

WATER HARMONY ERASMUS+

Generic curricula of 6 water courses

GENERIC CURRICULA

Version 2

Revised 13-Nov-16 based on inputs from the Project Meeting in Poland

Water resources management

Water treatment

Wastewater treatment

Industrial wastewater treatment

Innovation and entrepreneurship

Academic writing

Water resources management

Lecture 1. Availability of water

- global, regional and national status
- Water cycle and water balance
- Water scarcity
- Drivers for scarcity and solutions

Lecture 2. The Water Resources System

- Water users
- Water quality and quantity issues
- Ground water management & use
- Surface water management & use
- Rainwater harvesting
- Desalination
- Water reuse
- Remediation of water resources
- Pollution issues

Lecture 3. Hydrology

- Hydrologic processes
- Importance and application of hydrology in env eng and water management
- Hydro-meteorological basics of water balance
- basics of hydrodynamics and hydrostatics
- Storm water and floods

Lecture 4. Water Governance

- Stakeholders
- Decision making process
- Transboundary water resources
- Water conflicts

Lecture 5. Water and Environmental Law

- Right to water
- Need for sharing & sound management
- Legal basis including EU directives
- Water use and discharge permits
- Conflict Management and Negotiations

Lecture 6. Water Economics

- Relation to global and national economics
- Value of water

Financing water resources (and supply

Lecture 7. Managing resources

- Meeting needs in urban areas and rural areas
- Water Resources Planning
- Protection of water
- Water in agriculture
- Water Harvesting
- Water reuse and recycling

Lecture 8. Water quality monitoring

- Need
- Sampling of water
- Tools: lab, online

Lecture 9. Water Systems Modelling

- Use of modelling tools
- Water Resources Planning
- GIS and remote sensing
- Demand management
- Pollution abatement

Lecture 10. Special issues

- Adaptation to Climate Change
- Climate resilience of water resources and infrastructure
- Cost of adaptation?

Lecture 11. Integrated Water Resources Management

- Introduction
- Principles
- Examples

Water supply

Lecture 1: Introduction to water supply (should be a summary taken from the WRM course)

- Water a scarce resource and Water Resources Management
- Access to safe drinking water: national and global concern
- Needs and users of water
- Water conflicts among users
- Transboundary water conflicts
- Point and diffuse pollution
- Integrated water resources management

Lecture 2. Water sources and pollution

- Ground water and surface water
- Seawater and reuse of wastewater
- Natural sources of pollution
- Pollution from domestic wastewater
- Agriculture as a pollution source: pesticides and nutrients
- Industrial pollution: heavy metals and toxic compounds
- Other sources: surface runoff, leachates, etc

Lecture 3: Status and needs

- Need for treatment: health, legal and aesthetic
- Legal aspects: national, regional and international practices
- Water quality monitoring

Lecture 4: Water chemistry

- Chemistry of water
- Chemical equilibriums relevant for water and water treatment
- RedOx reactions
- Reaction kinetics

Lecture 5: Planning of water supply

- Introduction and definitions
- Planning of water supply systems
- Basis of volume-design period, Design population, Design demand, Peaking factors, etc
- Sustainability of water supply system
- · Residuals management

Lecture 6: Water intakes and distribution systems

- Water intakes: lakes, rivers and ground water
- Pipe materials and design
- Pumping designs

- Network design
- Surges in networks
- Leakage detection

Lecture 7: Water treatment - introduction

- History of water treatment
- Definitions: mechanical, biological and chemical processes
- Basics of reactor designs: CSTR vs PFR
- Removal of microorganisms
- Removal of particles
- Removal of NOM and other organic matter
- Removal of inorganic matter (Mn, Ferric, Nitites, Flour, Arsenic etc)
 Removal of hardness
- Corrosion control
- Control of biofilms in distribution systems

Lesson 8: Filtration

- Theory of filtration
- Slow sand filters
- Rapid and multi-media filters
- Filtration breakthrough
- Process configurations

