

C for Embedded Systems

Ir. Sofie Beerens

 Embedded systems

Table of Contents
List of illustrations ... 9

List of figures ... 9

List of tables .. 11

List of code examples .. 12

Introduction ... 17

1 Programming languages .. 19

1.1 Introduction ... 19

1.2 Machine languages (first generation) ... 20

1.3 Assembly languages (second generation) 20

1.4 High-level languages ... 21

1.5 Processing a high-level language program 22

1.5.1 Phase 1: creating a program .. 22

1.5.2 Phase 2: translate the source code into machine language 22

1.5.3 Phase 3: linking .. 22

1.5.4 Phase 4: execution ... 23

2 Program design ... 24

2.1 Algorithms ... 24

2.2 Structured program development ... 24

2.3 Documentation ... 25

2.4 Program .. 26

3 Programming in C: an introduction 27

3.1 A first program ... 27

3.1.1 Comments ... 27

3.1.2 #include <stdio.h> .. 28

3.1.3 int main(void){ } .. 28

3.1.4 printf(“Hello, world\n”); .. 28

3.2 Example 2 ... 29

3.2.1 Variable definitions ... 29

3.2.2 Assignment statements ... 30

3.2.3 printf("%f mile equals %f kilometer\n", miles, km); 30

3.3 Example 3 ... 30

3.4 Example 4 ... 32

3.5 Example 5 ... 32

4 Basic concepts of C programming .. 35

4.1 Indentation .. 35

4.2 Identifiers .. 35

4.3 Variables ... 36

4.3.1 Concept ... 36

4.3.2 Variable definition and data types ... 36

4.3.3 Variable initialization ... 38

4.3.4 Example: variables.c ... 38

4.4 Expressions .. 40

4.4.1 Arithmetic expressions .. 40

4.4.2 Conditional expressions ... 41

4.4.3 Precedence .. 42

4.5 Assignment statements ... 43

4.5.1 The assignment operator ‘=’ .. 43

4.5.2 Arithmetic assignment operators... 44

4.6 Typecasting .. 45

4.7 Simple input and output .. 46

4.7.1 printf() ... 46

4.7.2 scanf() ... 48

4.7.3 gets(), puts() .. 49

4.7.4 getchar(), putchar() .. 50

4.8 Exercises ... 50

5 Controlling the program flow ... 55

5.1 Flowchart ... 55

5.2 Selection statements ... 57

5.2.1 The if selection statement .. 57

5.2.2 The if … else selection statement ... 58

5.2.3 The switch statement ... 63

5.2.4 Exercises ... 66

5.3 Repetition statements ... 70

5.3.1 The for statement .. 70

5.3.2 The while statement ... 72

5.3.3 The do … while statement .. 75

5.3.4 break and continue ... 77

5.3.5 Loop examples ... 80

5.3.6 Exercises ... 82

6 Functions ... 86

6.1 Standard functions .. 86

6.1.1 Mathematical standard functions ... 87

6.1.2 Other standard functions ... 89

6.1.3 Generation of random numbers .. 90

6.2 Programmer-defined functions .. 93

6.2.1 Void functions without parameters .. 94

6.2.2 Void functions with parameters ... 95

6.2.3 Functions with return value. ... 97

6.3 Storage classes and scope of variables 98

6.3.1 Storage class auto – local variables .. 98

6.3.2 Storage class extern – global variables 98

6.3.3 Storage class register ... 99

6.3.4 Storage class static ... 100

6.4 Structured programming example ... 101

6.5 Exercises ... 104

7 Arrays .. 109

7.1 Definition ... 109

7.2 Array declaration .. 109

7.3 Array initialization ... 110

7.4 Array usage ... 110

7.5 Operations on arrays ... 112

7.6 Passing arrays to functions .. 112

7.7 Array boundaries .. 115

7.8 Programming examples using arrays 116

7.8.1 The sieve of Eratosthenes .. 116

7.8.2 Merging arrays ... 117

7.9 Exercises ... 119

8 Strings ... 123

8.1 String constant ... 123

8.2 String variable .. 123

8.3 Passing strings to functions .. 125

8.4 String functions .. 126

8.4.1 strlen .. 126

8.4.2 strcpy .. 126

8.4.3 strcmp .. 127

8.5 Programming examples using strings 127

8.5.1 Demonstration of several string functions 127

8.5.2 Sorting 2 strings alphabetically ... 128

8.6 Exercises ... 129

9 Multidimensional arrays .. 130

9.1 Two dimensional arrays of numbers .. 130

9.1.1 Declaration .. 130

9.1.2 Initialization ... 131

9.1.3 Matrix usage .. 131

9.1.4 Passing a 2D array to a function ... 132

9.1.5 2D array example: Pascal’s triangle .. 134

9.2 Arrays of strings ... 136

9.3 Exercises ... 138

10 Sorting and searching arrays ... 143

10.1 Sorting arrays of numbers ... 143

10.2 Sorting arrays of strings .. 145

10.3 Binary search ... 147

10.4 Exercises ... 150

11 Pointers ... 151

11.1 Definition ... 151

11.2 Declaration and initialization .. 152

11.2.1 Declaration .. 152

11.2.2 Initialization ... 152

11.3 Address and dereference operator .. 152

11.4 Passing arguments to functions .. 154

11.4.1 Pass by value ... 154

11.4.2 Pass by reference ... 156

11.5 Pointers and arrays ... 157

11.6 Pointer versions of some string functions 158

11.6.1 strlen .. 158

11.6.2 strcpy .. 158

11.6.3 strcmp .. 159

11.7 Pointers to functions.. 159

11.7.1 Function pointers .. 159

11.7.2 Array of function pointers .. 160

11.7.3 Function pointers as function argument 161

11.8 Exercises ... 163

12 Comma operator, const, typedef, enumerations and bit

operations .. 168

12.1 The comma operator ... 168

12.2 typedef ... 168

12.3 Type qualifiers .. 169

12.4 The enumeration type ... 169

12.5 Bit operations ... 172

12.5.1 Bitwise AND ... 172

12.5.2 Bitwise OR ... 172

12.5.3 Bitwise XOR ... 173

12.5.4 One’s complement .. 173

12.5.5 Left shift .. 173

12.5.6 Right shift .. 174

12.5.7 Example .. 174

12.5.8 Masking ... 175

12.6 Exercises ... 176

13 The C preprocessor .. 179

13.1 The C preprocessor ... 179

13.2 #define preprocessor directive ... 179

13.2.1 Symbolic constants ... 179

13.2.2 Macros .. 180

13.3 #include preprocessor directive ... 182

13.4 Conditional compilation .. 182

13.4.1 #ifdef preprocessor directive .. 183

13.4.2 #if preprocessor directive ... 183

13.5 Exercises ... 184

14 File handling in C ... 185

14.1 File pointer ... 185

14.2 Opening and closing a text file .. 186

14.3 Read and write 1 symbol to a text file 188

14.3.1 Read one symbol: fgetc .. 188

14.3.2 Write one symbol: fputc ... 189

14.4 Read and write a full line to a text file 190

14.4.1 Read a full line: fgets ... 190

14.4.2 Write a full line: fputs .. 191

14.5 Formatted read and write to a text file 192

14.5.1 Formatted printing to a file: fprintf 192

14.5.2 Formatted reading from a file: fscanf 192

14.6 stdin, stdout and stderr ... 193

14.7 Binary files versus text files ... 194

14.8 Opening and closing a binary file .. 194

14.9 Write to a binary file: fwrite ... 195

14.10 Read from a binary file: fread.. 197

14.11 More binary file functions ... 198

14.11.1 ... function fseek

 .. 198

14.11.2 ... function ftell

 .. 199

14.12 Direct access files ... 199

14.13 Exercises ... 201

15 Structures .. 204

15.1 Definition ... 204

15.2 Defining a structure .. 204

15.3 Accessing structure members ... 205

15.4 Nested structures ... 206

15.5 Structures and functions .. 207

15.6 Comparing 2 structures ... 207

15.7 Pointers to structures .. 208

15.8 Files of structures ... 209

15.9 Exercises ... 213

16 Command line arguments ... 218

16.1 argc, argv[] ... 218

16.2 Exercises ... 219

17 Dynamic memory allocation ... 221

17.1 Introduction ... 221

17.2 The function malloc .. 221

17.3 The function free ... 222

17.4 The function realloc .. 223

17.5 The function calloc .. 224

17.6 Dynamic arrays .. 225

17.7 Exercises ... 227

18 Dynamic data structures .. 229

18.1 Introduction ... 229

18.2 Linked lists .. 229

18.2.1 Definition ... 229

18.2.2 Creating a single-linked list .. 230

18.2.3 Insertion of a new node in a single-linked list 234

18.2.4 Removal of a node in a single-linked list 237

18.2.5 Double-linked list .. 238

18.2.6 Circular linked list ... 238

18.2.7 Stack .. 238

18.2.8 Queue ... 239

18.3 Exercises ... 239

Literature ... 244

Attachments ... 245

1. Visual Studio Express 2013 for Desktop 245

1.1 Creation of a new project ... 245

1.2 Creation of a new source file .. 246

1.3 Compile and run a program .. 247

2. ASCII table .. 248

List of illustrations

List of figures

Figure 1: example of machine language code 20

Figure 2: example of machine language code written in hex notation 20

Figure 3: example of assembly language code 20

Figure 4: difference between compiler and interpreter 21

Figure 5: processing flow for high-level language programs 23

Figure 6: think first, code later ... 25

Figure 7: indentation ... 35

Figure 8: lvalue and rvalue of a variable .. 36

Figure 9: difference between i++ and ++i ... 40

Figure 10: rules of precedence for operators in C 42

Figure 11: flowchart sequential program .. 56

Figure 12: flowchart if selection statement ... 57

Figure 13: flowchart if ... else statement .. 58

Figure 15: even-odd solution 2 ... 59

Figure 14: even-odd solution 1 ... 59

Figure 16: flowchart switch statement ... 63

Figure 17: flowchart switch example .. 64

Figure 18: flowchart for loop ... 70

Figure 19: flowchart for loop example .. 71

Figure 20: flowchart of while loop .. 73

Figure 21: flow chart while loop example .. 73

Figure 22: flow chart do ... while example 1 ... 75

Figure 23: flowchart break ... 77

file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828208
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828211
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828214
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828217
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828219
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828221
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828224

Figure 24: continue in while loop ... 79

Figure 25: continue in for loop ... 79

Figure 26: flowchart standard function cos example 88

Figure 27: random number generation using srand()............................ 92

Figure 28: general function principle .. 93

Figure 29: function flowchart .. 94

Figure 30: structured programming example main function 101

Figure 31: structured programming example function linear equation 101

Figure 32: structured programming example function quadratic equation102

Figure 33: structured programming example functions root calculation .. 102

Figure 34: array ‘a’ with 10 integers ... 109

Figure 35: array name ... 112

Figure 36: passing arrays to functions ... 113

Figure 37: string constant .. 123

Figure 38: string variable ... 124

Figure 39: logical structure of a 2-dimensional array 130

Figure 40: physical structure of a 2-dimensional array 131

Figure 41: flowchart looping through a matrix 132

Figure 42: Pascal's triangle ... 134

Figure 43: array of strings .. 136

Figure 44: flowchart sorting algorithm numbers 143

Figure 45: flowchart binary search algorithm 147

Figure 46: pointer principle .. 151

Figure 47: pointer to array ... 157

Figure 48: reading binary file with text editor 196

Figure 49: reading binary file with hex editor 196

file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828228
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828229
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828232
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828234
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828235
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828236
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828238
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828239
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828240
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828241
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828242
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828243
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828246
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828247
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828248
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828249
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828250
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828251

Figure 50: direct access file .. 200

Figure 51: command line arguments ... 218

Figure 52: linked list.. 229

Figure 53: double-linked list ... 238

Figure 54: circular single-linked list ... 238

Figure 55: Stack ... 238

Figure 56: queue .. 239

Figure 57: solution with 6 projects. ... 245

Figure 58: New Project window ... 245

Figure 59: application settings window .. 246

Figure 60: add new item .. 246

Figure 61: Add New Item window ... 247

List of tables

Table 1: overview of the most commonly used data types in C 37

Table 2: overview of arithmetic operators in C 40

Table 3: equality, relational and logical operators 41

Table 4: arithmetic assignment operators .. 44

Table 5: conversion specifiers ... 46

Table 6: escape sequences ... 47

Table 7: flowchart symbols ... 56

Table 8: math library functions ... 87

Table 9: bitwise operators .. 172

Table 10: file opening modes .. 186

Table 11: binary file opening modes .. 195

Table 12: arguments of function fwrite .. 195

file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828256
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828257
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828258
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828259
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828260
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828261
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828262
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828263

