczących partnera wiodącego. Wykryto dwa błędy.

<table>
<thead>
<tr>
<th>Nr identyfikacyjny operacji</th>
<th>Wydatki partnera wiodącego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość księgowa</td>
<td>Wydatki objęte audytem</td>
</tr>
<tr>
<td>864</td>
<td>980 563 EUR</td>
</tr>
<tr>
<td>12 895</td>
<td>1 278 327 EUR</td>
</tr>
<tr>
<td>6 724</td>
<td>658 748 EUR</td>
</tr>
<tr>
<td>763</td>
<td>234 739 EUR</td>
</tr>
<tr>
<td>65</td>
<td>987 329 EUR</td>
</tr>
</tbody>
</table>
Instytucja audytowa prognozuje błąd w odniesieniu do każdej operacji przy użyciu estymacji ilorazowej. Na przykład błąd przewidywany operacji ID 65 jest uwarunkowany poziomem błędu próby (127/65 318 x 100 % = 0,23 %) pomnożonym przez wartość księgową partnerów projektu operacji (0,23 % x 245 538 EUR = 554 EUR).
W przypadku każdej operacji w próbie błąd przewidywany jest równy błędowi przewidywanemu dla partnerów projektu oraz błędowi zaobserwowanemu u partnera wiodącego.

<table>
<thead>
<tr>
<th>Nr identyfikacyjny operacji</th>
<th>Całkowita wartość księgowa</th>
<th>Błąd przewidywany (partner wiodący)</th>
<th>Błąd przewidywany (inni partnerzy projektu)</th>
<th>Całkowity błąd przewidywany według operacji</th>
</tr>
</thead>
<tbody>
<tr>
<td>864</td>
<td>1 125 130 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
</tr>
<tr>
<td>12 895</td>
<td>2 112 786 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
</tr>
<tr>
<td>6 724</td>
<td>1 425 315 EUR</td>
<td>5 274 EUR</td>
<td>116 EUR</td>
<td>5 390 EUR</td>
</tr>
<tr>
<td>763</td>
<td>901 317 EUR</td>
<td>20 327 EUR</td>
<td>0 EUR</td>
<td>20 327 EUR</td>
</tr>
<tr>
<td>65</td>
<td>1 232 867 EUR</td>
<td>0 EUR</td>
<td>554 EUR</td>
<td>554 EUR</td>
</tr>
<tr>
<td>3</td>
<td>1 390 463 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
</tr>
<tr>
<td>65</td>
<td>1 574 325 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
</tr>
<tr>
<td>567</td>
<td>1 467 930 EUR</td>
<td>0 EUR</td>
<td>6 067 EUR</td>
<td>6 067 EUR</td>
</tr>
<tr>
<td>24</td>
<td>1 468 418 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
<td>0 EUR</td>
</tr>
<tr>
<td>Ogółem</td>
<td>12 698 551 EUR</td>
<td></td>
<td></td>
<td>32 338 EUR</td>
</tr>
</tbody>
</table>

Błąd przewidywany dla całej warstwy o niskiej wartości jest sumą błędów przewidywanych dla poszczególnych operacji (32 338 EUR) podzieloną przez całkowitą wartość księgową operacji objętych próbą, 7 114 313 EUR + 5 584 238 EUR = 12 698 551 EUR, co daje poziom błędu próby odpowiadający poziomowi warstwy o niskiej wartości, tj. 0,25%. Po raz kolejny, stosując procedurę estymacji ilorazowej, ten poziom błędu próby stosowany w odniesieniu do wartości księgowej warstwy o niskiej wartości, 108 888 320 EUR, daje błąd przewidywany na poziomie warstwy o niskiej wartości tj. 277 294 EUR.

W wyniku zsumowania błędu przewidywanego dla warstwy o wysokiej wartości i warstwy o niskiej wartości instytucja audytowa otrzymuje całkowity błąd przewidywany.

\[EE = EE_e + EE_s = 80,328 + 277,294 = 357,622 \text{EUR} \]

Ponadto błąd przewidywany zostanie porównany z progiem istotności (2 266 006 EUR), co zwykle prowadzi do wniosku, że błąd przewidywany jest poniżej progu istotności.
7 Wybrane kwestie

7.1 Sposób określania błędu oczekiwano

giego

Błąd oczekiwany można zdefiniować jako kwotę błędu, którą audytor spodziewa się wykryć w populacji. Czynniki istotne dla uwzględnienia przewidywanego przez audytora błędu obejmują wyniki badań kontrolnych, wyniki procedur kontroli stosowanych we wcześniejszym okresie oraz wyniki uzyskane dzięki zastosowaniu innych istotnych procedur. Należy wziąć pod uwagę fakt, że im bardziej błąd oczekiwany różni się od błędu rzeczywistego, tym większe jest ryzyko otrzymania niejednoznacznego wyniku po przeprowadzeniu audytu (EE < 2 % i ULE > 2 %).

Aby ustalić wartość błędu oczekiwano, audytor powinien uwzględnić następujące kwestie:

1. Jeżeli audytor posiada dane dotyczące poziomów błędów z lat poprzednich, podstawę błędu oczekiwano powinien zasadniczo stanowić błąd przewidywany otrzymany w roku poprzednim; jeżeli zaś audytor otrzymał dane o zmianach w jakości systemów kontroli, dane te mogą zostać wykorzystane w celu obniżenia lub zwiększenia błędu oczekiwano. Przykładowo, jeżeli zeszłoroczny przewidywany poziom błędu wynosił 0,7 % i nie istnieją żadne inne dane, wartość tą można przypisać do oczekiwano poziomu błędu. Jeżeli natomiast audytor otrzymał dowody wskazujące na poprawę systemów, które w sposób racjonalny przekonały go, że poziom błędu w roku bieżącym będzie niższy, dane te mogą zostać wykorzystane w celu obniżenia poziomu błędu oczekiwano do niższej wartości, np. do 0,4 %;

2. Jeżeli nie istnieją jakiekolwiek dane historyczne dotyczące poziomów błędów, audytor może wykorzystać próbę wstępna/pilotową, aby otrzymać wstępny szacunek poziomu błędu populacji. Uznaje się, że oczekiwany poziom błędu jest równy poziomowi błędu przewidywano uzyskanego z tej próbki wstępnej. Jeżeli dokonuje się doboru próbki wstępnej w celu obliczenia odchylen standardowych niezbędnych do obliczenia wzorców na liczebność próbki, ta sama próbka wstępna może zostać wykorzystana celem obliczenia wstępnej prognozy poziomu błędu, a tym samym błędu oczekiwano;

3. Jeżeli nie istnieją jakiekolwiek dane historyczne pozwalające na otrzymanie błędu oczekiwano oraz z uwagi na niekontrolowane ograniczenia nie można wykorzystać próbki wstępnej, audytor powinien ustalić wartość błędu oczekiwano w oparciu o doświadczenie zawodowe i profesjonalny osąd. Wartość ta powinna głównie odzwierciedlać przewidywania audytora dotyczące rzeczywistego poziomu błędu w populacji.
Podsumowując, audytor powinien wykorzystać dane historyczne, dane pomocnicze, profesjonalny osąd lub połączenie wymienionych elementów, tak aby ustalić jak najbardziej realistyczną wartość błędu oczekiwanego.

Błąd oczekiwany ustalony na podstawie obiektynych danych ilościowych jest zazwyczaj dokładniejszy i pozwala na uniknięcie konieczności podejmowania dodatkowych czynności w przypadku, w którym wyniki audytu są niejednoznaczne. Jeżeli audytor ustali na przykład oczekiwany poziom błędu na 10 % istotności, tj. 0,2 % wydatków, oraz po zakończeniu audytu otrzyma błąd przewidywany na poziomie 1,5 %, wyniki będą najprawdopodobniej niejednoznaczne, ponieważ górna granica błędu przekroczy poziom istotności. Aby uniknąć takich sytuacji, dokonując doboru próby w przyszłości, audytor powinien zastosować możliwie najbardziej realistyczną miarę błędu rzeczywistego w populacji jako błąd oczekiwany.

Szczególna sytuacja może wystąpić w przypadku, w którym oczekiwany poziom błędu wyniesie około 2 % (por. rys. 6). Przykładowo, jeżeli błąd oczekiwany jest na poziomie 1,9 %, a poziom ufności jest wysoki (np. 90 %), może zająć sytuacja, w której liczebność próby będzie wyjątkowo duża i niemalże nieosiągalna. Zjawisko to jest wspólne dla wszystkich metod doboru próby i występuje w przypadkach, w których planowana dokładność jest bardzo niska (0,1 % w powyższym przykładzie)\(^\text{59}\). W tej sytuacji zaleca się dokonanie podziału populacji na dwie różne subpopulacje, w odniesieniu do których audytor przewiduje zidentyfikowanie różnych poziomów błędu. Jeżeli możliwe jest zidentyfikowanie jednej subpopulacji z błędem oczekiwany na poziomie poniżej 2 % oraz drugiej populacji, w odniesieniu do której błąd oczekiwany jest na poziomie powyżej 2 %, audytor może swobodnie zastosować dwie różne próby dla tych populacji, nie narażając się na ryzyko otrzymywania zbyt dużych liczebności prób.

Ponadto instytucja audytowa powinna zaplanować swoje czynności audytowi w sposób umożliwiający osiągnięcie wystarczającej dokładności najbardziej prawdopodobnego poziomu błędu (MLE), nawet jeżeli oczekiwany poziom błędu znacznie przekracza poziom istotności (tzn. jest równy lub większy niż 4,0 %). W takim przypadku zaleca się obliczenie wzorów na liczebność prób, stosując błąd oczekiwany, którego wynikiem jest planowana dokładność na poziomie 2,0 %, tj. poprzez przypisanie błędowi oczekiwanemu wartości równej 4,0 % (por. rys. 6).

Jeżeli dane historyczne dotyczące audytów operacji i potencjalnie wyników audytu systemu prowadzą do uzyskania bardzo niskiego oczekiwanego poziomu błędu, audytor może podjąć decyzję o wykorzystaniu tych danych historycznych lub dowolnego wyższego błędu jako błędu oczekiwanej w celu zachowania ostrożności w odniesieniu do skutecznej dokładności (np. w przypadku gdy skuteczny poziom błędu jest wyższy niż przewidywany).

\(^{59}\) Należy pamiętać, że planowana dokładność jest funkcją błędu oczekiwansenego, tj. równa różnicy między maksymalnym dopuszczalnym błędem a błędem oczekiwanym.
7.2 Dodatkowy dobór próby

7.2.1 Uzupełniający dobór próby (ze względu na niewystarczające uwzględnienie obszarów wysokiego ryzyka)

Jeżeli chodzi o okres programowania 2007–2013, w art. 17 ust. 5 rozporządzenia Komisji (WE) nr 1828/2006 (w odniesieniu do EFRR, FS i EFS) i w art. 43 ust. 5 rozporządzenia Komisji (WE) nr 498/2007 (w odniesieniu do EFR) zawarto odniesienia do uzupełniającego doboru próby.

Podobny przepis istnieje w odniesieniu do okresu programowania 2014–2020 i został określony w art. 28 ust. 12 rozporządzenia (UE) nr 480/2014: „W przypadku wykrycia nieprawidłowości lub ryzyka wystąpienia nieprawidłowości instytucja audytowa decyduje na podstawie profesjonalnej oceny, czy należy przeprowadzić audyt uzupełniającej próbę dodatkowych operacji lub części operacji, które nie zostały objęte audyttem w próbie losowej, tak aby uwzględnić stwierdzone szczególne czynniki ryzyka”.
Pewność audytu powinna opierać się na pracach instytucji audytowej nad audytami systemu oraz audytami operacji oraz wszelkimi uzupełniającymi audytami uznanymi przez instytucję za konieczne na podstawie oceny ryzyka, z uwzględnieniem prac audytowych prowadzonych podczas okresu programowania.

Wyniki losowego statystycznego doboru próby muszą zostać ocenione w porównaniu do wyników analizy ryzyka przeprowadzonej w ramach każdego programu. Jeżeli na podstawie tego porównania stwierdza się, że w ramach losowej statystycznej próby nie odniesiono się do niektórych obszarów wysokiego ryzyka lub zakresu, należy uzupełnić tę próbę o kolejny dobór operacji, tj. próbę uzupełniającą. Instytucja audytowa powinna regularnie dokonywać takiej oceny w okresie realizacji.

W związku z powyższym wyniki audytów obejmujących próbę uzupełniającą analizowane są w odwzorowaniu do wyników audytów obejmujących losową statystyczną próbę. W szczególności błędy wykryte w próbie uzupełniającej nie są uwzględniane przy obliczaniu poziomu błędu wynikającego z audytu losowej statystycznej próbki. Należy jednak dokonać szczegółowej analizy błędów wykrytych w próbie uzupełniającej w celu zidentyfikowania charakteru błędów i przedstawienia zaleceń dotyczących sposobu ich skorygowania.

Wyniki audytu próby uzupełniającej należy zawrzeć w rocznym sprawozdaniu z kontroli i przedstawić Komisji bezwzględnie po zakończeniu audytu.

7.2.2 Dodatkowy dobór próby (ze względu na niejednoznaczne wyniki audytu)

W każdym przypadku, w którym wyniki audytu są niejednoznaczne oraz w którym przeprowadzenie dodatkowych czynności zostanie uznanie za konieczne na podstawie możliwości opisanych w sekcji 7.7 (zazwyczaj jeżeli błąd przewidywany jest niższy od poziomu istotności, ale górna granica błędu przekracza ten poziom istotności), można wybrać dodatkową próbę. W tym celu we wzorach na określenie liczebności próbę błąd oczekiwanie należy zastąpić błędem przewidywanym uzyskanym z pierwotnej próbki (w rzeczywistości błąd przewidywany stanowi w tym przypadku najlepszy szacunek błędu w populacji). W ten sposób można obliczyć nową liczebność próby w oparciu o nowe dane będące wynikiem pierwotnej próby. Potrzebną liczebność próbki dodatkowej można uzyskać, odcinając pierwotną liczebność próby od nowej liczebności próby. Następnie można dokonać doboru nowej próbki (stosując tę samą metodę, co w przypadku pierwotnej próbki), poprzez połączenie ze sobą dwóch prób i ponowne obliczenie wyników (błędu przewidywanego i dokładności), wykorzystując dane uzyskane z ostatecznej połączonej próbki.

Wyobraźmy sobie sytuację, w której z próby pierwotnej o liczebności próby wynoszącej 60 operacji uzyskano przewidywany poziom błędu w wysokości 1,5% i dokładność na
poziomie 0,9 %. W rezultacie górna granica poziomu błędu wynosi 1,5+0,9=2,4 %. W tym przypadku otrzymano przewidywany poziom błędu poniżej poziomu istotności wynoszącego 2 % i górną granicę przekraczającą ten poziom. W rezultacie audytor znajduje się w sytuacji, w której konieczne jest przeprowadzenie dalszych czynności w celu wyciągnięcia wniosków (por. sekcja 4.12). Spośród różnych możliwości audytor może podjąć decyzję o przeprowadzeniu dalszych badań za pomocą dodatkowego doboru próby. W przypadku podjęcia takiej decyzji we wzorze na określenie liczebności próby zamiast błędu oczekiwanej należy zastosować przewidywany poziom błędu w wysokości 1,5 %, co prowadzi do ponownego obliczenia liczebności próby, w wyniku którego w powyższym przykładzie otrzymamy nową liczebność próby w wysokości n=78. Ponieważ pierwotna próba miała liczebność obejmującą 60 operacji, wartość tę należy odjąć od nowej liczby próby, otrzymując w rezultacie 78-60=18 nowych operacji. W związku z tym dodatkową próbę obejmującą 18 operacji należy na tym etapie dobrać z populacji, stosując tę samą metodę, co w przypadku pierwotnej próby (np. MUS). Po dokonaniu tego doboru obie próbki łączy się ze sobą, uzyskując nową całą próbę obejmującą 60+18=78 operacji. Taka ogólna próba będzie ostatecznie wykorzystana celem ponownego obliczenia błędu przewidywanego i dokładności prognozowania przy zastosowaniu przyjętych.

7.3 Dobór próby dokonywany w ciągu roku

7.3.1 Wprowadzenie

Instytucja audytowa może podjąć decyzję o przeprowadzeniu procesu doboru próby w kilku okresach w ciągu roku (zazwyczaj dwa półrocza). Mając na celu zmniejszenie ogólnej liczebności próby, nie należy stosować tego podejścia. Ogólnie suma liczebności prób dla kilku okresów obserwacji będzie większa niż liczebność prób, którą otrzymano by, dokonując doboru prób w pojedynczym okresie na koniec roku. Jeżeli obliczeń dokonuje się jednak w oparciu o realistyczne założenia, zazwyczaj suma cząstkowych liczebności prób nie będzie znacznie większa niż liczebność uzyskana w pojedynczej obserwacji. Największa korzyść wynikająca z tego podejścia wiąże się nie ze zmniejszeniem liczebności próby, ale głównie z możliwością rozłożenia czynności audytowych na cały rok, a tym samym zmniejszenia nakładu pracy, która zostałaby wykonana pod koniec roku na podstawie zaledwie jednej obserwacji.

Podejście to wymaga przyjęcia w pierwszym okresie obserwacji pewnych założeń w odniesieniu do kolejnych okresów obserwacji (zazwyczaj następnego półrocza). Przykładowo audytor może uznać za konieczne oszacowanie całkowitych wydatków, których wykrycia w populacji oczekuje się w następnym półroczu. Oznacza to, że metoda ta nie jest realizowana bez narażenia na ryzyko ze względu na możliwe niezgodności w założeniach dotyczących kolejnych okresów. Jeżeli cechy
charakterystyczne populacji w kolejnych okresach znacznie odbiegają od założeń, liczność próby dla kolejnego okresu może wymagać zwiększenia, a ogólna liczność próby (obejmująca wszystkie okresy) może być większa niż liczność oczekiwana i planowana.

W rozdziale 6 niniejszych wytycznych przedstawiono poszczególne wzory i szczegółowe wytyczne dotyczące realizowania doboru próby w dwóch okresach obserwacji w ciągu jednego roku. Należy zauważyć, że podejście to można stosować razem z każdą wybraną przez audytor metodą doboru próby, w tym możliwą stratyfikacją. Dopuszcza się także traktowanie kilku okresów w roku jako różnych populacji, w ramach których planuje się i dobiera różne próby. Nie jest to objęte metodami zaproponowanymi w rozdziale 6, ponieważ stosowanie tego podejścia jest prosty, polegający na stosowaniu standardowych wzorców w odniesieniu do szeregu metod doboru próby. W ramach tego podejścia jedyną dodatkową czynnością jest zsumowanie cząstkowych błędów przewidywanych na koniec roku.

Celem instytucji audytowej powinno być stosowanie takiej samej metody doboru próby dla danego okresu odniesienia. Nie zaleca się stosowania różnych metod doboru próby w ciągu tego samego okresu odniesienia, ponieważ skutkowałoby to bardziej złożonymi wzorami na ekstrapolację błędu w odniesieniu do tego roku. Można więc uzyskać miary całkowitej dokładności, pod warunkiem że statystyczny dobór próby realizowano w tym samym okresie odniesienia. Wspomniane bardziej złożone wzory nie zostały jednak przedstawione w niniejszym dokumencie. W związku z tym, jeżeli instytucja audytowa stosuje różne metody doboru próby w ciągu jednego roku, powinna dążyć do zdobycia odpowiedniej wiedzy specjalistycznej w celu uzyskania prawidłowego szacunku przewidywanego poziomu błędu.

Jeżeli instytucja audytowa postanowi zastosować schematy doboru próby obejmujące trzy lub cztery okresy, należy odnieść się do załącznika 2, w którym przedstawiono odpowiednie wzory.

7.3.2 Dodatkowe uwagi dotyczące doboru próby obejmującego wiele okresów

7.3.2.1 Prezentacja

W przypadku proponowanych wcześniej metod doboru próby obejmującego dwa lub wiele okresów pierwszą czynnością zawsze jest obliczenie ogólnej liczności próby (za cały rok), która następnie zostaje alokowana do kilku okresów.

Na przykład w ramach metody doboru próby na podstawie jednostki monetarnej pierwszą czynnością jest obliczenie liczebności próby

60 Wynikiem tego będą oczywiście liczności próby większe niż liczności otrzywane w ramach podejścia przedstawionego w rozdziale 6.
\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]
i jej alokacja do dwóch okresów według wzoru

\[n_1 = \frac{BV_1}{BV} n \]

oraz

\[n_2 = \frac{BV_2}{BV} n \]

Obliczanie liczebności próby i jej alokacja opierają się na pewnych założeniach dotyczących parametrów populacji (wydatki, odchylenia standardowe itd.), które będą znane dopiero pod koniec kolejnego okresu audytu.

Z tego powodu pod koniec następnego półrocza liczebność próby może zostać ponownie obliczona, jeżeli założenia znacząco odbiegają od znanych parametrów populacji. W związku z tym zaleca się ponowne obliczenie liczebności próby dla drugiego półrocza za pomocą wzoru:

\[n_2 = \frac{(z \times BV_2 \times \sigma_{r2})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2} \]

To zalecane podejście nie wyklucza stosowania innych podejść do ponownego obliczania liczebności próby, która w dalszym ciągu może być wystarczająca do zapewnienia wymaganej dokładności pod koniec roku programowania. W rzeczywistości proponowane podejście opracowano w celu uniknięcia konieczności ponownego obliczania liczebności próby dla pierwszego okresu (już objętego audytem) i w rezultacie uniknięcia konieczności doboru dodatkowej próby dla tego okresu. Niemniej jednak dla instytucji audytowej powinna być to pożądana opcja – możliwe jest ponowne obliczenie ogólnej liczebności próbki (po przeprowadzeniu audytu próbki obejmującej pierwszy okres) i dokonanie proporcjonalnej alokacji do poszczególnych okresów, rozszerzając korektę na próbę obejmującą pierwszy i drugi okres.

Możliwym sposobem na osiągnięcie tego byłoby następujące postępowanie. Po audycie próbki obejmującej pierwszy okres ogólną liczebność próby ponownie oblicza się za pomocą wzoru:

\[n_1 = \frac{BV_1}{BV} n \]

oraz

\[n_2 = \frac{BV_2}{BV} n \]

Obliczanie liczebności próby i jej alokacja opierają się na pewnych założeniach dotyczących parametrów populacji (wydatki, odchylenia standardowe itd.), które będą znane dopiero pod koniec kolejnego okresu audytu.

Z tego powodu pod koniec następnego półrocza liczebność próby może zostać ponownie obliczona, jeżeli założenia znacząco odbiegają od znanych parametrów populacji. W związku z tym zaleca się ponowne obliczenie liczebności próby dla drugiego półrocza za pomocą wzoru:

\[n_2 = \frac{(z \times BV_2 \times \sigma_{r2})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2} \]

To zalecane podejście nie wyklucza stosowania innych podejść do ponownego obliczania liczebności próby, która w dalszym ciągu może być wystarczająca do zapewnienia wymaganej dokładności pod koniec roku programowania. W rzeczywistości proponowane podejście opracowano w celu uniknięcia konieczności ponownego obliczania liczebności próby dla pierwszego okresu (już objętego audytem) i w rezultacie uniknięcia konieczności doboru dodatkowej próby dla tego okresu. Niemniej jednak dla instytucji audytowej powinna być to pożądana opcja – możliwe jest ponowne obliczenie ogólnej liczebności próbki (po przeprowadzeniu audytu próbki obejmującej pierwszy okres) i dokonanie proporcjonalnej alokacji do poszczególnych okresów, rozszerzając korektę na próbę obejmującą pierwszy i drugi okres.

Możliwym sposobem na osiągnięcie tego byłoby następujące postępowanie. Po audycie próbki obejmującej pierwszy okres ogólną liczebność próbki ponownie oblicza się za pomocą wzoru:

\[n_1 = \frac{BV_1}{BV} n \]

oraz

\[n_2 = \frac{BV_2}{BV} n \]

Obliczanie liczebności próby i jej alokacja opierają się na pewnych założeniach dotyczących parametrów populacji (wydatki, odchylenia standardowe itd.), które będą znane dopiero pod koniec kolejnego okresu audytu.

Z tego powodu pod koniec następnego półrocza liczebność próby może zostać ponownie obliczona, jeżeli założenia znacząco odbiegają od znanych parametrów populacji. W związku z tym zaleca się ponowne obliczenie liczebności próby dla drugiego półrocza za pomocą wzoru:

\[n_2 = \frac{(z \times BV_2 \times \sigma_{r2})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r1}^2} \]

To zalecane podejście nie wyklucza stosowania innych podejść do ponownego obliczania liczebności próby, która w dalszym ciągu może być wystarczająca do zapewnienia wymaganej dokładności pod koniec roku programowania. W rzeczywistości proponowane podejście opracowano w celu uniknięcia konieczności ponownego obliczania liczebności próby dla pierwszego okresu (już objętego audytem) i w rezultacie uniknięcia konieczności doboru dodatkowej próby dla tego okresu. Niemniej jednak dla instytucji audytowej powinna być to pożądana opcja – możliwe jest ponowne obliczenie ogólnej liczebności próbki (po przeprowadzeniu audytu próbki obejmującej pierwszy okres) i dokonanie proporcjonalnej alokacji do poszczególnych okresów, rozszerzając korektę na próbę obejmującą pierwszy i drugi okres.
\[n' = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

gdzie \(\sigma_{rw}^2 \) oznacza średnią ważoną wariancję poziomów błędu w każdym półroczu, przy czym waga dla każdego półrocza jest równa stosunkowi wartości księgowej półrocza (\(BV_r \)) i wartości księgowej całej populacji (\(BV \)).

\[\sigma_w^2 = \frac{BV_1}{BV} s_{r1}^2 + \frac{BV_2}{BV} \sigma_{r2}^2 \]

Należy zauważyć, że w tych obliczeniach wariancję \(s_{r1}^2 \) można już było uzyskać na podstawie próby z pierwszego półrocza (już objętej audytorem), choć \(\sigma_{r2}^2 \) jest jedynie przybliżoną wariancją poziomów błędu z drugiego półrocza opierającą się na danych historycznych, próbie wstępnej lub po prostu profesjonalnym osądzie audytora.

Także wartość księgowa populacji (\(BV \)) użyta w tym wzorze może się różnić od użytej w pierwszym okresie. Jeżeli ponowne obliczenia zostaną przeprowadzone pod koniec drugiego okresu, w rzeczywistości znane będą prawidłowe wydatki z obu półroczy. W pierwszym półroczu znana była tylko wartość księgowa z pierwszego okresu, zaś wartość księgowa z drugiego okresu opierała się na prognozach audytora.

Po ponownym obliczeniu liczebności próby z całego roku należy dokonać jej realokacji do obu półroczy przy zastosowaniu standardowego podejścia

\[n'_{1} = \frac{BV_1}{BV} n' \]

oraz

\[n'_{2} = \frac{BV_2}{BV} n' \]

Saldo tej alokacji także może się różnić od pierwotnej alokacji ze względu na fakt, że \(BV_2 \) jest obecnie znana, i nie jest już tylko zwykłą prognozą.

Ponadto dokonuje się doboru i audytu próby o liczebności \(n'_{2} \) z wydatków z drugiego okresu. Ponadto, jeżeli ponownie obliczona liczebność próbki \(n'_{1} \) jest większa niż ta pierwotnie zaplanowana \(n_1 \), należy dokonać doboru i audytu dodatkowej próbki z wydatków z pierwszego półrocza \(n'_{1} - n_1 \). Ta dodatkowa próbka zostanie połączona z pierwotnie wybraną próbą z pierwszego okresu i będzie wykorzystywana do celów prognozowania, na ogół przy użyciu ogólnej metodologii zaproponowanej w sekcji 7.2.2.
7.3.2.2 Przykład

Wiedząc, że obciążenie czynnościami audytowymi koncentruje się zwykle pod koniec roku audytowego, instytucja audytowa postanowiла rozłożyć czynności audytowe na dwa okresy. Po zakończeniu pierwszego półrocza instytucja audytowa przeanalizowała populację podzieloną na dwie grupy odpowiadające każdemu z dwóch półrocy. Na koniec pierwszego półrocza cechy charakterystyczne populacji są następujące:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane na koniec pierwszego półrocza</th>
<th>1 827 930 259 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocze)</td>
<td>2 344</td>
</tr>
</tbody>
</table>

Na podstawie zgromadzonych wcześniej doświadczeń instytucja audytowa wie, że zazwyczaj wszystkie operacje zawarte w programach na koniec okresu odniesienia są już aktywne w populacji pierwszego półrocy. Ponadto oczekuje się, że wydatki zadeklarowane na koniec pierwszego półrocza będą stanowiły około 35% całkowitych wydatków zadeklarowanych na koniec okresu odniesienia. Na podstawie tych założeń w poniższej tabeli przedstawiono podsumowanie populacji:

<table>
<thead>
<tr>
<th>Wydatki zadeklarowane (DE) na koniec pierwszego półrocza</th>
<th>1 827 930 259 EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wydatki zadeklarowane (DE) na koniec drugiego półrocza (przewidywane)</td>
<td>3 394 727 624 EUR</td>
</tr>
<tr>
<td>1 827 930 259 EUR / 0,35 - 1 827 930 259 EUR = 3 394 727 624 EUR</td>
<td>3 394 727 624 EUR</td>
</tr>
<tr>
<td>Całkowite wydatki przewidywane na dany rok</td>
<td>5 222 657 883 EUR</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – pierwsze półrocze)</td>
<td>2 344</td>
</tr>
<tr>
<td>Liczebność populacji (operacje – drugie półrocze, przewidywana)</td>
<td>2 344</td>
</tr>
</tbody>
</table>

Instytucja audytowa podjęła decyzję o zastosowaniu standardowego schematu doboru próby opartego na metodzie doboru próby na podstawie jednostki monetarnej, według której zadeklarowane wydatki dzieli się odpowiednio na półrocy, w których zostały przedstawione. Dla pierwszego okresu ogólną liczebność próby (w odniesieniu do zbioru dwóch półrocy) oblicza się następująco:

\[n = \left(\frac{z \times BV \times \sigma_{rw}}{TE - AE} \right)^2 \]

gdzie \(\sigma^2_{rw} \) oznacza średnią ważoną wariancję poziomów błędu w każdym półrocy, przy czym waga dla każdego półrocy jest równa stosunkowi wartości księgowej półrocy (\(BV_t \)) i wartości księgowej całej populacji (\(BV \)),

\[\sigma^2_{rw} = \frac{BV_1}{BV} \sigma^2_{r1} + \frac{BV_2}{BV} \sigma^2_{r2} \]
zaś σ^2_{rt} oznacza wariancję poziomów błędu w każdym półroczu. Wariancję poziomów błędu dla każdego półrocza oblicza się następująco:

$$\sigma^2_{rt} = \frac{1}{n_t - 1} \sum_{i=1}^{n_t} (r_{ti} - \bar{r}_t)^2, t = 1, 2, ..., T$$

Ponieważ wariancje są nieznane, instytucja audytowa postanowiła wylosować próbę wstępną składającą się z 20 operacji po zakończeniu pierwszego półrocza bieżącego roku. Odchylenie standardowe poziomów błędu w tej próbie wstępnej w pierwszym półroczu wynosi 0,12. W oparciu o profesjonalny osąd i wiedząc, że wydatki w drugim półroczu są zazwyczaj większe niż w pierwszym, instytucja audytowa dokonała wstępnej prognozy odchylenia standardowego poziomów błędu dla drugiego półrocza, zgodnie z którą odchylenie będzie o 110% większe niż w pierwszym półroczu i wyniesie 0,25. W związku z tym średnia ważona wariancji poziomów błędu wynosi:

$$\sigma^2_{rw} = \frac{1,827,930,259}{1,827,930,259 + 3,394,727,624} \times 0.12^2 + \frac{3,394,727,624}{1,827,930,259 + 3,394,727,624} \times 0.25^2 = 0.0457$$

W pierwszym półroczu instytucja audytowa, z uwagi na poziom funkcjonowania systemu zarządzania i kontroli, uznaje, że odpowiedni jest poziom ufności wynoszący 60%. Ogólna liczebność próby dla całego roku wynosi:

$$n = \left(\frac{0.842 \times (1,827,930,259 + 3,394,727,624) \times \sqrt{0.0457}}{104,453,158 - 20,890,632}\right)^2 \approx 127$$

gdzie z wynosi 0,842 (współczynnik odpowiadający poziomowi ufności wynoszącemu 60%), zaś TE, błąd dopuszczalny, wynosi 2% (maksymalny poziom istotności wyznaczony w rozporządzeniu) wartości księgowej. Całkowita wartość księgowa obejmuje faktyczną wartość księgową na koniec pierwszego półrocza oraz przewidywaną wartość księgową dla drugiego półrocza, 3 394 727 624 EUR, co oznacza, że błąd dopuszczalny wynosi 2% x 5 222 657 883 EUR = 104,453,158 EUR.