Lesson 9: Coagulation

- Coagulation mechanisms
- Coagulants and coagulation chemistry
- Process configurations

Lesson 10: Membrane processes

- Definitions: MF, UF, NF, RO
- Technological configurations
- Membrane fouling
- Desalination and reuse

Lesson 11: Adsorption

- Principals of adsorption
- Adsorbents: PAC and GAC
- Area of usage
- Process configurations

Lesson 12: Ion exchange

Principles of ion exchange

- Ion exchange resins
- Area of usage
- Process configuration
- Regeneration

Lesson13: Biological processes

- Biological processes in water supply
- Area of usage
- Process configurations

Lesson 14: Disinfection

- Microorganisms required to be inactivated
- Chlorination, residual chlorine
- Ozonation
- UV
- Disinfect ion by-product

Lesson 15: Combined processes

- Requirements for removal of multiple pollutants
- Examples of treatment plants: flow sheets and removal efficiencies
- Factors to consider when combining unit processes

Lesson 16: Residuals management

- Production of residuals: quantities and qualities
- Sludge treatment methods
- Reuse

Lesson 17: Utility management

- Management of a treatment plant
- Surveillance and control
- Water quality and process monitoring
- Models and simulation programs
- Reporting

Lesson 18: Operation and maintenance

- Challenges in operation and maintenance (O&M)
- · Identification of problems, reasons and trouble-shooting

Lesson 19: Economics in water treatment

- Investment costs
- O&M costs
- Costing of WWTPs

Lesson 20: Impact of climate change

- Influence of quantities
- Influence on qualities
- Adaptation measures

Lesson 21: technological trends

- Physical footprint
- Carbon footprint
- Technological trends

Other related activities:

- Visits to WTPs
- Lab exercise
- Term papers/project work

Wastewater treatment / Wastewater engineering

Lecture 1: What is wastewater

- Origin of wastewaters: domestic and industrial
- Quantities of ww produced from various sources
- Qualities of ww produced from various sources

Lecture 2: Status and needs

- National, regional and international status of wastewater treatment
- Challenges with wastewater: environmental, health and aesthetic aspects
- Legal aspects: national, regional and international practices

Lecture 3: Water chemistry

- Basic chemistry
- Chemical equilibriums
- Oxidation reactions
- Reaction kinetics
- Oxygen depletion, Eutrophication and other influences on water quality

Lecture 4: Wastewater management

- Black and grey wastewater
- Storm water
- Collection and transport of wastewater
- Decentralized vs centralized systems
- Environmental microbiology
- Residuals management

Lecture 5: Micro pollutants

- Origin and fate of micro pollutants (existing and emerging)
- Impact on environment and human health
- Legal aspects
- Fate and removal during treatment processes

Lecture 6: Wastewater treatment – introduction

- History of ww treatment
- Definitions: primary, secondary and tertiary treatment
- Definitions: mechanical, biological and chemical processes
- Removal of particles, phosphates, nitrogen, organic matter etc
- Examples of unit processes and process combinations
- Design approaches in wastewater treatment

Lecture 7. Wastewater transport – basics

- Sewer functions
- Storm water management and floods
- Leakages and sewer renewal
- · Sewer design in general
- Sewer modelling tools

Lesson 8: Mechanical processes

- Screening and comminution
- Sand and grit removal
- Sedimentation
- Flotation
- Filtration
- Membrane processes

Lesson 9: Chemical processes - coagulation

- Coagulation mechanisms
- Coagulants and coagulation chemistry
- Process configurations

Lesson 10: Chemical processes - other

- Chemical oxidation
- Ammonia stripping
- · Disinfection of ww

Lesson 11: Biological processes

- Characterization of processes
- Suspended and attach growth processes
- Aerobic and anaerobic processes
- Kinetics
- · Removal of organic matter

Lesson 12: Biological processes for nutrient removal

- Nitrification
- Denitrification
- Biological phosphates removal
- Process configurations