Table 13: arguments of function fread .. 197

Table 14: list of values to be used as origin in the function fseek 198

List of code examples

Code 1: a first C program ... 27

Code 2: code to convert 10 miles into km .. 29

Code 3: read a number of miles and convert it to km 31

Code 4: compute the sum and difference of 2 integer numbers 32

Code 5: computation of the gcd of 2 positive integer numbers 33

Code 6: example variables.c (code and screen output) 39

Code 7: typecasting example .. 45

Code 8: reading strings with gets and scanf ... 50

Code 9: example even - odd solution 1 .. 59

Code 10: example even - odd solution 2 .. 60

Code 11: example of switch .. 65

Code 12: alternative code for switch example 65

Code 13: for loop example ... 72

Code 14: while loop example .. 74

Code 15: do ... while example 1 ... 76

Code 16: do ... while example 2 ... 77

Code 17: break example .. 78

Code 18: continue statement .. 80

Code 19: loop example 1 ... 81

Code 20: loop example 2 ... 81

Code 21: example math standard library.. 89

Code 22: random number generation .. 91

Code 23: usage of srand() function .. 92

Code 24: guess the secret number .. 93

Code 25: example void functions without parameters 95

Code 26: example void function with parameters 96

Code 27: example function with return value .. 97

Code 28: difference between global and local variables 99

Code 29: register storage class ... 100

Code 30: storage class static ... 101

Code 31: structured programming example .. 103

Code 32: array usage example ... 111

Code 33: array name .. 112

Code 34: array with functions example .. 114

Code 35: array usage outside of array boundaries 115

Code 36: sieve of Eratosthenes ... 117

Code 37: merging arrays ... 119

Code 38: passing strings to functions .. 126

Code 39: string function strlen ... 126

Code 40: string function strcpy ... 126

Code 41: string example 1 ... 127

Code 42: printing 2 strings alphabetically ... 128

Code 43: reading student marks by looping through a 2D array 132

Code 44: passing a 2D array to a function .. 134

Code 45: Pascal's triangle .. 135

Code 46: sorting arrays of numbers .. 145

Code 47: sorting arrays of names ... 147

Code 48: binary search .. 149

Code 49: demonstration of & and * operators 153

Code 50: pointer usage .. 154

Code 51: pass by value .. 155

Code 52: pass by reference .. 156

Code 53: pointers and arrays ... 158

Code 54: function pointer ... 159

Code 55: array of function pointers ... 160

Code 56: function pointer as function argument (add - subtract)........... 161

Code 57: function pointer as function argument (sum of squares) 162

Code 58: example enumeration type ... 170

Code 59: example of enumeration type 2 ... 171

Code 60: example bit operations ... 174

Code 61: bit masking .. 175

Code 62: opening and closing a file ... 187

Code 63: read 1 symbol from a file ... 188

Code 64: copy a file using fgetc and fputc .. 189

Code 65: printing the content of a file line by line 190

Code 66: append a line of text to an existing text file 191

Code 67: formatted printing to a file .. 192

Code 68: formatted reading from a file .. 193

Code 69: fwrite example .. 196

Code 70: fread example .. 197

Code 71: fseek example .. 198

Code 72: ftell example .. 199

Code 73: usage of direct access files ... 201

Code 74: usage of nested structures ... 206

Code 75: example structures and functions .. 207

Code 76: passing structures to functions by reference 209

Code 77: writing structures to files .. 210

Code 78: reading structures from files ... 211

Code 79: phone numbers program with menu 213

Code 80: command line arguments ... 218

Code 81: malloc and free example .. 223

Code 82: usage of realloc .. 224

Code 83: usage of calloc .. 225

Code 84: dynamic arrays ... 226

Code 85: dynamic multidimensional array .. 226

Code 86: self-referential structure .. 229

Code 87: creation of a single-linked list ... 231

Code 88: creation of a single-linked list (improved code) 232

Code 89: creation of a single-linked list using loops 234

Code 90: using a linked list to order alphabetically 236

 17

Introduction

To understand the advantages of using C as programming language for

embedded systems, we need to go back in history.

The origin of C is closely tied to the development of the Unix operating

system. C was developed by Dennis M. Ritchie and Brian W. Kernighan.

They decided to rewrite the full Unix operating system in the B language,

developed by Ken Thompson. The need to improve the B language to

overcome some shortcomings, led to the development of C.

Although, the C language was brought to the market already in 1972, it

only became popular in 1978 after the publication of the book “The C

programming language” (written by both C language inventors).

C is a flexible, well-structured and very compact language. It was designed

to provide low-level access to memory, to provide language constructs that

map efficiently to machine instructions, and to require minimal run-time

support. Therefore, C was useful for many applications that had formerly

been coded in assembly language, such as in system programming.

Despite its low-level capabilities, the language was designed to encourage

cross-platform programming. A C program can be compiled for a very wide

variety of computer platforms and operating systems. The language has

become available on a very wide range of platforms, from embedded

microcontrollers to supercomputers.

Programming in C needs to be done very carefully. As C provides you with a

lot of freedom and flexibility, it is important to be aware of what exactly you

are doing. The C compiler assumes you are an experienced designer that

takes care of accessing hardware the correct way. A well-known saying

about C is: “C provides enough rope to hang yourself.” The aim of this

course is to provide you with the right handles to start writing your own

(complex) programs.

Many other programming languages were influenced by C like e.g. C#,

Java, JavaScript, PHP, …

Learning outcomes

At the end of this course students are able to:

 analyze existing C code and understand how an existing program

works. Students can read and predict the outcome of programs

written in C syntax.

 create a well-structured program in C code containing functions. To

accomplish this, students must be able to logically analyze concrete

problems, divide these problems into smaller sub problems, convert

each one of those sub problems into algorithms and translate each

one of those algorithms into C syntax.

 choose the appropriate data structures to represent the different

variables in the C program.

 allocate memory dynamically.

 perform operations on bits using C syntax.

 create a C program using file handling.

Assessments

The theory will be assessed in a written exam.

Questions will mainly check the comprehension of the C syntax in all its

aspects.

The practical work will be assessed in a practical exam on a computer. A C

program and corresponding flowchart must be built to solve one or more

problems. Assessment will be based on quality of the flowchart, outcome of

the program, algorithms chosen, usage of functions with parameters,

correct choice of data structures, correct memory allocation, efficiency,

programming layout, readability and reusability of the C code.

 19

1 Programming languages

Objectives

This chapter highlights the difference between computer language and

different programming languages. At the end of this chapter, one should

understand how a high-level language program is processed and the type of

errors that can occur during the different processing steps.

1.1 Introduction

In today’s life, computers can no longer be ignored. Many people have

access to a PC and use it to perform all sorts of tasks like searching the

internet for information, computing a household budget, getting in contact

with friends and family, storing pictures, …

Next to this, smaller and less obvious versions of computers can be found in

all sorts of embedded systems like smartphones, tablets, camera’s, car

control systems, heartrate monitors and more.

The reason for using computers in all these systems is that computers can

perform computations and make logical decisions much faster than human

beings can. To accomplish this, the computer needs to be driven by a

sequence of instructions called a computer program. The set of programs

enabling the usage of the computer system is referred to as software.

Programs are written in programming languages. Such a language must

contain certain elements to:

- allow efficient information storage in memory

- allow communication with the user through mouse, keyboard, screen, …

- allow reading of large amounts of data from hard disk, DVD,… and

writing results to these memory devices.

- use the processor to make computations.

Some of these languages contain instructions that are directly

understandable by computers. Other require intermediate translation steps.

1.2 Machine languages (first generation)

Machine languages can be understood directly by the computer. As different

processors have different hardware architectures, a computer can only

directly understand its own machine language.

A program written in machine language constists of a sequence of binary

processor instructions where every instruction consists of a sequence of

bits.

10100101

01100000

01100101

01100001

10000101

01100010

Figure 1: example of machine language code

The piece of code shown above is a program for a 6502 processor that adds

the content of memory location 0x60 (hexadecimal) to the content of

memory location 0x61 and stores the result in memory location 0x62.

To improve readability, these bit sequences are often written in

hexadecimal notation resulting for this example in:

A5

60

65

61

85

62

Figure 2: example of machine language code written in hex notation

As can be seen from the example above, these programs are very difficult

to understand for humans.

1.3 Assembly languages (second generation)

Assembly languages were developed to make the instructions more

readable for humans. Therefore, the sequences of bits were replaced by

symbolic codes (usually based upon English like abbreviations).

Unfortunately this results in code that is incomprehensible to computers

until translated to machine language. The translator programs needed to

accomplish this task are called assemblers.

Translating the example of figure 1 in assembly language results in:

LDA 060 (load content at memory address 0x60)

ADC 061 (add with carry to the content of memory address 0x61)

STA 062 (store result in memory address 0x62)

Figure 3: example of assembly language code

 21

1.4 High-level languages

One of the disadvantages of assembly languages is that each assembly

language instruction corresponds to exactly one machine language

instruction. As such, programs written in assembly can easily become very

long.

To speed up the process of writing programs, several high-level languages

were developed. In all of these languages, single statements can

accomplish substantial tasks. The syntax used resembles normal written

language (mostly English), but with very strict regulations.

A program written in a high-level language is incomprehensible to a

computer until translated into machine language. Depending on the high-

level languages used, this translation is accomplished with a compiler or an

interpreter. A compiler translates the complete source program at once. An

interpreter translates one instruction at the time and executes that

instruction directly.

Some examples of high-level languages:

- FORTRAN (FORmula TRANslator, 1956):

very efficient for mathematical computations

- COBOL (Common Business Oriented Language):

used mainly for administration and accounting programs

- BASIC (Beginners All-purpose Symbolic Instruction Code, 1965): very

 straight forward, but not well structured

- PASCAL (Niklaus Wirth, 1970, named after Blaise Pascal):

well-structured language, used mainly for educational purposes.

statement 1

statement 2

…
statement n

full set of
instructions

1 2

machine

language

code

execute

source

code

compiler

statement 1

statement 2

…

statement n

instructions 1 2

machine

language

code execute

source

code

interpreter

instructions 3 4 execute

Figure 4: difference between compiler and interpreter

- C (Dennis M. Ritchie and Brian W. Kerninghan, 1972):

well-structured and very efficient programming language available

for most types of machines. It is widely used to develop systems

that demand high performance, such as operating systems,

embedded systems, real-time systems and communication systems

as well as application software.

- LISP (LISt Processing Language): for “artificial intelligence”

- C++ (B. Stroustrup, 1986): C + object-oriented (OO = Object Oriented)

1.5 Processing a high-level language program

High-level language programs typically go through different phases to be

executed.

1.5.1 Phase 1: creating a program

A standard text-editor is used to enter the wanted code into an ascii file.

This file is commonly called the source code.

In this course, we will use the development environment “Visual Studio

Express 2013 for Desktop” (see attachment 1). This environment contains a

build-in editor that allows for easy program writing. All C program source

codes should have names ending in .c (e.g.: program1.c)

1.5.2 Phase 2: translate the source code into machine

language

In the second phase, the source code is compiled (translated) into machine

language instructions resulting in an object code (e.g.: program1.obj or

program1.o).

In a C system, this step is preceded by the execution of the preprocessor.

The preprocessor searches for special directives written in the source code

and performs the actions described. (see chapter 13 for more information

on preprocessor directives).

After the execution of the preprocessor, the source code is translated into

machine language instructions. When the compiler cannot recognize a

certain statement, because of a syntax error for instance, the compiler

issues an error message. These types of errors are called syntax errors or

compile errors and must be corrected by editing the source code.

1.5.3 Phase 3: linking

All library functions referred inside the source code are added to the object

file to create an executable program. (e.g.: program1.exe). This process is

called linking and is performed by a linker. Errors occurring during this step

are called link errors (such as calling non existing functions). Also in this

 23

case, the source code needs to be corrected and all steps starting from

phase 1 have to be executed again.

1.5.4 Phase 4: execution

Before execution, the program must be placed into memory. This is done by

the loader. Additional components from shared libraries are loaded into

memory as well.

Finally, the computer can execute the program. Errors occurring at this

stage are called run time errors. These errors are caused by mistakes in the

program logic like e.g. errors in the solution method used.

Figure 5: processing flow for high-level language programs

2 Program design

Objectives

In this chapter, the importance of thinking before coding is emphasized.