W ramach zeszłorocznego audytu prognozowano poziom błędu 0,4%. Dlatego też AE, błąd oczekiwany, wynosi 0,4% x 5 222 657 883 EUR = 20 890 632 EUR.

Alokacja próby według półrocza odbywa się następująco:

$$n_1 = \frac{BV_1}{BV_1 + BV_2} = \frac{1,827,930,259}{1,827,930,259 + 3,394,727,624} \times 127 \approx 45$$

oraz
\[n_2 = n - n_1 = 82 \]

Na koniec drugiego półrocza dostępnych jest więcej informacji, w szczególności znana jest prawidłowa kwota łącznych wydatków w ramach operacji aktywnych w drugim półroczu, dostępne są informacje na temat wariancji próby poziomów błędu \(s_{r1} \) obliczonej na podstawie próby pierwszego półrocza i możliwa jest dokładniejsza ocena odchylenia standardowego poziomów błędu dla drugiego półrocza \(\sigma_{r2} \) z wykorzystaniem próby wstępnej składającej się z danych faktycznych.

Instytucja audytowa zdaje sobie sprawę, że w przyjętym na koniec pierwszego półrocza założeniu dotyczącym całkowitych wydatków, 3 394 727 624 EUR, zawyżono ich faktyczną wartość wynoszącą 2 961 930 008 EUR. Istnieją również dwa dodatkowe parametry, w przypadku których należy stosować uaktualnione wartości.

Szacunki odchylenia standardowego poziomów błędów na podstawie próby pierwszego półrocza obejmującej 45 operacji dały szacunkową wartość 0,085. Stosując tę nową wartość, należy teraz dokonać ponownej oceny planowanej liczebności próby. Ponadto próba wstępnna obejmująca 20 operacji populacji z drugiego półrocza dała wstępne szacunki odchylenia standardowego poziomów błędu, 0,32, znacznie odbiegające od wartości początkowej 0,25. Uaktualnione wartości odchylenia standardowego poziomów błędu w przypadku obu półroczy znacznie odbiegają od pierwotnych szacunków. W rezultacie próbę dla drugiego półrocza należy zmienić.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Prognoza sporządzona w pierwszym półroczu</th>
<th>Koniec drugiego półrocza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odchylenie standardowe poziomów błędu w pierwszym półroczu</td>
<td>0,12</td>
<td>0,085</td>
</tr>
<tr>
<td>Odchylenie standardowe poziomów błędu w drugim półroczu</td>
<td>0,25</td>
<td>0,32</td>
</tr>
<tr>
<td>Całkowite wydatki w drugim półroczu</td>
<td>3 394 727 624 EUR</td>
<td>2 961 930 008 EUR</td>
</tr>
</tbody>
</table>

Standardowym podejściem do ponownego obliczenia liczebności próby (por. sekcja 6.3.3.7) byłoby ponowne obliczenie liczebności próby dla drugiego półrocza na podstawie zaktualizowanych parametrów populacji. Instytucja audytowa decyduje się jednak przyjąć alternatywne podejście w oparciu o ponowne obliczenie ogólnej
liczebności próby i jej ponowną alokację między dwa półrocza. Ponownie obliczoną ogólną liczebność próby określa wzór:

\[n' = \left(\frac{z \times BV \times \sigma_{rw}^2}{TE - AE} \right) ^2, \]

gdzie \(\sigma_{rw}^2 \) został określony wcześniej, ale bazuje na całkowicie nowych wartościach \(BV_1, BV_2 \) i \(BV \), natomiast variancja \(s_{r1}^2 \) została uzyskana na podstawie próby z pierwszego półrocza (już objętej audytem), a \(\sigma_{r2}^2 \) jest jedynie przybliżoną variancją poziomów błędu z drugiego półrocza, uzyskaną w oparciu o próbkę wstępną z populacji z drugiego półrocza:

\[\sigma_{rw}^2 = \frac{BV_1}{BV} \times s_{r1}^2 + \frac{BV_2}{BV} \times \sigma_{r2}^2. \]

Zatem

\[\sigma_{rw}^2 = \frac{1,827,930,259}{4,789,860,267} \times 0.085^2 + \frac{2,961,930,008}{4,789,860,267} \times 0.32^2 = 0.066, \]

oraz

\[n' = \left(\frac{0.842 \times 4,789,860,267 \times 0.2571}{95,797,205 - 19,159,441} \right) ^2 \approx 183. \]

Po ponownym obliczeniu liczebności próby z całego roku należy dokonać jej realokacji do obu półroczy przy zastosowaniu standardowego podejścia

\[n' = \frac{1,827,930,259}{4,789,860,267} \times 183 \approx 70 \]

oraz

\[n'_2 = 183 - 70 = 113 \]

Ponownie obliczenie liczebności próby oznacza, że próbę z pierwszego półrocza należy powiększyć o 25 operacji. Aby uzyskać dodatkową próbę, instytucja audytowa odejmuje od populacji pierwszego półrocza poprzednie operacje objęte próbą o wartości 1 209 191 248 EUR. Całkowita wartość księgowa pozostałej populacji wynosi 618 739 011 EUR. Po obliczeniu przez instytucję audytową nowej wartości granicznej (stosunek wartości księgowej pozostałej populacji wynoszącej 618 739 011 EUR do liczebności próby, która wynosi 25) ponownie okazuje się, że istnieją dwie operacje, których wartość księgowa jest wyższa od tej wartości granicznej. Wartość księgowa tych dwóch operacji wynosi 83 678 923 EUR. Po odjęciu tych dwóch operacji instytucja audytowa
uzyskuje końcową populację, którą należy objąć próbą, stosując MUS z interwałem losowania wynoszącym:

$$SI'_{s1} = \frac{BV'_{s1}}{n'_{s1}} = \frac{618,739,011 - 83,678,923}{23} = 27,263,482.$$

Żadna z 2 operacji, których wartość księgowa była wyższa niż wartość graniczna, nie zawierała błędu. Należy jednak połączyć te jednostki próbę z jednostkami, które włączono już do warstwy o wysokiej wartości pierwotnej próby dla pierwszego półrocza. Do warstwy o wysokiej wartości należy 11 z 45 operacji wybranych w pierwszym półroczu. Łączna kwota błędu tych operacji wynosi 19 240 855 EUR.

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe operacje populacji (2344 minus 45 operacji, które wybrano już w pierwszym półroczu, minus 2 operacje o wartości księgowej wyższej niż wartość graniczna), a następnie tworzy się sekwencyjną zmienną skumulowanej wartości księgowej. Próbę obejmującą 23 operacji losuje się z zastosowaniem systematycznej procedury proporcjonalnej do wielkości.

Wartość 23 operacji stanowi przedmiot audytu. Suma poziomów błędu w całej próbie warstwy niewyczerpującej obejmującej 57 operacji (34 w pierwszym półroczu + 23 w drugim półroczu) wynosi:

$$\sum_{i=1}^{57} \frac{E_{is1}}{BV'_{is1}} = 0.8391.$$

Odchylenie standardowe poziomu błędu tej próby wynosi 0,059.

Jeżeli chodzi o prace związane z pierwszym półroczem, konieczne jest przede wszystkim zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytem w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej (BV_2) i planowanej liczebności próby (n_2). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli $BV_{i2} > BV_2/n_2$), zostaną umieszczone w warstwie objętej audytem w 100 %. W omawianym przypadku wartość graniczna wynosi 26 211 770 EUR. Istnieje sześć operacji, których wartość księgowa jest większa niż wartość graniczna. Całkowita wartość księgowy tych operacji wynosi 415 238 983 EUR.

Liczebność próby, która zostanie przydzielona do warstwy niewyczerpującej n_{s2}, oblicza się jako różnicę n_2 i liczby jednostek próby (np. operacji) w warstwie wyczerpującej (n_{e2}), tj. 107 operacji (liczbebnosć próby wynosząca 113 pomniejszona o 6 operacji o wysokiej wartości). W związku z tym audytor musi dokonać doboru próby z zastosowaniem interwału losowania:
\[S_{I_{s2}} \frac{BV_{s2}}{n_{s2}} = \frac{2,961,930,008 - 415,238,983}{107} = 23,800,851 \]

Wartość księgowa w warstwie niewyczerpującej \((BV_{s2})\) stanowi po prostu różnicę całkowitej wartości księgowej i wartości księgowej 6 operacji należących do warstwy o wysokiej wartości.

Spośród sześciu operacji o wartości księgowej wyższej niż wartość graniczna cztery zawierały błąd. Całkowity błąd wykryty w tej warstwie wynosi 9 340 755 EUR.

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 2 338 operacji populacji z drugiego półrocza, a następnie tworzy się sekwencyjną łączną zmienną wartości księgowej. Próbę obejmującą 107 operacji losuje się z zastosowaniem systematycznej procedury proporcjonalnej do wielkości.

Wartość 107 operacji stanowi przedmiot audytu. Suma poziomów błędu dla drugiego półrocza wynosi:

\[\sum_{i=1}^{107} E_{2i} = 0.2875. \]

Ochylenie standardowe poziomów błędu w próbie populacji niewyczerpującej z drugiego półrocza wynosi:

\[s_{rs2} = \sqrt{\frac{1}{107 - 1} \sum_{i=1}^{107} (r_{is2} - \bar{r}_{s2})^2} = 0.129 \]

przy czym \(\bar{r}_{s2} \) jest równie średnią arytmetyczną poziomów błędu w próbie danej grupy niewyczerpującej z drugiego półrocza.

Prognozę błędów dla populacji sporządza się w inny sposób dla jednostek należących do warstw wyczerpujących oraz dla pozycji w warstwach niewyczerpujących.

W przypadku warstw wyczerpujących, tj. warstw zawierających jednostki próby o wartości księgowej wyższej niż wartość graniczna, \(BV_{ti} > \frac{BV}{n_{\ell}} \), błąd przewidywany stanowi sumę błędów wykrytych w pozycjach należących do tych warstw:

\[EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} = 19,240,855 + 9,340,755 = 28,581,610 \]

W praktyce:
1) w przypadku każdego półrocza \(t \) należy zidentyfikować jednostki należące do grupy wyczerpującej i zsumować ich błędy;
2) należy zsumować poprzednie wyniki dla obu półroczy.

W przypadku grupy niewyczerpującej, tj. warstw zawierających jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej, \(BV_{ti} \leq \frac{BV_t}{n_t} \), błąd przewidywany wynosi:

\[
EE_s = \frac{BV_{s1}}{n_{s1}} \times \sum_{i=1}^{n_{s1}} E_{1i} + \frac{BV_{s2}}{n_{s2}} \times \sum_{i=1}^{n_{s2}} E_{2i} = \frac{1,827,930,259 - 891,767,519 - 83,678,923}{57} \times 0.8391 + \frac{2,546,691,025}{107} \times 0.2875 = 19,392,204
\]

Aby obliczyć ten błąd przewidywany, należy:
1) w przypadku każdego półrocza \(t \) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie; \(\frac{E_{ti}}{BV_{ti}} \)
2) w przypadku każdego półrocza \(t \) zsumować te poziomy błędu ze wszystkich jednostek w próbie;
3) w każdym półroczu \(t \) pomnożyć poprzedni wynik przez całkowite wydatki populacji grupy niewyczerpującej (\(BV_{st} \)); wydatki te będą także równie całkowitym wydatkom w półroczu pomniejszonym o wydatki pozycji należących do grupy wyczerpującej;
4) w każdym półroczu \(t \) podzielić poprzedni wynik przez liczebność próby w grupie niewyczerpującej (\(n_{st} \));
5) zsumować poprzednie wyniki dla obu półroczy.

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

\[
EE = EE_e + EE_s = 28,581,610 + 19,392,204 = 47,973,814
\]

i odpowiada przewidywanemu poziomowi błędu, który wynosi 1,0 %.

Dokładność jest miarą niepewności związanej z prognozą. Dokładność oblicza się za pomocą następującego wzoru:
\[
SE = z \times \sqrt{\frac{BV_{s_1}^2}{n_{s_1}} \times s_{\text{rs}_1}^2 + \frac{BV_{s_2}^2}{n_{s_2}} \times s_{\text{rs}_2}^2}
\]

\[
= 0.842 \times \sqrt{\frac{(1,827,930,259 - 891,767,519 - 83,678,923)^2}{57} \times 0.059^2 + \frac{2,546,691,025^2}{107} \times 0.129^2}
\]

\[
= 27,323,507
\]

gdzie \(s_{\text{rs}} \) oznacza obliczone już odchylenie standardowe poziomów błędu.

Błąd próby oblicza się wyłącznie dla warstw niewyczerpujących, ponieważ w przypadku grup wyczerpujących błędy próby nie występują.

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta góra granica jest równa sumie samego błędu przewidywanego \(EE \) i dokładności prognozy:

\[
ULE = EE + SE = 47,973,814 + 27,323,507 = 75,297,320
\]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem w celu wyciągnięcia wniosków z kontroli.

W tym konkretnym przypadku błąd przewidywany i góra granica błędu są niższe niż maksymalny dopuszczalny błąd. Oznacza to, że audytor dojdzie do wniosku, iż istnieją dowody na to, że błędy w populacji są niższe niż próg istotności:

7.4 Zmiana metody doboru próby w trakcie okresu programowania

Jeżeli instytucja audytowa jest zdania, że pierwotnie wybrana metoda doboru próby nie jest najodpowiedniejszą metodą, może ona podjąć decyzję o zmianie tej metody. Należy
jednak powiadomić o tym Komisję w ramach rocznego sprawozdania audytowego lub w ramach zmienionej strategii kontroli.

7.5 Poziomy błędu

Przedstawione w rozdziale 6 wzory i metodyka, których stosowanie pozwala na uzyskanie błędu przewidywanego i odpowiedniej dokładności, zostały przeznaczone dla błędów wyrażonych w jednostkach monetarnych, tj. różnicy między wartością księgową w populacji (zadeklarowane wydatki) a prawidłową/zbadaną wartością księgową. Powszechną praktyką jest jednak uzyskiwanie wyników w formie poziomów błędów, ponieważ są one atrakcyjne ze względu na ich intuicyjną interpretację. Proces zamiany błędów na poziomy błędów jest prosty i taki sam dla wszystkich metod doboru próby.

Przewidywany poziom błędu jest po prostu równy błędowi przewidywanemu podzielonemu przez wartość księgową w populacji:

\[
EER = \frac{EE}{BV}
\]

Podobnie dokładność estymacji poziomu błędu jest równa dokładności błędu przewidywanego podzielonego przez wartość księgową:

\[
SER = \frac{SE}{BV}
\]

7.6 Dwuetapowy dobór próby (dobór podpróby)

7.6.1 Wprowadzenie

Zasadniczo wszystkie zadeklarowane Komisji wydatki dotyczące wszystkich wybranych operacji w próbie powinny być objęte audytom. W przypadku gdy wybrane operacje obejmują znaczną liczbę wniosków o płatność lub faktur, instytucja audytowa może zastosować dwuetapowy dobór próby z zastosowaniem takich samych zasad doboru wniosków/faktur, jakie stosuje się przy doborze operacji\(^{62}\). Dzięki temu można znacznie ograniczyć obciążenie pracami audytowymi przy zachowaniu kontroli nad wiarygodnością wniosków. W każdym przypadku zastosowania tego podejścia\(^{62}\) Teoretycznie w odniesieniu do operacji można dokonać doboru podpróby bez względu na liczbę wniosków/faktur. Oczywiście za każdym razem, kiedy w wyniku ustalenia liczebności podpróby uzyskuje się liczbę zbliżoną do liczebności populacji (operacji), strategia polegająca na doborze podpróby nie doprowadzi do żadnego istotnego ograniczenia nakładu pracy audytowej. W związku z tym jedyną wartością progową, która może sugerować zastosowanie doboru podpróby na poziomie operacji, jest wynik dokonanej przez instytucję audytową subiektywnej oceny korzyści (ograniczenie nakładu pracy audytowej), jakie taka strategia może przynieść.

214
metodykę doboru próbę należy odnotować w sprawozdaniu audytowym lub dokumentach roboczych. Należy podkreślić, że audytem zostają objęte jedynie wydatki drugorzędnych jednostek wybranych do podprób; oznacza to, że w RSA wydatkami objętymi audytem są jedynie te wydatki, które wybrano do próby, a nie wszystkie wydatki w ramach wybranej operacji.

Poniższy rysunek przedstawia proces doboru w oparciu o schemat dwuetapowy. Pierwszym etapem jest dobór operacji, a drugim – dobór pozycji wydatków w ramach każdej operacji objętej próbą.

Rys. 7 Przykład dwuetapowego doboru próbę

W tym przypadku w ramach każdej operacji należy obliczyć odpowiednią liczebność prób. Bardzo prostą metodą doboru liczebności podprób jest zastosowanie takich samych wzorów na określanie liczebności prób, jakie proponuje się w odniesieniu do głównej próbę zgodnie z różnymi schematami doboru prób i w oparciu o parametry zgodne z przewidywanymi cechami charakterystycznymi operacji. Na tym etapie należy pamiętać, że populacją odniesienia jest obecnie operacja, w ramach której dobrano podpróbę, i że parametry populacji zastosowane do określenia liczebności podprób powinny, w miarę możliwości, odzwierciedlać cechy charakterystyczne odnośnej operacji. Pomimo metodyki stosowanej do określania liczebności prób w ramach statystycznego doboru prób, zgodnie z ogólną zasadą nigdy nie należy wykorzystywać prób o liczebności mniejszej niż 30 obserwacji (tj. faktur lub wniosków o płatność od beneficjentów).
Instytucja audytowa może podjąć decyzję o zastosowaniu dowolnej statystycznej metody doboru próby w celu wybrania wniosków/faktur w ramach operacji. W rzeczywistości metoda doboru próby zastosowana na poziomie podproby nie musi być taka sama jak ta zastosowana w przypadku głównej próby. Można na przykład dokonać doboru próby operacji w oparciu o MUS oraz dokonać doboru podproby faktur w ramach jednej operacji w oparciu o dobór losowy prosty. W związku z tym na omawianym poziomie podproby można zastosować wiele metod doboru próby (w tym stratyfikację wniosków/faktur pod względem poziomu wydatków, dobór próby na podstawie prawdopodobieństwa proporcjonalnego do wielkości – tak jak w przypadku MUS – lub dobór próby na podstawie równego prawdopodobieństwa). Strategią doboru podproby (dobór próby w ramach pierwotnej jednostki) powinna być jednak zawsze strategiczna (chyba że dobór próby w ramach pierwotnych jednostek nie jest sam w sobie strategiczny). Metodę wybiera się na podstawie tych samych warunków stosowania, jak zaproponowano w sekcji 5.2. Przykładowo, jeżeli w ramach operacji oczekiwana jest duża zmienność wydatków w pozycjach wydatków objętych podpróbą oraz oczekiwana jest dodatnia korelacja między błędnymi a wydatkami, wówczas zalecaną metodę wyboru pozycji wydatków jest MUS. Co więcej, przy zastosowaniu doboru losowego prostego (SRS) może być tak, że kilka jednostek w ramach operacji wyróżnia się na tle innych w związku z wysokim poziomem wydatków. W takim wypadku zdecydowanie zaleca się zastosowanie warstwowego SRS i stworzenie w ten sposób warstwy dla pozycji o wysokiej wartości (zwykle jest to obserwowana warstwa wyczerpująca).

Mimo różnych rozważań na temat wyboru najodpowiedniejszego schematu doboru próby, należy pamiętać, że w wielu sytuacjach (zwykle w związku z ograniczeniami operacyjnymi) najłatwiejszym sposobem doboru próby na drugim etapie (wniosków lub faktur) jest dobór losowy prosty. Dzieje się tak ponieważ w wielu przypadkach instytucja audytowa chce dokonać wyboru pozycji wydatków na miejscu (w chwili audytu), co utrudnia zastosowanie bardziej zaawansowanych schematów (a w szczególności schematów doboru na podstawie nierównego prawdopodobieństwa).

Po wybraniu podproby i objęciu jej audytom należy dokonać prognozowania obserwowanych błędów dla właściwej operacji, stosując metodę prognozowania zgodną z wybranym schematem doboru próby. Przykładowo, jeżeli wybrano pozycje wydatków na podstawie równego prawdopodobieństwa, wówczas możliwe jest prognozowanie błędu dla operacji z zastosowaniem estymacji wartości na podstawie średniej lub estymacji ilorazowej. Należy pamiętać, że NIE należy postępować z błędami wykrytymi w podprobach w żaden inny sposób (np. traktować je jako systemowe, chyba że mają rzeczywiście systemowy charakter, tj. wykryty błąd ma charakter systemowy we wszystkich objętych audytowym populacjach i może być całkowicie odgórniczony przez instytucję audytową).

Następnie po dokonaniu prognozowania błędów dla każdej operacji w próbie, w obrębie której dokonano doboru podproby, prognozowanie dla populacji odbywa się zgodnie ze
zwykłą procedurą (tak jak w przypadku obserwowania całkowitych wydatków w ramach operacji). Załóżmy na przykład, że operacja w próbie obejmuje wydatki w wysokości 2 500 000 EUR i 400 faktur. Podjęto decyzję o wyborze próby 40 faktur na podstawie równego prawdopodobieństwa i bez stratyfikacji oraz o zastosowaniu estymacji ilorazowej. Załóżmy, że całkowite wydatki objęte audytem wynoszą 290 000 EUR, a obserwowany błąd całkowity wynosi 9 280 EUR. Szacowany poziom błędu w odniesieniu do tej operacji wynosi 3,2 %=(9 280 EUR/290 000 EUR), a błąd przewidywany operacji wynosi 80 000 EUR=6,2 %*2 500 000 EUR.

Należy zauważyć, że w sekcji 6.5.3 znajdują się dodatkowe przepisy na temat dwu- i trójetapowego doboru próby w kontekście programów Europejskiej współpracy terytorialnej.
7.6.2 Liczebność próby

Istnieją formalne sposoby obliczania liczebności próby na każdym etapie z jednoczesnym stosowaniem wzorów dla wieloetapowego doboru próby. Opracowanie takiej metody jest mile widziane, jeżeli dana instytucja audytowa jest w stanie to zrobić.

Jak już jednak wyjaśniono, można zastosować zaproponowaną metodę doboru losowego, obliczając liczebność próby niezależnie w dwóch etapach:

- pierwszy etap: należy obliczyć liczebność próby na poziomie operacji, stosując typowe odpowiednie wzory i parametry, (zawsze powinna równa lub większa niż 30);
- etap drugi: dla każdej operacji, w odniesieniu do której dokonano doboru podpróby, liczebność próby również należy obliczyć, stosując ponownie typowe wzory (odpowiednie dla rodzaju doboru zastosowanego na drugim etapie). Parametry powinny być zgodne z parametrami zastosowanymi na pierwszym etapie, chociaż niektóre z nich można dostosować tak, aby odzwierciedlały prawdziwą operację odniesienia (np. jeżeli istnieją dane historyczne na temat poziomu wariancji błędów w ramach operacji, należy wykorzystać tę wariancję zamiast wariancji błędów zastosowanej do obliczenia liczebności próby na pierwszym etapie). Na tym etapie liczebność próby również powinna wynosić co najmniej 30.

Jeżeli dobór na tym drugim etapie przeprowadza się na podstawie równego prawdopodobieństwa, liczebność próby oblicza się za pomocą następującego wzoru:

\[
n_i = \left(\frac{N_i \times z \times \sigma_{ei}}{TE_i - AE_i} \right)^2
\]

gdzie wskaźnik \(i\) oznacza operację, \(N_i\) oznacza liczebność operacji, \(\sigma_{ei}\) oznacza odchylenie standardowe błędów na poziomie operacji, a \(TE_i\) i \(AE_i\) oznaczają błąd dopuszczalny i błąd oczekiwany na poziomie operacji. Należy pamiętać, że liczebność populacji należy dostosować do poziomu operacji i że odchylenie standardowe błędów i błąd oczekiwany mogą również zostać dostosowane w oparciu o dane historyczne i profesjonalną ocenę, jeżeli istnieją jakiekolwiek informacje lub oczekiwania, które sugerowałyby, że należy dostosować te parametry do rzeczywistej operacji.

Jeżeli dobór próby na drugim etapie przeprowadza się w oparciu o MUS, liczebność próby oblicza się za pomocą następującego wzoru:

\[
n_i = \left(\frac{z \times BV_i \times \sigma_{ri}}{TE_i - AE_i} \right)^2
\]
gdzie wskaźnik \(i \) oznacza operację, \(BV_i \) oznacza wydatki w ramach operacji, \(\sigma_{ri} \) oznacza odchylenie standardowe poziomów błędu na poziomie operacji, a \(TE_i \) i \(AE_i \) oznaczają błąd dopuszczalny i błąd oczekiwany na poziomie operacji. Jeszcze raz należy podkreślić, że wartość księgową należy dostosować do poziomu operacji, a odchylenie standardowe poziomów błędu i błąd oczekiwany mogą również zostać dostosowane w oparciu o dane historyczne i profesjonalny osąd.

7.6.3 Prognozowanie

Tak jak w przypadku obliczania liczebności próby, prognozowanie również przebiega dwuetapowo. Po pierwsze, do prognozowania błędów dla operacji stosuje się podpróbę w ramach tych operacji. Po dokonaniu prognozy (oszacowaniu) błędów w operacjach traktuje się je tak, jak gdyby były „prawdziwymi” błędami w operacjach i włącza się do standardowego procesu ekstrapolacji na podstawie głównej próby.

Podsumowując:

- dla każdej operacji objętej doborem podpróbę należy oszacować jej błąd (lub poziom błędu), wykorzystując próbę drugorzędnych jednostek;
- po oszacowaniu błędów dla wszystkich operacji należy zastosować próbę operacji, aby dokonać prognozy łącznego błędu populacji;
- w obu przypadkach prognozowanie należy przeprowadzić w oparciu o wzory, które odpowiadają schematom doboru próby wykorzystanym w celu wyboru jednostek.

Przykładowo, typową strategią jest wybranie operacji na podstawie MUS i wybranie podprób pozycji wydatków na podstawie równego prawdopodobieństwa. W takim przypadku prognozę błędów oblicza się w następujący sposób:

Poziom podprób

Estymacja wartości na podstawie średniej

\[
EE_{1i} = N_i \times \frac{\sum_{j=1}^{n_i} E_{ij}}{n_i}
\]

lub

Estymacja ilorazowa

\[
EE_{2i} = BV_i \times \frac{\sum_{j=1}^{n_i} E_{ij}}{\sum_{j=1}^{n_i} BV_{ij}}
\]

gdzie wszystkie parametry mają podobne znaczenie, \(i \) oznacza operację, a \(j \) oznacza dokument w ramach operacji.
Poziom głównej próby

Prognozowanie przeprowadza się z zastosowaniem zwykłych wzorów MUS. Jedyna różnica w porównaniu ze standardową MUS polega na tym, że niektóre błędy E_i zostaną obliczone w oparciu o pełną obserwację operacji, a inne są prognozowane na podstawie podpróby pozycji wydatków. Na tym etapie ten fakt zostaje pominięty, ponieważ wszystkie błędy zostaną potraktowane, jakby były „prawdziwymi” błędami w operacjach, mimo że były w pełni obserwowane lub uzyskane w ramach podprób.

\[
EE_e = \sum_{i=1}^{n_e} E_i \\
EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} E_i \frac{1}{BV_i}
\]

7.6.4 Dokładność

Dokładność jest obliczana jak zwykle, tj. ze wzorów zgodnie ze schematem doboru próby, który wykorzystano na pierwszym etapie doboru próby, oraz z pominięciem istnienia podprób. Błędy operacji podstawia się do wzorów na dokładność mimo ich charakteru (nawet prawdziwe błędy w przypadku pełnego audytu, lub szacowane błędy, w przypadku doboru podprób).