Lesson 13: Combined processes

- Requirements for removal of multiple pollutants
- Examples of treatment plants: flow sheets and removal efficiencies
- Factors to consider when combining unit processes

Lesson 14: Decentralized wastewater treatment

- The need and status
- Septic tanks and basic solutions
- Source separation
- Small scale WWT plants
- Wetlands
- Advanced systems

Lesson 15: Industrial wastewater

- Qualities and quantities
- Treatment requirements
- Specific process combinations

Lesson 16: Residuals management

- Production of residuals: quantities and qualities
- Sludge treatment methods
- Sludge as a resource

Lesson 17: Reuse and recycling

- Reuse of wastewater
- Recovery of nutrients from sludge
- Energy production

Lesson 18: Utility management

- Management of a treatment plant
- Surveillance and control: sampling and analysis and statistical methods
- Water quality and process monitoring
- Models and simulation programs
- Reporting

Lesson 19: Operation and maintenance

- Utility management
- Challenges in operation and maintenance (O&M)
- Identification of problems, reasons and trouble-shooting

Lesson 20: Economics in wastewater treatment

- Investment costs
- O&M costs
- Costing of WWTPs

Lesson 21: Project planning

- Planning stages
- Basis of volume-design period, Design population, Design demand, Peaking factors, etc.

- Sustainability of wastewater systems
- Design basics
- Design tools

Lesson 22: Impact of climate change

- Influence of quantities
- Influence on qualities
- Adaptation measures

Lesson 23: Industrial trends

- Physical footprint
- Carbon footprint
- Technological trends

Other related activities:

- Visits to WWTPs
- Lab exercise
- Term papers/project work

Industrial wastewater management

Lecture 1: Water and wastewater in industries

- Process water: quantities and qualities
- Wastewater: sources of pollution
- Wastewater: quantities and qualities
- Environmental, health and legal aspects

Lecture 2: Water treatment needs

- Industries with specific water quality requirements: typical industrial branches
- Sources of water (lakes, rivers, ground water and reused)
- Challenges with quantities

Lecture 3: Legal aspects

- Legislations
- EU directives
- Permit authorities
- Discharge permits
- Discharge fees and fines

Lecture 4: European tools

- IPPC directive: Integrated Pollution Prevention and Control
- Mandatory and specific conditions
- Obligations to access to information
- BAT- Best Available Technologies
- BREFF- Best available techniques reference document

Lecture 5: Water treatment methods

- Mechanical
- Chemical
- Biological
- Disinfection
- · Removal of taste, colour and odour
- Modification of hardness, pH etc

Lecture 6: Industrial wastewater

- Types of industrial wastewater
- Pollution loads and quantities from typical industries
- Problems associated with various industrial wastewater

Lecture 7: Wastewater management strategies

- Polluter Pays Principle
- Cleaner technology vs end-of-pipe
- Principles of cleaner technology
- Principles of end-of-pipe concepts: centralized vs decentralised
- Discharge options: direct, treated, untreated to sewers, pre-treated to sewers

Lecture 8: Wastewater treatment (could be 3-6 lectures)

- Components in wastewater and treatment options
- Removal of solids
- Removal of dissolved inorganic substances
- Removal of dissolved organic substances

Lecture 9: Selected industries: basics on quality, challenges and processes

- Dairies
- Food processing
- Tanneries
- Dying
- Breweries
- Slaughterhouses
- Pulp and paper
- Metal processing
- Chemical industries

Lecture 10: Residuals management

- Reuse of water
- Sludge as a resources
- Recovery of resources
- Recovery and production of energy

Lecture 11: Analysis and surveillance

- Legal requirements
- Sampling techniques
- Analytical methods (most used)
- Online monitoring
- Statistical methods in analysis

Innovation and entrepreneurship

Lecture 1: Introduction to innovation

- Definitions
- Basic research to innovation
- Creativity and innovation
- Dynamics of technological innovation
- Industrial implications of technological innovation
- Competitive implications of market and technology dynamics

Lecture 2: Introduction to entrepreneurship

- Definitions
- Commercialisation of research results
- Entrepreneurship fundamentals
- Entrepreneurship as an economic and social phenomenon
- Entrepreneurship and Academia
- What is social entrepreneurship?