The concept of an algorithm and how to use such an algorithm to write a

computer program is explained. Special care was given to understanding

the normal execution order and learning how to change that order in a well-

structured way.

2.1 Algorithms

Writing computer programs nails down to writing algorithms in a computer

language.

An algorithm is a step-by-step procedure that describes how to reach a

predefined goal starting from an initial state and initial input in a finite time

slot

Some well know algorithm examples are:

- a cooking recipe

- a construction manual

- installation instructions

- solve a set of equations

All of these algorithms consist of 3 phases:

1. description of the initial state and initial inputs

e.g. ingredients needed for the cake

2. step-by-step description of the procedure to be followed

e.g. how and in what order you need to mix the ingredients

3. description of the desired final state

e.g. the cake itself

The language used to describe these algorithms is often incomprehensible

to a computer. It needs to be translated into a programming language and

afterwards compiled into computer language. An algorithm, written in

programming language, is called a program.

2.2 Structured program development

There is more to programming than simply writing code! It involves all

activities needed to write a computer program to solve a particular

problem:

1. Description of the problem (what exactly needs to be done?)

2. Problem analysis

 25

3. Divide into smaller sub problems

4. Write an algorithm for every sub problem

5. Translate these algorithms into code

6. Test all parts separately

7. Combine all sub codes and test the full code

Only the process of translating the algorithms into code is language

dependent! Very often this is even the easiest part. Therefore, learning how

to program in C also includes learning how to develop correct and efficient

algorithms.

Think first, code later!

Figure 6: think first, code later

2.3 Documentation

In the process of solving a problem, documentation writing is often

considered as a burden. However, it is important to make sure that after

some time you or any other programmer can still easily understand and

modify the code.

To accomplish this, following rules should be taken into account:

- use meaningful names

- use clear arrangement of the code (use the correct indentation)

- write appropriate, enlightening comments

- clearly indicate the different parts of the code and describe their function

- write basic documentation containing:

o version, date, programmer

o description of the problem

o examples of execution

o user manual

2.4 Program

A computer program is a sequence of instructions that are to be interpreted

and executed by a processor. These instructions are executed one after the

other in the order in which they’re written. This is called sequential

execution.

At some point, a different execution order might be needed. Therefore,

some control statements will be needed.

In modern programming, the concept of well-structured coding has become

very important. To accomplish this, we will make use of 3 types of

statements:

- sequential statements (normal execution order)

- selection statements (conditional execution of a group of

 statements)

- repetition statements (repeat a group of statements a number

 of times)

 27

3 Programming in C: an introduction

Objectives

In this chapter some basic concepts of C programming are highlighted

based on a few simple programming examples. At the end of this chapter

you should have a basic understanding of:

- the structure of a C program

- variables and variable declaration statements

- assignment statements

- the usage of the standard functions printf and scanf

- the existence of control statements like if and while

3.1 A first program

We begin by writing a simple program that prints the text “Hello, world” on

the screen. For more information on how to setup a first project see

attachment 1. The program code and screen output are shown in Code 1.

1 /*

2 My first program

3 this program will print the line "Hello, world" to the screen

4

5 written by SBE 15/12/2014

6 */

7

8 #include <stdio.h>

9

10 int main(void)

11 {

12 printf("Hello, world\n");

13 return 0;

14 }

Code 1: a first C program

3.1.1 Comments

All text placed in between /* and */ is regarded as comments. The C

compiler will ignore this portion of the code.

Since C is very well suited to write big programs, it is very important to

make sure every part of the program is started with meaningful comments.

These should at least indicate how the code works and for sure describe the

outcome of that portion of the program.

In this example, a title, the outcome of the program and some information

on author and creation date were written into the file as comments.

3.1.2 #include <stdio.h>

Every line starting with # is a preprocessor directive. Before compiling, the

preprocessor will look for these directives and process them first.

“#include <stdio.h>” tells the preprocessor to include the header file

“stdio.h” into the program. This file contains some function declarations

(not definitions) for standard input/output functions like printf, scanf, …

The function definitions are located in the C standard library. The linker will

take care of including all used functions into the executable. Next to

function declarations, this header file also contains some definitions of

constants (e.g. EOF, NULL) and macro’s.

3.1.3 int main(void){ }

Every C program contains one or more functions. A function can be

recognized by the parentheses () following the function name. One of those

functions must be the function main(). Every C program will automatically

start by executing this main function.

When calling a function, extra information can be passed on to that

function. This extra information is called a function parameter and is put in

between the parentheses (). To indicate that the main function does not

have any parameters, the keyword void is used.

Functions can also return a result. The keyword int to the left of main

indicates that the main function returns an integer value.

The full content of the main function is written in between an opening brace

({) and a closing brace (}). Every step of the function is described in a

statement. The full collection of statements in between braces is called a

block.

3.1.4 printf(“Hello, world\n”);

The main function in this example contains 2 statements:

“printf(“…”);” and “return 0;”.

A statement consists of an expression, followed by a semicolon (;). In C,

every statement, even the last statement of a function, ends in a

semicolon. There is no semicolon after “int main()” because here we start

the definition of the function main, hence “int main()” is not a statement.

However, if a function call is made, a semicolon needs to be added at the

end.

The statement used here is

printf(“Hello, world\n”);

 29

this is a call to the standard function printf. It will write all text in between

the double quotes (“”) literally to the screen, except if an escape character

(\) is used. When such an escape character is encountered in a string, the

compiler takes the next character into account and combines it with the

backslash to determine what to do. \n for instance means a newline.

Therefore adding \n to the string in the printf function causes the cursor

to position itself at the beginning of the next line.

The statement “return 0;” is added at the end of the main() function to

set the return value of that function to the integer value 0.

3.2 Example 2

Convert 10 miles into km and print the result to the screen.

1 #include <stdio.h>

2

3 int main(void)

4 {

5 float km, miles;

6 miles = 10.0;

7 km = miles * 1.609;

8 printf("%f mile equals %f kilometer\n", miles, km);

9 return 0;

10 }

Code 2: code to convert 10 miles into km

Explanation:

float km, miles; variable definitions

miles = 10;

km = miles * 1.606;

assignment statements

printf("%f … %f …\n", miles, km); standard function printf

3.2.1 Variable definitions

To store all sorts of values for use by the program, we need to easily

address different memory locations. In C, this can be obtained by the use of

variables. A variable is a symbolic name used to address a certain memory

location. The variables used in the programming example above are km and

miles.

All variables need to be defined with a name and data type before they can

be used in a program. In this example, we use 2 variables of the type

float, which means that they will hold real numbers.

3.2.2 Assignment statements

An assignment statement consists of two parts: an expression at the right-

hand side and a variable that will hold the result of that expression at the

left-hand side.

The statement “miles = 10;” indicates that the value 10 must be stored in

the variable with name miles.

The statement “km = miles * 1.606;” indicates that the value of the

variable miles will be multiplied with 1.606. Afterwards, the result will be

stored in the variable km.

3.2.3 printf("%f mile equals %f kilometer\n", miles, km);

This is again a function call to the standard function printf. However, this

time, printf has 3 arguments: "%f mile equals %f kilometer\n" ,

miles and km.

The first argument is called the format string. It contains some literal

characters to be displayed and some format conversion specifiers (%f).

Every format conversion specifier starts with %. The letter f stands for

floating point number, indicating that a real number will be printed instead

of the “%f” sign in the format string. The second argument “miles” specifies

the value to be printed instead of the first occurrence of “%f”. The second

occurrence of “%f” will be replaced by the content of the variable “km”.

The function printf takes care of converting the internal representation of

the variable into the form requested by the conversion specifier (decimal

form in this case) before printing it to the screen.

3.3 Example 3

Extend the previous code with the possibility to obtain a distance in miles

from the user, convert it to km and print the result to the screen.

1 /*

2 Program that reads a distance in miles and converts it to km

3 */

4

5 #include <stdio.h>

6

7 int main(void)

8 {

9 float km, miles;

10

11 printf("Enter the number of miles: ");

12 scanf("%f%*c", &miles);

13 km = miles * 1.609;

14 printf("%f mile equals %f kilometer\n", miles, km);

15 return 0;

16 }

 31

Code 3: read a number of miles and convert it to km

Explanation:

The statement

scanf("%f%*c", &miles);

uses the standard function scanf to obtain a value from the user. This

function reads from the standard input which is usually the keyboard

(through a command line interface).

In this example, scanf has 2 arguments: a format string (the first

argument) and a memory location. The %f conversion specifier indicates

that the data entered by the user will be a real number. scanf will wait

until the user enters a decimal number, convert it to the correct internal

representation and store it to the memory location indicated by the second

argument.

The second argument begins with an ampersand (&) followed by the

variable name. The & in this expression means “address of”. In the above

example “&miles” indicates the address or the location in memory where

the variable miles is stored.

The last part of the format string (%*c) indicates that yet another character

(%c) needs to be read and disregarded (*). Adding “%*c” at the end of the

format string allows to remove the enter from the input-buffer.

3.4 Example 4

Write a program that obtains 2 integer numbers from the user and prints

the sum and difference of those two numbers to the screen.

1 /*

2 example4.c

3 this program computes sum and difference of two integer numbers

4 */

5

6 #include<stdio.h>

7

8 int main(void)

9 {

10 int number1, number2, sum, difference;

11 printf("Enter 2 integer numbers: ");

12 scanf("%d%d%*c", &number1, &number2);

13 sum = number1 + number2;

14 difference = number1 - number2;

15 printf("\nThe sum equals %d, the difference equals %d.\n",sum,

16 difference);

17 return 0;

18 }

Code 4: compute the sum and difference of 2 integer numbers

Explanation:

The statement

scanf("%d%d%*c", &number1, &number2);

uses the standard function scanf to obtain 2 integer values from the user.

The %d%d%*c conversion specifiers indicate that the data entered by the

user will be a sequence of 2 integer numbers, followed by an enter that

does not need to be stored in memory. The first integer number read by the

program, will be stored at the memory location indicated by &number1

(address of the variable number1), the second number at the location

referred to by &number2.

3.5 Example 5

This example shows a program that obtains two integer numbers from the

user, computes their greatest common divisor (gcd) and prints it to the

screen. For the computation of the gcd we will use the algorithm of Euclid:

1. Store the 2 integer numbers in the variables x and y such that x < y

2. Compute the remainder after y is divided by x

3. Store the value of x in the var y and the remainder in the var x

4. Repeat steps 2 and 3 until the remainder equals 0

5. The variable y contains the gcd

 33

Example: compute the greatest common divisor of 34017 and 16966

o the remainder of 34017/16966 equals 85

o the remainder of 16966/85 equals 34

o the remainder of 85/34 equals 17

o the remainder of 34/17 equals 0

o the greatest common divisor of 34017 and 16966 equals 17

1 /* computation of the gcd of 2 integer numbers */

2

3 #include <stdio.h>

4

5 int main(void)

6 {

7 long int number1, number2;

8 long int x, y, remainder;

9

10 printf("Computation of the greatest common divisor.\n");

11 printf("Enter 2 positive integer numbers: ");

12 scanf("%ld%ld%*c", &number1, &number2);

13

14 /* put the smallest integer in x, the biggest one in y*/

15 if (number1 < number2)

16 {

17 x = number1;

18 y = number2;

19 }

20 else

21 {

22 x = number2;

23 y = number1;

24 }

25

26 /*assign a starting value to the variable remainder*/

27 remainder = x;

28

29 while (remainder != 0)

30 {

31 remainder = y % x;

32 y = x;

33 x = remainder;

34 }

35

36 printf("gcd(%ld, %ld) = %ld \n", number1, number2, y);

37 return 0;

38 }

Code 5: computation of the gcd of 2 positive integer numbers

Explanation:

This example contains 2 new types of statements: an if and a while

statement. Both are examples of control statements.

Control statements can be used to alter the sequential execution of a

program. Here, the if statement is used to determine the smallest of the 2

numbers and store it in the variable x. The while statement is used to

translate the 4th step in Euclid’s algorithm. It repeats the computation steps

until the remainder equals 0.

Control statements will be treated in depth in chapter 5.

 35

4 Basic concepts of C programming

Objectives

The basic concepts of C programming, highlighted in the previous chapter

are explained in depth. At the end of this chapter you should have a good

understanding of:

- indentation rules

- naming rules

- variables and variable declaration and initialization statements

- expressions

- assignment statements

- typecasting

- simple input/output functions

4.1 Indentation

C is a free format language. The compiler does not take white spaces into

account, meaning that newlines and whitespaces can be inserted wherever

wanted. However, to keep the code easily readable to everyone, we will

follow some basic formatting rules.