7.6.5 Przykład

Załóżmy populację wydatków zadeklarowanych Komisji w danym roku. Audyty systemu przeprowadzone przez instytucję audytową dały niski poziom pewności. W związku z tym doboru próby dla tego programu należy dokonać przy poziomie ufności wynoszącym 90%. Ten konkretny program charakteryzuje się operacjami, które obejmują dużą liczbę pozycji uzasadniających wydatki. Instytucja audytowa rozważa możliwość objęcia tej populacji audytym w drodze doboru podprób, tj. objęcie audytym jedynie ograniczonej liczby wniosków o płatność w ramach każdej operacji należącej do próby. Ponadto w związku z przewidywaną zmiennością błędów w populacji instytucja audytowa podejmuje decyzję, aby wybrać operacje na pierwszym etapie, stosując metodę prawdopodobieństwa wyboru transakcji proporcjonalnego do jej wielkości (MUS).
Główne cechy charakterystyczne populacji podsumowano w poniższej tabeli:

| Liczebność populacji (liczba operacji) | 3 852 |
| Wartość księgowa (suma wydatków w okresie odniesienia) | 4 199 882 024 EUR |

Liczebność próby oblicza się następująco:

\[
 n = \left(\frac{\frac{z \times BV \times \sigma_r}{TE - AE}}{n} \right)^2
\]

gdzie \(\sigma_r \) oznacza odchylenie standardowe poziomów błędu uzyskane z próby wybranej na podstawie MUS. Aby uzyskać przybliżenie tego odchylenia standardowego, instytucja audytowa postanowiła wykorzystać odchylenie standardowe z poprzedniego roku. Próba z poprzedniego roku obejmowała 50 operacji, z czego 5 miało wartość księgową wyższą niż interwał losowania.

Na podstawie tej próby wstępnej odchylenie standardowe poziomów błędu, \(\sigma_r \), wynosi 0,087.

Znając ten szacunek odchylenia standardowego poziomów błędu, maksymalny dopuszczalny błąd i błąd oczekiwany, możemy obliczyć liczebność próby. Zakładając, że błąd dopuszczalny wynosi 2 % całkowitej wartości księgowej, 2 % x 4 199 882 024 = 83 997 640, (wartość istotności określona w rozporządzeniu), a oczekiwany poziom błędu wynosi 0,4 %, 0,4 % x 4 199 882 024 = 16 799 528 (co odpowiada siłnemu przekonaniu instytucji audytowej, opartemu zarówno na informacjach z zeszłego roku, jak i wynikach sprawozdania z oceny systemów zarządzania i kontroli),

\[
 n = \left(\frac{1.645 \times 4,199,882,024 \times 0.085}{83,997,640 - 16,799,528} \right)^2 \approx 77
\]

W pierwszej kolejności konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytowem w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej (\(BV \)) i planowanej liczebności próby (\(n \)). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_i > BV/n \)), zostaną umieszczone w warstwie objętej audytowem w 100 %. W omawianym przypadku wartość graniczna wynosi 4 199 882 024 EUR/77=54 593 922 EUR.

Instytucja audytowa umieszcza w odrębnej warstwie wszystkie operacje o wartości księgowej wyższej niż 54 593 922, co odpowiada 8 operacjom o wartości 786 837 081
EUR. Jak określono wcześniej, ten program obejmuje wiele wniosków o płatność o niskiej wartości księgowej w podziale na operacje. Przykładowo wspomniane 8 operacji odpowiada liczbie ponad 14 000 wniosków o płatność. W związku z tym instytucja audytowa podejmuje decyzję o doborze próby wniosków o płatność w ramach każdej z tych 8 operacji. W ramach tej procedury określa się liczebność próby na poziomie operacji. Wykorzystując równe prawdopodobieństwo, liczebność próby na poziomie operacji wyznacza się z poniższego wzoru:

\[n_i = \left(\frac{N_i \times z \times \sigma_{ei}}{TE_i - AE_i} \right)^2 \]

gdzie wskaźnik \(i \) oznacza operację, \(N_i \) oznacza liczebność operacji, \(\sigma_{ei} \) oznacza odchylenie standardowe błędów na poziomie operacji, a \(TE_i \) i \(AE_i \) oznaczają błąd dopuszczalny i błąd oczekiwany na poziomie operacji. Należy pamiętać, że liczebność populacji należy dostosować do poziomu operacji i że odchylenie standardowe błędów i błąd oczekiwany mogą również zostać dostosowane w oparciu o dane historyczne i profesjonalną ocenę, jeżeli istnieją jakiekolwiek informacje lub oczekiwania, które sugerowałyby, że należy dostosować te parametry do rzeczywistej operacji.

Z wcześniejszych informacji i doświadczeń uzyskanych w audytach w poprzednich latach wynika, że odchylenie standardowe błędów wynosi około 8 800 EUR. Stosując ten sam poziom ufności i oczekiwany poziom błędu, jak te zastosowane na poziomie populacji, a więc odpowiednio 90 % i 0,4 %, instytucja audytowa jest w stanie obliczyć np. liczebność próby dla operacji o numerze identyfikacyjnym 243:

\[n_i = \left(\frac{629 \times 1.645 \times 8,800}{1,802,856 - 360,571} \right)^2 \approx 40, \]

przy czym dobór tej próby nastąpi zgodnie ze schematem na podstawie równego prawdopodobieństwa (dobór losowy prosty). Ponieważ spełniono warunki, o których mowa w sekcji 6.1.1.3, estymację ilorazową wybiera się zgodnie z metodą prognozowania. Poniższa tabela zawiera podsumowanie wyników:

<table>
<thead>
<tr>
<th>Nr identyfikacyjny operacji</th>
<th>Wartość księgowa</th>
<th>Liczba wniosków o płatność</th>
<th>Wydatki objęte audytem</th>
<th>Kwota błędu we wnioskach o płatność należących do próby</th>
<th>Błąd przewidywany (estymacja ilorazowa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>243</td>
<td>90 142 818 EUR</td>
<td>629</td>
<td>7 829 EUR</td>
<td>845 EUR</td>
<td>9 729 299 EUR</td>
</tr>
<tr>
<td>6 324</td>
<td>89 027 451 EUR</td>
<td>1 239</td>
<td>1 409 EUR</td>
<td>76 EUR</td>
<td>4 802 048 EUR</td>
</tr>
<tr>
<td>734</td>
<td>79 908 909 EUR</td>
<td>729</td>
<td>56 729 EUR</td>
<td>1 991</td>
<td>2 804 538 EUR</td>
</tr>
</tbody>
</table>
Błąd przewidywany dla tej warstwy objętej audytem w 100 % wynosi 46 532 007 EUR.

Intervall losowania dla pozostalonej populacji jest równy wartości księgowej w warstwie niewyczerpującej (BV_s) (różnica całkowitej wartości księgowej i wartości księgowej ośmiu operacji należących do górnej warstwy) podzielonej przez liczbę operacji, z których się losuje (77 minus 8 operacji w górnej warstwie).

$$Sampling\ interval = \frac{BV_s}{n_s} = \frac{4199,882,024 - 786,837,081}{69} = 49,464,419$$

Próbę dobiera się z randomizowanego wykazu operacji, wybierając każdą pozycję zawierającą co 49 464 419. jednostkę monetarną.

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 3 844 operacje populacji (3 852 – 8 operacji o wysokiej wartości), a następnie tworzy się sekwencyjną łączną wartości księgowej. Próbę obejmującą 69 operacji (77 minus 8 operacji o wysokiej wartości) uzyskuje się stosując dokładnie taki sam algorytm doboru systematycznego, jak opisano w sekcji 6.3.1.3. Instytucja audytowa określa liczebność próby wnosków o płatność, które należy objąć audytem, w ramach każdej wybranej operacji, dokładnie w taki sam sposób jak poprzednio.

W poniższej tabeli podsumowano wyniki audytu 69 operacji wybranych na pierwszym etapie:
W odniesieniu do pozostałojej części próbę sposób postępowania w przypadku błędu jest inny. W przypadku tego rodzaju operacji należy:
1) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków $\frac{E_i}{BV_i}$, dla każdej jednostki w próbie; w tym przypadku poziomy błędu obliczono z wykorzystaniem podprób wniosków o płatność, ale w celu tego prognozowania traktuje się je tak, jak gdyby błędy te były prawdziwe;
2) zsumować te poziomy błędu dla wszystkich jednostek w próbie;
3) pomnożyć poprzedni wynik przez interwał losowania (SI).

$$EE_s = SI \sum_{i=1}^{n_s} \frac{E_i}{BV_i}$$

$$EE_s = 49,464,419 \times 1.034 = 51,146,209$$

Błąd przewidywany na poziomie populacji stanowi po prostu sumę tych dwóch elementów:

$$EE = 46,532,007 + 51,146,209 = 97,678,216$$

Przewidywany poziom błędu to stosunek błędu przewidywanego do całkowitych wydatków:

$$r = \frac{97,678,216}{4,199,882,024} = 2.33\%$$

Ponieważ błąd przewidywany jest większy niż maksymalny dopuszczalny błąd, instytucja audytowa jest w stanie stwierdzić, że populacja zawiera istotny błąd.
7.7 Ponowne obliczenie poziomu ufności

W przypadku gdy po przeprowadzeniu audytu instytucja audytowa wykryje, że błąd przewidywany jest niższy niż poziom istotności, ale górna granica błędu jest wyższa od tego progu, instytucja może podjąć decyzję o ponownym obliczeniu poziomu ufności, który pozwoliłby na uzyskanie jednoznacznym wyników (tj. na uzyskanie zarówno błędu przewidywanego, jak i górnej granicy błędu na poziomie niewykraczającym poza poziom istotności).

W przypadku gdy ten ponownie obliczony poziom ufności jest nadal zgodny z oceną jakości systemów zarządzania i kontroli (zob. tabela w sekcji 3.2), można całkiem bezpiecznie stwierdzić, że dana populacja nie zawiera istotnych nieprawidłowości, nawet bez przeprowadzania dodatkowych czynności audytowych. W związku z tym przeprowadzenie dodatkowych czynności, o których mowa w sekcji 4.12, jest konieczne wyłącznie w sytuacjach, w których ponownie obliczony poziom ufności jest niedopuszczalny (jest niezgodny z oceną systemów).

Ponownego obliczenia przedziału ufności dokonuje się w następujący sposób:

- obliczyć wartość poziomu istotności, tj. poziom istotności (2 %) pomnożony przez całkowitą wartość księgową populacji;
- odjąć błąd przewidywany (EE) od wartości poziomu istotności;
- podzielić uzyskany wynik przez dokładność prognozowania (SE). Dokładność ta zależy od metody doboru próby i została przedstawiona w sekcjach poświęconych prezentacji metod;
- pomnożyć powyższy wynik przez parametr z stosowany zarówno w odniesieniu do liczebności próby, jak i obliczania dokładności, aby otrzymać nową wartość; z^*

$$z^* = z \times \frac{(0.02 \times BV) - EE}{SE}$$

- odszukać poziom ufności związany z tym nowym parametrem (z^*) w tabeli zawierającej rozkład normalny (w załączniku). Alternatywnie można użyć następującego wzoru w programie Excel „=1-(1-NORMSDIST(z^*))*2”.

Przykład: po przeprowadzeniu audytu populacji o wartości księgowej w wysokości 1 858 233 036 EUR i poziomie ufności w wysokości 90 % (odpowiadającemu $z = 1.645$, por. sekcja 5.3), otrzymano następujące wyniki:
<table>
<thead>
<tr>
<th>Cecha</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość księgowa</td>
<td>1 858 233 036 EUR</td>
</tr>
<tr>
<td>Istotność (2% wartości księgowej)</td>
<td>37 164 661 EUR</td>
</tr>
<tr>
<td>Błąd przewidywany (EE)</td>
<td>14 568 765 EUR (0,8 %)</td>
</tr>
<tr>
<td>Dokładność (SE)</td>
<td>26 195 819 EUR (1,4 %)</td>
</tr>
<tr>
<td>Górna granica błędu (ULE)</td>
<td>40 764 584 EUR (2,2 %)</td>
</tr>
</tbody>
</table>

Nowy parametr z^* otrzymuje się ze wzoru:

$$z^* = 1,645 \times \frac{37,164,661€ - 14,568,765€}{26,195,819€} = 1.419$$

Korzystając z funkcji „=1-(1-ROZKŁAD.NORMALNY(1,419))*2” w programie MS Excel otrzymano nowy poziom ufności w wysokości 84,4%.

Jeżeli ten ponownie obliczony poziom ufności jest spójny z oceną dotyczącą jakości systemów zarządzania i kontroli, można na tej podstawie stwierdzić, że populacja nie zawiera istotnych nieprawidłowości.
7.8 Strategie audytu grup programów i programów wielofunduszowych

7.8.1 Wprowadzenie

Instytucja audytowa często podejmuje decyzję o zgrupowaniu dwóch lub więcej programów operacyjnych, które posiadają taki sam system, aby móc wybrać pojedynczą próbę reprezentatywną dla zgrupowanej populacji.

Ponadto w niektórych przypadkach program operacyjny jest współfinansowany przez większą liczbę funduszy niż jeden. W takich przypadkach również można wybrać pojedynczą próbę, a wyniki można przewidzieć dla grupy operacji.

W obu przypadkach należy wydać pojedynczą opinię dla grupy programów operacyjnych lub różnych funduszy, ale w tym celu można zastosować różne strategie doboru próby, które mogą uwzględniać wspomniane zróżnicowanie w ramach populacji. Można to zrobić dokonując stratyfikacji (w podziale na programy operacyjne lub fundusze), a także uwzględniając pożądane poziomy reprezentatywności podczas obliczania liczebności prób.

Istnieją dwie typowe alternatywne strategie:

• wybranie pojedynczej próby;
• wykorzystanie różnych prób (powiązanych z różnymi warstwami) w odniesieniu do każdego programu operacyjnego lub funduszu.

Jeżeli wybrana zostanie pojedyncza próba, liczebność próby jest obliczana dla całej grupy (bez rozróżnienia na programy operacyjne lub fundusze). Ta opcja, zwana również podejściem odgórnym, umożliwia uzyskanie mniejszej liczebności próby, ale próba gwarantuje reprezentatywność tylko dla „zgrupowanej” populacji. Oznacza to, że możliwe jest prognozowanie wyników próby dla grupy programów operacyjnych lub różnych funduszy, ale zazwyczaj nie umożliwia prognozowania w odniesieniu do poszczególnych funduszy lub poszczególnych programów. Chociaż próba ma być reprezentatywna jedynie dla zgrupowanej populacji, zaleca się stratyfikację próby z podziałem na fundusze (lub programy operacyjne). W takim wypadku najpierw oblicza się ogólną liczebność próby, a dopiero potem dzieli się ją na warstwy. Obliczając liczebność próby i dokonując jej alokacji, stosuje się standardowe strategie, które zostały już zaproponowane w odniesieniu do kilku schematów warstwowego doboru próby.

Strategię tę podsumowano na poniższym rysunku:
Jeżeli stosowane są różne próby (po jednej dla każdego programu operacyjnego lub funduszu), wówczas liczebności prób są obliczane oddzielnie dla każdej warstwy (programu operacyjnego lub funduszu). Ta opcja, zwana również podejściem oddolnym, pozwoli uzyskać większą liczebność próby (ponieważ trzeba wybrać kilka prób), ale przy tym próba na pewno będzie reprezentatywna nie tylko dla „zgrupowanej” populacji, ale również dla każdej warstwy (programu operacyjnego lub funduszu). Oznacza to, że możliwe jest prognozowanie wyników próby w odniesieniu do grupy programów operacyjnych lub grupy funduszy, jak i również dla poszczególnych funduszy lub poszczególnych programów, co pozwala na uzyskanie jednoznacznych wyników na poziomie warstwy. Próby te należy oczywiście podzielić na warstwy według poszczególnych funduszy (lub programów operacyjnych). W ramach tej strategii ogólna liczebność próby będzie stanowić sumę liczebności prób uzyskanych do celów obliczeń dla każdej warstwy.

Strategię tę podsumowano na poniższym rysunku:
Rys. 9 Strategia oddolna

Jak wynika z powyższego, główną zaletą podejścia opartego na pojedynczej próbie (podejście odgórne) jest możliwość uzyskania mniejszej liczebności próby, ale jego wadą jest fakt, że nie zapewnia a priori reprezentatywności dla każdej warstwy (tj. nie można wyciągnąć oddzielnych wniosków dla każdej warstwy). Jeżeli instytucja audytowa nie przewiduje ekstrapolacji wyników na poziomie warstwy, to podejście takie z pewnością będzie zalecaną opcją.

Strategia oparta na różnych próbach umożliwia prognozowanie na poziomie warstwy, ale wiąże się ze znacznie większą liczebnością próby. W związku z tym jest ona zalecana w przypadku gdy przewiduje się znacząco różniące się wyniki dla każdego programu operacyjnego lub funduszu, aby zapewnić reprezentatywność wyników dla każdej warstwy, a w związku z tym zróżnicowane wnioski.

Należy również podkreślić, że jeżeli próba ma zapewnić reprezentatywność jedynie dla „zgrupowanej” populacji, nadal możliwe jest prognozowanie wyników dla każdej warstwy lub co najmniej dla niektórych warstw, jeżeli spełnione zostaną następujące warunki:

- każda warstwa liczy co najmniej 30 obserwacji (zaleca się ustalenie takiej liczebności próby już na początku);
- dokładność każdej warstwy jest odpowiednia, aby uzyskać jednoznaczne wyniki (stosunek górnej granicy błędu i progu 2 %).

W przypadku zastosowania tej strategii i wykonywania obliczeń a posteriori wyniki będą reprezentatywne dla niektórych warstw (zwłaszcza tych dużych), ale w przypadku innych nie (zwłaszcza tych małych), tj. umożliwią uzyskanie jednoznacznych prognoz jedynie w odniesieniu do niektórych warstw. Jeżeli populacja jest na przykład współfinansowana przez dwa fundusze i znaczna część wydatków zalicza się na poczet
jednego z funduszy, próba będzie zwykle reprezentatywna dla większego funduszu, ale nie dla mniejszego. Jeżeli taka sytuacja ma miejsce, tj. jeżeli wyniki są jednoznaczne (reprezentatywne) tylko dla niektórych warstw, nadal można przeprowadzić dodatkowe działania, aby uzyskać wyniki reprezentatywne dla wszystkich warstw. Można to osiągnąć poprzez dobór dodatkowej próby dla warstwy niewydającej wyników reprezentatywnych, która w połączeniu z pierwotną próbą zapewni jednoznaczne wyniki. Ta strategia nie różni się od strategii, którą przedstawiono już w sekcji 7.2. Możliwe jest również ponowne obliczenie poziomu ufności (sekcja 7.7), aby uzyskać wyniki reprezentatywne na poziomie warstwy.

Podsumowując, można zalecić następującą strategię:

- jeżeli instytucja audytowa planuje prognozowanie wyników na poziomie warstwy, powinna zastosować podejście oddolne;
- jeżeli instytucja audytowa planuje prognozowanie wyników na poziomie populacji (dla grupy programów operacyjnych lub funduszy) i uważa, że nie ma potrzeby prognozowania na poziomie warstwy, może zastosować podejście odgórne;
- jeżeli instytucja audytowa nie podjęła jednoznacznej decyzji co do strategii, może zastosować podejście odgórne, ale wprowadzić „dodatkowy dobór próby” dla mniejszych warstw, umożliwiając uzyskanie co najmniej 30 obserwacji dla tych warstw. W ten sposób zwiększy szanse na uzyskanie reprezentatywnych wyników. Jeżeli ponadto wyniki nie są reprezentatywne, dodatkowy dobór próby dla najmniejszych warstw umożliwi instytucji audytowej ograniczenie dodatkowego obciążenia pracą, która będzie niezbędna do sporządzenia wniosków na temat tych warstw.

7.8.2 Przykład

Załóżmy populację wydatków zadeklarowanych Komisji w danym okresie odniesienia w odniesieniu do operacji w ramach grupy programów. System zarządzania i kontroli jest wspólny dla grupy programów, a audyty systemu przeprowadzone przez instytucję audytową dały umiarkowany poziom pewności. W związku z tym instytucja audytowa postanowiła przeprowadzić audyty operacji, stosując poziom ufności w wysokości 80 %. Instytucja audytowa przewiduje wydanie pojedynczej opinii na temat zgrupowanej populacji, w związku z czym podejmuje decyzję o zastosowaniu podejścia odgórnego, tj. dokonaniu stratyfikacji próby z podziałem na programy, zapewniając jednak reprezentatywność wyłącznie na zagregowanym poziomie.

Instytucja audytowa ma powody sądzić, że istnieje poważne ryzyko wystąpienia błędu w przypadku operacji o wysokiej wartości, niezależnie od programu, do którego należą. Ponadto istnieją powody, dla których można oczekiwać, że w poszczególnych programach występują różne poziomy błędu. Mając na uwadze wszystkie te informacje,
instytucja audytowa decyduje się na stratyfikację populacji według programu i według wydatków (wyodrębniając w warstwie objętej audytem w 100% wszystkie operacje o wartości księgowej większej niż wartość graniczna łącznych wydatków, wynosząca 3%).
Poniższa tabela zawiera podsumowanie dostępnych informacji.

<table>
<thead>
<tr>
<th>Liczebność populacji (liczba operacji)</th>
<th>6 723</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liczebność populacji – warstwa 1 (liczba operacji w ramach programu 1)</td>
<td>4 987</td>
</tr>
<tr>
<td>Liczebność populacji – warstwa 2 (liczba operacji w ramach programu 2)</td>
<td>1 728</td>
</tr>
<tr>
<td>Liczebność populacji – warstwa 3 (liczba operacji o BV > poziom istotności)</td>
<td>8</td>
</tr>
<tr>
<td>Wartość księgowa (suma wydatków w okresie odniesienia)</td>
<td>123 987 653 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – warstwa 1 (całkowite wydatki w ramach programu 1)</td>
<td>85 672 981 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – warstwa 2 (całkowite wydatki w ramach programu 2)</td>
<td>19 885 000 EUR</td>
</tr>
<tr>
<td>Wartość księgowa – warstwa 3 (całkowite wydatki w ramach operacji o BV > poziom istotności)</td>
<td>18 429 672 EUR</td>
</tr>
</tbody>
</table>

Projekty o wysokiej wartości zostaną wyłączone z doboru próby i będą rozpatrywane osobno. Kwota błędu zidentyfikowanego w tych 8 operacjach wynosi 2 975 EUR.

<table>
<thead>
<tr>
<th>Liczebność populacji (liczba operacji)</th>
<th>6 723</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość księgowa (całkowite zadeklarowane wydatki w okresie odniesienia)</td>
<td>123 987 653 EUR</td>
</tr>
<tr>
<td>Wartość graniczna</td>
<td>3 719 630 EUR</td>
</tr>
<tr>
<td>Liczba jednostek powyżej wartości granicznej</td>
<td>8</td>
</tr>
<tr>
<td>Wartość księgowa populacji powyżej wartości granicznej</td>
<td>18 429 672 EUR</td>
</tr>
<tr>
<td>Pozostała liczebność populacji (liczba operacji)</td>
<td>6 715</td>
</tr>
<tr>
<td>Pozostała wartość populacji</td>
<td>105 577 981 EUR</td>
</tr>
</tbody>
</table>

Pierwszym krokiem jest obliczenie wymaganej liczebności próby za pomocą wzoru:

\[
n = \left(\frac{N \times z \times \sigma_w}{TE - AE}\right)^2
\]

gdzie z wynosi 1,282 (współczynnik odpowiadający poziomowi ufności wynoszącemu 80 %), zaś TE, błąd dopuszczalny, wynosi 2 % (maksymalny poziom istotności
wyznaczony w rozporządzeniu) wartości księgowej, tj. 2 % x 123 987 653 EUR = 2 479 753 EUR. Ponadto na podstawie doświadczeń z poprzednich lat i wniosków ze sprawozdania dotyczącego systemów zarządzania i kontroli instytucja audytowa oczekuje, że poziom błędu nie przekroczy 1,4 %, w związku z czym \(AE \), błąd oczekiwany, wynosi 1,4 % całkowitych wydatków, tj. 1,4 % x 123 987 653 EUR = 1 735 827 EUR.

Próba wstępna obejmująca 20 operacji z programu 1 dała wstępny szacunek odchylenia standardowego błędów w wysokości 1 008 EUR. Taką samą procedurę przeprowadzono w odniesieniu do populacji programu 2. Szacunki odchylenia standardowego błędów w kwocie 876 EUR:

W związku z tym średnia ważona wariancji błędów dla tych dwóch warstw wynosi:

\[
\sigma_w^2 = \frac{4,987}{6,715} 1,008^2 + \frac{1,728}{6,715} 876^2 = 950,935
\]

Liczebność próby oblicza się za pomocą następującego wzoru:

\[
n = \left(\frac{6,715 \times 1,282 \times \sqrt{950,935}}{2,479,753 - 1,735,827}\right)^2 \approx 128
\]

Całkowitą liczebność próby oblicza się dla tych 128 operacji plus 8 operacji z warstwy wyczerpującej, czyli dla 136 operacji.

Alokacja próby między warstwy odbywa się następująco:

\[
n_1 = \frac{N_1}{N_1 + N_2} \times n = \frac{4,987}{6,715} \times 128 \approx 95,
\]

oraz

\[
n_2 = n - n_1 = 33
\]

\[
n_3 = N_3 = 5
\]

Po przeprowadzeniu audytu 95 operacji w programie 1, 33 operacji w programie 2 i 8 operacji w warstwie 3 audytor otrzyma całkowity błąd dla operacji objętych próbą. Poprzednie próby wstępne obejmujące 20 jednostek w programach 1 i 2 wykorzystuje się jako część głównej próby. W związku z tym audytor musi wybrać losowo jeszcze tylko 75 dalszych operacji w programie 1 i 13 w programie 2. Aby ustalić, czy najlepszą metodą estymacji jest estymacja wartości na podstawie średniej, czy estymacja
ilorazowa, instytucja audytowa oblicza stosunek kowariancji między błędami a wartościami księgowymi do wariancji wartości księgowych operacji objętych próbą, wynoszącej 0,0109 dla programu 1. Ponieważ stosunek jest mniejszy niż połowa poziomu błędu, instytucja audytowa może być pewna, że estymacja wartości na podstawie średniej jest wiarygodną metodą estymacji. Potwierdzono to również dla warstwy programu 2.