Lecture 3: Innovation and entrepreneurship examples

- Innovation policy, innovation systems, and context.
- Entrepreneurship and small business development: concept, theory, definition.
- National and Regional innovation policy
- Innovation and Entrepreneurship around the world

Lecture 4: Exploring and creating innovation

- Overview of best practices: Creating an innovation mind-set
- Developing an innovation strategy
- Igniting innovation within universities
- Instilling a leadership strategy to create a culture of innovation
- Using Innovation to create customer value
- Bringing innovation to life in an organization

Lecture 5: Developing an entrepreneur in you

- Identifying new opportunities from intentions to actions
- An entrepreneurs' passion and characteristics
- The psychology of entrepreneurship
- Communicating your ideas from elevator pitch to business plan
- Entrepreneur's decision making tactics and persistence
- Balance in merit from academic publications and entrepreneurship
- The Founder's Dilemma

The Entrepreneurial Exit

Lecture 6: The Entrepreneurial Organization

- Developing your Company:
- Origin and circulation of ideas: idea processing from new idea to a new firm
- Firm development stages
- Market research and competitive analysis; market segmentation
- Revenue models and pricing, sales and distribution strategy

Lecture 7: Business development

- Firm Development Instruments and tools
- The Business Plan
- The Executive Summary
- The Business Plan Presentation
- The Investor Pitch
- Legal & tax aspects of the new venture
- Innovative structures of entrepreneurial organizations
- Innovation in water industry- examples/case studies

Lecture 8: Safeguarding your ideas, innovations and rights

- The intellectual property system, Industrial property
- Non-Disclosure Agreements
- Copyright and related rights. Non-traditional intellectual property objects
- patenting and pattern description
- product design and prototype development
- Protection of rights to inventions and utility mode
- Alternatives to patenting
- Sharing of ownership, user and commercial rights in academia

Lecture 9: Financing innovation and commercialization

- Innovation, entrepreneurship and economic growth; Innovation as economic resource
- Economic constraints of start-up firms
- Financing Aspects of Entrepreneurship
- Financial aspects of entrepreneurship
- Financing mechanisms during firm life
- Introduction venture capital investments; Venture cycle, VC performance
- Innovative financing instruments: crowd financing
- Economic policy in innovation and entrepreneurship Policy design models
- Technology Transfer tools

Academic writing and presentations

Lecture 1: Introduction: ourselves as writers

- Barriers to writing and good writing practices
- Principles of critical reading and self-critical writing
- Writing strategies

Lecture 2: Structuring a manuscript

- IMRAD (introduction, methods, results, and discussion) standard components of a publishable research manuscript
- Argue how to argue and develop a thesis statement
- Tables and Figures how to make your writing understood

Lecture 3: Writing styles

- · Clarity six principles of clear writing
- Cohesion how to make your writing fluid
- Punctuation how to make your writing accurate
- Concision & Precision how to make your writing tight and right

Lecture 4: Analysing texts

- Giving feedback as critical friends
- Writing with style

Lecture 5: Publishing

- How to find a suitable publication
- Preparing papers for submission
- What do the editors expect? How do reviewers review?
- The peer-reviewed system
- Plagiarism control
- Formatting styles and requirements
- Experiences of submitting papers to academic journals

Lecture 6: Products

- Publications (peer-reviewed/not, notes etc)
- Thesis
- Brochures
- Popular-scientific publications
- Presentations
- Newspapers and other media (web, tv, radio)

Lecture 7: Improving your publication

• Concision & Precision - how to make your writing tight and right

• Thesis - summing up the principles for a thesis

Lecture 8: Feedback and conclusions

- Feedback session, to review progress on the papers and discuss reflections on academic writing.
- Follow up work