Braces group statements together. Every statement

inside the braces should be indented 1 tab (= 4

spaces). Both the opening and closing braces must be

placed straight under the first letter of the function

they belong to (see Figure 7).

4.2 Identifiers

Every program needs a number of names or identifiers like names of

variables, functions, …

All identifiers need to comply with following rules:

- all identifiers start with a letter

- identifiers consist of letters, digits and/or underscores (_)

- in ANSI-C, only the first 31 symbols of a name are significant

- C is case sensitive!

- Keywords (see table below) cannot be used as identifiers

int main(void)

{

 ...

 ...

 ...

}

Figure 7: indentation

Keywords

auto

break

case

char

const

continue

default

do

double

else

enum

extern

float

for

goto

if

int

long

register

return

short

signed

sizeof

static

struct

switch

typedef

union

unsigned

void

volatile

while

4.3 Variables

4.3.1 Concept

A variable is a symbolic name used to address a certain memory location.

The compiler will replace all variable names with their corresponding

memory addresses.

A variable has a memory location (lvalue) indicated by the variable name

and a value (rvalue). The variable in the example in Figure 8 has the name

number and a value of 10.

As a variable name, the programmer can choose any valid identifier (see

4.2).

Learning note

Choosing meaningful variable names helps to make the program more

understandable. A meaningful name can save a few lines of comments.

4.3.2 Variable definition and data types

All variables need to be defined with a name and data type before they can

be used in a program. The data type will determine the number of bytes

needed to store that variable in memory and the type of operations allowed

on it. In the example of Figure 8, the variable with name number is defined

to be of the type int, which means that it will hold integer numbers.

Depending on the system you work on, the amount of bytes needed to

store integer values will be 2 or 4.

Figure 8: lvalue and rvalue of a variable

Code:

int number;

number = 10;

In memory:

 number 10

 37

Learning note

Place the variable definitions immediately after the left brace that starts the

(main) function. As such, all variables are automatically defined before

being used.

Table 1 shows an overview of the most commonly used types in C along

with the number of bytes needed and the allowed minimum and maximum

values.

type
size

(bytes)
value minimum maximum ex

char 1 symbols 0 255

‘a’

‘A’

‘\n’

‘0’

short int 2
integer

numbers
-32 768 32 767

32,

0x32,

0123

int 2
integer

numbers
-32 768 32 767

32,

0x32,

0123

 or 4
integer

numbers
-2 147 483 648 2 147 483 647

32,

0x32,

0123

long int 4
integer

numbers
-2 147 483 648 2 147 483 647

32,

0x32,

0123

float 4
real

numbers
3.4e-38 3.4e38

12.3

.5

5e4

double 8
real

numbers
1.7e-308 1.7e308

12.3

.5

5e4

Table 1: overview of the most commonly used data types in C

Remark

Internally, the integer constant 0 is represented by 0000 0000 whereas the

character ‘0’ is represented by 0011 0000 (see ASCII table in attachment 2)

4.3.3 Variable initialization

Once a variable is defined, it corresponds to a certain memory location that

is big enough to hold the specified type of data. However, the variable does

not have a value (rvalue) yet. To assign a value to the variable, an

assignment statement is needed.

In some cases, the value of the variable needs to be set before it can be

used in a computation. The variable needs to be initialized. In the example

of Figure 8, the variable number is initialized with the integer number 10 by

the statement: “number=10;”. After execution of this statement, the value

10 will be stored at the memory location the variable number is assigned to.

In C, a variable can be defined and initialized in one statement:

int number = 10;

Remark

Whenever a value is placed in a memory location, this new value replaces

the previous value in that location!

Whenever a value is read from a memory location, the content of that

location remains intact.

4.3.4 Example: variables.c

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(void)

5 {

6 int i, j;

7 char c;

8 float x, f;

9 double ff;

10 char s[64]; // s can contain a series of chars (=string)

11 i = 2;

12 j = 5 / 3;

13 c = 'A'; // 0100 0001

14 c = c + 1;

15 x = 5 / 3;

16 f = 5.0 / 3;

17 ff = 5.0 / 3;

18 strcpy(s, "Hello, world");

19 printf("i = %d\n", i);

20 printf("j = %d\n", j);

21 printf("c = %c %d %o %x\n", c, c, c, c);

22 printf("x = %20.17f\n", x);

23 printf("f = %20.17f\n", f);

24 printf("ff = %20.17f\n", ff);

25 printf("s = %s\n", s);

26 printf("\n");

27 printf("The size of an int is %d bytes.\n", sizeof(int));

28 printf("The size of a char is %d bytes.\n", sizeof(char));

29 printf("The size of a float is %d bytes.\n", sizeof(float));

30 printf("The size of a double is %d bytes.\n", sizeof(double));

31 printf("The size of the string s is %d bytes.\n", sizeof(s));

32 return 0;

33 }

 39

Code 6: example variables.c (code and screen output)

Some explanation:

1. j = 5 / 3;

the variable j is defined as type int. Therefore only integer values

can be stored in this variable. As the division of 5 by 3 equals 1.667,

only the integer part 1 is stored into variable j.

2. strcpy(s, "Hello, world");

This is a function call to the standard function strcpy that copies the

constant string “Hello, world” into the string variable s. The

preprocessor directive “#include <string.h>” was added at the

top to include the definition of the function strcpy into the program.

3. printf("c = %c %d %o %x\n", c, c, c, c);

This statement prints the variable c in 4 different formats. First the

value of c is printed as a character (%c), secondly as an integer

number in decimal format (%d). The conversion specifier %o is used

to print c as an integer number in octal format and finally %x obtains

the hexadecimal format of the same integer number.

4. sizeof

C provides the operator sizeof to determine the size in bytes of a

data type.

4.4 Expressions

4.4.1 Arithmetic expressions

In most C programs, one or more calculations will be needed. To this end,

the C language is equipped with a number of arithmetic operators as

summarized in Table 2.

operation operator example

addition + a + b

subtraction - a - b

multiplication * a * b

division / a / b

remainder % a % b

increment ++ i++ or ++i

decrement -- i-- or --i

Table 2: overview of arithmetic operators in C

Some remarks:

- the division of two integer numbers yields an integer number:

e.g. 1 / 2 = 0 but 1.0 / 2 = 0.5

- the remainder operand % yields the remainder after integer division:

e.g. 5 % 3 = 2

As such it can only be used with integer numbers.

- the increment (decrement) operand increments (decrements) the

content of the variable with 1. Writing ++ (--) before or after the

variable yields different results:

e.g. what is the value of i and j in following code examples?

i=1;

j=1;

j=i++

i=1;

j=1;

j=++i;

yields

i=2;

j=1;

i=2;

j=2;

explanation

Use the current value of i in the

expression (j=i), afterwards

increment i by 1.

First increment i by 1, then use

the new value of i in the

expression (j=i)

 Figure 9: difference between i++ and ++i

Common mistake

Attempting to divide by 0 results in a run time error that causes the

program to stop.

 41

4.4.2 Conditional expressions

Conditional expressions evaluate to one of following results:

- true (every value different from 0 is seen as true)

- false (0)

Conditional expressions are formed by using the equality operators, the

relational operators and the logical operators as summarized in Table 3.

operator example meaning of example

equality operators

== x == y x is equal to y

!= x != y x is not equal to y

relational operators

< x < y x is less than y

<= x <= y x is less than or equal to y

> x > y x is greater than y

>= x >= y x is greater than or equal to y

logical operators

! !x not x (logical not)

&& x && y x and y (logical and)

|| x || y x or y (logical or)

Table 3: equality, relational and logical operators

The above operators can be combined into complex conditional expressions

as shown by the examples below.

Algebra: 𝑥 𝜖]2.0 , 5.2] 𝑜𝑟 2.0 < 𝑥 ≤ 5.2

C: 2.0 < 𝑥 && 𝑥 <= 5.2

Explanation: Condition to test for a leap year

C: 𝑦𝑒𝑎𝑟%4 == 0 && 𝑦𝑒𝑎𝑟%100 ! = 0 || 𝑦𝑒𝑎𝑟%400 == 0

Common mistake

The symbols in the operators ‘==’, ‘!=’, ‘<=’ and ‘>=’ cannot be separated

by one or more spaces!

Common mistake

Often the equality operator ‘==’ is confused with the assignment

operator ‘=’ .

The expression ‘x=5’ is always true since the assignment operator takes

care of assigning the value 5 to the variable x which is not equal to 0.

The expression ‘x==5’ is true only if the variable x contains the value 5.

Some expressions can cause run time errors under certain specific

conditions only. E.g. the test ‘𝑡/𝑛 > 1’ will cause the program to fail

whenever the variable n becomes equal to 0.

In C, these type of run time errors can be avoided using complex

conditional expressions. If more than one operand is used, the evaluations

will be done from left to right. Expressions further down the test will only be

evaluated if needed.

To make the test ‘𝑡/𝑛 > 1’ error proof, it can be rewritten to:

𝑛! = 0 && 𝑡/𝑛 > 1 or 𝑛 == 0 || 𝑡/𝑛 > 1

4.4.3 Precedence

If an expression contains more than one operator, C will apply these

operators in a sequence that is determined by the rules of precedence as

summarized in Figure 10. The operators that were not treated yet will be

explained in later chapters.

() [] -> .

! ˜ ++ -- - (type) *(content) &(address) sizeof

* / %

+ -

<< >> (shift)

< <= > >=

== !=

& (bit-AND)

ˆ (bit exclusive OR)

| (bit OR)

&& (AND)

|| (OR)

?: (conditional operator)

= += -= *= /= %=

 , (comma-operator)

Highest priority

Lowest priority

Figure 10: rules of precedence for operators in C

 43

In case two or more operators with the same level of precedence occur in

one expression, the associativity of the operators is used. Most operators

associate from left to right:

1 + 2 − 3 + 4 − 5 𝑒𝑞𝑢𝑎𝑙𝑠 (((1 + 2) − 3) + 4) − 5

However, C contains some operators that associate from right to left:

- unary operators

(operators that have only 1 operand like: !, unary +, unary -, ++, --)

- assignment operators

e.g. 𝑎 = 𝑏 = 0 𝑖𝑠 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑑 𝑎𝑠 𝑎 = (𝑏 = 0)

- conditional operator (?:)

Learning note

To avoid confusion about the computation order in a complex expression,

use parenthesis () to group parts of the expression.

4.5 Assignment statements

4.5.1 The assignment operator ‘=’

To change the value stored in a variable, an assignment statement is used.

In its most general form, the assignment statement can be written as:

<variable> = <expression>

The expression on the right-hand side of this statement will first be

evaluated into a result. Afterwards, this result will be assigned to the

variable written on the left-hand side of the assignment operator.

Examples:

sum = sum + number;

y=2 * cos(x) + 4;

Common mistake

A calculation in an assignment statement must be at the right side of the

‘=’ operator!

4.5.2 Arithmetic assignment operators

C provides a number of assignment operators for abbreviating assignment

expressions. For example the statement

x = x + a;

can be abbreviated with the addition assignment operator ‘+=’ as

x += a

Table 4 provides an overview of the arithmetic assignment operators.

operator example:

abbreviated

example:

standard

explanation

+= x += a x = x + a increase x with a

-= x -= a x = x – a decrease x with a

*= x *= a x = x * a multiply x with a

/= x /= a x = x / a divide x by a

%= x %= a x = x % a
calculate the remainder of the

division of x by a

Table 4: arithmetic assignment operators

Common mistake

The arithmetic and the assignment operator cannot be separated by one or

more spaces!

 45

4.6 Typecasting

In C, an expression has a value and a type. If for example the variables x

and y are defined to be of the integer type, the result of the expression

‘x/y’ will also be an integer. More precisely, the integer division of x by y

will be performed in which any fractional part is truncated. So, even if this

result is stored in a variable of the type float, the fractional part of the

division will be lost.

To avoid this truncation, it is sufficient to explicitly convert the variable x

into a float. This can be achieved by typecasting the variable x as follows:

result = (float)x / y;

In the above example, ‘(float)x’ results in a temporary floating point

copy of the variable x. As a result, the division will no longer be an integer

division and yields a floating point result.

Actually, the division will be performed only after one extra action by the

compiler. Due to the explicit type conversion of the variable x, x and y are

now of different types. Since in C arithmetic expressions can only be

evaluated if all operands are of the same type, a temporary floating point

copy of the variable y will be made automatically, resulting in a floating

point division. The result of this division is then assigned to the variable

result.