W poniższej tabeli przedstawiono wyniki próby dla operacji objętych audytem:

<table>
<thead>
<tr>
<th>Wyniki próby – program 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Wartość księgowa próby</td>
</tr>
<tr>
<td>B Całkowity błąd próby</td>
</tr>
<tr>
<td>C Średni błąd próby (C=B/95)</td>
</tr>
<tr>
<td>D Odchylenie standardowe błędów próby</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wyniki próby – program 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Wartość księgowa próby</td>
</tr>
<tr>
<td>F Całkowity błąd próby</td>
</tr>
<tr>
<td>G Średni błąd próby (G=F/33)</td>
</tr>
<tr>
<td>H Odchylenie standardowe błędów próby</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wyniki próby – warstwa wyczerpująca</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Wartość księgowa próby</td>
</tr>
<tr>
<td>J Całkowity błąd próby</td>
</tr>
</tbody>
</table>

Ekstrapolację błędu na obie warstwy próby uzyskuje się, mnożąc średni błąd próby przez liczebność populacji. Sumę tych dwóch wartości należy dodać do błędu wykrytego w warstwie objętej audytem w 100 %, aby dokonać prognozy błędu dla populacji:

\[EE = \sum_{h=1}^{3} N_h \times \frac{\sum_{i=1}^{n_h} E_i}{n_h} = 4,987 \times 502 + 1,728 \times 100 + 2,975 = 2,681,139 \]

Przewidywany poziom błędu oblicza się jako stosunek między błędem przewidywanym a wartością księgową populacji (całkowite wydatki). Przy zastosowaniu estymacji wartości na podstawie średniej przewidywany poziom błędu wynosi:

\[r_1 = \frac{2,681,139}{123,987,653} = 2.16\%. \]

Błąd przewidywany jest większy niż poziom istotności. W związku z tym instytucja audytowa może mieć uzasadnioną pewność, że populacja zawiera istotny błąd. W wyniku prac audytowych nabrano jednak podejrzeń, że błędy mogą być szczególnie
skupione w jednym z programów. Rzeczywiście instytucja audytowa podejrzewa, że za taki wynik odpowiada program 1. Instytucja audytowa podejmuje decyzję, aby ocenić wyniki na poziomie programu. W poniższej tabeli podsumowano cechy charakterystyczne populacji na poziomie programu:
W poniższej tabeli podsumowano wyniki z całej próby w podziale na programy:

<table>
<thead>
<tr>
<th></th>
<th>Program 1 (warstwa o niskiej wartości)</th>
<th>Program 2 (warstwa o niskiej wartości)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E) Wydatki objęte audytem</td>
<td>1 667 239 EUR</td>
<td>404 310 EUR</td>
</tr>
<tr>
<td>(F) Liczebność próby (liczba operacji)</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>(G) Całkowity błąd prób</td>
<td>47 728 EUR</td>
<td>3 298 EUR</td>
</tr>
<tr>
<td>(H) Średni błąd próby</td>
<td>502,40 EUR</td>
<td>100 EUR</td>
</tr>
<tr>
<td>(I) Odchylenie standardowe błędów prób</td>
<td>674 EUR</td>
<td>1 183 EUR</td>
</tr>
</tbody>
</table>

Poza informacjami dotyczącymi warstw o niskiej wartości instytucja audytowa musi uwzględnić informacje na temat warstwy wyczerpującej. Poniższa tabela zawiera podsumowanie wyników:

<table>
<thead>
<tr>
<th></th>
<th>Program 1 (warstwa wyczerpująca)</th>
<th>Program 2 (warstwa wyczerpująca)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J) Wydatki objęte audytem</td>
<td>12 286 448 EUR</td>
<td>6 143 224 EUR</td>
</tr>
<tr>
<td>(K) Całkowity błąd prób</td>
<td>1 983 EUR</td>
<td>992 EUR</td>
</tr>
</tbody>
</table>
Wykorzystując te dane, instytucja audytowa jest w stanie przeprowadzić prognozowanie poziomów błędu i obliczyć dokładność na poziomie programu. W poniższej tabeli podsumowano wyniki dla estymacji wartości na podstawie średniej:
W przypadku programu 1 wyniki wydają się jednoznaczne, ponieważ błąd przewidywany jest większy niż maksymalny dopuszczalny błąd (obliczony na poziomie programu i wynoszący 2 % z 97 959 429 EUR). Wniosek ten sam się nasuwa już na podstawie samego przewidywanego poziomu błędu (powyżej 2 % poziomu istotności). Wyniki dla programu 2 nie są jednak całkowicie jednoznaczne. Chociaż błąd przewidywany jest poniżej poziomu istotności (2 % z 26 028 224 EUR), górna granica błędu w rzeczywistości jest od niego większa, co wyraźnie wskazuje, że aby uzyskać jednoznaczne wnioski, konieczne będzie przeprowadzenie dodatkowej analizy. Korzystając z danych programu 2, tj. 33 operacji objętych próbą (z wyłączeniem 2 operacji w warstwie wyczerpującej), instytucja audytowa podejmuje decyzję o zaplanowaniu właściwej próby. W poniższej tabeli podsumowano informacje niezbędne do zaplanowania liczebności próby:

<table>
<thead>
<tr>
<th>Program 2</th>
<th>Program 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Całkowita wartość księgowa (zadeklarowane wydatki w okresie odniesienia z wyłączeniem operacji z warstwy wyczerpującej)</td>
<td>19 885 000 EUR (z wyłączeniem wydatków w ramach 2 operacji w warstwie wyczerpującej)</td>
</tr>
<tr>
<td>Liczebność populacji (liczba operacji, w tym warstwa wyczerpująca)</td>
<td>1 728 (z wyłączeniem 2 operacji w warstwie wyczerpującej)</td>
</tr>
<tr>
<td>Poziom istotności</td>
<td>2 %</td>
</tr>
<tr>
<td>Maksymalny dopuszczalny błąd</td>
<td>397 700 EUR</td>
</tr>
<tr>
<td>Oczekiwany poziom błędu</td>
<td>0,6 %</td>
</tr>
<tr>
<td>Błąd oczekiwany</td>
<td>119 310 EUR</td>
</tr>
<tr>
<td>Odchylenie standardowe błędów próby</td>
<td>1 183 EUR</td>
</tr>
</tbody>
</table>

Planowaną liczebność próby niezbędną do uzyskania wiarygodnych wyników oblicza się zatem następująco:

\[
n = \left(\frac{1,728 \times 1.282 \times 1,183}{397,700 - 149,138} \right)^2 \approx 89
\]
Instytucja audytowa jest w stanie uzyskać jednoznaczne wyniki dla programu 2, wykorzystując poprzednie 33 operacje i tworząc dodatkową próbę 56 operacji. W poniższej tabeli podsumowano wyniki dla wszystkich 89 operacji (w tym 33 operacji z pierwszej próby):

<table>
<thead>
<tr>
<th></th>
<th>Program 2 (warstwa o niskiej wartości)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E1)</td>
<td>Wydatki objęte audytem</td>
</tr>
<tr>
<td></td>
<td>1 236 789 EUR</td>
</tr>
<tr>
<td>(F1)</td>
<td>Liczebność próby (liczba operacji)</td>
</tr>
<tr>
<td></td>
<td>89</td>
</tr>
<tr>
<td>(G1)</td>
<td>Całkowity błąd próby</td>
</tr>
<tr>
<td></td>
<td>8 278 EUR</td>
</tr>
<tr>
<td>(H1)</td>
<td>Średni błąd próby</td>
</tr>
<tr>
<td></td>
<td>93 EUR</td>
</tr>
<tr>
<td>(I1)</td>
<td>Odchylenie standardowe błędów próby</td>
</tr>
<tr>
<td></td>
<td>1 122 EUR</td>
</tr>
</tbody>
</table>

Obliczenia dokonane przez instytucję audytową przedstawiono w poniższej tabeli:

<table>
<thead>
<tr>
<th></th>
<th>Program 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L1)</td>
<td>Dokładność (estymacja wartości na podstawie średniej): $= (C) \times 1.282 \times \frac{(f)}{\sqrt{F1}}$</td>
</tr>
<tr>
<td></td>
<td>263 469 EUR</td>
</tr>
<tr>
<td>(M1)</td>
<td>Błąd przewidywany (estymacja wartości na podstawie średniej): $= (H1) \times (C) + (K)$</td>
</tr>
<tr>
<td></td>
<td>161 715 EUR</td>
</tr>
<tr>
<td>(N1)</td>
<td>Górna granica błędu: $= (M1) + (L1)$</td>
</tr>
<tr>
<td></td>
<td>425 184 EUR</td>
</tr>
<tr>
<td>(O1)</td>
<td>Przewidywany poziom błędu (%): $= \frac{M1}{A+B}$</td>
</tr>
<tr>
<td></td>
<td>0,62 %</td>
</tr>
<tr>
<td>(P1)</td>
<td>Górna granica przewidywanego poziomu błędu: $= \frac{N1}{(A+B)}$</td>
</tr>
<tr>
<td></td>
<td>1,63 %</td>
</tr>
</tbody>
</table>

Dzięki wynikom uzyskanym z tej rozszerzonej próby (89 operacji) instytucja audytowa jest w stanie stwierdzić, że populacja zadeklarowanych wydatków w ramach programu 2 nie zawiera istotnych nieprawidłowości.

7.9 Technika doboru próby mająca zastosowanie do audytów systemu

7.9.1 Wprowadzenie

Art. 62 rozporządzenia Rady (WE) nr 1083/2006 stanowi, że: „Instytucja audytowa programu operacyjnego odpowiada w szczególności za: a) zapewnienie prowadzenia audytów w celu weryfikacji skutecznego funkcjonowania systemu zarządzania i
kontroli programu operacyjnego; [...]
Ponieważ w odniesieniu do audytów systemu analiza audytora dotycząca charakteru i przyczyn błędów oraz samego braku lub obecności błędów jest istotna, odpowiednie może być zastosowanie niestatystycznego podejścia. W tym przypadku audytor może dokonać wyboru stałej liczebności próby obejmującej jednostki, które będą przedmiotem badania w odniesieniu do każdej kluczowej kontroli. Należy jednak kierować się profesjonalnym osądem przy stosowaniu poszczególnych współczynników. W przypadku zastosowania niestatystycznego podejścia ekstrapolowanie wyników nie jest możliwe.

Dobór jakościowy jest statystycznym podejściem, które może pomóc audytorowi w ustaleniu poziomu pewności systemu oraz w ocenie poziomu, na którym pojawiają się błędy w próbie. W ramach audytu podejście to najczęściej stosuje się w celu zbadania poziomu odchylenia od zalecanej kontroli na poparcie poziomu ryzyka audytu ocenionego przez audytora. Wyniki można następnie prognozować dla populacji.

Jako metoda ogólna obejmująca szereg wariantów, dobór jakościowy jest podstawową statystyczną metodą stosowaną w przypadku audytów systemu; każda inna metoda, którą można stosować do audytów systemu, będzie opierać się o omówione poniżej zagadnienia.

Dobór jakościowy rozwiązuje kwestie zero-jedynkowe, dając takie odpowiedzi, jak np. tak albo nie, wysoki albo niski, prawda albo fałsz. Za pomocą tej metody informacje dotyczące próby są prognozowane w odniesieniu do populacji celem określenia kategorii, do której dana populacja należy.

W rozporządzeniu nie nakłada się obowiązku stosowania statystycznego podejścia do doboru próby w odniesieniu do badań kontrolnych w zakresie audytu systemów. W związku z tym powyższą sekcję i powiązane załączniki zawarto w niniejszym dokumencie do ogólnej wiadomości i nie będą one szczegółowo omawiane.

Szczegółowe informacje i przykłady na temat technik doboru próby mających zastosowanie do audytów systemu można znaleźć w specjalistycznych źródłach dotyczących doboru próby w audycie.

Korzystając z doboru jakościowego w audycie systemu, należy postępować według poniższego planu obejmującego sześć kroków:
1. określić cele badania: przykładowo należy stwierdzić, czy częstotliwość występowania błędów w populacji spełnia kryteria wysokiego poziomu pewności;
2. określić populację i jednostkę próby: na przykład faktury przypisane do danego programu;
3. określić warunek odchylenia: jest to cecha będąca przedmiotem oceny, np. podpis na fakturach przypisanych do danej operacji w ramach programu;
4. określić liczebność próby, stosując poniższy wzór;
5. dobrać próbę i przeprowadzić audyt (próbę należy dobrać losowo);
6. ocenić i udokumentować wyniki.

7.9.2 Liczebność próby

Liczebność próby \(n \) w ramach metody doboru jakościowego oblicza się w oparciu o następujące informacje:
- poziom ufności i powiązany współczynnik z z rozkładu normalnego (zob. sekcja 5.3);
- maksymalny dopuszczalny poziom odchylenia \(T \), ustalany przez audytora; instytucja audytowa państwa członkowskiego ustala poziomy dopuszczalne (np. liczbę brakujących podpisów lub faktur, w przypadku których audytor nie stwierdza występowania problemu);
- oczekiwanego poziom odchylenia populacji \(p \), szacowany lub obserwowany na podstawie próby wstępnej. Należy zauważyć, że dopuszczalny poziom odchylenia powinien być wyższy niż przewidywany poziom odchylenia populacji, ponieważ, jeżeli tak się nie stanie, badanie jest bezcelowe (tj. jeżeli oczekuje się, że poziom błędu wyniesie 10 %, ustalenie dopuszczalnego poziomu błędu w wysokości 5 % nie ma sensu, ponieważ oznacza to, że przewiduje się wykrycie większej liczby błędów w populacji, niż jest to dopuszczalne).

Liczebność próby oblicza się następująco\(^{64}\):

\[
n = \frac{z^2 p (1-p)}{T^2} \left(1 + \frac{z^2 p (1-p)}{N T^2}\right).
\]

\(^{64}\) W przypadku małej liczebności populacji, tj. jeżeli ostateczna liczebność próby stanowi duży odsetek populacji (z reguły powyżej 10 % populacji), można zastosować dokładniejszy wzór prowadzący do
\[n = \frac{z^2 \times p \times (1-p)}{T^2}. \]

Przykład: jeśli założymy poziom ufności w wysokości 95% (\(z = 1.96\)), dopuszczalny poziom odchylenia (T) w wysokości 12% oraz przewidywany poziom odchylenia populacji (\(p\)) w wysokości 6%, minimalna liczebność próby wyniesie:

\[n = \frac{1.96^2 \times 0.06 \times (1-0.06)}{0.12^2} \approx 16. \]

Należy zauważyć, że liczebność populacji nie ma żadnego wpływu na liczebność próby; powyższe obliczenie w niewielkim stopniu zawyża wymaganą liczebność próby w odniesieniu do małych populacji, co jest dopuszczalne. Sposoby na zmniejszenie wymaganej liczebności próby obejmują obniżenie poziomu ufności (tj. zwiększenie ryzyka związanego z zaniżoną oceną ryzyka audytu) oraz podniesienie dopuszczalnego poziomu odchylenia.

7.9.3 Ekstrapolacja

Iloraz liczby odchyleń obserwowanych w próbie i liczby pozycji w próbie (tj. liczebności próby) stanowi poziom odchylenia próby:

\[EDR = \frac{\# of deviations in the sample}{n} \]

Jest to także najlepszy szacunek ekstrapolowanego współczynnika odchylenia (\(EDR\)), jaki można uzyskać z próby.

7.9.4 Dokładność

Należy pamiętać, że dokładność (błąd próbny) jest miarą niepewności związanej z prognozowaniem (ekstrapolacją). Dokładność oblicza się za pomocą następującego wzoru:

\[SE = z \times \frac{p_s \times (1-p_s)}{\sqrt{n}} \]

gdzie \(p_s\) oznacza stosunek liczby odchyleń obserwowanych w próbie do liczebności próby, poziom odchylenia próby.
7.9.5 Ocena

Otrzymana góra granica odchylenia jest wartością teoretyczną, uzyskaną w oparciu o liczebność próby i liczbę wykrytych błędów:

\[ULD = EDR + SE. \]

Wartość ta stanowi maksymalny poziom błędu populacji dla określonego poziomu ufności i wyników z dwumianowych tabel (na przykład w odniesieniu do liczebności próby w wysokości 150 i obserwowanej ilości odchyleń równej 3 (poziom odchylenia próby w wysokości 2 %) maksymalny poziom odchylenia (lub otrzymana góra granica odchylenia) dla poziomu ufności w wysokości 95 % wynosi:

\[ULD = \frac{3}{150} + 1.96 \times \frac{\frac{3}{150}(1-\frac{3}{150})}{\sqrt{150}} = 0.023. \]

7.9.6 Specjalistyczne metody doboru jakościowego

Dobór jakościowy jest metodą ogólną, w związku z czym niektóre warianty zostały opracowane z myślą o określonych celach. Spośród tych opcji, rozpoznawczy dobór próby i dobór próby metodą „stop-or-go” stanowią odpowiedź na wyspecjalizowane potrzeby.

Celem metody rozpoznawczego doboru próby jest przeprowadzanie audytu w przypadkach, w których pojedynczy błąd miałby kluczowe znaczenie; metoda ta jest zatem w szczególności ukierunkowana na wykrywanie przypadków oszustw lub unikania kontroli. Metoda ta, w oparciu o dobór jakościowy, przyjmuje zerowy (lub przynajmniej bardzo niski) poziom błędu i nie jest odpowiednia do celów prognozowania wyników dla populacji w przypadku wykrycia błędów w próbie. Rozpoznawczy dobór próby pozwala audytorowi na stwierdzenie, na podstawie próby, czy przyjęcie bardzo niskiego lub zerowego poziomu błędu w populacji jest założeniem miarodajnym. Metody tej nie stosuje się celem oceny poziomu pewności kontroli wewnętrznych, w związku z czym nie ma ona zastosowania do audytów systemu.
Dobór próby metodą „stop-or-go” jest wynikiem częstej potrzeby zmniejszania liczebności próby w możliwie jak największym stopniu. Metoda ta pozwala na stwierdzenie, że poziom błędu populacji jest poniżej wstępnie określonego poziomu dla danego poziomu ufności, poprzez badanie możliwie jak najmniejszej liczby jednostek w próbie – dobór próby zostaje wstrzymany natychmiast po osiągnięciu oczekiwanego wyniku. Metoda ta również nie jest odpowiednia do celów prognozowania wyników w odniesieniu do populacji, chociaż może być przydatna do celów oceny wniosków z audytów systemu. Może być stosowana w przypadkach, w których wynik audytów systemu jest kwestionowany, celem sprawdzenia, czy rzeczywiście spełniono kryterium w odniesieniu do ustalonego poziomu pewności.

7.10 Procedury proporcjonalnej kontroli w okresie programowania 2014–2020 – skutki dla doboru próby

7.10.1 Ograniczenia doboru próby wynikające z art. 148 ust. 1 RWP

Procedury proporcjonalnej kontroli, które ustanowiono w art. 148 ust. 1 RWP, mają na celu zmniejszenie obciążenia administracyjnego beneficjentów i zapobieganie sytuacjom, w których mogliby oni podlegać wielokrotnym audytom różnych organów, niekiedy nawet w odniesieniu do tych samych wydatków. Procedury te wpływają na prace instytucji audytowej i zostały przedstawione poniżej:

a) operacje, w przypadku których całkowite wydatki kwalifikowalne nie przekraczają 100 000 EUR (w przypadku EFMR), 150 000 EUR (w przypadku EFS) lub 200 000 EUR (w przypadku EFRR i Funduszu Spójności), podlegają tylko jednemu audytowi przeprowadzonemu przez instytucję audytową albo Komisję przed przedłożeniem zestawienia wydatków za rok obrachunkowy, w którym operacja została zakończona;

b) operacje, dla których całkowite wydatki kwalifikowalne przekraczają 100 000 EUR (w przypadku EFMR), 150 000 EUR (w przypadku EFS) lub 200 000 EUR (w przypadku EFRR i Funduszu Spójności), podlegają jednemu audytowi na rok obrachunkowy przeprowadzonemu przez instytucję audytową lub Komisję przed przedłożeniem zestawienia wydatków za rok obrachunkowy, w którym operacja została zakończona.

c) jeśli w danym roku audyt przeprowadzał Europejski Trybunał Obrachunkowy, ani instytucja audytowa, ani Komisja nie mogą przeprowadzić audytu, pod warunkiem że wyniki audytu tych operacji przeprowadzonego przez Europejski Trybunał Obrachunkowy mogą być wykorzystane przez instytucję audytową lub Komisję na potrzeby realizacji właściwych im zadań.
Aby zdecydować, czy ten artykuł ma zastosowanie, należy dokonać oceny poziomu „całkowitych wydatków kwalifikowalnych w ramach operacji” na podstawie kwoty określonej w umowie o udzielenie dotacji, ponieważ dokładne wydatki, które zostaną zadeklarowane w okresie programowania, nie są znane z wyprzedzeniem.

W art. 148 ust. 4 RWP przewidziano, że instytucja audytowa i Komisja mogą przeprowadzać audyty operacji podlegającej przedstawionym powyżej warunkom (jeżeli podczas oceny ryzyka lub audytu przeprowadzonego przez Europejski Trybunał Obrachunkowy stwierdzono szczególne ryzyko wystąpienia nieprawidłowości lub nadać finansowych lub jeżeli istnieją dowody na poważne defekty w skutecznym funkcjonowaniu systemu zarządzania i kontroli danego programu operacyjnego w okresie, o którym mowa w art. 140 ust. 1). W szczególności dla instytucji audytowej oznacza to, że przepisy art. 148 ust. 1 nie mają zastosowania w przypadku doboru prób uzupełniających objętych audytem na podstawie ryzyka.

W art. 148 ust. 1 RWP wprowadzono istotne praktyczne wyzwania z punktu widzenia pracy instytucji audytowej, a mianowicie w zakresie strategii, jaką należy przyjąć podczas doboru prób, przy uwzględnieniu ogólnej zasady przewidzianej w art. 127 ust. 1 RWP. W tym przepisie stwierdzono, że instytucja audytowa zapewnia prowadzenie audytów na podstawie „stosownej próby operacji w oparciu o zadeklarowane wydatki” i – w przypadku niestatystycznej metody doboru prób – wystarczającą liczebność prób, aby umożliwić instytucji audytowej sporządzenie ważnej opinii z audytu. W sekcji 7.10.2 poniżej wyjaśniono, w jaki sposób należy wprowadzić korekty w metodzie doboru próby na podstawie ustaleń art. 148.

Instytucja audytowa mogła prowadzić audyt w odniesieniu do roku obrachunkowego albo po roku obrachunkowym w ramach metody doboru prób obejmującej jeden okres lub etapowo, stosując schemat doboru prób obejmujący dwa okresy lub wiele okresów.

W kontekście doboru prób obejmującego jeden okres fakt, że instytucja audytowa (lub KE) przeprowadza audyt operacji z jednego roku, stosując progi przedstawione powyżej, wskazuje, że instytucja audytowa nie może przeprowadzić audytu tych operacji w kolejnych latach przed przedłożeniem zestawienia wydatków, w którym ujęto ostateczne wydatki dotyczące zakończonej operacji, chyba że zastosowanie ma art. 148 ust. 4 RWP.

W kontekście doboru prób obejmującego wiele okresów w odniesieniu do roku obrachunkowego, jeżeli dla tego roku wybrano więcej niż jednorazowe wydatki w ramach tej samej operacji, instytucja audytowa może rozważyć przeprowadzenie audytu danej operacji w dwóch etapach (lub więcej). Oznacza to, że jeżeli do doboru prób wybrane jakąkolwiek operację w jednym okresie doboru prób w roku obrachunkowym, instytucja audytowa utrzyma tę operację w populacji w celu objęcia jej próbą i audytem w odniesieniu do kolejnych okresów doboru prób w tym samym roku obrachunkowym. W takim wypadku nie można wymienić lub wykluczyć operacji, ponieważ jest to pojedynczy audyt, w ramach którego prace dotyczą różnych
momentów w tym samym roku. Ponieważ po doborze próby dla pierwszego okresu objętego próbą instytucja audytowa nie może przewidzieć, czy wybrane operacje zostaną wybrane do audytu wydatków w innym okresie doboru próby w tym roku obrachunkowym, zaleca się, by instytucja audytowa poinformowała właściwych beneficjentów, że ich operacje zostały wybrane do audytu dotyczącego danego roku obrachunkowego i że operacje mogą być objęte wieloetapowym audytem. W związku z tym konieczne jest wyjaśnienie tej kwestii w piśmie do IZ/beneficjenta powiadamiącym o wybraniu operacji do audytu65.

W art. 148 ust. 1 RWP przewidziano, że operacje przekraczające odnośnie progi podlegają jednemu audytowi na rok obrachunkowy. Ten wymóg interpretuje się jako jeden audyt dotyczący wydatków zadeklarowanych w danym roku obrachunkowym, ale nie jako jeden audyt w danym roku obrachunkowym.

Aby uniknąć obciążenia administracyjnego beneficjenta, jakie mogą pociągnąć za sobą wielokrotne wizyty na miejscu w odniesieniu do tej samej operacji, instytucja audytowa może podjąć decyzję o przeprowadzeniu kolejnych etapów audytu po pierwszych kontrolach na poziomie instytucji zarządzającej / instytucji pośredniczącej pod warunkiem że można zweryfikować dokumenty potwierdzające na podstawie dokumentów będących w posiadaniu tych organów.

Operacje objęte audytym Trybunału Obrachunkowego:

Poza pierwszymi dwoma warunkami określonymi w art. 148 ust. 1 RWP w przepisie tym przewidziano również, że instytucja audytowa nie może przeprowadzić audytu operacji, jeżeli była ona przedmiotem audytu, który w tym samym roku przeprowadził Trybunał Obrachunkowy, i jeżeli instytucja audytowa może wykorzystać wnioski sformułowane przez tę instytucję.

Przepis ten również stanowi praktyczne ograniczenia dla instytucji audytowej, w szczególności jeżeli wnioski Trybunału Obrachunkowego z audytu wybranych operacji nie są dostępne na czas, aby instytucja audytowa mogła je ocenić i zdecydować, czy może je wykorzystać do celów sporządzenia swojej opinii z audytu. Ponadto może się zdarzyć, że wnioski Trybunału Obrachunkowego dotyczą okresu odniesienia w zakresie zadeklarowanych wydatków, który jest inny niż okres, na temat którego instytucja

65 Zaleca się, aby instytucje audytowe wykorzystały następujący (lub podobny) tekst w pismach powiadamiających o audycie w ramach schematu doboru próby obejmującego dwa okresy lub wiele okresów: „Państwa operacja została wybrana do audytu, który ma przeprowadzić instytucja audytowa programu w odniesieniu do wydatków zadeklarowanych Komisji Europejskiej przez organy krajowe w roku obrachunkowym obejmującym okres od lipca 20xx r. do czerwca 20xx r. Niniejszym powiadamiamy, że wspomniany audyt może zostać rozłożony na więcej etapów audytu niż jeden w najbliższym okresie. Na późniejszym etapie otrzymają Państwo informację, czy audyt zostanie ograniczony do wydatków zadeklarowanych dla pierwszego półroczna (innego okresu doboru próby), czy obejmie również wydatki związane z drugim półroczem (innego okresu doboru próby)”.
audytowa musi wydać opinię z audytu, co oznacza, że instytucja audytowa nie może wykorzystać wniosków Trybunału Obrachunkowego do tego celu.

Jeżeli rzeczywiście wnioski Trybunału Obrachunkowego z audytu operacji wybranej przez instytucję audytową są dostępne w odpowiednim czasie tak, aby instytucja audytowa mogła sporządzić właściwą opinię z audytu, instytucja audytowa wykorzystuje wyniki prac audytowych przeprowadzonych przez Trybunał Obrachunkowy, aby określić błąd w odniesieniu do tej operacji, jeżeli zgodziła się z tymi wnioskami, i bez potrzeby ponownego przeprowadzenia procedur kontroli.

7.10.2 Metoda doboru prób w zgodzie z procedurami proporcjonalnej kontroli

Dobór prób

W art. 28 ust. 8 RDK stwierdzono, że: „W przypadku gdy mają zastosowanie warunki proporcjonalnej kontroli przewidziane w art. 148 ust. 1 rozporządzenia (UE) nr 1303/2013, instytucja audytowa może wykluczyć elementy wymienione w tym artykule z populacji poddanej wyborowi próby. Jeśli dana operacja została już włączona do próby, instytucja audytowa wymienia ją na inną przy użyciu odpowiedniego wyboru losowego”.

Jak wynika z przepisów tego artykułu, instytucja audytowa może wykorzystać do doboru prób pierwotną populację dodatnią zadeklarowanych wydatków albo zmniejszoną populację, tj. populację z której wykluczono jednostki próby podlegające art. 148 RWP.

W razie zastąpienia zagrożonych operacji / innych jednostek próby takie jednostki próbnej należy zastąpić w próbie poprzez wybranie dodatkowej próbki o liczebności podobnej do liczby zastąpionych operacji. „Jednostki zastępcze” należy wybrać w oparciu o taką samą metodę jak w przypadku pierwotnej próbki. W szczególności w przypadku metod PPS (tj. MUS i niestatystycznych metod doboru prób PPS) dodatkowe jednostki próbne należy wybrać w oparciu o dobór na podstawie prawdopodobieństwa proporcjonalnego do wielkości. Przykłady doboru przedstawiono w sekcji 7.10.3.1.

Zarówno w przypadku zastąpienia, jak i wykluczenia, liczebność prób oblicza się na podstawie parametrów populacji (takich jak wartość księgowa, liczba jednostek próbnej) odpowiadających pierwotnej populacji (tj. populacji wraz z operacjami / innymi jednostkami próbne podlegającymi art. 148 ust. 1 RWP). Stosuje się właściwe standardowe wzory na liczebność prób (przedstawione w sekcji 6 wytycznych).

Instytucja audytowa powinna podjąć decyzję o zastąpieniu albo wykluczeniu jednostek próbnej w oparciu o profesjonalny osąd. Instytucja audytowa może stwierdzić, że w przypadku populacji o małej liczbie jednostek próbnej (dobór losowy prosty) lub małych wydatkach (MUS) podlegających art. 148 bardziej praktyczne będzie zastąpienie operacji, ponieważ prawdopodobieństwo wybrania takich jednostek (i wystąpienia
powiązanych technicznych skutków zastępowania) jest niskie. Natomiast w przypadku populacji o dużej liczbie jednostek próby / dużych wydatkach podlegających art. 148 zastępowanie będzie częstszce i niekiedy trzeba będzie je powtórzyć. W takich przypadkach instytucja audytowa może zatem stwierdzić, że praktyczniej jest wykluczyć jednostki populacji podlegające art. 148 RWP z populacji, która ma zostać objęta próbą, aby uniknąć wymiany jednostek próby.

Prognozowanie błędów

Jak wynika z art. 127 ust. 1 RWP, instytucja audytowa musi sporządzić opinię z audytu w odniesieniu do wszystkich zadeklarowanych wydatków. W związku z tym nawet jeżeli populacja, z której uzyskano próbę, odpowiada zadeklarowanym wydatkom pomniejszonym o wydatki związane z operacjami, na które mają wpływ przepisy art. 148, nadal konieczne jest obliczenie całkowitego błędu zadeklarowanych wydatków, aby można było sporządzić opinię z audytu tych wydatków.

Można to zrobić na dwa sposoby. Po pierwsze, we wzorach na prognozę liczebność populacji \(N(h) \) i wartość księgowa populacji \(BV(h) \) są wartościami odpowiadającymi pierwotnej populacji (tj. populacji obejmującej jednostki próby, na które mają wpływ przepisy art. 148). W takim przypadku należy obliczyć prognozę błędu dla pierwotnej populacji (dla każdej warstwy) i nie trzeba podejmować żadnych innych działań. To podejście jest zalecane szczególnie w przypadku wymiany operacji / innych jednostek próby.

Ewentualnie można to zrobić dwuetapowo: po pierwsze, we wzorach prognostycznych liczebność populacji \(N(h) \) i wartość księgowa populacji \(BV(h) \) odnoszą się do ograniczonej populacji (tj. uzyskanej po odjęciu jednostek populacji, na które mają wpływ przepisy art. 148 RWP). Po prognozowaniu błędu w ten sposób błąd przewidywany należy pomnożyć przez stosunek wydatków zadeklarowanych w pierwotnej populacji do wydatków zadeklarowanych w zmniejszonej populacji \(\frac{BV(h) \text{ original population}}{BV(h) \text{ reduced population}} \), aby uzyskać całkowity błąd przewidywany pierwotnej populacji (zwykle w przypadku MUS i doboru losowego prostego z estymacją ilorazową). Tego prognozowania dla pierwotnej populacji na podstawie ograniczonej populacji można również dokonać, mnożąc błąd ograniczonej populacji przez stosunek liczebności pierwotnej populacji i liczebności zmniejszonej populacji \(\frac{N(h) \text{ original population}}{N(h) \text{ reduced population}} \) (zwykle w przypadku doboru losowego prostego z estymacją wartości na podstawie średniej).

Ten dwuetapowy proces jest szczególnie zalecany w przypadku wykluczenia operacji / innych jednostek próby.

Dokładność również można policzyć w odniesieniu do pierwotnej populacji, \(SE(h) \text{ original} \), albo w odniesieniu do zmniejszonej populacji, \(SE(h) \text{ reduced} \), (zob. jednak niektóre ograniczenia przedstawione w tabelach poniżej). Jeżeli dokładność oblicza się dla
zmniejszonej populacji, na następnym etapie należy ją skorygować, aby odzwierciedlała pierwotną populację.

Podobnie jak w przypadku prognozowania błędu dokładność dostosowuje się, mnożąc dokładność dla zmniejszonej populacji przez współczynnik \(\frac{BV_{(h)} \text{original population}}{BV_{(h)} \text{reduced population}} \) (w przypadku MUS i doboru losowego prostego z estymacją ilorazową) lub przez współczynnik \(\frac{N_{(h)} \text{original population}}{N_{(h)} \text{reduced population}} \) (w przypadku doboru losowego prostego z estymacją wartości na podstawie średniej).

Nie można określić metodyki, która zawsze jest bardziej odpowiednia niż inne (np. prognozowanie i obliczanie dokładności w odniesieniu do pierwotnej lub do zmniejszonej populacji), ponieważ niektóre metody doboru próby mogą wiązać się z ograniczeniami technicznymi w tym względzie.

