Silvia Priori is currently a Full Professor of Cardiology at the University of Pavia (Italy) and is working as a Scientific Director of the 16 hospitals of the Fondazione Salvatore Maugeri network: in this capacity, she is responsible to define and implement the research strategy and to interact with the Ministry of Health and the Ministry of Science and Research. In the same Institution she is also Head of the Cardiology Division and of the Molecular Cardiology and Cellular Electrophysiology Laboratories. In more, she has a position of Professor of Medicine at New York University and Director of Cardiovascular Genetics at the Langone Medical Center, where she is Director of the Cardiovascular Genetic Program.

Professor Priori is a Member of the Panel Committee for the Horizon 2020 Program of the European Community.

During the last 20 years she has been involved in the study of inherited arrhythmias and has investigated the molecular basis of cardiac excitability both at clinical and experimental level. Her research laboratories, in Italy and in New York, have contributed to define fundamental mechanisms of arrhythmogenesis and abnormalities of intracellular calcium that cause sudden cardiac death patients with inherited arrhythmias.

Over the years with her clinical research teams in Italy and in New York they have performed genotype-phenotype correlation studies leading to the identification of novel risk stratification schemes and have identified genotype-based clinical management strategies in patients with inherited arrhythmogenic disorders.

Professor Priori’s teams have also contributed to the identification of novel genes for inherited arrhythmogenic diseases, they discovered for example that mutations in the RyR2 gene encoding for the human cardiac ryanodine receptor cause a disease called catecholaminergic polymorphic VT (CPVT), that mutations in the gene CACNA1C encoding the alpha subunit of the human L-Type calcium channel cause Timothy syndrome and that short QT Syndrome type 3 is caused by mutations in the KCNJ2 gene.

More recently, her research has focused on the development of molecular therapies for inherited arrhythmias and extensive pre-clinical studies have identified a curative therapy for mice affected by recessive CPVT that may now be considered for phase I clinical study.