In general explicit type conversion can be achieved by preceding the

operand to be converted by the wanted type in between parenthesis:

(type)operand

A code example showing the effect of typecasting can be seen in Code 7.

1 #include <stdio.h>

2

3 int main(void)

4 {

5 int x, y;

6 float res1, res2;

7 x = 1;

8 y = 2;

9 res1 = x / y;

10 res2 = (float)x / y;

11 printf("res1 = %8.4f \nres2 = %8.4f\n", res1, res2);

12 return 0;

13 }

Code 7: typecasting example

4.7 Simple input and output

4.7.1 printf()

The standard function printf() is a very powerful function that allows

formatted printing to the screen in a flexible manner. To this end, the

function printf() can have an arbitrary number of arguments that can be

divided into 2 groups: the format control string and the other arguments.

The printf() function has the form:

 printf(format control string, argument1, argument2, …)

The format control string starts and ends with double quotes (“”). It

contains some literal characters to be displayed, some format conversion

specifiers and some escape sequences. Every format conversion specifier

starts with %, every escape sequence starts with \ . For example:

printf(“The letter %c stands for %s\n”, ‘a’, “alpha”);

4.7.1.1 Format conversion specifiers

The format conversion specifiers in the above example are “%c” and “%s”.

The letter c stands for character, indicating that a character will be printed

instead of the “%c” sign in the format control string. The letter s stands for

string, indicating that a series of characters (=a string) will be printed

instead of the “%s” sign in the format control string. The second argument

‘a’ specifies the value to be printed instead of the first format specifier “%c”.

The second format specifier “%s” will be replaced by the constant string

“alpha”. The function printf() takes care of converting the internal

representation of the arguments into the form requested by the conversion

specifier before printing it to the screen. Table 5 shows an overview of the

most commonly used conversion specifiers.

type conversion

specifier

argument printed as ...

short (int) %hd integer value, decimal notation

int %d integer value, decimal notation

int %x integer value, hexadecimal notation

long (int) %ld integer value, decimal notation

float %f real value, fixed point notation

float %e real value, scientific (exponential) notation

double %lf real value, fixed point notation

char %c individual character

string %s string of characters

Table 5: conversion specifiers

 47

4.7.1.2 Escape sequences

Next to conversion speficiers, the format control string can also contain

escape sequences. An escape sequence starts with the character ‘\’ . When

such an escape character is encountered in a string, the compiler takes the

next character into account and combines it with the backslash to

determine what to do. ‘\n’ for instance means a newline. Therefore adding

‘\n’ to the format control string in the printf() function causes the cursor

to position itself at the beginning of the next line. Table 6 shows an

overview of the most commonly used escape sequences

escape

sequence

description

\a Alert (audible (bell) or visual alert)

\b Backspace (cursor moves back one position)

\f Formfeed (cursor moves to start of next logical page)

\n Newline (cursor moves to beginning of next line)

\r Carriage return (cursor moves to beginning of current line)

\t Horizontal tab (cursor moves to next horizontal tab pos)

\v Vertical tab (cursor moves to next vertical tab position)

\? Question mark

\' Single quotation mark

\" Double quotation mark

\\ Backslash

\xdd ASCII character in hex notation

\0 Null character

Table 6: escape sequences

4.7.1.3 Field widths and precision

The field width specifies the size of the field the data is printed in. This field

width can be set by inserting an integer number between the percent sign

(%) and the conversion specifier.

Examples:

%8d field width = 8 character positions,

if the printed integer is smaller than 8 positions, the integer

will be right-aligned

%-8d field width = 8 character positions,

if the printed integer is smaller than 8 positions, the integer

will be left-aligned

%-40s the printed string will be left-aligned in a total field width of

40 symbols.

The function printf also enables you to set the print precision. To this end,

a dot followed by an integer number must be inserted before the conversion

specifier.

%16.8lf total field width = 16 character positions,

8 digits after the comma will be printed (leaving a maximum

of 8 digits before the comma)

if the printed number is smaller than 16 positions, it will be

right-aligned

%.2f print with 2 digits after the decimal point

4.7.2 scanf()

The function scanf() allows to read formatted input from the stdin (mostly

the keyboard).

The scanf() function has the form:

 scanf(format control string, argument1, argument2, …)

The format control string starts and ends with double quotes (“”). It

contains a sequence of 1 or more format conversion specifiers to specify

type and format of the data to be retrieved from stdin. This data is then

stored in memory locations pointed to by the additional arguments.

As a result, all additional arguments in a scanf function must be addresses.

This can be achieved by putting the operator & (= address of) before the

name of the variable. Some variable names already represent an address

(like names of strings and pointers). In those cases the & sign must be

omitted.

Examples:

scanf(“%d%*c”,&number); read an integer number from the stdin

and store it in the variable number

scanf(“%f%f%*c”,&km,&miles); read two real numbers, store the first

one in the variable km and the second

one in the variable miles

scanf(“%lf%*c”,&ff); read a real number and store it as a

double in the variable ff

scanf(“%s%*c”,s); read a string and store it in the variable

s. Note that s is a string so it is already

an address without adding the &

operator.

 49

Remark

The ‘%*c’ at the end of all format conversion strings in the above examples

indicates that a character (in this case the <Enter>-symbol) must be read

but not saved into a variable. In this way the <Enter>-symbol is cleared

from the stdin buffer and can no longer be taken as input in a next scanf

statement.

Common mistake

All additional arguments of the scanf function must be addresses. Using a

variable name without & sign is a very common mistake! Be aware that

some variable names already are addresses (like strings and pointers).

These variables cannot be preceded by the & sign.

4.7.3 gets(), puts()

The function

gets(argument)

reads characters from stdin until a newline or EOF character is read and

stores these characters as a string in the memory location the argument

points to. This string does not contain the ending newline character. To

make it a valid string, a null byte (\0) is automatically appended.

The function

puts(argument)

writes the string that is stored at the memory location the argument points

to, to the screen followed by a newline character.

The following example shows the difference between the function gets and

the function scanf when a string is to be read.

1 #include <stdio.h>

2

3 int main(void)

4 {

5 char s[32];

6 char t[32];

7 printf("Enter name and first name: ");

8 gets(s);

9 printf("Enter name and first name: ");

10 scanf("%s", t);

11 printf("s = %s\nt = %s\n", s, t);

12 return 0;

13 }

Code 8: reading strings with gets and scanf

As can be seen in the example of code 8, the function gets reads a full line

(all characters until a newline is read), whereas the function scanf(“%s”,

…) only reads the first string (until a white space character or newline

character is read) !

4.7.4 getchar(), putchar()

The function getchar() reads the next character from stdin and returns it

as an integer.

The function putchar() writes 1 character to stdout.

4.8 Exercises

4.1. Write a program that asks the user to enter an integer number, stores

this number in a variable of the type short (short int) and prints it

back to the screen. What values can be entered? What is the biggest

number you can enter and print correctly?

4.2. Repeat the previous exercise but this time use a variable of the type

int or long.

4.3. Write a program that

- asks the user to enter 2 integer numbers in one line

- obtains those 2 numbers using only one call of the function scanf

- prints both numbers on the next line

 the screen dialogue should look like:

 Enter 2 integer numbers: 17 7
 The entered numbers are 17 and 7

4.4. Write a program that asks the user to enter 2 real numbers and prints

their sum and product to the screen.

 51

4.5. Write a program that asks the user to enter 2 integer numbers and

prints the result and remainder of the integer division of both

numbers and the real quotient

 the screen dialogue should look like:

 Enter 2 integer numbers: 17 7
 integer quotient = 2

 remainder = 3

 quotient = 2.43

4.6. Write a program that asks the user to enter 2 real numbers, calculates

the quotient and stores it into a variable of the type float. Print the

quotient with 20 numbers after the decimal point.

4.7. Write a program that asks the user to enter hours, minutes and

seconds separately and prints them in a sentence like:

 The entered time is: hh hours mm minutes and ss seconds

where hh and mm can only be integer numbers. ss can have digits

after the decimal point

4.8. Write a program that asks the user to enter name and first name

separately and prints them on 1 line. Test your program with names

that contain white spaces (ex: Julia Rose Smith)

4.9. Write a program that asks the user to enter the radius of a circle,

calculates the surface area of that circle and prints the result to the

screen. (can be approximated as 3.141592653589793. Define as

a constant in your program).

4.10. Write a program that asks the user to enter a number of seconds

and prints the corresponding number of days, hours (<24), minutes

(<60) and seconds (<60).

ex: 90061 sec = 1 day 1 hour 1 minute and 1 second

4.11. Write a program that asks the user to enter 5 integer numbers one

by one. While reading the numbers, the program calculates the sum.

At the end, the mean of all 5 numbers is printed with a precision of 2

digits after the digital point. Try to limit the number of variables in

your program to 2 (or max 3) but do not introduce loops yet.

4.12. Write a program that asks the user to enter an amount of money

(e.g. 13578) in euro and prints the corresponding number of notes

(500, 200, 100, 50, 20, 10, 5) and coins (2, 1). Always use the

minimal number of notes and coins possible.

4.13. Rewrite the previous program such that cents (50, 20, 10, 5, 2, 1)

are also included (e.g. 13578,78). Be aware that the % operator can

only be used with integer operands!

4.14. Consider an electrical circuit consisting of two series resistors R1 and

R2. If a voltage U is applied to this circuit, the current flowing in this

circuit will be 𝐼 =
𝑈

𝑅1+𝑅2
 according to Ohm’s law. The voltage (V2)

across the resistor R2 will then be defined by 𝑉2 = 𝐼 . 𝑅2 .

Write a program that asks the user to enter the values for U, R1 and

R2 and prints the values of I and V2 to the screen.

4.15. Write a program that reads 6 integer numbers and prints them in a

table format with 3 rows and 2 columns.

the screen dialogue should look like:

 Enter 6 integer numbers: 1 22 33 4 5 6

 1 22

 33 4

 5 6

4.16. Rewrite the previous exercise such that lines are placed around the

table and in between the numbers:

Enter 6 integer numbers: 1 22 33 4 5 6

| 1 | 22 |

|-----------|

| 33 | 4 |

|-----------|

| 5 | 6 |

4.17. Rewrite the previous exercise with real numbers. Make sure the

decimal points are nicely aligned.

4.18. Write a program that asks the user to enter name, first name,

street, number, zip code and town name. Afterwards, the program

outputs this data in the format:

 first name name

 street number

 zip code town

 53

4.19. Write a program that asks the user to enter the invoice number, the

number of products ordered and the price per unit. Calculate the total

amount to be paid and print it to the screen.

the screen should look like:

Enter invoice number: 12

Enter the number of products ordered: 50

Enter the price per unit: 599

INVOICE NUMBER PRICE/UNIT TOTAL

12 50 599 29950

4.20. Write a program that asks the user to enter an integer number with

3 digits and prints the number backwards.

Enter an integer number with 3 digits: 123

The number printed backwards is: 321

Hint: 321 = 3 ∗ 100 + 2 ∗ 10 + 1 𝑤𝑖𝑡ℎ 1 =
123

100
 , 2 =

23

10
 𝑎𝑛𝑑 3 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟

4.21. Write a program that prints the date of Easter for a year entered by

the user.

Easter is held on the first Sunday after the first full moon of the

spring. Easter is delayed by 1 week if the full moon is on Sunday.

According to Jean Meeus, Spencer Jones and Butcher, the Easter date

in year J can be calculated as follows (all divisions are integer

divisions):

𝑎 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝐽 𝑏𝑦 19

𝑏 =
𝐽

100

𝑐 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝐽 𝑏𝑦 100

𝑑 =
𝑏

4

𝑒 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑏 𝑏𝑦 4

𝑓 =
𝑏 + 8

25

𝑔 =
(𝑏 − 𝑓 + 1)

3

ℎ = 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 (19 ∗ 𝑎 + 𝑏 − 𝑑 − 𝑔 + 15) 𝑏𝑦 30

𝑖 =
𝑐

4

𝑘 = 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐 𝑏𝑦 4

𝑙 = 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 (32 + 2 ∗ 𝑒 + 2 ∗ 𝑖 − ℎ – 𝑘) 𝑏𝑦 7

𝑚 =
(𝑎 + 11 ∗ ℎ + 22 ∗ 𝑙)

451

𝑚𝑜𝑛𝑡ℎ =
ℎ + 𝑙 − 7 ∗ 𝑚 + 114

31

𝑑𝑎𝑦 = 1 + 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 (ℎ + 𝑙 − 7 ∗ 𝑚 + 114) 𝑏𝑦 31

 This formula is valid for the Gregorian calendar and as such only after

1582.