Tabele poniżej zawierają podsumowanie podejść do doboru próby, prognozowania błędów i obliczania dokładności próby z uwzględnieniem ograniczeń, które wynikają z zasad procedur proporcjonalnej kontroli.

a) Podejście standardowe w ramach metody MUS

<table>
<thead>
<tr>
<th>Schemat doboru próby</th>
<th>Podejście standardowe w ramach MUS: Wykluczenie jednostek próby</th>
<th>Podejście standardowe w ramach MUS: Wymiana jednostek próby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametry</td>
<td>Odpowiadają pierwotnej populacji.</td>
<td>Odpowiadają pierwotnej populacji.</td>
</tr>
<tr>
<td>wykorzystane do obliczenia liczebności próby</td>
<td>Zmniejszona populacja.</td>
<td>Pierwotna populacja.</td>
</tr>
<tr>
<td>Populacja wykorzystana do celów doboru próby</td>
<td>Prognozowanie błędu i obliczenie dokładności dla zmniejszonej populacji, skorygowanej na następnym etapie w celu odzwierciedlenia pierwotnej populacji. Korekta może polegać na pomnożeniu błędu przewidywanego i dokładności przez stosunek wydatków (BV_{(h)} \text{original}) z pierwotnej populacji do wydatków (BV_{(h)} \text{reduced}) ze zmniejszonej populacji. W przypadku jednostek z warstwy o wysokiej wartości, na które mają wpływ przepisy art. 148 (lub z każdej innej warstwy wyczerpującej), mogłoby zająć potrzeba obliczenia błędu dla warstwy o wysokiej wartości i prognozowania tego błędu dla jednostek, które nie zostały objęte audytem w tej warstwie, za pomocą wzoru (EE_e = EE_{e \text{ reduced}} \times \frac{BV_{e \text{ original}}}{BV_{e \text{ reduced}}}) (gdzie (EE_{e \text{ reduced}}) oznacza kwotę błędu w jednostkach próby warstwy o wysokiej wartości objętej audytem,</td>
<td>Prognozowanie błędów i obliczenie dokładności dla pierwotnej populacji. Jednostki z warstwy o wysokiej wartości (lub jednostki z każdej innej warstwy wyczerpującej), które wykluczone z procedur kontroli zgodnie z art. 148, należy wymienić na jednostki próby z warstwy o niskiej wartości. W takim przypadku być może zająć potrzeba obliczenia błędu dla warstwy o wysokiej wartości i prognozowania tego błędu dla jednostek, które nie zostały objęte audytem w tej warstwie, za pomocą wzoru (EE_e = EE_{e \text{ reduced}} \times \frac{BV_{e \text{ original}}}{BV_{e \text{ reduced}}}) (gdzie (EE_{e \text{ reduced}}) oznacza kwotę błędu w jednostkach próby warstwy o wysokiej wartości objętej audytem,</td>
</tr>
</tbody>
</table>
oznacza kwotę błędu w jednostkach próby warstwy o wysokiej wartości objętej audytym, $BV_{e\ original}$ odnosi się do wartości księgowej pierwotnej warstwy o wysokiej wartości, a $BV_{e\ reduced}$ odnosi się do wartości księgowej pozycji w warstwie o wysokiej wartości, które podlegały audytowi).

<table>
<thead>
<tr>
<th>Schemat doboru próby</th>
<th>Podejście konserwatywne w ramach MUS: Wykluczenie jednostek próby</th>
<th>Podejście konserwatywne w ramach MUS: Wymiana jednostek próby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametry wykorzystane do obliczenia liczebności próby</td>
<td>Nie dotyczy (liczność próby pozostanie taka sama bez względu na to, czy zostanie obliczona przy zastosowaniu parametrów pierwotnej populacji, czy zmniejszonej populacji).</td>
<td>Nie dotyczy (liczność próby pozostanie taka sama bez względu na to, czy zostanie obliczona przy zastosowaniu parametrów pierwotnej populacji, czy zmniejszonej populacji).</td>
</tr>
<tr>
<td>Populacja wykorzystana do celów doboru próby</td>
<td>Zmniejszona populacja.</td>
<td>Pierwotna populacja.</td>
</tr>
<tr>
<td>Zalecana metoda prognozowania błędu i obliczenia dokładności</td>
<td>Prognozowanie błędu i obliczenie dokładności dla zmniejszonej populacji, na następnym etapie skorygowanej w celu odzwierciedlenia pierwotnej populacji. Korekta może polegać na pomnożeniu błędu przewidywanego i dokładności przez stosunek wydatków $BV_{(h)\ original}$ z pierwotnej populacji do wydatków $BV_{(h)\ reduced}$ ze zmniejszonej populacji.</td>
<td>Mając na uwadze kwestie techniczne, które mają związek z prognozowaniem błędów i obliczaniem dokładności w razie wymiany jednostek próby w przypadku podejścia konserwatywnego w ramach MUS, zaleca się wykluczenie jednostek próby, jeżeli stosuje się podejście konserwatywne w ramach metody MUS66.</td>
</tr>
</tbody>
</table>

W przypadku jednostek z warstwy o wysokiej wartości, na które mają wpływ przepisy art. 148, mogłoby zająć potrzeba obliczenia błędu dla warstwy o wysokiej wartości i prognozowania tego błędu dla jednostek, które nie zostały objęte audytym w tej warstwie, za pomocą wzoru \[EE_{e} = EE_{e\ reduced} \times \frac{BV_{e\ original}}{BV_{e\ reduced}} \] (gdzie $EE_{e\ reduced}$ oznacza kwotę błędu w jednostkach próby warstwy o wysokiej wartości objętej audytym, $BV_{e\ original}$ odnosi się do wartości księgowej pierwotnej warstwy o wysokiej wartości, a $BV_{e\ reduced}$ odnosi się do wartości księgowej pozycji w warstwie o wysokiej wartości, które podlegały audytowi).

66 Jeżeli instytucja audytowa podejmie decyzję o wymianie jednostek w przypadku podejścia konserwatywnego w ramach metody MUS, może zwrócić się o poradę do Komisji w celu ustalenia, które konkretne wzory należy zastosować, i uzyskać informacje techniczne na temat doboru próby i prognozowania.

c) Dobór losowy prosty
<table>
<thead>
<tr>
<th>Schemat doboru próby</th>
<th>Dobór losowy prosty: Wykluczenie jednostek próby</th>
<th>Dobór losowy prosty: Wymiana jednostek próby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametry wykorzystane do obliczenia liczebności próby</td>
<td>Odpowiadają pierwotnej populacji.</td>
<td>Odpowiadają pierwotnej populacji.</td>
</tr>
<tr>
<td>Populacja wykorzystana do celów doboru próby</td>
<td>Zmniejszona populacja.</td>
<td>Pierwotna populacja.</td>
</tr>
<tr>
<td>Zalecana metoda prognozowania błędów i obliczenia dokładności</td>
<td>Prognozowanie błędów i obliczenie dokładności dla zmniejszonej populacji, na następnym etapie skorygowanej w celu odzwierciedlenia pierwotnej populacji. W przypadku estymacji wartości na podstawie średniej korekta może polegać na pomnożeniu błędu przewidywanego i dokładności przez stosunek liczebności pierwotnej populacji (N(h)) do liczebności zmniejszonej populacji (N(h)) reduced. W przypadku estymacji ilorazowej korekta może polegać na pomnożeniu błędu przewidywanego i dokładności przez stosunek wydatków (BV(h)) original z pierwotnej populacji do wydatków (BV(h)) reduced ze zmniejszonej populacji. Prognozowanie błędów można również wykonać bezpośrednio dla pierwotnej populacji zarówno w przypadku estymacji ilorazowej, jak i w przypadku estymacji wartości na podstawie średniej. W przypadku estymacji ilorazowej nie należy obliczać dokładności bezpośrednio dla pierwotnej populacji; jest to możliwe jedynie w przypadku estymacji wartości na podstawie średniej. Dokładność obliczoną dla zmniejszonej populacji w przypadku estymacji ilorazowej należy skorygować w odniesieniu do pierwotnej populacji, mnożąc dokładność zmniejszonej populacji przez współczynnik (BV(h)) original population (BV(h)) reduced population. W przypadku jednostek z warstwy o wysokiej wartości (lub z każdej innej warstwy wyczerpującej), które podlegają art. 148, być może konieczne będzie obliczenie błędu dla warstwy o wysokiej wartości i prognozowanie tego błędu dla jednostek, które nie zostały objęte audytem w tej warstwie. W przypadku estymacji ilorazowej korekty należy dokonać, stosując wzór (EE_e = EE_{e reduced} \times \frac{BV_e original}{BV_e reduced}), gdzie (EE_{e reduced}) oznacza kwotę błędów dla pierwotnej populacji (zarówno w przypadku estymacji ilorazowej, jak i w przypadku estymacji wartości na podstawie średniej). W przypadku estymacji wartości na podstawie średniej dokładność oblicza się dla pierwotnej populacji. W przypadku estymacji ilorazowej dokładność należy obliczyć dla zmniejszonej populacji (populacji, od której odjęto wszystkie jednostki próby podlegające art. 148). Na następnym etapie należy ją skorygować, aby odzwierciedlała pierwotną populację. Można to zrobić, mnożąc dokładność zmniejszonej populacji przez stosunek wydatków (BV(h)) original z pierwotnej populacji do wydatków (BV(h)) reduced ze zmniejszonej populacji. (EE_e) oznacza kwotę błędów w jednostkach próby warstwy o wysokiej wartości objętej audytem. (BV(e)) original odnosi się do wartości księgowej</td>
<td></td>
</tr>
<tr>
<td>Schemat doboru próby</td>
<td>Dobór losowy prosty: Wykluczenie jednostek próby</td>
<td>Dobór losowy prosty: Wymiana jednostek próby</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>błędę w jednostkach próby warstwy o wysokiej wartości objętej audytym, (BV_{e\text{original}}) odnosi się do wartości księgowej pierwotnej warstwy o wysokiej wartości, a (BV_{e\text{reduced}}) odnosi się do wartości księgowej pozycji w warstwie o wysokiej wartości, które podlegały audytowi. W przypadku estymacji wartości na podstawie średniej korekty należy dokonać, stosując wzór (EE_{e} = EE_{e\text{reduced}} \times \frac{N_{e\text{original}}}{N_{e\text{reduced}}}), gdzie (EE_{e\text{reduced}}) oznacza kwotę błędu w jednostkach próby warstwy o wysokiej wartości objętej audytym, (N_{e\text{original}}) odnosi się do liczby jednostek próby z pierwotnej warstwy o wysokiej wartości, a (N_{e\text{reduced}}) odnosi się do liczby jednostek próby w warstwie o wysokiej wartości objętej audytym.</td>
<td>pierwotnej warstwy o wysokiej wartości, a (BV_{e\text{reduced}}) odnosi się do wartości księgowej pozycji w warstwie o wysokiej wartości, które podlegały audytowi. W przypadku estymacji wartości na podstawie średniej korekty należy dokonać, stosując wzór (EE_{e} = EE_{e\text{reduced}} \times \frac{N_{e\text{original}}}{N_{e\text{reduced}}}), gdzie (EE_{e\text{reduced}}) oznacza kwotę błędu w jednostkach próby warstwy o wysokiej wartości objętej audytym, (N_{e\text{original}}) odnosi się do liczby jednostek próby z pierwotnej warstwy o wysokiej wartości, a (N_{e\text{reduced}}) odnosi się do liczby jednostek próby w warstwie o wysokiej wartości objętej audytym.</td>
</tr>
</tbody>
</table>

7.10.3 Przykłady

7.10.3.1 Przykłady wymiany jednostek próby w ramach metod PPS (MUS i niestatystycznych metod doboru próby PPS)

Jak wyjaśniono w sekcji powyżej, w ramach metod PPS (MUS i niestatystyczne metody doboru próby PPS) jednostki próby, które podlegają art. 148, należy wymienić, dobierając nowe jednostki w oparciu o prawdopodobieństwo proporcjonalne do wielkości.

Należy odnotować, że procedura doboru nowych jednostek próby w ramach niestatystycznych metod doboru próby PPS jest taka sama jak w przypadku podejścia standardowego w ramach metody MUS, w związku z czym wymianę jednostek próby w ramach tych dwóch metod ilustrują wspólne przykłady. Dwa przykłady przedstawione poniżej ilustrują odpowiednio:

a) wymianę jednostek próby w warstwie o niskiej wartości w przypadku podejścia standardowego w ramach metody MUS i niestatystycznych metod doboru próby PPS;

b) wymianę jednostek próby w warstwie o wysokiej wartości w przypadku podejścia standardowego w ramach metody MUS i niestatystycznych metod doboru próby PPS;

a) Wymiana jednostek próby w warstwie o niskiej wartości – podejście standardowe w ramach metody MUS i niestatystycznych metod doboru próby PPS
Załóżmy dodatnią populację wydatków zadeklarowanych Komisji w danym okresie odniesienia dla operacji w ramach programu.

Poniższa tabela zawiera podsumowanie populacji:

| Liczebność populacji (liczba operacji) | 3 852 |
| Wartość księgowa (wydatki w okresie odniesienia) | 4 199 882 024 EUR |

Liczność próby wynosi 30 operacji (obliczona na potrzeby podejścia standardowego MUS na podstawie odnośnych parametrów próby lub zalecane pokrycie operacji w ramach niestatystycznego doboru próby PPS w oparciu o poziom pewności z audytów systemu). Warstwa o wysokiej wartości obejmuje 8 operacji o wartości granicznej powyżej 139 996 067,47 i o łącznej wartości 1 987 446 254 EUR. Interwał losowania wynosi zatem 100 565 262 EUR.

\[
Sampling\ interval\ (SI) = \frac{BV_s}{n_s} = \frac{4,199,882,024 - 1,987,446,254}{22\ (i.e.\ 30 - 8)} = 100,565,262
\]

Przy zastosowaniu powyższego interwału wartość 22 operacji wybranych przez instytucję audytową z warstwy o niskiej wartości wynosi 65 550 000 EUR. W skład tej próbki wchodzą dwie operacje objęte audytem służb KE, w ramach których zadeklarowano KE wydatki o wysokości 950 000 EUR. Z uwagi na postanowienia art. 148 operacje zostają wymienione w drodze wyboru jednostki zastępczej na podstawie prawdopodobieństwa proporcjonalnego do wielkości.

Nowe jednostki próby należy wybrać z pozostałej populacji z warstwy o niskiej wartości, tj. ze zbioru zawierającego 3 822 jednostki próby (3 852 operacje w populacji minus 30 pierwotnie wybranych operacji)\(^{67}\), stosując interwał w wysokości 1 073 442 885 EUR:

\[
Sampling\ interval\ used\ for\ replacement\ (SI') = \frac{BV_{s'}}{n_{s'}} = \frac{4,199,882,024 - 1,987,446,254 - 65,550,000}{2} = 1
\]

073 442 885

W pierwotnej próbie operacje, na które mają wpływ przepisy art. 148, zostają zastąpione dwiema nowo wybranymi operacjami. Prognozowanie odbywa się jak zwykle z wykorzystaniem parametrów populacji i próby \(BV_s\) i \(n_s\), tj. sumuje się błędy z

\(^{67}\) Instytucja audytowa może również podjąć decyzję o usunięciu ze zbioru wszystkich pozostałych jednostek próby, na które mają wpływ przepisy art. 148, i wybrać nowe jednostki próby wyłącznie z populacji z warstwy o niskiej wartości, która nie podlega art. 148. Dzięki takiemu postępowaniu można uniknąć ryzyka wielokrotnego wyboru w związku z wymianą, co byłoby konieczne, gdyby nowo wybrane pozycje również podlegały art. 148.
warstwy o wysokiej wartości i dokonuje się prognozowania błędów z warstwy o niskiej wartości, stosując poniższy wzór:

$$EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} E_i$$

gdzie $$BV_s = 2\ 212\ 435\ 770\ (4,199,882,024 - 1,987,446,254)$$, a $$n_s = 22$$.

Przyjmując, że suma poziomów błędu we wszystkich jednostkach w warstwie o niskiej wartości ($$\sum_{i=1}^{n_s} \frac{E_i}{BV_i}$$) wynosi 0,52, błąd ekstrapolowany dla warstwy o niskiej wartości wynosi 52 293 936 EUR.

Instytucja audytowa wykryła błędy o łącznej kwocie 692 EUR w warstwie o wysokiej wartości. W związku z tym błąd przewidywany w naszej populacji wynosi 52 294 628 (52 293 936 + 692), tj. 1,25 % wartości populacji.

W przypadku zastosowania niestatystycznej metody doboru próby PPS, instytucja audytowa uznałaby, że nie istnieją wystarczające dowody, aby stwierdzić, że populacja zawiera istotny błąd. Nie można jednak określić osiągniętej dokładności, a poziom ufności tego wniosku jest nieznany.

W przypadku zastosowania podejścia standardowego w ramach metody MUS, w celu przeprowadzenia oceny górnej granicy błędu instytucja audytowa obliczyłaby dokładność, stosując standardowy wzór:

$$SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r$$

gdzie $$BV_s = 2\ 212\ 435\ 770\ (4,199,882,024 - 1,987,446,254)$$, a $$n_s = 22$$.

b) Wymiana jednostek próby w warstwie o wysokiej wartości – podejście standardowe w ramach metody MUS i niestatystycznych metod doboru próby PPS

Załóżmy dodatnią populację wydatków zadeklarowanych Komisji w danym okresie odniesienia dla operacji w ramach programu.

Poniższa tabela zawiera podsumowanie populacji:

| Liczebność populacji (liczba operacji) | 3 852 |
| Wartość księgowa (wydatki w okresie odniesienia) | 4 199 882 024 EUR |

Liczebność próby wynosi 30 operacji (obliczona na potrzeby podejścia standardowego MUS na podstawie odnośnych parametrów próby lub zalecane pokrycie operacji w
ramach niestatystycznego doboru próby PPS w oparciu o poziom pewności z audytów systemu). Warstwa o wysokiej wartości obejmuje 8 operacji o wartości granicznej powyżej 139 996 067,47 i o łącznej wartości 1 987 446 254 EUR.

Po określeniu operacji / jednostek próby należących do warstwy o wysokiej wartości zgodnie z podejściem standardowym w ramach metody MUS i niestatystycznymi metodami doboru próby PPS zaleca się, aby przed wybraniem próby w warstwie o niskiej wartości instytucja audytowa zweryfikowała, czy warstwa o wysokiej wartości zawiera jakiekolwiek jednostki próby, na które mają wpływ przepisy art. 148. Jeżeli w naszym przykładzie wśród 8 operacji w warstwie o wysokiej wartości znajduje się jedna operacja, na którą mają wpływ przepisy art. 148, liczebność próby, która ma zostać alokowana do warstwy o niskiej wartości, wyniesie 23 (30 minus 7), co zapewni audyt 30 operacji. W takim przypadku nie trzeba przeprowadzać konkretnego doboru jednostek próby, które miałyby zastąpić operację podlegającą art. 148 w warstwie o wysokiej wartości.

Gdyby jednak po wybraniu warstwy o niskiej wartości obejmującej 22 operacje (30 minus 8) instytucja audytowa stwierdziła, że jedna operacja w warstwie o wysokiej wartości podlega art. 148, wówczas wybrałaby dodatkową jednostkę próby w warstwie o niskiej wartości w celu zastąpienia jednostki próby z warstwy o wysokiej wartości, w oparciu o prawdopodobieństwo proporcjonalne do wielkości. (w warstwie o wysokiej wartości nie ma innych dostępnych jednostek do wymiany, więc aby to ograniczenie nie doprowadziło do sztucznego zmniejszenia liczebności próby, zostałaby wybrana do wymiany pozycja z warstwy o niskiej wartości, aby zapewnić pokrycie 30 operacji).

Początkowo instytucja audytowa wybrała 22 operacje o łącznej kwocie 65 550 000 EUR z warstwy o niskiej wartości, stosując interwał 100 565 262 EUR.

\[
Sampling interval (SI) = \frac{BV_s}{n_s} = \frac{4,199,882,024 - 1,987,446,254}{22 \ (i.e. \ 30 - 8)} = 100,565,262
\]

Nową jednostkę próby z warstwy o niskiej wartości, która ma na celu zastąpić jednostkę próby z warstwy o wysokiej wartości, należy wybrać z pozostałej populacji z warstwy o niskiej wartości, tj. ze zbioru zawierającego 3 822 jednostki próby (3 852 operacje w populacji minus 30 pierwotnie wybranych operacji)\(^{68}\), stosując interwał w wysokości 2 146 885 770 EUR:

\[
Sampling interval used for replacement (SI') = \frac{BV_{sr}}{n_{sr}} = \frac{4,199,882,024 - 1,987,446,254 - 65,550,000}{1} = 2 \\
146 885 770,00
\]

\(^{68}\) Zob. również przypis powyżej, w którym wyjaśniono, że instytucja audytowa może podjąć decyzję o wybraniu nowych jednostek próbno tylko z populacji, na którą przepisy art. 148 nie mają wpływu.
W związku z tym nasz audyt obejmuje 7 operacji w warstwie o wysokiej wartości i 23 operacje w warstwie o niskiej wartości.

Prognozowanie błędów w warstwie o niskiej wartości opiera się na standardowym wzorze:

$$EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_i}{BV_i}$$

gddie $BV_s = 2\,212\,435\,770$ (4,199,882,024 - 1,987,446,254), a $n_s = 23$.

Przyjmując, że suma poziomów błędu we wszystkich jednostkach w warstwie o niskiej wartości ($\sum_{i=1}^{n_s} \frac{E_i}{BV_i}$) wynosi 0,52, błąd ekstrapolowany dla warstwy o niskiej wartości wynosi 50 020 287 EUR.

Instytucja audytowa wykryła błędy o łącznej kwocie 420 EUR w ramach 7 operacji z warstwy o wysokiej wartości, które objęto audytem. Błąd w warstwie o wysokiej wartości powinien być obliczony następująco:

$$EE_{origiinal} = EE_{reduced} \times \frac{BV_{original}}{BV_{reduced}}$$

gdzie:
– $EE_{reduced}$ odnosi się do kwoty błędu wykrytej w operacjach z warstwy o wysokiej wartości, które objęto audytem (z wyłączeniem operacji podlegających art. 148),
– $BV_{original}$ odnosi się do łącznej wartości księgowej warstwy o wysokiej wartości, włączając operacje podlegające art. 148, oraz
– $BV_{reduced}$ odnosi się do wartości księgowej warstwy o wysokiej wartości, z wyłączeniem operacji podlegających art. 148.

Przyjmując, że w naszym przypadku zadeklarowano kwotę 290 309 600 EUR w ramach operacji podlegającej art. 148 w warstwie o wysokiej wartości, błąd warstwy o wysokiej wartości wyniesie 492 EUR:

$$EE_{original} = 420 \times \frac{1,987,446,254}{1,697,136,654} = 492$$

Błąd ekstrapolowany na poziomie populacji wyniesie zatem 50 020 779 (tj. 1,19% wartości populacji):

$$EE = 50,020,287 + 492 = 50,020,779$$

W przypadku zastosowania niestatystycznej metody doboru próby PPS, instytucja audytowa uznałaby, że nie istnieją wystarczające dowody, aby stwierdzić, że populacja
zawiera istotny błąd. Nie można jednak określić osiągniętej dokładności, a poziom ufności tego wniosku jest nieznany.

W przypadku zastosowania podejścia standardowego w ramach metody MUS, w celu przeprowadzenia oceny górnej granicy błędu instytucja audytowa obliczyłaby dokładność, stosując standardowy wzór:

\[SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r \]

gdzie \(BV_s = 2\ 212\ 435\ 770 \) (4,199,882,024 - 1,987,446,254), a \(n_s = 23 \).

7.10.3.2 Przykład wykluczenia operacji na etapie doboru próby zgodnie z podejściem standardowym w ramach metody MUS

Załóżmy populację wydatków zadeklarowanych Komisji w danym okresie odniesienia dla operacji w ramach programu. Audyty systemu przeprowadzone przez instytucję audytową dały niski poziom pewności. W związku z tym doboru próby dla tego programu należy dokonać przy poziomie ufności wynoszącym 90%.

Poniższa tabela zawiera podsumowanie populacji:

<table>
<thead>
<tr>
<th>Liczebność populacji (liczba operacji)</th>
<th>3 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wartość księgową (suma wydatków w okresie odniesienia)</td>
<td>4 199 882 024 EUR</td>
</tr>
</tbody>
</table>

Istnieją 4 operacje podlegające przepisom art. 148 ust. 1 RWP; łączna wartość ich wartości księgowych wynosi 12 706 417 EUR. Operacje te zostaną wykluczone z populacji, która ma zostać objęta próbą.

Liczebność próby oblicza się następująco:

\[n = \left(\frac{z \times BV \times \sigma_r}{TE - AE} \right)^2 \]

gdzie \(\sigma_r \) oznacza odchylenie standardowe poziomów błędu, które uzyskano z próby wybranej zgodnie z MUS, a \(BV \) stanowi łączne wydatki w roku odniesienia, który obejmuje cztery poprzednie operacje. Na podstawie próby wstępnej obejmującej 20 operacji instytucja audytowa daje szacunek odchylenia standardowego poziomów błędu w wysokości 0,0935.

Znając ten szacunek odchylenia standardowego poziomów błędu, maksymalny dopuszczalny błąd i błąd oczekiwany, możemy obliczyć liczebność próby. Zakładając,

258
że błąd dopuszczalny wynosi 2 % całkowitej wartości księgowej, 2 % x 4 199 882 024 = 83 997 640, (wartość istotności określona w rozporządzeniu), a oczekiwany poziom błędu wynosi 0,4 %, 0,4 % x 4 199 882 024 = 16 799 528, to:

\[n = \left(\frac{1.645 \times 4,199,882,024 \times 0.0935}{83,997,640 - 16,799,528} \right)^2 \approx 93 \]

Po pierwsze, konieczne jest zidentyfikowanie ewentualnych jednostek populacji o wysokiej wartości, które będą należały do warstwy o wysokiej wartości objętej audytem w 100 %. Wartość graniczna służąca do określenia tej górnej warstwy jest równa stosunkowi wartości księgowej (BV), z wyłączeniem czterech operacji, o których była mowa powyżej (na łączną kwotę 12 706 417 EUR), i planowanej liczebności próby (n). Wszystkie pozycje, których wartość księgowa jest wyższa niż ta wartość graniczna (jeżeli \(BV_i > BV/n \)), zostaną umieszczone w warstwie objętej audytem w 100 %. W omawianym przypadku wartość graniczna wynosi 4 187 175 607/93 = 45 023 394 EUR.

Instytucja audytowa umieszcza w odrębnej warstwie wszystkie operacje o wartości księgowej wyższej niż 45 023 394, co odpowiada 6 operacjom o wartości 586 837 081 EUR.

Interwał losowania dla pozostałą populację jest równy wartości księgowej w warstwie niewyczerpującej (\(BV_s \)) (różnica całkowitej wartości księgowej, od której odjęto wykluczone operacje, i wartości księgowej 6 operacji należących do górnej warstwy) podzielonej przez liczbę operacji, z których się losuje (93 minus 6 operacji w górnej warstwie).

\[Sampling \ interval = \frac{BV_s}{n_s} = \frac{4,187,175,607 - 586,837,081}{87} = 41,383,201 \]

Instytucja audytowa sprawdziła, że nie występowały operacje o wartości księgowej wyższej niż interwał, w związku z czym góra warstwa obejmuje tylko 6 operacji o wartości księgowej wyższej niż wartość graniczna. Próbkę dobiera się z randomizowanego wykazu operacji, wybierając każdą pozycję zawierającą co 41 383 201. jednostkę monetarną.

Przeprowadza się losowe sortowanie zbioru zawierającego pozostałe 3 842 operacje populacji (3 852 minus 4 wykluczone operacje i 6 operacji o wysokiej wartości), a następnie tworzy się sekwencyjną łączną zmienną wartości księgowej. Wartość próby obejmującej 87 operacji (93 minus 6 operacji o wysokiej wartości) uzyskuje się za pomocą doboru systematycznego.

Po przeprowadzeniu audytu 93 operacji instytucja audytowa jest w stanie przewidzieć błąd.
Spośród 6 operacji o wysokiej wartości (całkowita wartość księgowa wynosi 586 837 081 EUR) trzy operacje zawierają błąd odpowiadający kwocie błędu w wysokości 7 616 805 EUR.

W odniesieniu do pozostałej części próbki sposób postępowania w przypadku błędu jest inny. W przypadku tego rodzaju operacji należy:
1) obliczyć poziom błędu, tj. stosunek błędu do odnośnych wydatków, dla każdej jednostki w próbie: \(\frac{E_i}{BV_i} \)
2) zsumować te poziomy błędu dla wszystkich jednostek w próbie;
3) pomnożyć poprzedni wynik przez interwał losowania (SI).

\[EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_i}{BV_i} \]

gdzie \(BV_s \) i \(n_s \) oznaczają odpowiednio wartość księgową zastosowaną do obliczenia interwału losowania (4 187 175 607 EUR - 586 837 081 EURY = 3 600 338 526 EUR) i 87.

\[EE_s = 41,383,201 \times 1.026 = 42,459,164 \]

W celu prognozowania błędu (w EUR) w warstwie objętej próbą dla pierwotnej dodatniej populacji wydatków zadeklarowanych KE należy pomnożyć błąd przewidywany przez stosunek pierwotnych wydatków w warstwie (bez odejmowania wykluczonych jednostek) do zmniejszonych wydatków w warstwie (po odjęciu wykluczonych jednostek).

\[EE_{s,original} = BV_{s,original} \times \frac{BV_{s,original}}{BV_{s,original}} \times EE_s = \frac{3,613,044,943}{3,600,338,526} \times 42,459,164 = 42,609,012 \]

Błąd znaleziony w warstwie o wysokiej wartości nie musi być prognozowany dla pierwotnej populacji, ponieważ wydatki w ramach 4 wykluczonych jednostek są poniżej wartości granicznej.

Błąd przewidywany na poziomie pierwotnej populacji stanowi po prostu sumę dwóch elementów (warstwy o wysokiej wartości i warstwy objętej próbą):

\[EE_{original} = 7,616,805 + 42,609,012 = 50,225,817 \]

Przewidywany poziom błędu to stosunek błędu przewidywanego do całkowitych wydatków pierwotnej populacji:

\[r = \frac{50,225,817}{4,199,882,024} = 1.20\% \]
Odchylanie standardowe poziomów błędu w warstwie doboru próby wynosi 0,0832.