Some test values:

Year Easter date

2005 March 27

2006 April 16

2007 April 8

2008 March 23

2009 April 12

2010 April 4

2011 April 24

2012 April 8

2013 March 31

2014 April 20

 55

5 Controlling the program flow

Objectives

In this chapter, the different control structures in C are explained. At the

end of this chapter you should be able to use:

- flowcharts

- selection statements (if, if … else and switch) to select actions

- iteration statements (while, do … while and for) to repeat actions

Normally, statements in a program are executed one by one in the order in

which they are written.

Rather often, this sequential execution needs to be broken. C provides two

groups of control statements that allow to create all possible program flows.

The first group consists of selection statements. They are used whenever a

certain statement or group of statements can only be executed in well-

defined conditions. Selection statements will be explained in section 5.2.

The second group contains the repetition statements and allows to repeat

one or a group of statements a number of times. Repetition statements will

be treated in section 5.3.

To visualize the wanted program flow, we will make use of flowcharts. This

will be handled in section 5.1.

5.1 Flowchart

As indicated in chapter 2, it is important to think before coding. Therefore,

every program writing process should start with the construction of an

algorithm. Since a picture is worth a 1000 words, it is useful to first draw a

graphical representation of that algorithm before translating the algorithm

into C code. This does not only allow to clearly show the expected program

flow, but also allows for faster detection of possible reasoning errors.

Different types of graphical representations exist in literature. In this

course, flowcharts will be used.

Since flowcharts can serve different purposes, only a small subset of

possible flowchart symbols will be used. Table 7 shows an overview of these

symbols.

symbol description

 Indicates the start or end of a program

or function

represents an action or statement

 represents a function call. The flowchart

of that function can then be written

separately.

represents a test for a certain condition.

This condition can either be true or false

(yes or no). The arrow representing true

(false) can be either of the 2 arrows.

 flow lines are used to connect the

different symbols in the correct order.

Table 7: flowchart symbols

In Figure 11 an example of a flowchart for a pure sequential program is

shown.

start

Action 1

Action 2

Action 3

stop

Figure 11: flowchart sequential program

start end

statement

subroutine

condition

on

true

false

 57

5.2 Selection statements

C provides three types of selection statements. The first type is the if

selection statement that either performs an action if a certain condition is

met or skips the action otherwise. The second type is the if … else

statement that allows to perform one out of two actions depending on

whether the condition is met or not. The last type (switch) allows to select

one of many possible actions.

5.2.1 The if selection statement

General form:

if (<expression>)

 <statement 1>;

<statement 2>;

if the expression between parenthesis yields a number different from 0

(=true), statement 1 is executed followed by statement 2. On the other

hand, if the expression equals 0 (=false), statement 1 is skipped and

statement 2 is executed directly.

If more statements are to be executed when a certain condition is met, the

statements can be grouped into a code block:

if (<expression>)

{

 <statement 1>;

 <statement 2>;

}

<statement 3>;

The flowchart of the if statement is shown in Figure 12.

expression

false statement 1

statement 2

statement 3

true

Figure 12: flowchart if selection statement

5.2.2 The if … else selection statement

5.2.2.1 General form

if (<expression>)

 <statement 1>;

else

 <statement 2>;

<statement 3>;

if the expression between parenthesis yields a number different from 0

(=true), statement 1 is executed followed by statement 3. If the expression

equals 0 (=false), statement 2 is executed followed by statement 3. Also in

this case, the statements 1 and 2 can be block-statements:

if (<expression>)

{

 <statement>;

 <statement>;

 …

}

else

{

 <statement>;

 <statement>;

 …

}

The flowchart now looks like:

expression

false statement

statement

true

statement

statement

Learning note

Note that the braces in the if statement and in the if … else statement

are always placed right under the first letter of if (or else) and that all

body statements are indented! This improves the readability of the code!

Figure 13: flowchart if ... else statement

 59

Example:

Write a C program that reads an integer number and prints either even or

odd depending on the number read.

A first possible solution is represented by the flowchart in Figure 14. Of

course also the flowchart in Figure 15 is valid for this example. Which one

to choose is entirely up to the programmer.

even?

true

print: odd

false

print: even

start

read an integer
number

stop

odd?

true

print: even

false

print: odd

start

read an integer
number

stop

Figure 15: even-odd solution 2

Translating the flowchart of Figure 14 into C code yields:

1 /*

2 read an integer number and print odd or even depending on

3 the number read

4 */

5

6 #include <stdio.h>

7

8 int main(void)

9 {

10 int number;

11

12 printf("Enter an integer number: ");

13 scanf("%d%*c", &number);

14

15 if (number % 2 == 0)

16 {

17 printf("The number %d is even\n", number);

18 }

19 else

20 {

21 printf("The number %d is odd\n", number);

22 }

23

24 return 0;

25 }

Code 9: example even - odd solution 1

Figure 14: even-odd solution 1

The test in the if statement should not necessarily be a logical expression.

It can be any mathematical expression as shown in Code 10. The flowchart

corresponding to this solution is represented in Figure 15.

1 /*

2 read an integer number and print odd or even depending on

3 the number read

4 */

5

6 #include <stdio.h>

7

8 int main(void)

9 {

10 int number;

11

12 printf("Enter an integer number: ");

13 scanf("%d%*c", &number);

14

15 if (number % 2)

16 {

17 printf("The number %d is odd\n", number);

18 }

19 else

20 {

21 printf("The number %d is even\n", number);

22 }

23

24 return 0;

25 }

Code 10: example even - odd solution 2

In the above code the expression “number % 2” equals 0 if the variable

“number” contains an even value. So if an even number is entered, the

statements belonging to else are executed.

Common mistake

Often the equality operator ‘==’ is confused with the assignment

operator ‘=’ :

if (x = 5)

{

 The statements written here will always be executed! The

 expression ‘x=5’ is always true since the assignment

 operator takes care of assigning the value 5 to the

 variable x which is not equal to 0!

}

Common mistake

No semicolon (;) can be placed after the condition!

if (x == 5);

{

 These statements will always be executed since the “;”

 ends the if statement!

}

 61

5.2.2.2 The conditional operator (?:)

The conditional operator in C is closely related to the if … else statement.

It takes 3 operands. The first one is a condition, the second one is the value

for the entire conditional expression if the condition is true and the third

one will be used as value for the entire expression if the condition is false.

General form:

<condition> ? <value if condition is true> : <value if condition is false>

Example:

if (a < b)

 z = a + 1;

else

 z = b – 1;

can be written with the conditional operator as:

z = a < b ? a + 1 : b – 1 ;

More examples:

printf("%4d%c", a[i] , ((i+1) % 10 ? ‘ ’ : ‘\n’));

printf(number % 2 ? "odd" : "even");

printf("%d is ",year);

printf(year%4==0 && year%100!=0 || year%400==0? "a leap year\n" : "no

leap year\n");

5.2.2.3 Nested if .. else statements.

The code-blocks inside the if statement can again contain an if … else

statement. As such nested if … else statements are created:

if(expression1)

{

 statement;

 …

}

else

{

 if(expression2)

 {

 statement;

 …

 }

 else

 {

 statement;

 …

 }

}

Learning note

Watch the indentation of the different body statements! Make sure

indentation is done correctly to avoid confusion!

An else in such a control structure belongs to the latest if that did not get

an else yet. Correct indentation can help to quickly understand which else

belongs to which if statement.

Following example shows the importance of correct indentation:

1 #include <stdio.h>

2 int main(void)

3 {

4 int number;

5 printf("Enter integer number: ");

6 scanf("%d%*c", &number);

7 if (number > 70)

8 if (number > 80)

9 printf("passed with great honor!\n");

10 else

11 printf("ok.\n");

12 }

What do you expect if for instance the number 65 is entered?

The indentation chosen in the example above is misleading. It suggests that

the result for a number smaller than or equal to 70, is the text “ok” printed

to the screen. Instead, nothing will appear since the else that contains the

print statement belongs to the last if without else being if(number > 80)

Correctly indenting the else results in:

1 #include <stdio.h>

2 int main(void)

3 {

4 int number;

5 printf("Enter integer number: ");

6 scanf("%d%*c", &number);

7 if (number>70)

8 if (number>80)

9 printf("passed with great honor!\n");

10 else

11 printf("ok.\n");

12 }

If the else must belong to the first if, brackets need to be added:

1 #include <stdio.h>

2 int main(void)

3 {

4 int number;

5 printf("Enter integer number: ");

6 scanf("%d%*c", &number);

7 if (number>70)

8 {

9 if (number>80)

10 printf("passed with great honor!\n");

11 }

12 else

13 printf("ok.\n");

14 }

 63

5.2.3 The switch statement

To select one of many actions, nested if statements can be used. If the

choice for the right action can be made based upon the result of an integer

expression, a switch statement is shorter and provides a clearer structure.

General form:

switch (<integer expression>)

{

 case <value1> :

<0 or more statements>;

break;

 case <value2> :

<0 or more statements>;

break;

 …

 default:

<0 or more statements>;

}

<next statement>

The value of the integer expression is tested against the constant integral

values of every case. At the first match, the corresponding statements are

executed. If the last statement corresponding to that specific case is a

break; the execution of the switch will stop and the <next statement>

after the switch will be handled. If not, the statements belonging to the

next case will be executed.

If no match is found, the default statements are executed. The default can

be omitted. In that case, nothing will happen when no match occurs.

The switch statement can be represented by the flowchart of Figure 16.

value 1?

false

statement block
executed if value 1 is

matched
true

switch
(integer expression)

break;

value 2?

false

statement block
executed if value 2 is

matched
true break;

statement block
executed if no value is

matched

false

...

next statement

Figure 16: flowchart switch statement

Common mistake

Do not forget to put a break at the end of each case (unless the break is

left out intentionally).

Example:

Write a C program that reads a letter and prints a country name depending

on the letter read as follows: a/A = Argentina, b/B = Brazil, h/H =

Honduras, m/M = Mexico, p/P = Peru. All other letters yield the sentence

“Unknown country”.

A possible solution is represented by the flowchart in Figure 17.

a?

false

true

switch
(letter)

A? print ‘Argentina’true break;

start

declarations

read a letter

b?

false

true

B? print ‘Brazil’true break;

false

false

false

Print ‘Unkown country’

stop

...

Figure 17: flowchart switch example

 65

Translation into C code yields:

1 /*

2 read a letter and print the corresponding country

3 */

4 #include <stdio.h>

5

6 int main(void)

7 {

8 char symbol;

9

10 printf("Enter a letter: ");

11 symbol = getchar();

12

13 switch (symbol)

14 {

15 case 'a': // letter was lowercase a

16 case 'A': // or uppercase a

17 printf("Argentina\n");

18 break; // necessary to exit switch

19 case 'b':

20 case 'B':

21 printf("Brazil\n");

22 break;

23 case 'm':

24 case 'M':

25 printf("Mexico\n");

26 break;

27 case 'p':

28 case 'P':

29 printf("Peru\n");

30 break;

31 case 'h':

32 case 'H':

33 printf("Honduras\n");

34 break;

35 default: // catch all other letters

36 printf("Unknown country\n");

37 break; // optional since switch will exit anyway

38 }

39

40 return 0;

41 }

Code 11: example of switch

The switch in the above example can be written much shorter if we make

use of the string function “toupper()” that converts a lowercase character

into an uppercase character:

switch (toupper(symbol))

{

case 'A':

 printf("Argentina\n");

 break;

case 'B':

 printf("Brazil\n");

 break;

 ...

default:

 printf("Unknown country\n");

 break;

}

Code 12: alternative code for switch example

5.2.4 Exercises

5.2.1. Write a program that asks the user to enter an integer number and

prints whether that number is positive or not (= negative or 0!).

5.2.2. Write a program that asks the user to enter an integer number and

prints whether that number is even or odd.

5.2.3. Write a program that asks the user to enter a real number and prints

whether that number lies in [5,10[or not ([5,10[means 5 ≤ x < 10)

5.2.4. Write a program that asks the user to enter a real number and prints

whether for that number, each one of the following conditions is met

or not:

condition A: 3 ≤ x < 8.5

condition B: x < 3 OR 5.4 < x ≤ 7.3 OR x > 13

condition C: x ≠ 3 AND x < 9.75

examples:

0 matches conditions: not A, B, C

3 matches conditions: A, not B, not C

8 matches conditions: A, not B, C

15 matches conditions: not A, B, not C

5.2.5. Write a program that asks the user to enter a real number and prints

whether that number is positive, zero or negative.