Dokładność oblicza się za pomocą następującego wzoru:

\[
SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r = 1.645 \times \frac{3,600,338,526}{\sqrt{87}} \times 0.0832 = 52,829,067
\]

W celu prognozowania tej dokładności dla pierwotnej populacji (włączając wykluczone jednostki) należy pomnożyć uzyskaną wartość przez stosunek pierwotnych wydatków z warstwy objętej próbą do zmniejszonych wydatków z warstwy objętej próbą (od której odjęto wykluczone jednostki).

\[
SE_{original} = \frac{BV_{s,original}}{BV_{s,reduced}} \times SE = \frac{3,613,044,943}{3,600,338,526} \times 52,829,067 = 53,015,513
\]

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górna granica jest równa sumie samego błędu przewidywanego \(EE \) i dokładności ekstrapolacji:

\[
ULE = 50,225,817 + 53,015,513 = 103,241,330
\]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem wynoszącym 83 997 640 EUR w celu wyciągnięcia wniosków z kontroli.

Ponieważ maksymalny dopuszczalny błąd jest większy niż błąd przewidywany, ale mniejszy niż góra granica błędu, wyniki uzyskane z próbby mogą być niejednoznaczne. Zob. dalsze wyjaśnienia w sekcji 4.12.
7.10.3.3 Przykład wykluczenia operacji na etapie doboru próby zgodnie z podejściem konserwatywnym w ramach metody MUS

Załóżmy populację 3 857 operacji, w ramach których zadeklarowano Komisji wydatki w łącznej wysokości 4 207 500 608 EUR w danym okresie odniesienia (populacja kwot dodatnich). Instytucja audytowa podjęła decyzję o zastosowaniu podejścia konserwatywnego w ramach metody MUS, przyjmując operację za jednostkę próby. Ponadto na podstawie art. 28 ust. 8 RDK instytucja audytowa podjęła decyzję o wykluczeniu operacji, o których mowa w art. 148 ust. 1 RWP, z populacji, która ma być objęta próbą.

Przepisy art. 148 RWP miały wpływ na 5 operacji z populacji, których łączna kwota wynosi 7 618 584 EUR i które wykluczono z populacji przed doborem próby. Próba została wybrana zatem z populacji 3 852 operacji, które obejmowały łączne wydatki w wysokości 4 199 882 024 EUR.

W poniższej tabeli podsumowano populację z wyłączeniem operacji, które podlegają art. 148:

| Liczebność populacji (liczba operacji) | 3 852 |
| Wartość księgową (wydatki w okresie odniesienia) | 4 199 882 024 EUR |

Liczebność próby, która odpowiada 90 % poziomu ufności i 2 % progu istotności, wynosi 136 ($n = \frac{BV \times RF}{TE - (AE \times EF)} = \frac{4,207,500,608 \times 2.31}{0.02 \times 4,207,500,608 - (0.002 \times 4,207,500,608 \times 1.5)} \approx 136$).

Dobór próby przeprowadzono na podstawie prawdopodobieństwa proporcjonalnego do wielkości, stosując interwał o wartości 30 881 485 ($SI = \frac{BV}{n} = \frac{4,199,882,024}{136} = 30,881,485$).

Nasza populacja zawiera 24 operacje, których wartość księgową jest większa niż interwał losowania. Te 24 operacje o łącznej wartości księgowej w wysokości 1 375 130 377 EUR będą stanowić naszą warstwę o wysokiej wartości (która będzie zawierać łącznie 45 pozycji, ponieważ niektóre operacje zostały w nią włączone wielokrotnie). Liczebność próby warstwy o niskiej wartości wynosi 91 operacji o łącznej kwocie 301 656 001 EUR.

Prognozowanie błędu w warstwie o niskiej wartości odbywa się jak zwykle z wykorzystaniem wzoru:
\[EE_s = SL \sum_{i=1}^{n_s} \frac{E_i}{BV_i} \]

gdzie:
\[SI = \frac{BV}{n} \]

odnosi się do interwału zastosowanego do doboru próby, tj. opartego na wartości naszej zmniejszonej populacji \((BV = 4 199 882 024)\) i na liczbie próby (liczba pozycji \(n = 136)\).

Przyjmując, że suma poziomów błędu w próbie o niskiej wartości \(\sum_{i=1}^{n_s} \frac{E_i}{BV_i} = 1\) wynosi 1,077, błąd przewidywany warstwy o niskiej wartości wynosi 33 259 360:

\[EE_s = 30,881,485 \times 1.077 = 33,259,360 \]

W celu prognozowania błędu (w EUR) w warstwie objętej próbą dla pierwotnej populacji wydatków zadeklarowanych KE należy pomnożyć błąd przewidywany przez stosunek pierwotnych wydatków w warstwie (bez odejmowania wykluczonych jednostek) do zmniejszonych wydatków w warstwie (po odjęciu wykluczonych jednostek). W naszym przykładzie wszystkie 5 operacji podlegających art. 148 stanowi część warstwy o niskiej wartości.

\[EE_{s,original} = \frac{BV_{s,original}}{BV_{s,original}} \times EE_s = \frac{2,832,370,231}{2,824,751,647} \times 33,259,360 = 33,349,063 \]

Błąd znaleziony w warstwie o wysokiej wartości nie musi być prognozowany dla pierwotnej populacji, ponieważ wydatki w ramach 5 wykluczonych operacji są poniżej wartości granicznej.

Błąd przewidywany na poziomie pierwotnej populacji jest tylko sumą błędu wykrytego w warstwie o wysokiej wartości i błędu przewidywanego warstwie o niskiej wartości (skorygowanych dla pierwotnej populacji). Przyjmując, że instytucja audytowa wykryła w warstwie o wysokiej wartości całkowity błąd o wartości 7 843 574, błąd przewidywany na poziomie pierwotnej populacji wyniesie:

\[EE_{original} = 7,843,574 + 33,349,063 = 41,192,637 \]

(co odpowiada przewidywanemu poziomowi błędu, który wynosi 0,98 %).

Całkowita dokładność (SE) dla zmniejszonej populacji zostanie obliczona jak zwykle przez zsumowanie dwóch składników: dokładności podstawowej \((BP = SI \times RF)\) i rezerwy dodatkowej \((IA = \sum_{i=1}^{n_s} IA_i)\), gdzie rezerwę dodatkową oblicza się dla każdej
jednostki próby należącej do warstwy niewyczerpującej, która zawiera błąd, zgodnie z następującym wzorem:

\[IA_i = (RF(n) - RF(n - 1) - 1) \times SI \times \frac{E_i}{BV_i} \]

Dokładność podstawowa w naszym przykładzie będzie wynosić 71 336 231:
\[BP = 30 881 485 \times 2,31 = 71 336 231 \]

Przyjmując, że IA wynosi 14 430 761 (obliczona przy zastosowaniu interwału w wysokości 30 881 485 jako SI), całkowita dokładność zmniejszonej populacji wyniesie 85 766 992 (suma 71 336 231 i 14 430 761).

W celu prognozowania tej dokładności dla pierwotnej populacji (która zawiera operacje podlegające art. 148) należy pomnożyć uzyskaną wartość przez stosunek pierwotnych wydatków z warstwy objętej próbą do zmniejszonych wydatków z warstwy objętej próbą (od której odjęto operacje, na który maja wpływ przepisy art. 148).

\[SE_{original} = \frac{BV_{s,original}}{BV_{s, reduced}} \times SE_{reduced} = \frac{2,832,370,231}{2,824,751,647} \times 85,766,992 \approx 85,998,313 \]

Aby wyciągnąć wniosek co do istotności błędów, należy obliczyć górną granicę błędu (ULE). Ta górną granicę jest równa sumie samego błędu przewidywanego EE i dokładności ekstrapolacji:

\[ULE = 41,192,637 + 85,998,313 = 127,190,950 \]

Następnie błąd przewidywany i górną granicę należy porównać z maksymalnym dopuszczalnym błędem wynoszącym 84 150 012 EUR (2 % z 4 207 500 608). W naszym przykładzie maksymalny dopuszczalny błąd jest większy niż błąd przewidywany, ale mniejszy niż górna granica błędu.

\[EE = 41,192,637 \]

\[TE = 84 150 012 \]

\[ULE = 127,190,950 \]
7.10.3.4 Przykład wykluczenia operacji na etapie doboru próby zgodnie z doborem losowym prostym (estymacja ilorazowa i estymacja wartości na podstawie średniej)

Załóżmy populację 3 520 operacji, w ramach których zadeklarowano Komisji wydatki w łącznej wysokości 2 301 882 970 EUR w danym okresie odniesienia (populacja kwot dodatnich). Instytucja audytowa podjęła decyzję, aby zastosować schemat doboru próby metodą doboru losowego prostego w połączeniu ze stratyfikacją w podziale na poziom wydatków dla każdej operacji, które będą stanowić nasze jednostki próby. Ponadto na podstawie art. 28 ust. 8 RDK instytucja audytowa podjęła decyzję o wykluczeniu operacji, o których mowa w art. 148 ust. 1 RWP, z populacji, która ma być objęta próbą.

Przepisy art. 148 RWP obejmują 6 operacji z populacji, których łączna kwota wynosi 93 598 481 EUR i które wykluczono z populacji przed doborom próby. Próba została wybrana zatem z populacji 3 514 operacji, które obejmowały łączne wydatki w wysokości 2 208 284 489 EUR.

Uwzględniając cechy charakterystyczne populacji, instytucja audytowa zastosowała wartość graniczną wynoszącą 3 % (zmniejszonej) populacji dodatniej (3 % x 2 208 284 489 = 66 248 535). W przypadku dwóch operacji wydatki przekraczały ten próg, a ich łączna kwota wynosiła 203 577 481 EUR. Warstwa pozycji o niskiej wartości zawierała zatem 3 512 operacji o łącznej kwocie 2 004 707 008 EUR.

W poniższej tabeli podsumowano zmniejszoną dodatnią populację z wyłączaniem 6 operacji, które podlegają art. 148:

<table>
<thead>
<tr>
<th>Liczebność populacji wraz z 6 operacjami podlegającymi art. 148 (liczba operacji)</th>
<th>3 514</th>
</tr>
</thead>
<tbody>
<tr>
<td>Całkowita wartość księgowa z wyłączeniem 6 operacji (dodatnia populacja wydatków w okresie odniesienia)</td>
<td>2 208 284 489 EUR</td>
</tr>
<tr>
<td>Wartość graniczna (3 % wartości populacji)</td>
<td>66 248 535 EUR</td>
</tr>
<tr>
<td>Górna warstwa (2 operacje)</td>
<td>203 577 481 EUR</td>
</tr>
<tr>
<td>Warstwa operacji o niskiej wartości z wyłączeniem 5 operacji, które podlegają art. 148 (3 512 operacji)</td>
<td>2 004 707 008 EUR</td>
</tr>
</tbody>
</table>

Pierwotna dodatnia populacja zadeklarowana KE została podsumowana poniżej:

<table>
<thead>
<tr>
<th>Liczebność populacji (liczba operacji)</th>
<th>3 520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Całkowita wartość księgowa (dodatnia populacja wydatków w okresie odniesienia)</td>
<td>2 301 882 970 €</td>
</tr>
<tr>
<td>Górna warstwa (3 operacje)</td>
<td>295 006 242 EUR</td>
</tr>
<tr>
<td>Warstwa operacji o niskiej wartości (3 517 operacji)</td>
<td>2 006 876 728 EUR</td>
</tr>
</tbody>
</table>
W celu obliczenia liczebności próby instytucja audytowa stosuje standardowy wzór:

\[n = \left(\frac{N \times z \times \sigma_e}{TE - AE} \right)^2 \]

stosując – zgodnie z powyższym wyjaśnieniem – parametry próby odpowiadające całej populacji (włącznie z operacjami, które wykluczono przed doborem próby ze względu na przepisy art. 148).

W szczególności liczebność próby obliczono na podstawie następujących parametrów:

1) \(z = 1,036; \) współczynnik odpowiadający 70 % poziomu ufności, ustalonego na podstawie prac w ramach audytów systemu, w trakcie których oceniono, że system daje średni stopień pewności (kategoria 2);

2) \(AE = 13\,811\,297,82 \text{ EUR}; \) instytucja audytowa podjęła decyzję, aby w celu obliczenia błędu oczekiwany wykorzystać dane historyczne. Jako oczekiwany poziom błędu zastosowano wartość 0,6 % (poziom błędu uzyskany w ostatnim przeprowadzonym audycie operacji), co daje błąd oczekiwany w wysokości 13 811 297,82 EUR (0,006 \times 2 301 882 970 EUR, tj. całkowita wartość dodatniej populacji – łączna kwota warstwy górnej i warstwy o niskiej wartości, która obejmuje operacje wykluczone na późniejszym etapie ze względu na przepisy art. 148).

3) \(TE = 46\,037\,659,40 \text{ EUR}; \) 2 % całkowitej wartości populacji, tj. maksymalny poziom istotności zgodnie z art. 28 ust. 11 RDK;

4) \(\sigma_e = 58\,730; \) instytucja audytowa podjęła decyzję, aby w celu obliczenia odchylenia standardowego błędów wykorzystać dane historyczne. Na podstawie profesjonalnego osądu instytucji audytowej zadecydowano, by zastosować średnie odchylenie standardowe uzyskane w 3 poprzednich doborach próby: odpowiednio 34 973, 97 654, 97 654 i 43 564:

\[\sigma_e = \frac{34,973 + 97,654 + 43,564}{3} \approx 58\,730 \]

5) \(N = 3\,517; \) \(N = 3\,512 + 5 \) (liczność populacji w warstwie o niskiej wartości, w tym operacje podlegające art. 148 warstwy o niskiej wartości, które wykluczono z procedury doboru próby; w naszym przypadku 5 z 6 wykluczonych operacji miało wartość niższą niż wartość graniczna).
Na podstawie powyższych parametrów określono, że liczebność próby w warstwie o niskiej wartości powinna wynosić 45 operacji:

\[n = \left(\frac{3,517 \times 1.036 \times 58,730}{0.02 \times 2,301,882,970 - 0.006 \times 2,301,882,970} \right)^2 \approx 45 \]

Nasza próba będzie zatem zawierać łącznie 47 operacji, w tym 2 operacje z górnej warstwy i 45 operacji z warstwy o niskiej wartości.

W celu doboru prób w warstwie o niskiej wartości instytucja audytowa utworzyła zbiór 3 512 operacji, wyłączając z populacji, która miała być objęta próbą, operacje, na które mają wpływ przepisy art. 148, oraz wykluczając operacje z warstwy o wysokiej wartości. Następnie z tej populacji wybrano losowo próbę 45 operacji o łącznej wartości 23 424 989 EUR.

Przeprowadzając audyt operacji z górnej warstwy, w jednej z dwóch operacji objętych audytem wykryto błąd w wysokości 469 301 EUR. Ponieważ w drugiej operacji objętej audytem, która należała do tej warstwy, nie wykryto żadnych nieprawidłowych wydatków, łączna kwota błędu w warstwie o wysokiej wartości objętej audytem wynosiła 469 301 EUR.

W ramach audytu pozostałej próby wybranych losowo 45 operacji wykryto łączny błąd w wysokości 378 906 EUR.

Estymacja wartości na podstawie średniej

Uwzględniając uzyskane wyniki, instytucja audytowa stwierdziła, że w celu prognozowania błędów dla populacji zastosowana zostanie estymacja wartości na podstawie średniej. Zadecydowano, aby obliczyć prognozę błędu w warstwie o niskiej wartości bezpośrednio dla poziomu pierwotnej populacji\(^{69}\).

\[EE_{low-value stratum} = N_{low-value stratum of original population} \times \frac{\sum_{i=1}^{45} E_i}{n} \]

\[EE_{low-value stratum} = N \times \frac{\sum_{i=1}^{45} E_i}{n} = 3,517 \times \frac{378,906}{45} \approx 29,613,608.93 \text{ EUR} \]

\(^{69}\) Instytucja audytowa mogła również obliczyć błąd dla zmniejszonej populacji, a następnie dostosować go do pierwotnej populacji. Takiej korekty można dokonać, mnożąc błąd zmniejszonej populacji przez współczynnik \(N_{low-value stratum of reduced population}/N_{low-value stratum of original population}\). Ostateczny wynik takiego obliczenia byłby taki sam jak w przypadku obliczenia błędu przez bezpośrednie prognozowanie dla pierwotnej populacji, jak pokazano w niniejszym przykładzie.
Aby obliczyć całkowity błąd populacji w ramach standardowych procedur SRS, instytucja audytowa musi dodać ten ekstrapolowany błąd warstwy o niskiej wartości do błędu górnej warstwy. Należy jednak podkreślić, że w naszym przypadku z procedury kontroli wykluczono jedną operację z górnej warstwy z uwagi na przepisy art. 148. Instytucja audytowa musi zatem ekstrapolować błąd ustalony dla warstwy o wysokiej wartości, która nie obejmowała jednej operacji, na całą warstwę o wysokiej wartości. W naszym przypadku obliczylibyśmy błąd warstwy o najwyższej wartości zgodnie z następującym wzorem:

\[
EE_{\text{original high-value stratum}} = \frac{N_{\text{high-value stratum of original population}}}{N_{\text{high-value stratum of reduced population}}} \times \sum_{i=1}^{2} E_i = \frac{3}{2} \times 469,301 = 703,951,5
\]

Aby obliczyć całkowity błąd pierwotnej populacji, instytucja audytowa musi dodać ekstrapolowany błąd warstwy o niskiej wartości do błędu pierwotnej warstwy o wysokiej wartości.

\[
EE = 29,613,608,93 + 703,951,5 = 30,317,560,43
\]

W związku z tym nasz najbardziej prawdopodobny poziom błędu w wysokości 30 317 560,43 stanowi 1,32 % wydatków w ramach pierwotnej operacji.

Dokładność dla pierwotnej populacji można obliczyć zgodnie z następującym standardowym wzorem:\footnote{Instytucja audytowa mogła również obliczyć dokładność dla zmniejszonej populacji, a następnie dostosować go do pierwotnej populacji. Takiej korekty można dokonać, mnożąc dokładność zmniejszonej populacji przez współczynnik \(N_{\text{low-value stratum of original population}} / N_{\text{low-value stratum of reduced population}} \). Ostateczny wynik takiego obliczenia byłby taki sam jak w przypadku obliczenia dokładności bezpośrednio na poziomie pierwotnej populacji, jak pokazano w niniejszym przykładzie.}

\[
SE_{\text{original}} = N_{\text{original}} \times z \times \frac{s_e}{\sqrt{n}}
\]

gdzie \(N_{\text{original}} = 3,517 \) (czyli wszystkie operacje o niskiej wartości w pierwotnej populacji). Przyjmując, że \(s_e \) będzie wynosiło 28 199, dokładność na poziomie pierwotnej populacji wynosi 15 316 501,38:

\[
SE_{\text{original}} = 3,517 \times 1.036 \times \frac{28.199}{\sqrt{45}} \approx 15 316 501.38
\]

Z tego obliczenia wynika, że nasza góra granica błędu wynosi 45 634 061,81 (30 317 560,43 + 15 316 501,38), a więc poniżej progu istotności wynoszącego 2 % pierwotnej populacji (46 037 659).

\textit{Estymacja ilorazowa}
Aby ilustrować, w jaki sposób należy obliczyć błąd przewidywany w ramach estymacji ilorazowej, załóżmy, że instytucja audytowa zastosowała estymację ilorazową, uwzględniając uzyskane wyniki.

Aby obliczyć błąd warstwy o niskiej wartości na poziomie zmniejszonej populacji, instytucja audytowa stosuje standardowy wzór:

\[
EE_{low\text{-value stratum of reduced population}} = BV_{low\text{-value stratum of reduced population}} \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i}
\]

W naszym przykładzie zastosujemy następujące dane, aby obliczyć błąd przewidywany w warstwie o niskiej wartości w zmniejszonej populacji na podstawie wyników wskazanych powyżej:

\[
BV_{low\text{-value stratum of reduced population}} = 2\,004\,707\,008
\]

\[
\sum_{i=1}^{n} E_i = 378\,906 \text{ (całkowita kwota błędów znalezionych w warstwie o niskiej wartości)}
\]

\[
\sum_{i=1}^{n} BV_i = 23\,424\,898 \text{ (całkowita kwota wydatków zadeklarowanych dla 45 operacji objętych audytom w próbie losowej z warstwy o niskiej wartości)}
\]

\[
EE_{low\text{-value stratum of reduced population}} = 2,004,707,008 \times \frac{378,906}{23,424,898} \approx 32,426,844,02
\]

Błąd przewidywany w warstwie o niskiej wartości pierwotnej populacji można obliczyć zgodnie z następującym wzorem:

\[
EE_{original low\text{-value stratum}} = EE_{reduced low\text{-value stratum}} \times \frac{BV_{low\text{-value stratum of original population}}}{BV_{low\text{-value stratum of reduced population}}}
\]

\[
EE_{low\text{-value stratum of original population}} = 32,426,844,02 \times \frac{2,006,876,728}{2,004,707,008} \approx 32,461,940,01
\]

Aby obliczyć całkowity błąd populacji w ramach standardowych procedur SRS, instytucja audytowa musi dodać ten ekstrapolowany błąd warstwy o niskiej wartości do błędu górnej warstwy. Należy jednak podkreślić, że w naszym przypadku z procedur kontroli wykluczono jedną operację z górnej warstwy z uwagi na przepisy art. 148. Instytucja audytowa musi zatem ekstrapolować błąd ustalony dla warstwy o wysokiej wartości, która nie obejmowała jednej operacji, na całkowitą wartość górnej warstwy.

71 Jak określono w sekcji 7.10.2 powyżej, błąd przewidywany w warstwie można również obliczyć bezpośrednio w odniesieniu do pierwotnej populacji (co doprowadzi do uzyskania takiego samego wyniku). W takim przypadku można zastosować następujący wzór:

\[
EE_{original low\text{-value stratum}} = BV_{original low\text{-value stratum}} \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i}
\]
włączając wspomnianą operację. W naszym przypadku obliczylibyśmy błąd warstwy o najwyżej wartości zgodnie z następującym wzorem:

$$EE_{e\text{ original}} = \sum_{i=1}^{2} E_i \times \frac{BV_{e\text{ original}}}{BV_{e\text{ reduced}}} = 469,301 \times \frac{295,006.242}{203,577,481} = 680 \, 068,95$$

Aby obliczyć całkowity błąd pierwotnej populacji, instytucja audytowa musi dodać ekstrapolowany błąd pierwotnej warstwy o niskiej wartości do błędu pierwotnej warstwy o wysokiej wartości.

$$EE = 32 \, 461 \, 940,01 + 680 \, 068,95 = 33 \, 142 \, 008,96$$

Ten ekstrapolowany błąd pierwotnej populacji stanowi 1,44 % wartości pierwotnej populacji.

Dokładność dla zmniejszonej populacji oblicza się zgodnie z następującym standardowym wzorem (jak wyjaśniono w sekcji 7.10.2 powyżej, w przypadku estymacji ilorazowej nie można obliczyć dokładności bezpośrednio dla pierwotnej populacji):

$$SE_{reduced \text{ population}} = N_{low-value \text{ stratum \ of \ reduced \ population}} \times z \times \frac{s_q}{\sqrt{n}}$$

W naszym przykładzie zastosowalibyśmy następujące dane, aby obliczyć dokładność dla zmniejszonej populacji:

$$N_{reduced \text{ population \ of \ the \ low-value \ stratum}} = 3 \, 512$$
$$z = 1.036$$
$$n = 45$$
$$s_q$$ oznacza odchylenie standardowe zmiennej $$q$$ w próbie:

$$q_i = E_i - \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV_i} \times BV_i,$$

gdzie:
$$\sum_{i=1}^{n} E_i = 378 \, 906$$ (całkowita kwota błędów znalezionych w warstwie o niskiej wartości)
$$\sum_{i=1}^{n} BV_i = 23 \, 424 \, 898$$ (całkowita kwota wydatków zadeklarowanych dla 45 operacji objętych audytem w próbie losowej z warstwy o niskiej wartości)

Dokładność dla pierwotnej populacji należy dostosować zgodnie ze wzorem:

$$SE_{original \text{ population}} = SE_{reduced \text{ population}} \times \frac{BV_{low \text{ value \ stratum \ of \ original \ population}}}{BV_{low \text{ value \ stratum \ of \ reduced \ population}}} =$$

$$SE_{reduced \text{ population}} \times \frac{2,006,876,728}{2,004,707,008} = SE_{reduced \text{ population}} \times 1.0011$$
Aby obliczyć górną granicę błędu, instytucja audytowa powinna dodać najbardziej prawdopodobny poziom błędu pierwotnej populacji (w naszym przypadku 33 142 008,96) do dokładności obliczonej dla pierwotnej populacji (w naszym przypadku \(SE_{\text{reduced population}} \times 1.0011\)). Aby sporządzić wnioski z audytu, należy porównać tę górną granicę błędu z progiem istotności (46 037 659, co stanowi 2% pierwotnej populacji).
Załącznik 1 – Prognoza błędów losowych w przypadku zidentyfikowania błędów systemowych

1. Wprowadzenie

Celem niniejszego załącznika jest objaśnienie zasad obliczania przewidywanych błędów losowych w przypadku zidentyfikowania błędów systemowych. Wykrycie potencjalnego błędu systemowego pociąga za sobą konieczność podjęcia działań uzupełniających niezbędnych do zidentyfikowania jego całkowitego zasięgu oraz późniejszego określenia ilościowego takiego błędu. Oznacza to, że należy zidentyfikować wszystkie sytuacje, w których może dojść do wystąpienia błędu tego samego rodzaju, co błąd wykryty w próbie, co pozwoli określić zakres jego całkowitego wpływu na daną populację. Jeżeli takie rozgraniczenie nie zostanie przeprowadzone przed złożeniem rocznego sprawozdania audytowego, błędy systemowe należy traktować jako błędy losowe do celów obliczania przewidywanego błędu losowego.

Łączny poziom błędu (TER) odpowiada sumie następujących błędów: przewidywanych błędów losowych, błędów systemowych oraz nieskorygowanych błędów nietypowych.

W tym kontekście przy ekstrapolacji błędów losowych wykrytych w próbie na populację instytucja audytowa powinna odjąć kwotę błędu systemowego od wartości księgowej (całkowite wydatki zadeklarowane w okresie odniesienia), ilekroć wartość ta stanowi część formuły prognozy, jak wyjaśniono poniżej.

Jeżeli chodzi o estymację wartości na podstawie średniej i estymację różnicy, nie wprowadzono żadnych zmian w formułach przedstawionych w wytycznych w odniesieniu do prognozy błędów losowych. W odniesieniu do metody doboru próby na podstawie jednostki monetarnej w niniejszym załączniku określono dwa możliwe podejścia (podejście, w którym nie zmienia się formuły, oraz podejście, które wymaga bardziej złożonych formuł w celu uzyskania większej dokładności). W przypadku estymacji ilorazowej prognozowanie błędów losowych i obliczenie dokładności (SE) wymaga zastosowania całkowitej wartości księgowej, od której odejmuje się błędy systemowe.

We wszystkich statystycznych metodach doboru próby w przypadku wystąpienia błędów systemowych lub nieskorygowanych błędów nietypowych góra granica błędu (ULE) odpowiada sumie TER i dokładności (SE). W przypadku wystąpienia jedynie błędów losowych ULE stanowi sumę przewidywanych błędów losowych i dokładności.

W poniższych sekcjach przedstawiono bardziej szczegółowe wyjaśnienia dotyczące ekstrapolacji błędów losowych w przypadku wystąpienia błędów systemowych w odniesieniu do najważniejszych technik doboru próby.

72 Por. sekcja na temat doboru losowego prostego w niniejszych wytycznych.
2. Dobór losowy prosty

2.2. Estymacja wartości na podstawie średniej

Prognozę błędów losowych i obliczenie dokładności przeprowadza się, jak zwykle, za pomocą wzoru:

\[EE_1 = N \times \frac{\sum_{i=1}^{n} E_i}{n}, \]

\[SE_1 = N \times z \times \frac{s_e}{\sqrt{n}} \]

gdzie \(E_i \) oznacza kwotę błędu losowego wykrytego w każdej jednostce próbki, zaś \(s_e \) oznacza jak zwykle odchylenie standardowe błędów losowych w próbie.

Całkowity błąd przewidywany stanowi sumę przewidywanych błędów losowych, błędów systemowych i nieskorygowanych błędów nietypowych.

Górna granica błędu (ULE) równa się sumie całkowitego błędu przewidywanego, \(TPE \), i dokładności ekstrapolacji:

\[ULE = TPE + SE \]

2.3. Estymacja ilorazowa

Prognozę błędu losowego oblicza się w następujący sposób:

\[EE_2 = BV' \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV'_i} \]

gdzie \(BV' \) oznacza całkowitą wartość księgową populacji, od której odejmuje się wcześniej określone błędy systemowe, \(BV = BV' - \text{systemic errors} \). \(BV'_i \) oznacza wartość księgową jednostki \(i \) pomniejszoną o kwotę błędu systemowego wpływającą na jednostkę.

W powyższym wzorze poziom błędu próby stanowi po prostu iloraz całkowitej kwoty błędu losowego w próbie i całkowitej kwoty wydatków jednostek (od której odejmuje się błędy systemowe) w próbie (wydatki objęte audytem).
Dokładność oblicza się za pomocą następującego wzoru:

\[SE_2 = N \times z \times \frac{s_{q'}}{\sqrt{n}} \]

gdzie \(s_{q'} \) oznacza odchylenie standardowe zmiennej \(q' \):

\[q'_i = E_i - \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV'_{i}} \times BV'_{i}. \]

Zmienną oblicza się w odniesieniu do każdej jednostki w próbie jako różnicę jej błędu losowego oraz iloczyn jej wartości księgowej (od której odejmuje się błędy systemowe) i poziomu błędu w próbie.

Całkowity błąd przewidywany stanowi sumę przewidywanych błędów losowych, błędów systemowych i nieskorygowanych błędów nietypowych.

Góra granica błędu (ULE) równa się sumie całkowitego błędu przewidywanego, \(TPE \), i dokładności ekstrapolacji:

\[ULE = TPE + SE \]

3. Estymacja różnicy

Przewidywany błąd losowy na poziomie populacji można obliczyć, jak zwykle, mnożąc średnią wartość błędu losowego obserwowanego na operację w próbie przez liczbę operacji w populacji, co daje błąd przewidywany:

\[EE = N \times \frac{\sum_{i=1}^{n} E_i}{n} \]

Na drugim etapie należy obliczyć łączny poziom błędu (TER), dodając kwotę błędu systemowego i nieskorygowane błędy nietywowe do przewidywanego błędu losowego (EE).

Prawidłową wartość księgową (prawidłowe wydatki, które zostałyby wykryte w przypadku objęcia audytem wszystkich operacji w populacji) można przewidzieć, odejmując TER od wartości księgowej (BV) w populacji (wydatki zadeklarowane

73 Ewentualnie przewidywany błąd losowy można obliczyć za pomocą wzoru zaproponowanego dla estymacji ilorazowej \(EE_2 = BV' \times \frac{\sum_{i=1}^{n} E_i}{\sum_{i=1}^{n} BV'_{i}} \)
zawierające błędy systemowe). Prognozę prawidłowej wartości księgowej (CBV) oblicza się za pomocą następującego wzoru:

\[CBV = BV - TER \]

Dokładność prognozy oblicza się, jak zwykle, za pomocą wzoru:

\[SE = N \times z \times \frac{s_e}{\sqrt{n}} \]

gdzie \(s_e \) oznacza odchylenie standardowe błędów losowych w próbie.

Aby wyciągnąć wniosek co do istotności błędów, należy najpierw obliczyć dolną granicę dla skorygowanej wartości księgowej. Tę dolną granicę oblicza się, jak zwykle, za pomocą wzoru:

\[LL = CBV - SE \]

Zarówno prognozę prawidłowej wartości księgowej, jak i górną granicę należy porównać z różnicą wartości księgowej (wydatków zadeklarowanych) i maksymalnego dopuszczalnego błędu (TE), która odpowiada poziomowi istotności pomnożonemu przez wartość księgową:

\[BV - TE = BV - 2\% \times BV = 98\% \times BV \]

Ocenę błędu należy przeprowadzić zgodnie z sekcją 6.2.1.5 wytycznych.

4. Metoda doboru próby na podstawie jednostki monetarnej

Istnieją dwa możliwe podejścia przewidzenia błędów losowych i obliczenia dokładności w ramach metody doboru próby na podstawie jednostki monetarnej w przypadku wystąpienia błędów systemowych. Będą one określane jako podejście standardowe w ramach metody MUS i estymacja ilorazowa w ramach metody MUS. Druga metoda opiera się na bardziej złożonych obliczeniach. Mimo że obie metody można jednak stosować w dowolnej sytuacji, druga z nich da dokładniejsze wyniki, w przypadku gdy błędy losowe są bardziej skorelowane z wartością księgową skorygowaną o błąd systemowy niż z pierwotnymi wartościami księgowymi. W przypadku gdy poziom błędów systemowych w populacji jest niski, dokładność uzyskana pierwotnie w wyniku drugiej metody będzie zazwyczaj bardzo niewielka, w związku z czym lepszym wyborem będzie pierwsza metoda ze względu na prostotę jej stosowania.
4.1. Podejście standardowe w ramach metody MUS

Prognozę błędów losowych i obliczenie dokładności przeprowadza się tak jak zazwyczaj.

Prognozę błędów losowych populacji należy sporządzić w inny sposób dla jednostek w warstwie wyczerpującej niż dla pozycji w warstwie niewyczerpującej.

W przypadku warstwy wyczerpującej, mianowicie warstwy zawierającej jednostki próby o wartości księgowej wyższej niż wartość graniczna \((BV_i > \frac{BV}{n})\), błąd przewidywany stanowi po prostu sumę błędów znalezionych w pozycjach należących do warstwy:

\[
EE_e = \sum_{i=1}^{n_e} E_i
\]

W przypadku warstwy niewyczerpującej, tj. warstwy zawierającej pozycje próby o wartości księgowej mniejszej lub równej wartości granicznej \((BV_i \leq \frac{BV}{n})\), przewidywany błąd losowy wynosi:

\[
EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} \frac{E_i}{BV_i}
\]

Należy zauważyć, że wartości księgowe wspomniane w powyższym wzorze odnoszą się do wydatków bez odjętej kwoty błędu systemowego. Oznacza to, że poziomy błędu, \(\frac{E_i}{BV_i}\), należy obliczać, wykorzystując wydatki całkowite jednostek próby, pomimo wykrycia lub niewykrycia błędu systemowego w każdej jednostce.

Dokładność oblicza się zazwyczaj za pomocą typowego wzoru:

\[
SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_r
\]

gdzie \(s_r\) oznacza odchylenie standardowe poziomów błędu losowego w próbie warstwy niewyczerpującej. Co więcej, wspomniane poziomy błędu należy obliczyć za pomocą pierwotnych wartości księgowych, \(BV_i\), nie odejmując kwoty błędu systemowego.

Całkowity błąd przewidywany stanowi sumę przewidywanych błędów losowych, błędów systemowych i nieskorygowanych błędów nietypowych.

Górna granica błędu (ULE) równa się sumie całkowitego błędu przewidywanego, \(TPE\), i dokładności ekstrapolacji:
\[ULE = TPE + SE \]
4.2. Estymacja ilorazowa w ramach metody MUS

Prognozę błędów losowych populacji należy ponownie sporządzić w inny sposób dla pozycji w warstwie wyczerpującej niż dla pozycji w warstwie niewyczerpującej.

W przypadku warstwy wyczerpującej, mianowicie warstwy zawierającej jednostki próby o wartości księgowej wyższej niż wartość graniczna \(BV_i > \frac{BV}{n} \), błąd przewidywany stanowi po prostu sumę błędów losowych znalezionych w pozycjach należących do warstwy:

\[
EE_e = \sum_{i=1}^{n_e} E_i
\]

W przypadku warstwy niewyczerpującej, tj. warstwy zawierającej jednostki próby o wartości księgowej mniejszej lub równej wartości granicznej \(BV_i \leq \frac{BV}{n} \), przewidywany błąd losowy wynosi:

\[
EE_s = BV'_s \times \frac{\sum_{i=1}^{n_s} E_i}{\sum_{i=1}^{n_s} BV'_i} \times \frac{BV'_s}{BV_i}
\]

gdzie \(BV'_s \) oznacza całkowitą wartość księgową warstwy o niskiej wartości, od której odejmuje się błędy systemowe określone wcześniej w tej samej warstwie, \(BV'_s = BV_s - systemic errors in the sampling stratum \). \(BV'_i \) oznacza wartość księgową jednostki \(i \) pomniejszoną o kwotę błędu systemowego wpływającą na jednostkę.

Dokładność oblicza się za pomocą następującego wzoru:

\[
SE = z \times \frac{BV_s}{\sqrt{n_s}} \times s_{rq}
\]

gdzie \(s_{rq} \) oznacza odchylenie standardowe poziomów błędu w odniesieniu do \textbf{błędu przekształconego} \(q' \). Aby obliczyć ten wzór w pierwszej kolejności należy obliczyć wartości \textbf{będących przekształconych} dla wszystkich jednostek w próbie:

\[
q'_i = E_i - \frac{\sum_{i=1}^{n_s} E_i}{\sum_{i=1}^{n_s} BV'_i} \times BV'_i.
\]

Ponadto odchylenie standardowe poziomów błędu w próbie warstwy niewyczerpującej \((s_{rq}) \) dla błędu przekształconego \(q' \) oblicza się za pomocą następującego wzoru:
\[s_{rq} = \sqrt{\frac{1}{n_s - 1} \sum_{i=1}^{n_s} \left(q'_i - \bar{rq}_s \right)^2} \]

gdzie \(\bar{rq}_s \) jest równe zwykłej średniej poziomów błędów przekształconych w próbie danej warstwy:

\[\bar{rq}_s = \frac{\sum_{i=1}^{n_s} q'_i}{n_s} \]

Całkowity błąd przewidywany stanowi sumę przewidywanych błędów losowych, błędów systemowych i nieskorygowanych błędów nietypowych.

Górna granica błędu (ULE) równa się sumie całkowitego błędu przewidywanego (TPE) i dokładności ekstrapolacji:

\[ULE = TPE + SE \]

4.3. Podejście konserwatywne w ramach metody MUS

W kontekście podejścia konserwatywnego w ramach metody MUS nie zaleca się stosowania estymacji ilorazowej, ponieważ nie można uwzględnić jej wpływu na dokładność estymacji. W związku z tym zaleca się prognozowanie błędów oraz obliczenie błędu przewidywanego i dokładności zgodnie ze zwykłymi wzorami (bez odejmowania od wydatków kwoty, na którą wpływ mają błędy systemowe).

5. Niestatystyczny dobór próby

Jeżeli prognozowania dokonuje się w oparciu o estymację wartości na podstawie średniej, prognozowanie przeprowadza się jak dotychczas.

W przypadku istnienia warstwy wyczerpującej, mianowicie warstwy zawierającej jednostki próby o wartości księgowej wyższej niż wartość graniczna, błąd przewidywany stanowi po prostu sumę błędów losowych znalezionych w tej grupie:

\[EE = \sum_{i=1}^{n_e} E_i \]
Jeżeli jednostki wybrano z równym prawdopodobieństwem, przewidywany błąd losowy w odniesieniu do warstwy próby oblicza się jak zwykle za pomocą następującego wzoru:

$$EE_s = N_s \frac{\sum_{i=1}^{n_s} E_i}{n_s}$$

gdzie N_s oznacza liczebność populacji, zaś n_s oznacza liczebność próby w warstwie o niskiej wartości.

Jeżeli stosuje się estymację ilorazową (związaną z doborem losowym zakładającym równe prawdopodobieństwo), prognozowanie błędu losowego odbywa się tak samo jak w kontekście doboru losowego prostego:

$$EE_{s2} = BV'_s \times \frac{\sum_{i=1}^{n_s} E_i}{\sum_{i=1}^{n_s} BV'_i}$$

gdzie BV'_s oznacza całkowitą wartość księgową populacji w warstwie objętej próbą, od której odejmuje się błędy systemowe. BV'_i oznacza wartość księgową jednostki i, od której odejmuje się kwotę błędu systemowego wpływającego na tę jednostkę.

Jeżeli jednostki wybrano z prawdopodobieństwem proporcjonalnym do wartości wydatków, przewidywany błąd losowy dla warstwy o niskiej wartości oblicza się za pomocą następującego wzoru:

$$EE_s = \frac{BV_s}{n_s} \sum_{i=1}^{n_s} E_i$$

gdzie BV_s oznacza całkowitą wartość księgową (bez odejmowania kwoty błędu systemowego), BV_i oznacza wartość księgową jednostki próby i (bez odejmowania kwoty błędu systemowego), a n_s oznacza liczebność próby w warstwie o niskiej wartości.

Podobnie jak w przypadku metody MUS wzór na estymację ilorazową:

$$EE_s = BV'_s \times \frac{\sum_{i=1}^{n_s} E_i}{\sum_{i=1}^{n_s} BV'_i}$$
może zostać alternatywnie zastosowany. Ponownie BV'_s oznacza całkowitą wartość księgową warstwy o niskiej wartości odjętą od wcześniej określonych błędów systemowych w tej samej warstwie, $BV'_s = BV_s - systemic errors in the sampling stratum$. BV'_i oznacza wartość księgową jednostki i pomniejszoną o kwotę błędu systemowego wpływającą na jednostkę.

Łączny poziom błędu (TER) stanowi sumę przewidywanych błędów losowych, błędów systemowych i nieskorygowanych błędów nietypowych.
Załącznik 2 – Wzory na dobór próby obejmujący wiele okresów

1. Dobór losowy prosty

1.1. Trzy okresy

1.1.1. Liczebność próby

Pierwszy okres

\[n_{1+2+3} = \frac{(z \times N_{1+2+3} \times \sigma_{ew1+2+3})^2}{(TE - AE)^2} \]

gdzie:

\[\sigma_{ew1+2+3}^2 = \frac{N_1}{N_{1+2+3}} \sigma_{e1}^2 + \frac{N_2}{N_{1+2+3}} \sigma_{e2}^2 + \frac{N_3}{N_{1+2+3}} \sigma_{e3}^2 \]

\[N_{1+2+3} = N_1 + N_2 + N_3 \]

\[n_t = \frac{N_t}{N_{1+2+3}} n_{1+2+3} \]

Drugi okres

\[n_{2+3} = \frac{(z \times N_{2+3} \times \sigma_{ew2+3})^2}{(TE - AE)^2 - z^2 \times \frac{N_t^2}{n_1} \times s_{e1}^2} \]

gdzie:

\[\sigma_{ew2+3}^2 = \frac{N_2}{N_{2+3}} \sigma_{e2}^2 + \frac{N_3}{N_{2+3}} \sigma_{e3}^2 \]

\[N_{2+3} = N_2 + N_3 \]

\[n_t = \frac{N_t}{n_{2+3}} n_{2+3} \]
Trzeci okres

\[n_3 = \frac{(z \times N_3 \times \sigma_3)^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2 - z^2 \times \frac{N_2^2}{n_2} \times s_{e2}^2} \]

Uwagi:
W każdym okresie należy aktualizować wszystkie parametry populacji w oparciu o najdokładniejsze dostępne informacje.
Jeżeli nie można uzyskać różnych przybliżeń odchyleń standardowych dla każdego okresu lub jeżeli nie mają one zastosowania, można zastosować taką samą wartość odchylenia standardowego dla wszystkich okresów. W takim przypadku \(\sigma_{ew1+2+3} \) jest po prostu równo pojedynczemu odchyleniu standardowemu błędów \(\sigma_e \).
Parametr \(\sigma \) odnosi się do odchylenia standardowego uzyskanego z danych pomocniczych (np. danych historycznych), a \(s \) odnosi się do odchylenia standardowego uzyskanego z próby, którą objęto audytem. Jeżeli \(s \) nie jest dostępne, można je zastąpić we wzorach parametrem \(\sigma \).

1.1.2. Prognozowanie i dokładność

Estymacja wartości na podstawie średniej

\[EE_1 = \frac{N_1}{n_1} \sum_{i=1}^{n_1} E_{1i} + \frac{N_2}{n_2} \sum_{i=1}^{n_2} E_{2i} + \frac{N_3}{n_3} \sum_{i=1}^{n_3} E_{3i} \]

\[SE = z \times \sqrt{\left(\frac{N_1^2}{n_1} \times s_{e1}^2 + \frac{N_2^2}{n_2} \times s_{e2}^2 + \frac{N_3^2}{n_3} \times s_{e3}^2 \right)} \]

Estymacja ilorazowa

\[EE_2 = BV_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{\sum_{i=1}^{n_1} BV_{1i}} + BV_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{\sum_{i=1}^{n_2} BV_{2i}} + BV_3 \times \frac{\sum_{i=1}^{n_3} E_{3i}}{\sum_{i=1}^{n_3} BV_{3i}} \]

\[SE = z \times \sqrt{\left(\frac{N_1^2}{n_1} \times s_{q1}^2 + \frac{N_2^2}{n_2} \times s_{q2}^2 + \frac{N_3^2}{n_3} \times s_{q3}^2 \right)} \]

\[q_{ti} = \frac{E_{ti}}{\sum_{i=1}^{n_t} BV_{ti}} \times BV_{ti}. \]
1.2. Cztery okresy

1.2.1. Liczebność próby

Pierwszy okres

\[n_{1+2+3+4} = \frac{(z \times N_{1+2+3+4} \times \sigma_{ew1+2+3+4})^2}{(TE - AE)^2} \]

gdzie:

\[\sigma_{ew1+2+3+4}^2 = \frac{N_1}{N_{1+2+3+4}} \sigma_{e1}^2 + \frac{N_2}{N_{1+2+3+4}} \sigma_{e2}^2 + \frac{N_3}{N_{1+2+3+4}} \sigma_{e3}^2 + \frac{N_4}{N_{1+2+3+4}} \sigma_{e4}^2 \]

\[N_{1+2+3+4} = N_1 + N_2 + N_3 + N_4 \]

\[n_t = \frac{N_t}{N_{1+2+3+4}} n_{1+2+3+4} \]

Drugi okres

\[n_{2+3+4} = \frac{(z \times N_{2+3+4} \times \sigma_{ew2+3+4})^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2} \]

gdzie:

\[\sigma_{ew2+3+4}^2 = \frac{N_2}{N_{2+3+4}} \sigma_{e2}^2 + \frac{N_3}{N_{2+3+4}} \sigma_{e3}^2 + \frac{N_4}{N_{2+3+4}} \sigma_{e4}^2 \]

\[N_{2+3+4} = N_2 + N_3 + N_4 \]

\[n_t = \frac{N_t}{N_{2+3+4}} n_{2+3+4} \]

Trzeci okres

\[n_{3+4} = \frac{(z \times N_{3+4} \times \sigma_{ew3+4})^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2 - z^2 \times \frac{N_2^2}{n_2} \times s_{e2}^2} \]
gdzie:

\[
\sigma_{ew3+4}^2 = \frac{N_3}{N_{3+4}}\sigma_{e3}^2 + \frac{N_4}{N_{3+4}}\sigma_{e4}^2
\]

\[
N_{3+4} = N_3 + N_4
\]

\[
n_t = \frac{N_t}{N_{3+4}} n_{3+4}
\]

Czwarty okres

\[
n_4 = \frac{(z \times N_4 \times \sigma_{e4})^2}{(TE - AE)^2 - z^2 \times \frac{N_1^2}{n_1} \times s_{e1}^2 - z^2 \times \frac{N_2^2}{n_2} \times s_{e2}^2 - z^2 \times \frac{N_3^2}{n_3} \times s_{e3}^2}
\]

Uwagi:
W każdym okresie należy aktualizować wszystkie parametry populacji w oparciu o najdokładniejsze dostępne informacje.
Jeżeli nie można uzyskać różnych przybliżeń odchyleń standardowych dla każdego okresu lub jeżeli nie mają one zastosowania, można zastosować taką samą wartość odchylenia standardowego dla wszystkich okresów. W takim przypadku \(\sigma_{ew1+2+3+4} \) jest po prostu równa pojedynczemu odchyleniu standardowemu błędów \(\sigma_e \).
Parametr \(\sigma \) odnosi się do odchylenia standardowego uzyskanego z danych pomocniczych (np. danych historycznych), a \(s \) odnosi się do odchylenia standardowego uzyskanego z próby, którą objęto audytem. Jeżeli \(s \) nie jest dostępne, można je zastąpić we wzorach parametrem \(\sigma \).
1.2.2. Prognozowanie i dokładność

Estymacja wartości na podstawie średniej

\[EE_1 = \frac{N_1}{n_1} \sum_{i=1}^{n_1} E_{1i} + \frac{N_2}{n_2} \sum_{i=1}^{n_2} E_{2i} + \frac{N_3}{n_3} \sum_{i=1}^{n_3} E_{3i} + \frac{N_4}{n_4} \sum_{i=1}^{n_4} E_{4i} \]

\[SE = z \times \sqrt{\left(\frac{N_1^2}{n_1} \times \frac{s_{e1}^2}{n_1} + \frac{N_2^2}{n_2} \times \frac{s_{e2}^2}{n_2} + \frac{N_3^2}{n_3} \times \frac{s_{e3}^2}{n_3} + \frac{N_4^2}{n_4} \times \frac{s_{e4}^2}{n_4} \right)} \]

Estymacja ilorazowa

\[EE_2 = BV_1 \times \frac{\sum_{i=1}^{n_1} E_{1i}}{\sum_{i=1}^{n_1} BV_{1i}} + BV_2 \times \frac{\sum_{i=1}^{n_2} E_{2i}}{\sum_{i=1}^{n_2} BV_{2i}} + BV_3 \times \frac{\sum_{i=1}^{n_3} E_{3i}}{\sum_{i=1}^{n_3} BV_{3i}} + BV_4 \times \frac{\sum_{i=1}^{n_4} E_{4i}}{\sum_{i=1}^{n_4} BV_{4i}} \]

\[SE = z \times \sqrt{\left(\frac{N_1^2}{n_1} \times \frac{s_{q1}^2}{n_1} + \frac{N_2^2}{n_2} \times \frac{s_{q2}^2}{n_2} + \frac{N_3^2}{n_3} \times \frac{s_{q3}^2}{n_3} + \frac{N_4^2}{n_4} \times \frac{s_{q4}^2}{n_4} \right)} \]

\[q_{ti} = E_{ti} - \frac{\sum_{i=1}^{n_t} E_{ti}}{\sum_{i=1}^{n_t} BV_{ti}} \times BV_{ti}. \]
2. Metoda doboru próby na podstawie jednostki monetarnej

2.1. Trzy okresy

2.1.1. Liczebność próby

Pierwszy okres

\[n_{1+2+3} = \frac{(z \times BV_{1+2+3} \times \sigma_{r_{w1+2+3}})}{(TE - AE)^2} \]

gdzie:

\[\sigma_{r_{w1+2+3}}^2 = \frac{BV_1}{BV_{1+2+3}} \sigma_{r_1}^2 + \frac{BV_2}{BV_{1+2+3}} \sigma_{r_2}^2 + \frac{BV_3}{BV_{1+2+3}} \sigma_{r_3}^2 \]

\[BV_{1+2+3} = BV_1 + BV_2 + BV_3 \]

\[n_t = \frac{BV_t}{BV_{1+2+3}} n_{1+2+3} \]

Drugi okres

\[n_{2+3} = \frac{(z \times BV_{2+3} \times \sigma_{r_{w2+3}})}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r_1}^2} \]

gdzie:

\[\sigma_{r_{w2+3}}^2 = \frac{BV_2}{BV_{2+3}} \sigma_{r_2}^2 + \frac{BV_3}{BV_{2+3}} \sigma_{r_3}^2 \]

\[BV_{2+3} = BV_2 + BV_3 \]

\[n_t = \frac{BV_t}{BV_{2+3}} n_{2+3} \]

Trzeci okres

\[n_3 = \frac{(z \times BV_3 \times \sigma_{r_3})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_{r_1}^2 - z^2 \times \frac{BV_2^2}{n_2} \times s_{r_2}^2} \]
Uwagi:
W każdym okresie należy aktualizować wszystkie parametry populacji w oparciu o najdokładniejsze dostępne informacje.
Jeżeli nie można uzyskać różnych przybliżeń odchyleń standardowych dla każdego okresu lub jeżeli nie mają one zastosowania, można zastosować taką samą wartość odchylenia standardowego dla wszystkich okresów. W takim przypadku σ_{w1+2+3} jest po prostu równe pojedynczemu odchyleniu standardowemu poziomów błędu σ_r.
Parametr σ odnosi się do odchylenia standardowego uzyskanego z danych pomocniczych (np. danych historycznych), a s odnosi się do odchylenia standardowego uzyskanego z próby, którą objęto audytem. Jeżeli s nie jest dostępne, można je zastąpić we wzorach parametrem σ.

2.1.2. Prognozowanie i dokładność

$$ EE_e = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} + \sum_{i=1}^{n_3} E_{3i} $$

$$ EE_s = \frac{BV_{1s}}{n_{1s}} \times \sum_{i=1}^{n_{1s}} E_{1i} + \frac{BV_{2s}}{n_{2s}} \times \sum_{i=1}^{n_{2s}} E_{2i} + \frac{BV_{3s}}{n_{3s}} \times \sum_{i=1}^{n_{3s}} E_{3i} $$

$$ SE = z \times \sqrt{\frac{BV_{1s}^2}{n_{1s}} \times s_{r1s}^2 + \frac{BV_{2s}^2}{n_{2s}} \times s_{r2s}^2 + \frac{BV_{3s}^2}{n_{3s}} \times s_{r3s}^2} $$
2.2. Cztery okresy

2.2.1. Liczebność próby

Pierwszy okres

\[n_{1+2+3+4} = \frac{(z \times BV_{1+2+3+4} \times \sigma_{rw1+2+3+4})^2}{(TE - AE)^2} \]

gdzie:

\[\sigma_{rw1+2+3+4}^2 = \frac{BV_1}{BV_{1+2+3+4}} \sigma_r^2 + \frac{BV_2}{BV_{1+2+3+4}} \sigma_r^2 + \frac{BV_3}{BV_{1+2+3+4}} \sigma_r^2 + \frac{BV_4}{BV_{1+2+3+4}} \sigma_r^2 \]

\[BV_{1+2+3+4} = BV_1 + BV_2 + BV_3 + BV_4 \]

\[n_t = \frac{BV_t}{BV_{1+2+3+4}} n_{1+2+3+4} \]

Drugi okres

\[n_{2+3+4} = \frac{(z \times BV_{2+3+4} \times \sigma_{rw2+3+4})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_r^2} \]

gdzie:

\[\sigma_{rw2+3+4}^2 = \frac{BV_2}{BV_{2+3+4}} \sigma_r^2 + \frac{BV_3}{BV_{2+3+4}} \sigma_r^2 + \frac{BV_4}{BV_{2+3+4}} \sigma_r^2 \]

\[BV_{2+3+4} = BV_2 + BV_3 + BV_4 \]

\[n_t = \frac{BV_t}{BV_{2+3+4}} n_{2+3+4} \]

Trzeci okres

\[n_{3+4} = \frac{(z \times BV_{3+4} \times \sigma_{rw3+4})^2}{(TE - AE)^2 - z^2 \times \frac{BV_1^2}{n_1} \times s_r^2 - z^2 \times \frac{BV_2^2}{n_2} \times s_r^2} \]

gdzie:
\[
\sigma^2_{r_{w3+4}} = \frac{BV_3}{BV_{3+4}} \sigma^2_{r3} + \frac{BV_4}{BV_{3+4}} \sigma^2_{r4}
\]

\[BV_{3+4} = BV_3 + BV_4\]

\[n_t = \frac{BV_t}{BV_{3+4}} n_{3+4}\]

Czwarty okres

\[n_4 = \frac{(z \times BV_4 \times \sigma_{r4})^2}{(TE - AE)^2 - z^2 \times \frac{BV^2_{1}}{n_1} \times s^2_{r1} - z^2 \times \frac{BV^2_2}{n_2} \times s^2_{r2} - z^2 \times \frac{BV^2_3}{n_3} \times s^2_{r3}}\]

Uwagi:
W każdym okresie należy aktualizować wszystkie parametry populacji w oparciu o najdokładniejsze dostępne informacje.
Jeżeli nie można uzyskać różnych przybliżeń odchyleń standardowych dla każdego okresu lub jeżeli nie mają one zastosowania, można zastosować taką samą wartość odchylenia standardowego dla wszystkich okresów. W takim przypadku \(\sigma_{r_{w1+2+3+4}}\) jest po prostu równy pojedynczemu odchyleniu standardowemu poziomów błędu \(\sigma_r\).
Parametr \(\sigma\) odnosi się do odchylenia standardowego uzyskanego z danych pomocniczych (np. danych historycznych), a \(s\) odnosi się do odchylenia standardowego uzyskanego z próby, którą objęto audytem. Jeżeli \(s\) nie jest dostępne, można je zastąpić we wzorach parametrem \(\sigma\).