5.2.6. Write a program that asks the user to enter 5 integer numbers one

by one. While reading the numbers, the program calculates the

minimum of those numbers. At the end, this minimum is printed. Try

to limit the number of variables in your program to 2 (or max 3) but

do not introduce loops yet.

5.2.7. Write a program that compares your speed with the speed limit. If

you are speeding, the program will calculate your fine. If not,

nothing happens. The fine consists of a fixed amount of € 100 and a

variable amount of € 2.5 for every km over the speed limit.

The screen should look like:

 Be aware! Speeding is heavily fined!

 Enter your speed: 131

 Enter the speed limit: 120

 Your speed is 11 km/h over the speed limit.

 Your fine amounts 127.5 euro.

 67

5.2.8. Write a BMI (Body Mass Index) calculator. BMI is a measure of body

fat based on height and weight that applies to adult men and

women. It can be calculated with the following formula:

𝐵𝑀𝐼 =
𝑤𝑒𝑖𝑔𝑡ℎ 𝑖𝑛 𝑘𝑔

(ℎ𝑒𝑖𝑔𝑡ℎ 𝑖𝑛 𝑚) ∗ (ℎ𝑒𝑖𝑔𝑡ℎ 𝑖𝑛 𝑚)

The BMI is divided into different categories:

− underweight < 18.5

- normal weight 18.5 – 24.9

- overweight 25 – 29.9

- obesity ≥ 30

Ask the height and weight of the user, calculate his/her BMI and

print the category the user belongs to.

5.2.9. Write a program that first reads 3 integer numbers that represent

the current date and then reads again 3 integer numbers to be

interpreted as a birth date. Based upon this information the program

prints the age of that person in years and months.

 Enter the current date: 6 1 2015

 Enter your birth date: 25 1 1985

 Your age is: 29 years and 11 months

5.2.10. Write a program that reads a start and end time, calculates

the time difference and prints it in the format hh hours mm minutes

ss seconds. You can read hours, minutes and seconds separately. If

the start time appears to be later than the end time, you can

assume the start time to be from the previous day.

examples:

5.2.11. Write a program that reads 3 numbers and prints them

ranked form small to large.

5.2.12. Write a program that reads a digit (0, 1, … , 9) and prints this

digit as a word. If the entered number is not a digit, a warning

should be printed:

 Enter a digit: 3

 You have entered the digit three.

 Enter a digit: 23

 The number you entered is not a digit.

start 2 12 12 3 12 18 5 23 45 21 0 0

end 3 15 17 3 15 17 7 10 30 4 30 15

time difference 1 3 5 0 2 59 1 46 45 7 30 15

5.2.13. Write a program that asks the user to enter an instruction in

the format:

 number1 operand number2

For the operand, the user can choose +, -, * or /. The program

calculates the mathematical result and prints it to the screen.

Tip: read the instruction with

scanf("%f%c%f%*c",&getal1,&operand,&getal2);

and use switch(operand)

 Enter an expression (without spaces!): 245/16

 245 / 16 = 15.31

5.2.14. A gas company calculates its prices as follows:

- for a consumption ≤ 1m³ € 20,00

- for a consumption > 1m³ € 20 for the first m³ + € 3,5/m³

 for the part over 1m³

The total amount needs to be increased with a tax of 21%.

Write a program that asks the user to enter his/her consumption and

prints an invoice to the screen showing consumption, cost prince,

tax amount and total amount.

5.2.15. The equivalent resistance (Req) for 2 parallel resistors R1 and

R2 can be calculated with:
1

𝑅𝑒𝑞

=
1

𝑅1

+
1

𝑅2

Write a program that reads the values of R1 and R2, calculates Req

and prints it to the screen. Make sure the program also works

correctly for an R1 and/or R2 equal to 0!

5.2.16. Write a program that calculates the length of the third side of

a right-angled triangle based upon the lengths of the 2 other sides

and prints it to the screen. To this end, ask the user to enter the

length of all 3 sides in the order: side1 side2 hypotenuse. A zero is to

be entered for the side for which you wish to calculate the length.

(ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒)2 = 𝑠𝑖𝑑𝑒1
2 + 𝑠𝑖𝑑𝑒2

2

5.2.17. Write a program that reads 3 integer numbers that are to be

interpreted as a date and prints the corresponding day of the week.

The day of the week can be calculated as follows:

𝑑𝑎𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑒𝑘 = 𝑓𝑎𝑐𝑡𝑜𝑟 – [
𝑓𝑎𝑐𝑡𝑜𝑟

7
] ∗ 7

 69

 where

 - [X] equals the integer part of X

 - day of the week is represented by 0 to 6 for Saturday till Friday.

 - 𝑓𝑎𝑐𝑡𝑜𝑟 = 365 ∗ 𝑦𝑒𝑎𝑟 + 𝑑𝑎𝑦 + 31 ∗ (𝑚𝑜𝑛𝑡ℎ − 1) +
𝑦𝑒𝑎𝑟−1

4
− [(

𝑦𝑒𝑎𝑟−1

100
+ 1) ∗

3

4
]

 𝑣𝑎𝑙𝑖𝑑 𝑓𝑜𝑟 𝐽𝑎𝑛𝑢𝑎𝑟𝑦 𝑎𝑛𝑑 𝐹𝑒𝑏𝑟𝑢𝑎𝑟𝑖

 - 𝑓𝑎𝑐𝑡𝑜𝑟 = 365 ∗ 𝑦𝑒𝑎𝑟 + 𝑑𝑎𝑦 + 31 ∗ (𝑚𝑜𝑛𝑡ℎ − 1) − (0.4 ∗ 𝑚𝑜𝑛𝑡ℎ + 2.3) +
𝑦𝑒𝑎𝑟

4
−

 [(
𝑦𝑒𝑎𝑟

100
+ 1) ∗

3

4
]

 𝑣𝑎𝑙𝑖𝑑 𝑓𝑜𝑟 𝑀𝑎𝑟𝑐ℎ 𝑡𝑖𝑙𝑙 𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟

5.2.18. Write a program that asks the user to enter the coefficients a,

b and c of a quadratic equation with general form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

and prints all real roots of this equation. Make sure the program

does not crash for certain values of the coefficients!

a b c roots

1 1 -6 two real roots: -3 and 2

2 1 -6 two real roots: -2 and 1.5

1 1 1 no real roots

1 -4 -4 double real root: 2

0 1 1 one solution: -1

0 0 1 no solutions (inconsistent equation)

0 0 0 identity

5.3 Repetition statements

In every programming language there are circumstances were you want to

do the same thing many times. For instance you want to print the same

words ten times. You could type ten printf functions, but it is easier to use

a loop. To this end, C provides 3 repetition statements:

- for statement

- while statement

- do … while statement

5.3.1 The for statement

The for statement is used for counter-controlled repetition. It allows to

iterate a block of statements a predefined number of times.

In its most general form, the for loop can be described as:

for(<initialization>; <test expression>; <step expression>)

{

 <statement>;

 <statement>;

}

<next statement>;

A counter variable is used to count the number of repetitions. At the start of

the for loop, the counter variable needs to be initialized once as expressed

in the <initialization> expression. As long as the <test expression> is

met (result ≠ 0), the block statements are executed and the counter

variable is increased / decreased. The <step expression> describes how

the counter variable needs to be changed after every loop execution. When

the counter variable no longer matches the <test expression> (the test

yields 0), the loop is terminated and execution continues with the <next

statement> after the for loop.

In a flowchart, the for loop looks like:

test?

true (≠0)

false (0)

initialisation
counter variable

statements

step

next statement

Figure 18: flowchart for loop

 71

Learning note

Note that the braces in the for loop are always placed right under the first

letter of for and that all body statements are indented! This improves the

readability of the code!

Example:

read 10 integer numbers and print their sum.

Figure 19 shows the flowchart of an algorithm using a for loop.

counter < 10 ?

true

false

counter = 0

read integer
number

add to previous
sum

print sum

start

declarations

increase counter

stop

Figure 19: flowchart for loop example

The corresponding C code and screen output are shown in Code 13.

1 # include <stdio.h>

2

3 # define REP_TIMES 10

4

5 int main(void)

6 {

7 int number, counter, sum=0;

8

9 for (counter = 0; counter < REP_TIMES; counter++)

10 {

11 printf("Enter an integer number: ");

12 scanf("%d%*c", &number);

13 sum += number;

14 }

15

16 printf("\nThe sum of these numbers equals: %d.\n", sum);

17

18 return 0;

19 }

Code 13: for loop example

Remark

If only one statement is to be repeated, the braces can be left out:

for(i=0; i< line_length; i++)

 printf(“-”);

printf(“\n”);

Common mistake

The counter is changed by the step expression written at the start of the for

loop. As such, the counter does not need to be changed inside the loop!

5.3.2 The while statement

The while statement is used for condition-controlled repetition. It allows to

iterate a block of statements as long as a condition remains true. In this

case it is usually not know in advance how many times the loop will be

executed. Of course, the loop must be written such that the condition will

become false at some point.

 In its most general form, the while loop can be described as:

<initialization>;

while (<condition>)

{

 <statement>;

 <statement>;

 …

 <change condition variables>;

}

<next statement>;

Some condition variables are used to determine whether the loop needs to

be executed again or not. These condition variables need to be initialized

before the start of the while loop in the <initialization> statement. As

long as the <condition> is true (result ≠ 0), the block statements are

 73

executed. To avoid ending up with an infinite loop, at least one of these

loop statements needs to take care of changing the condition variables such

that in the end the condition will become false (0). When this happens, the

loop is terminated and execution continues with the <next statement>

after the while loop.

In a flowchart, the while loop looks like:

Condition?

true (≠0)

false (0)

initialisation
condition

variable(s)

statements

change condition
variable(s)

next statement

Learning note

Note that the braces in the while loop are always placed right under the

first letter of while and that all body statements are indented! This

improves the readability of the code!

Example:

read integer numbers until the number 999 is entered and print their sum.

Figure 21 shows the flowchart of an algorithm based on a while loop.

number != 999

true

false

read integer
number

add to previous
sum

read integer
number

print sum

start

declarations

stop

Figure 21: flow chart while loop example

Figure 20: flowchart of while loop

The corresponding C code and screen output are shown in Code 14:

1 /*

2 read integer numbers until the number 999 is entered and print

 their sum

3 */

4 # include <stdio.h>

5

6 int main(void)

7 {

8 int number, sum;

9

10 sum = 0;

11 printf("Enter an integer number (end with 999): ");

12 scanf("%d%*c", &number);

13

14 while (number != 999)

15 {

16 sum += number;

17 printf("Enter an integer number (end with 999): ");

18 scanf("%d%*c", &number);

19 }

20

21 printf("\nThe sum of these numbers equals: %d.\n", sum);

22

23 return 0;

24 }

Code 14: while loop example

Common mistake

The condition variables need to be changed explicitly inside the while loop!

This is often forgotten, resulting in an endless loop!

Common mistake

The condition variables need to be initialized correctly before entering the

loop, otherwise the results of the program will probably be incorrect!

 75

5.3.3 The do … while statement

The do … while repetition statement is similar to the while repetition

statement.

In its most general form, the do … while loop can be described as:

<initialization>;

do

{

 <statement>;

 <statement>;

 …

 <change condition variables>;

}while(<condition>);

<next statement>;

In the do … wile statement, the condition is tested after the execution of

the loop statements, whereas in the while statement, the condition is

tested first. As a result, the loop statements in a do … while loop are

always executed at least once. In a while loop on the other hand, it is

possible that the loop statements are never executed.

Learning note

Note that the braces in the do … while loop are always placed right under

the first letter of do and that all body statements are indented! This

improves the readability of the code!

Example 1:

read integer numbers until the number 999 is entered and print their sum.

Figure 22 shows the flowchart of an algorithm based on a do … while loop.

Initialisations
(sum, number)

add to previous
sum

read integer
number

print sum

start

declarations

stop

number != 999true

false

Figure 22: flow chart do ... while example 1

The corresponding C code and screen output are shown in Code 15:

1 /*

2 read integer numbers until the number 999 is entered and print

 their sum

3 */

4 # include <stdio.h>

5

6 int main(void)

7 {

8 int number, sum;

9

10 sum = 0;

11 number = 0;

12

13 do

14 {

15 sum += number;

16 printf("Enter an integer number (end with 999): ");

17 scanf("%d%*c", &number);

18 } while (number != 999);

19

20 printf("\nThe sum of these numbers equals: %d.\n", sum);

21

22 return 0;

23 }

Code 15: do ... while example 1

Common mistake

The semicolon at the end of the do … while is often forgotten!