2.2.2. Prognozowanie i dokładność

\[
EE_{e} = \sum_{i=1}^{n_1} E_{1i} + \sum_{i=1}^{n_2} E_{2i} + \sum_{i=1}^{n_3} E_{3i} + \sum_{i=1}^{n_4} E_{4i}
\]

\[
EE_{s} = \frac{BV_{1s}}{n_{1s}} \times \sum_{i=1}^{n_{1s}} E_{1i} + \frac{BV_{2s}}{n_{2s}} \times \sum_{i=1}^{n_{2s}} E_{2i} + \frac{BV_{3s}}{n_{3s}} \times \sum_{i=1}^{n_{3s}} E_{3i} + \frac{BV_{4s}}{n_{4s}} \times \sum_{i=1}^{n_{4s}} E_{4i}
\]

\[
SE = z \times \sqrt{\frac{BV^2_{1s}}{n_{1s}} \times s^2_{r1s} + \frac{BV^2_{2s}}{n_{2s}} \times s^2_{r2s} + \frac{BV^2_{3s}}{n_{3s}} \times s^2_{r3s} + \frac{BV^2_{4s}}{n_{4s}} \times s^2_{r4s}}
\]
Załącznik 3 – Współczynniki wiarygodności w odniesieniu do metody
MUS
Liczba błędów
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1%

Ryzyko błędnej akceptacji
5 % 10 % 15 % 20 % 25 % 30 % 37 % 40 % 50 %

4,61

3,00

2,30

1,90

1,61

1,39

1,20

0,99

0,92

0,69

6,64

4,74

3,89

3,37

2,99

2,69

2,44

2,14

2,02

1,68

8,41

6,30

5,32

4,72

4,28

3,92

3,62

3,25

3,11

2,67

10,05

7,75

6,68

6,01

5,52

5,11

4,76

4,34

4,18

3,67

11,60

9,15

7,99

7,27

6,72

6,27

5,89

5,42

5,24

4,67

13,11

10,51

9,27

8,49

7,91

7,42

7,01

6,49

6,29

5,67

14,57

11,84

10,53

9,70

9,08

8,56

8,11

7,56

7,34

6,67

16,00

13,15

11,77

10,90

10,23

9,68

9,21

8,62

8,39

7,67

17,40

14,43

12,99

12,08

11,38

10,80

10,30

9,68

9,43

8,67

18,78

15,71

14,21

13,25

12,52

11,91

11,39

10,73

10,48

9,67

20,14

16,96

15,41

14,41

13,65

13,02

12,47

11,79

11,52

10,67

21,49

18,21

16,60

15,57

14,78

14,12

13,55

12,84

12,55

11,67

22,82

19,44

17,78

16,71

15,90

15,22

14,62

13,88

13,59

12,67

24,14

20,67

18,96

17,86

17,01

16,31

15,70

14,93

14,62

13,67

25,45

21,89

20,13

19,00

18,13

17,40

16,77

15,97

15,66

14,67

26,74

23,10

21,29

20,13

19,23

18,49

17,83

17,02

16,69

15,67

28,03

24,30

22,45

21,26

20,34

19,57

18,90

18,06

17,72

16,67

29,31

25,50

23,61

22,38

21,44

20,65

19,96

19,10

18,75

17,67

30,58

26,69

24,76

23,50

22,54

21,73

21,02

20,14

19,78

18,67

31,85

27,88

25,90

24,62

23,63

22,81

22,08

21,17

20,81

19,67

33,10

29,06

27,05

25,74

24,73

23,88

23,14

22,21

21,84

20,67

34,35

30,24

28,18

26,85

25,82

24,96

24,20

23,25

22,87

21,67

35,60

31,41

29,32

27,96

26,91

26,03

25,25

24,28

23,89

22,67

36,84

32,59

30,45

29,07

28,00

27,10

26,31

25,32

24,92

23,67

38,08

33,75

31,58

30,17

29,08

28,17

27,36

26,35

25,95

24,67

39,31

34,92

32,71

31,28

30,17

29,23

28,41

27,38

26,97

25,67

40,53

36,08

33,84

32,38

31,25

30,30

29,46

28,42

28,00

26,67

41,76

37,23

34,96

33,48

32,33

31,36

30,52

29,45

29,02

27,67

42,98

38,39

36,08

34,57

33,41

32,43

31,56

30,48

30,04

28,67

44,19

39,54

37,20

35,67

34,49

33,49

32,61

31,51

31,07

29,67

45,40

40,69

38,32

36,76

35,56

34,55

33,66

32,54

32,09

30,67

46,61

41,84

39,43

37,86

36,64

35,61

34,71

33,57

33,11

31,67

47,81

42,98

40,54

38,95

37,71

36,67

35,75

34,60

34,14

32,67

49,01

44,13

41,65

40,04

38,79

37,73

36,80

35,63

35,16

33,67

50,21

45,27

42,76

41,13

39,86

38,79

37,84

36,66

36,18

34,67

51,41

46,40

43,87

42,22

40,93

39,85

38,89

37,68

37,20

35,67

52,60

47,54

44,98

43,30

42,00

40,90

39,93

38,71

38,22

36,67

53,79

48,68

46,08

44,39

43,07

41,96

40,98

39,74

39,24

37,67

54,98

49,81

47,19

45,47

44,14

43,01

42,02

40,77

40,26

38,67

56,16

50,94

48,29

46,55

45,20

44,07

43,06

41,79

41,28

39,67

57,35
58,53
59,71

52,07
53,20
54,32

49,39
50,49
51,59

47,63
48,72
49,80

46,27
47,33
48,40

45,12
46,17
47,22

44,10
45,14
46,18

42,82
43,84
44,87

42,30
43,32
44,34

40,67
41,67
42,67

60,88

55,45

52,69

50,87

49,46

48,27

47,22

45,90

45,36

43,67

62,06

56,57

53,78

51,95

50,53

49,32

48,26

46,92

46,38

44,67

63,23

57,69

54,88

53,03

51,59

50,38

49,30

47,95

47,40

45,67

64,40

58,82

55,97

54,11

52,65

51,42

50,34

48,97

48,42

46,67

65,57

59,94

57,07

55,18

53,71

52,47

51,38

49,99

49,44

47,67

66,74
67,90
69,07

61,05
62,17
63,29

58,16
59,25
60,34

56,26
57,33
58,40

54,77
55,83
56,89

53,52
54,57
55,62

52,42
53,45
54,49

51,02
52,04
53,06

50,45
51,47
52,49

48,67
49,67
50,67

292


Załącznik 4 – Wartości dla standaryzowanego rozkładu normalnego (z)

<table>
<thead>
<tr>
<th>x</th>
<th>0.00</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.5000</td>
<td>0.5040</td>
<td>0.5080</td>
<td>0.5120</td>
<td>0.5160</td>
<td>0.5199</td>
<td>0.5239</td>
<td>0.5279</td>
<td>0.5319</td>
<td>0.5359</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5398</td>
<td>0.5438</td>
<td>0.5478</td>
<td>0.5517</td>
<td>0.5557</td>
<td>0.5596</td>
<td>0.5636</td>
<td>0.5675</td>
<td>0.5714</td>
<td>0.5753</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5793</td>
<td>0.5832</td>
<td>0.5871</td>
<td>0.5910</td>
<td>0.5949</td>
<td>0.5987</td>
<td>0.6026</td>
<td>0.6064</td>
<td>0.6103</td>
<td>0.6141</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6179</td>
<td>0.6217</td>
<td>0.6253</td>
<td>0.6289</td>
<td>0.6323</td>
<td>0.6358</td>
<td>0.6394</td>
<td>0.6429</td>
<td>0.6464</td>
<td>0.6499</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6554</td>
<td>0.6591</td>
<td>0.6628</td>
<td>0.6664</td>
<td>0.6700</td>
<td>0.6735</td>
<td>0.6770</td>
<td>0.6805</td>
<td>0.6840</td>
<td>0.6875</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6915</td>
<td>0.6950</td>
<td>0.6985</td>
<td>0.7019</td>
<td>0.7054</td>
<td>0.7088</td>
<td>0.7123</td>
<td>0.7157</td>
<td>0.7190</td>
<td>0.7224</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7257</td>
<td>0.7291</td>
<td>0.7324</td>
<td>0.7357</td>
<td>0.7389</td>
<td>0.7422</td>
<td>0.7454</td>
<td>0.7484</td>
<td>0.7515</td>
<td>0.7544</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7580</td>
<td>0.7611</td>
<td>0.7642</td>
<td>0.7673</td>
<td>0.7704</td>
<td>0.7734</td>
<td>0.7764</td>
<td>0.7794</td>
<td>0.7823</td>
<td>0.7851</td>
</tr>
<tr>
<td>0.8</td>
<td>0.7881</td>
<td>0.7910</td>
<td>0.7939</td>
<td>0.7967</td>
<td>0.7995</td>
<td>0.8023</td>
<td>0.8051</td>
<td>0.8078</td>
<td>0.8106</td>
<td>0.8133</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8159</td>
<td>0.8186</td>
<td>0.8212</td>
<td>0.8238</td>
<td>0.8264</td>
<td>0.8289</td>
<td>0.8315</td>
<td>0.8340</td>
<td>0.8365</td>
<td>0.8389</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8413</td>
<td>0.8438</td>
<td>0.8463</td>
<td>0.8488</td>
<td>0.8513</td>
<td>0.8537</td>
<td>0.8562</td>
<td>0.8586</td>
<td>0.8610</td>
<td>0.8633</td>
</tr>
<tr>
<td>1.1</td>
<td>0.8658</td>
<td>0.8685</td>
<td>0.8710</td>
<td>0.8735</td>
<td>0.8760</td>
<td>0.8784</td>
<td>0.8809</td>
<td>0.8833</td>
<td>0.8857</td>
<td>0.8880</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8889</td>
<td>0.8909</td>
<td>0.8929</td>
<td>0.8949</td>
<td>0.8969</td>
<td>0.8989</td>
<td>0.9009</td>
<td>0.9029</td>
<td>0.9049</td>
<td>0.9068</td>
</tr>
<tr>
<td>1.3</td>
<td>0.9088</td>
<td>0.9107</td>
<td>0.9127</td>
<td>0.9146</td>
<td>0.9165</td>
<td>0.9184</td>
<td>0.9203</td>
<td>0.9222</td>
<td>0.9240</td>
<td>0.9259</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9277</td>
<td>0.9296</td>
<td>0.9315</td>
<td>0.9333</td>
<td>0.9351</td>
<td>0.9369</td>
<td>0.9387</td>
<td>0.9404</td>
<td>0.9422</td>
<td>0.9439</td>
</tr>
<tr>
<td>1.5</td>
<td>0.9457</td>
<td>0.9474</td>
<td>0.9491</td>
<td>0.9508</td>
<td>0.9525</td>
<td>0.9542</td>
<td>0.9558</td>
<td>0.9575</td>
<td>0.9591</td>
<td>0.9607</td>
</tr>
<tr>
<td>1.6</td>
<td>0.9623</td>
<td>0.9639</td>
<td>0.9655</td>
<td>0.9671</td>
<td>0.9686</td>
<td>0.9701</td>
<td>0.9716</td>
<td>0.9730</td>
<td>0.9744</td>
<td>0.9758</td>
</tr>
<tr>
<td>1.7</td>
<td>0.9772</td>
<td>0.9786</td>
<td>0.9800</td>
<td>0.9813</td>
<td>0.9826</td>
<td>0.9838</td>
<td>0.9850</td>
<td>0.9862</td>
<td>0.9874</td>
<td>0.9886</td>
</tr>
<tr>
<td>1.8</td>
<td>0.9897</td>
<td>0.9909</td>
<td>0.9921</td>
<td>0.9933</td>
<td>0.9944</td>
<td>0.9956</td>
<td>0.9967</td>
<td>0.9977</td>
<td>0.9988</td>
<td>0.9999</td>
</tr>
<tr>
<td>1.9</td>
<td>0.9998</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9999</td>
</tr>
<tr>
<td>2.0</td>
<td>0.9999</td>
</tr>
</tbody>
</table>
Załącznik 5 – Formuły w programie MS Excel wykorzystywane w metodach doboru próby

Poniższe formuły można stosować w programie MS Excel w celu obliczenia różnych parametrów wymaganych w ramach metod i koncepcji omówionych szczegółowo w niniejszych wytycznych. Dalsze informacje na temat sposobu działania tych formuł można znaleźć w zakładce „pomoc” w programie Excel, która zawiera szczegółowe informacje na temat wzorów matematycznych dotyczących każdej z formuł.

W poniższych formułach symbol (.) oznacza wektor zawierający adres komórek z wartościami próby lub populacji.

=ŚREDNIA(.): średnia zbioru danych
=WARIANCJA.PRÓBKI(.): wariancja zbioru danych z próby
=WARIANCJA.POP(.): wariancja zbioru danych z populacji
=ODCH.STANDARD.PRÓBKI(.): odchylenie standardowe zbioru danych z próby
=ODCH.STAND.POPUL(.): odchylenie standardowe zbioru danych z populacji
=KOWARIANCJA.PRÓBKI(.): kowariancja dwóch zmiennych w próbie
=KOWARIANCJA.POPUL(.): kowariancja dwóch zmiennych próby w populacji
=LOS(): losowa liczba między 0 a 1, uzyskana z rozkładu równomiernego
=SUMA(.): suma zbioru danych.
Załącznik 6 – Glosariusz

<table>
<thead>
<tr>
<th>Pojęcie</th>
<th>Definicja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Błąd nietypowy</td>
<td>Błąd/nieprawidłowość, które ewidentnie nie są reprezentatywne dla danej populacji. Próba statystyczna jest reprezentatywna dla danej populacji, w związku z czym błędy nietypowe powinny być dopuszczalne jedynie w wyjątkowych i należycie uzasadnionych okolicznościach.</td>
</tr>
<tr>
<td>Błąd oczekiwany (AE)</td>
<td>Błąd oczekiwany oznacza kwotę błędu, jaką audytor spodziewa się wykryć w populacji (po zakończeniu audytu). Do celów planowania liczebności próby oczekiwany poziom błędu ustala na poziomie do 4,0 % wartości księgowej populacji.</td>
</tr>
<tr>
<td>Dobór jakościowy</td>
<td>Jest to podejście statystyczne służące ustaleniu poziomu pewności systemu i ocenie poziomu, na którym pojawiają się błędy w próbie. W ramach audytu podejście to najczęściej stosuje się w celu zbadania poziomu odchylenia od zalecanej kontroli na poparcie poziomu ryzyka audytu ocenionego przez audytora.</td>
</tr>
<tr>
<td>Pewność audytu</td>
<td>Model pewności jest odwrotnością modelu ryzyka. Jeżeli przyjmuje się, że ryzyko audytu wynosi 5 %, wówczas pewność audytu wynosi 95 %. Model pewności audytu stosuje się w odniesieniu do planowania i alokacji podstawowych zasobów na potrzeby określonego programu lub grupy programów.</td>
</tr>
<tr>
<td>Ryzyko kontroli (AR)</td>
<td>Jest to ryzyko wydania przez audytora opinii bez zastrzeżenia w sytuacji, gdy deklaracja wydatków zawiera istotne błędy.</td>
</tr>
<tr>
<td>Dokładność podstawowa (BP)</td>
<td>Stosowana jest w ramach konserwatywnej metody doboru próby na podstawie jednostki monetarnej i stanowi iloczyn interwału losowania i współczynnika wiarygodności (RF) (wykorzystanego już wcześniej do obliczenia liczności próbki).</td>
</tr>
<tr>
<td>Pojęcie</td>
<td>Definicja</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Wartość księgowa (BV)</td>
<td>Wydatki zadeklarowane Komisji w odniesieniu do pozycji (operacja / wniosek o płatność), $BV_i, i = 1,2, ..., N$. Całkowita wartość księgowa populacji stanowi sumę wartości księgowych pozycji w populacji.</td>
</tr>
<tr>
<td>Przedział ufności</td>
<td>Jest to przedział, który z pewnym prawdopodobieństwem (zwanym poziomem ufności) zawiera rzeczywistą (nieznaną) wartość populacji (na ogół wielkość błędu lub poziom błędu).</td>
</tr>
<tr>
<td>Poziom ufności</td>
<td>Jest to prawdopodobieństwo, że przedział ufności określony na podstawie danych z próby zawiera rzeczywisty błąd populacji (nieznany).</td>
</tr>
<tr>
<td>Ryzyko zawodności systemów kontroli wewnętrznej (CR)</td>
<td>Jest to postrzegany poziom ryzyka, że w ramach procedur kontroli wewnętrznej zarządzania nie uda się zapobieć istotnemu błędowi lub też wykryć i skorygować takiego błędu w sprawozdaniu finansowym klienta lub na podstawowych poziomach agregacji.</td>
</tr>
<tr>
<td>Prawidłowa wartość księgowa (CBV)</td>
<td>Prawidłowa kwota wydatków, która zostałaby ustalona, gdyby objęto audytem wszystkie operacje / wnioski o płatność w danej populacji, a populacja nie zawierałaby żadnych błędów.</td>
</tr>
<tr>
<td>Ryzyko niewykrycia</td>
<td>Jest to postrzegany poziom ryzyka że audytor nie wykryje istotnego błędu w sprawozdaniu finansowym klienta lub na podstawowych poziomach agregacji. Ryzyko niewykrycia jest związane z przeprowadzaniem audytów operacji.</td>
</tr>
<tr>
<td>Estymacja różnicy</td>
<td>Jest to metoda statystycznego doboru próby oparta na doborze próby na podstawie równego prawdopodobieństwa. Metoda ta opiera się na ekstrapolacji błędu w próbie. Błąd ekstrapolowany odejmuje się od całkowitych wydatków zadeklarowanych w populacji w celu dokonania oceny prawidłowości wydatków w populacji (tj. wydatków, które otrzymano by w przypadku, gdyby objęto audytem wszystkie operacje w populacji).</td>
</tr>
<tr>
<td>Pojęcie</td>
<td>Definicja</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Błąd ((E))</td>
<td>Do celów niniejszych wytycznych za błąd uznaje się wymierne zawyżenie wydatków zadeklarowanych Komisji. Błąd definiuje się jako różnicę wartości księgowej zawartej w próbie pozycji (i) oraz odnośnej prawidłowej wartości księgowej, (E_i = BV_i - CBV_i), (i = 1,2,\ldots,N). Jeżeli dokonano stratyfikacji populacji, stosuje się indeks (h) do oznaczania poszczególnych warstw: gdzie (E_{hi} = BV_{hi} - CBV_{hi}), where (i = 1,2,\ldots; N_h, h = 1,2,\ldots,H) oznacza liczbę warstw.</td>
</tr>
<tr>
<td>Współczynnik rozszerzenia ((EF))</td>
<td>Jest to współczynnik stosowany w obliczeniach w ramach konserwatywnej metody MUS, w przypadku gdy przewidywane są błędy; opiera się on na ryzyku błędnej akceptacji. Współczynnik ten zmniejsza błąd próby. Jeżeli nie przewiduje się wystąpienia błędów, błąd oczekiwany ((AE)) wyniesie zero, a współczynnik rozszerzenia nie zostanie zastosowany. Wartości współczynnika rozszerzenia przedstawiono w sekcji 6.3.4.2 niniejszych wytycznych.</td>
</tr>
<tr>
<td>Rezerwa dodatkowa ((IA))</td>
<td>Rezerwa dodatkowa jest miarą przyrostu poziomu dokładności spowodowanego przez każdy błąd wykryty w próbie. Rezerwę tę stosuje się w podejściu konserwatywnym do metody doboru próby na podstawie jednostki monetarnej i należy ją dodać do wartości dokładności podstawowej, ilekroć w próbie zostaną wykryte błędy (por. sekcja 6.3.4.5 niniejszych wytycznych).</td>
</tr>
<tr>
<td>Ryzyko nieodłączne ((IR))</td>
<td>Jest to postrzegany poziom ryzyka wystąpienia istotnego błędu w deklaracjach wydatków zadeklarowanych Komisji lub na podstawowych poziomach agregacji w przypadku braku procedur kontroli wewnętrznej. Ryzyko nieodłączne należy ocenić przed rozpoczęciem szczegółowych procedur kontroli, tj. wywiadów z zarządem i kluczowym personelem, przeglądem informacji kontekstowych, takich jak schematy organizacyjne, podręczniki oraz dokumenty wewnętrzne/zewnętrzne.</td>
</tr>
<tr>
<td>Nieprawidłowość</td>
<td>Posiada takie samo znaczenie jak błąd.</td>
</tr>
<tr>
<td>Pojęcie</td>
<td>Definicja</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Błąd znany</td>
<td>Błąd wykryty w próbie może doprowadzić audytora do wykrycia jednego lub większej liczby błędów poza tą próbą. Błędy takie zidentyfikowane poza próbą klasyfikuje się jako „błędy znane”. Błąd wykryty w próbie uznaje się za błąd losowy i uwzględnia w prognozie. Taki błąd próby, który doprowadził do identyfikacji błędów znanych, należy zatem ekstrapoliować na całą populację, podobnie jak każdy inny błąd losowy.</td>
</tr>
</tbody>
</table>

| Istotność | Błędy są istotne, jeżeli przekroczy pewien poziom błędu, który uznawany jest za dopuszczalny. Poziom istotności wynoszący maksymalnie 2% ma zastosowanie do wydatków zadeklarowanych Komisji w okresie odniesienia. Instytucja audytowa może rozważyć zmniejszenie istotności do celów planowania (błąd dopuszczalny). Istotność stosuje się jako próg do porównania błędu przewidywanego w wydatkach. |

| Maksymalny dopuszczalny błąd (TE) | Maksymalny dopuszczalny błąd, który można znaleźć w populacji w danym roku, tj. poziom, powyżej którego populację uznaje się za obciążoną istotną nieprawidłowością. Przy poziomie istotności wynoszącym 2% wspomniany maksymalny dopuszczalny błąd wynosi zatem 2% wydatków zadeklarowanych Komisji dla danego okresu odniesienia. |

<p>| Błąd | Posiada takie samo znaczenie jak błąd. |
| Metoda doboru próby na podstawie jednostki monetarnej (MUS) | Jest to metoda statystycznego doboru próby, w której wykorzystuje się jednostkę monetarną jako pomocniczą zmienną w zakresie doboru próby. Podejście to opiera się zazwyczaj na systematycznym doborze próby z prawdopodobieństwem proporcjonalnym do wielkości (PPS), tj. proporcjonalnie do wartości monetarnej jednostki próby (w przypadku pozycji o wyższej wartości istnieje większe prawdopodobieństwo wyboru). |</p>
<table>
<thead>
<tr>
<th>Pojęcie</th>
<th>Definicja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wieloetapowy dobór próby</td>
<td>Dobór próby na wielu etapach, przy czym jednostki próbę zostają na każdym etapie objęte doboru podpróbę z (większych) jednostek wybranych na poprzednim etapie. Jednostki próby należące do pierwszego etapu nazywane są jednostkami pierwszorzędnymi lub jednostkami z pierwszego etapu; podobnie jest w przypadku jednostek należących do drugiego etapu itd.</td>
</tr>
<tr>
<td>Populacja</td>
<td>Do celów doboru próby populacja obejmuje zadeklarowane Komisji wydatki na operacje w ramach programu lub grupy programów w okresie odniesienia, z wyjątkiem ujemnych jednostek próby (jak wyjaśniono poniżej w sekcji 4.6) oraz jeżeli procedury proporcjonalnej kontroli określone w art. 148 ust. 1 RWP i art. 28 ust. 8 rozporządzenia delegowanego (UE) nr 480/2014 mają zastosowanie w kontekście doboru próby, który przeprowadzono dla okresu programowania 2014–2020.</td>
</tr>
<tr>
<td>Liczebność populacji (N)</td>
<td>Jest to liczba operacji lub wniosków o płatność uwzględnionych w wydatkach zadeklarowanych Komisji w okresie odniesienia. Jeżeli populacja została podzielona na warstwy, indeks h stosuje się do oznaczenia odnośnej warstwy: $N_h, h = 1,2,\ldots,H$, gdzie H oznacza liczbę warstw.</td>
</tr>
<tr>
<td>Planowana dokładność</td>
<td>Maksymalny planowany błąd próby przy ustalaniu liczebności próby, tj. maksymalne odchylenie między rzeczywistą wartością populacji a szacunkiem uzyskanym na podstawie danych z próby. Zazwyczaj jest to różnica maksymalnego dopuszczalnego błędu i błędu oczekiwano, a jej wartość powinna być niższa niż poziom istotności (lub mu równa).</td>
</tr>
<tr>
<td>Pojęcie</td>
<td>Definicja</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>(Efektywna) dokładność (SE)</td>
<td>Jest to błąd, który wynika z faktu, że przedmiotem obserwacji nie jest cała populacja. W rzeczywistości dobór próby zawsze wiąże się z błędem oszacowania (ekstrapolacji), ponieważ przy ekstrapolacji na całą populację audytor opiera się na danych z próby. Ten efektywny błąd próby wskazuje na różnicę między prognozą dotyczącą próby (szacunkiem) a rzeczywistym (nieznanym) parametrem populacji (wartość błędu). Odpowiada on niepewności w zakresie prognozowania wyników dla populacji.</td>
</tr>
<tr>
<td>Błąd przewidywany/ekstrapolowany (EE)</td>
<td>Błąd przewidywany/ekstrapolowany oznacza szacowany wpływ błędów losowych na poziomie populacji.</td>
</tr>
<tr>
<td>Przewidywany błąd losowy</td>
<td>Przewidywany błąd losowy stanowi wynik ekstrapolacji błędów losowych wykrytych w próbie (w audycie operacji) na całą populację. Procedura ekstrapolacji/prognozowania jest uzależniona od zastosowanej metody doboru próby.</td>
</tr>
<tr>
<td>Błąd losowy</td>
<td>Błędy, których nie uznaje się za błędy systemowe, znane lub nietypowe, są zaliczane do kategorii błędów losowych. Koncepcja ta zakłada prawdopodobieństwo wystąpienia błędów losowych wykrytych w próbie objętej audytem również w populacji nieobjętej audytem. W związku z tym błędy te należy uwzględnić w obliczeniach prognozy błędów.</td>
</tr>
<tr>
<td>Pojęcie</td>
<td>Definicja</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Okres odniesienia</td>
<td>Pojęcie to odnosi się do okresu, w odniesieniu do którego instytucja audytowa musi zapewnić pewność systemu.</td>
</tr>
<tr>
<td></td>
<td>W przypadku okresu programowania 2007–2013 okres odniesienia odpowiada rokowi N, do którego odnosi się RSA złożone do końca roku N+1; wyjątki od tej reguły stosuje się w przypadku pierwszego RSA i ostatniego sprawozdania z kontroli, które należało złożyć do dnia 31 marca 2017 r. (zob. wytyczne dotyczące zamknięcia).</td>
</tr>
<tr>
<td></td>
<td>W przypadku okresu programowania 2014–2020 okres odniesienia odpowiada rokowi obrachunkowemu trwającego w dniach 1 lipca roku N do 30 czerwca roku N+1, do którego odnosi się RSA złożone do dnia 15 lutego roku N+2.</td>
</tr>
<tr>
<td>Współczynnik wiarygodności (RF)</td>
<td>Współczynnik wiarygodności RF stanowi stałą z rozkładu Poissona dla oczekiwanej braku błędu. Jest on uzależniony od poziomu ufności, a wartości, które należy zastosować w poszczególnych sytuacjach, można znaleźć w sekcji 6.3.4.2 niniejszych wytycznych.</td>
</tr>
<tr>
<td>Ryzyko istotnego błędu</td>
<td>Jest to iloczyn ryzyka nieodłącznego i ryzyka zawodności systemów kontroli wewnętrznej. Ryzyko istotnego błędu jest związane z wynikiem audytów systemu.</td>
</tr>
<tr>
<td>Poziom błędu próby</td>
<td>Poziom błędu próby odpowiada ilości wykrytych nieprawidłowości w ramach audytów operacji podzielonej przez kwotę wydatków objętych audytem.</td>
</tr>
<tr>
<td>Liczebność próby (n)</td>
<td>Stanowi liczbę jednostek/pozycji zawartych w próbie. Jeżeli dokonano stratyfikacji populacji, stosuje się indeks h do oznaczania poszczególnych warstw, gdzie n_h, h = 1,2, ..., H i H oznacza liczbę warstw.</td>
</tr>
<tr>
<td>Błąd próby</td>
<td>Posiada takie samo znaczenie jak dokładność.</td>
</tr>
<tr>
<td>Pojęcie</td>
<td>Definicja</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Interwał losowania (SI)</td>
<td>Interwał losowania to etap doboru stosowany w metodach doboru próby opartych na doborze systematycznym. W odniesieniu do metod wykorzystujących prawdopodobieństwo doboru proporcjonalne do wydatków (podobnie jak metoda MUS) interwał losowania stanowi stosunek całkowitej wartości księgowej w populacji do liczebności próby.</td>
</tr>
<tr>
<td>Metoda doboru próby</td>
<td>Metoda doboru próby obejmuje dwa elementy: schemat doboru próby (np. równe prawdopodobieństwo, prawdopodobieństwo proporcjonalne do wielkości) i procedurę prognozowania (szacowania). Oba te elementy łącznie stanowią ramy obliczania liczebności próby i prognozowania błędu.</td>
</tr>
<tr>
<td>Okres doboru próby</td>
<td>W kontekście doboru próby obejmującego dwa okresy lub wiele okresów okres (okresy) doboru próby odnosi się do części okresu odniesienia (zwykle kwartał, czteromiesięczny okres lub półrocze). Okres doboru próby może być również taki sam jak okres odniesienia.</td>
</tr>
<tr>
<td>Jednostka próby</td>
<td>Jednostką próby jest jedną z jednostek, na które dzieli się populację na potrzeby doboru próby. Jednostką próby może być operacja, projekt w ramach operacji lub wniosek o płatność złożony przez beneficjenta.</td>
</tr>
<tr>
<td>Dobór losowy prosty</td>
<td>Dobór losowy prosty jest metodą statystycznego doboru próby. Jednostką statystyczną objętą próbą jest operacja (lub wniosek o płatność, jak wyjaśniono powyżej). Jednostki w próbie są dobierane losowo z równym prawdopodobieństwem.</td>
</tr>
<tr>
<td>Odchylenie standardowe (σ lub s)</td>
<td>Odchylenie standardowe jest miarą zmiennosci populacji wokół jej średniej. Można je liczyć z zastosowaniem błędów lub wartości księgowych. W przypadku obliczeń dla populacji odchylenie standardowe oznacza się jako σ, zaś w przypadku obliczeń dla prób – jako s. Im większe odchylenie</td>
</tr>
<tr>
<td>Pojęcie</td>
<td>Definicja</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>standardowe, tym większa heterogeniczność populacji (próby).</td>
<td></td>
</tr>
<tr>
<td>Stratyfikacja</td>
<td>Polega na podziale populacji na kilka grup (warstw) według wartości zmiennej pomocniczej (zwykle zmiennej objętej audytom, tj. wartości wydatków na operację w ramach programu objętego audytom). W warstwowym doborze próby z każdej warstwy losuje się niezależne próby. Główny cel stratyfikacji ma charakter dwojaki: z jednej strony pozwala ona zazwyczaj na zwiększenie dokładności (w przypadku takiej samej liczebności próby) lub zmniejszenie liczebności próby (w przypadku takiego samego poziomu dokładności), a z drugiej strony gwarantuje, że subpopulacje odpowiadające każdej warstwie są reprezentowane w próbie.</td>
</tr>
<tr>
<td>Błąd systemowy</td>
<td>Błędy systemowe to błędy wykryte w próbie objętej audytom, które wywierają wpływ na populację nieobjętą audytom i występują w wyraźnie określonych i podobnych okolicznościach. Błędy te mają zazwyczaj wspólną cechę, np. rodzaj operacji, miejsce lub czas. Z reguły są one powiązane z nieskutecznymi procedurami kontroli w ramach (części) systemów zarządzania i kontroli.</td>
</tr>
<tr>
<td>Błąd dopuszczalny</td>
<td>Błąd dopuszczalny jest maksymalnym dopuszczalnym poziomem błędu, który może być wykryty w populacji. Przy poziomie istotności wynoszącym 2% wspomniany maksymalny dopuszczalny błąd wynosi zatem 2% wydatków zadeklarowanych Komisji dla danego okresu odniesienia.</td>
</tr>
<tr>
<td>Dopuszczalna nieprawidłowość</td>
<td>Posiada takie samo znaczenie jak błąd dopuszczalny.</td>
</tr>
<tr>
<td>Całkowita wartość księgowa</td>
<td>Całkowite wydatki zadeklarowane Komisji w odniesieniu do programu lub grupy programów, odpowiadające populacji, w odniesieniu do której dokonano doboru danej próby.</td>
</tr>
<tr>
<td>Pojęcie</td>
<td>Definicja</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Łączny poziom błędu (TER)</td>
<td>Łączny poziom błędu odpowiada sumie następujących błędów: przewidywanych błędów losowych, błędów systemowych oraz nieskorygowanych błędów nietypowych. Instytucja audytowa powinna określić liczbę wszystkich błędów i uwzględnić je w TER, z wyjątkiem skorygowanych błędów nietypowych. Posiada takie samo znaczenie jak całkowity przewidywany poziom błędu (TPER) lub całkowita oczekiwana nieprawidłowość.</td>
</tr>
<tr>
<td>Dwuetapowy dobór próby</td>
<td>Oznacza dobór próby na dwóch etapach, w ramach którego jednostki próby z drugiego etapu (jednostki podpróby) wybiera się z jednostek głównej próby. W przypadku audytów EFSI typowym przykładem dwuetapowego doboru prób jest stosowanie operacji na pierwszym etapie i stosowanie faktur jako jednostki podpróby na drugim etapie.</td>
</tr>
<tr>
<td>Górna granica błędu (ULE)</td>
<td>Ta górna granica jest równa sumie błędu przewidywanego i dokładności ekstrapolacji. Posiada takie samo znaczenie jak górna granica przedziału ufności, górna granica nieprawidłowości populacji i górna granica nieprawidłowości.</td>
</tr>
<tr>
<td>Wariancja (σ^2)</td>
<td>Kwadrat odchylenia standardowego.</td>
</tr>
<tr>
<td>z</td>
<td>Jest to parametr z rozkładu normalnego związany z poziomem ufności ustalonym na podstawie audytów systemu. Możliwe wartości z przedstawiono w sekcji 5.3 niniejszych wytycznych.</td>
</tr>
</tbody>
</table>