Example 2:

ask the user to choose between the symbols ‘1’, ‘2’, ‘3’ and ‘4’. Keep asking

for a new choice until a valid symbol was entered.

This can be achieved by following code:

1 # include <stdio.h>

2 int main(void)

3 {

4 char choice;

5

6 do

7 {

8 printf("Enter your choice [1, 2, 3 of 4]: ");

9 scanf("%c%*c", &choice);

10 } while (choice < '1' || choice > '4');

 77

11

12 printf("Your choice: %c", choice);

13

14 return 0;

15 }

Code 16: do ... while example 2

5.3.4 break and continue

break and continue statements are used to change the program flow in

loops.

5.3.4.1 break

In section 5.2.3 we discussed the use of break in a switch statement.

There the break was used to immediately stop the execution of the switch

and continue with the next statement after the switch.

A break statement can also be used in a for, while or do … while

loop. In these cases, the break statement will immediately terminate the

execution of the nearest enclosing loop and will pass control to the

statement following that loop.

Using a break statement in a for or while loop can be represented by the

flowchart in Figure 23.

Initialisation

change condition
variables

Condition?

true

statements

Test?

false

true break

next statement

false

Figure 23: flowchart break

Example:

read integer numbers until the number 999 is entered and print their sum.

If the sum exceeds 50, the loop must be terminated as well.

A possible solution is to use a break statement inside the loop:

1 /*

2 Read integer numbers until the number 999 is entered and print

3 their sum. If the sum exceeds 50, the program must be terminated.

4 */

5 # include <stdio.h>

6

7 int main(void)

8 {

9 int number, sum;

10

11 sum = 0;

12 printf("Enter an integer number (end with 999): ");

13 scanf("%d%*c", &number);

14

15 while (number != 999)

16 {

17 sum += number;

18 if (sum > 50) break;

19 printf("Enter an integer number (end with 999): ");

20 scanf("%d%*c", &number);

21 }

22

23 printf("\nThe sum of these numbers equals: %d.\n", sum);

24

25 return 0;

26 }

Code 17: break example

A better solution in this case would be to check the sum in the condition of

the while loop. The C code for the loop then looks like:

15 while (number != 999 && sum <= 50)

16 {

17 sum += number;

18 printf("Enter an integer number (end with 999): ");

19 scanf("%d%*c", &number);

20 }

5.3.4.2 continue

When a continue statement is used in a for, while or do … while loop,

the remainder of the loop statements is skipped and the next loop iteration

is performed.

In the case of a while or do … while control structure, the loop condition is

tested immediately after the execution of the continue statement. In a for

repetition statement on the other hand, the step expression is executed

first before evaluating the loop condition.

 79

Common mistake

Changing the loop condition variables of a while or do … while control

structure after the continue statement can result in an endless loop!

The continue statement can be included in a flowchart as shown below:

Initialisation

change condition
variables

Condition?

true

statements

Test?

false

true

continue

next statement

false

change condition
variables

Initialisation

Condition?

true

statements

Test?

false

true continue

next statement

false

step expression

Example:

Example:

read integer numbers until the number 999 is entered and print the sum of

all positive numbers read.

A possible solution using a continue statement is described in Code 18:

1 /*

2 read integer numbers until the number 999 is entered and print

3 the sum of all positive numbers

4 */

5 # include <stdio.h>

6

7 int main(void)

8 {

9 int number, sum;

10

11 sum = 0;

12

13 printf("Enter an integer number (end with 999): ");

14 scanf("%d%*c", &number);

15

16 while (number != 999)

17 {

18 if (number < 0)

19 {

20 printf("Enter an integer number (end with 999): ");

21 scanf("%d%*c", &number);

22 continue;

23 }

24 sum += number;

25 printf("Enter an integer number (end with 999): ");

26 scanf("%d%*c", &number);

27 }

Figure 24: continue in while loop Figure 25: continue in for loop

28

29 printf("\nThe sum of these numbers equals: %d.\n", sum);

30

31 return 0;

32 }

Code 18: continue statement

Also in this case, the continue statement is not really necessary. The loop

statements could also be rewritten as follows:

16 while (number != 999)

17 {

18 if (number >= 0)

19 sum += number;

20 printf("Enter an integer number (end with 999): ");

21 scanf("%d%*c", &number);

22 }

Learning note

Avoid using break and continue statements in loops!

5.3.5 Loop examples

5.3.5.1 Example 1

Write a C program that reads a number of integers and prints their mean

and maximum value. To end the reading process, the user enters 999.

Make sure 999 is not taken into account in your calculations.

1 #include <stdio.h>

2 int main(void)

3 {

4 int number, sum, counter, max;

5 float mean;

6 sum = counter = 0;

7 printf("Enter a number of integers, end with 999 \n");

8 scanf("%d%*c", &number);

9 while (number != 999)

10 {

11 sum += number;

12 counter++;

13 if (counter == 1 || number > max) max = number;

14 scanf("%d%*c", &number);

15 }

16 if (counter == 0)

17 printf("No integers were entered! \n");

18 else

19 {

20 printf("The maximum number is: %d \n", max);

21 mean = (float)sum / counter;

22 printf("The mean is %8.2f \n", mean);

23 }

24 return 0;

25 }

 81

Code 19: loop example 1

5.3.5.2 Example 2

Write a C program that reads a text symbol by symbol and prints the

number of symbols read and how many times the letter ‘e’ or ‘E’ occurs in

the text. To end the reading process, the user enters <Ctrl-Z><Enter>

(EOF).

To solve this problem, we will make use of the function getchar() that

reads 1 symbol and returns the ASCII value of that symbol. If <Ctrl-

Z><Enter> is entered, getchar will return EOF (defined as -1 in stdio.h).

1 #include <stdio.h>

2 int main(void)

3 {

4 char c;

5 int number_symbols = 0;

6 int number_e = 0;

7 printf("Enter a text, end with <ctrl-Z><Enter> \n");

8 c = getchar();

9 while (c != EOF)

10 {

11 number_symbols++;

12 if (c == 'e' || c == 'E') number_e++;

13 c = getchar();

14 }

15 printf(" \n\n");

16 printf("%d symbols read, ", number_symbols);

17 printf("%d symbols were \'e \' or \'E \'\n", number_e);

18 return 0;

19 }

Code 20: loop example 2

5.3.6 Exercises

5.3.1. Write a program with only 1 variable, that prints the numbers -3, -1,

1, 3, 5, …, 25, comma separated to the screen. Nothing needs to be

read from the keyboard.

5.3.2. Write a program that asks the user to enter an integer number and

prints the multiplication table of that number

The screen dialog should look like:

 Enter an integer number: 7

 The table of multiplication of 7 is:

 1 x 7 = 7

 2 x 7 = 14

 ...

 20 x 7 =140

5.3.3. Write a program that asks the user to enter an integer number n and

prints the sum 1+2+3+4+…+n.

5.3.4. Write a program that prints a filled square to the screen by printing

22 lines of 40 black rectangles (the ASCII code for a black rectangle

is 219).

5.3.5. Write a program that first asks the user to enter an integer number.

Afterwards more integers are asked until the sum of those integers

equals or exceeds the first number entered.

 Enter the limit: 15

 Enter an integer number: 3

 Enter an integer number: 4

 Enter an integer number: 6

 Enter an integer number: 5

 The limit of 15 is reached or exceeded!

5.3.6. Write a program that asks the user to enter an integer number in the

interval [-2, 4.5[(i.e. -2 ≤ number < 4.5) and prints it to the screen.

If a wrong number is entered, a new number must be requested until

a valid number is entered.

 83

5.3.7. Write a program that asks the user to enter an integer number in the

interval [-30 , 30]. Make sure only valid numbers can be entered!

This number is then printed as a bar graph made out of * symbols.

Negative numbers are drawn from the middle to the left, positive

numbers are drawn from the middle to the right. Points are used to

fill up the empty places. The entered number itself is printed in the

end.

Repeat the program until a 0 is entered.

 number: 12

 |************..................

 number: -4

 ****|..............................

 number: 0

5.3.8. Write a program that sums 10 numbers entered by the user and

computes the mean of those 10 numbers. Try to use only 3 variables

in your program. Calculate the sum while reading the numbers.

5.3.9. Write a program that prints the mean of a number of integers. The

exact number of integers is not known upfront. If the number 999 is

read, the program stops reading new numbers. 999 cannot be taken

into account for the calculation of the mean.

5.3.10. Write a program that reads a natural number n, calculates n!

and prints the result to the screen.

0! = 1

n! = 1 x 2 x 3 x … x n with n > 0

5.3.11. Write a program that reads 2 numbers: a base b (𝑏 ∈ R) and

an exponent n (𝑛 ∈ 𝑁). Afterwards, the exponentiation 𝑏𝑛 is

calculated and the result is printed to the screen. Calculate 𝑏𝑛 with a

loop. Do not use a standard function.

5.3.12. Repeat exercise 5.3.11 but with n being an integer (both

positive and negative values are possible).

5.3.13. Write a program that prints the minimum and maximum

value of 10 numbers entered by the user. Use only 4 variables in

your program.

5.3.14. Repeat exercise 5.3.13 but this time also print when the

minimal and maximal number were entered.

 Enter 10 numbers: 5 98 6 -5 78 -20 4 6 8 2

 maximum: 98 at place 2

 minimum: -20 at place 6

5.3.15. Write a program that calculates the greatest common divisor

of 2 positive integers. Use Euclid’s algorithm to determine the gcd. In

this algorithm, the biggest number is replaced by the difference of

both numbers. Repeat this until both numbers are equal. This

number is the gcd. Print the gcd and all intermediate steps.

 Enter 2 positive integer numbers: 114 90

 114 90

 24 90

 24 66

 24 42

 24 18

 6 18

 6 12

 6 6

 The gcd of 114 and 90 equals 6.

5.3.16. Write a program that draws a tower upside down using the

ASCII character 219 (). The tower consists of a sequence of

squares. The top square has a side defined by the user. The next

square is 2 blocks smaller, the next one is again 2 blocks smaller, …

New towers are drawn until the user enters ‘n’.

 This program builds a tower upside down!

 How wide should the tower be?

 (enter an odd number between 3 and 15)

 7

 Do you want to build another tower? (y/n) y

 How wide should the tower be?

 …

 85

5.3.17. Write a program that draws a zigzag line until the user enters

‘n’ to stop. The first portion of the line is made out of a number of

blocks determined by the user. The next portion is only half that

length, … If the user wants to draw several zigzag lines, make sure

they are all well positioned and drawn correctly.

 Welcome to ZIGZAG world!

 How wide do you want your ZIGZAG line?

 Enter a number between 3 and 60: 20

 Do you want to draw another ZIGZAG line? (y/n) n

5.3.18. Write a program that determines the maximum out of 10

numbers entered by the user. The program also prints the number of

times the maximal value was entered.

5.3.19. Write a program that asks the user to enter a positive integer

and prints all rows of consecutive positive integers with a sum equal

to the first integer entered.

 Enter an integer > 0: 87 Enter an integer > 0: 64

 87 is the sum of: 64 is the sum of:

 12 13 14 15 16 17 no solution

 28 29 30

 43 44

6 Functions

Objectives

In this chapter you will learn to write more complex programs using

functions. Both, the built-in standard functions as well as programmer-

defined functions, will be discussed.

As a special case, the generation of random numbers will be treated.

You will learn how to pass information to and retrieve information from a

function. Attention will also be given to the scope of variables used in the

different functions of your program.

Most computer programs are built to solve more complex problems than the

ones we have treated so far. To develop a computer program for complex

problems, it is good practice to divide the problem into smaller and more

manageable sub-problems or modules. Then, for each of those modules, an

algorithm must be written and translated into C code.

To support this process of structured programming, C provides the concept

of functions. At least one function is always present in every C program:

the main() function! A function in C is a block of code that performs a task

and then returns control to a caller. It has its own name and can be called

from different places in the program. As such, functions can also be used to

avoid repetition of code.

C provides 2 types of functions: standard functions and programmer-

defined functions. Both types of functions will be discussed in this chapter.

6.1 Standard functions

The C standard library provides a lot of functions that perform common

mathematical calculations, string manipulations, input/output, and many

other useful tasks. In this section, we will discuss only a few of these

libraries. It is worthwhile to look into the full set of standard functions

provided.

Like everything in C, functions need to be declared before they can be used

in a program. The declarations of standard functions are grouped into

header files (one header file per standard library). This is why we have

included “<stdio.h>” in all previous programs. This header file contains

the declarations of functions like printf(), scanf(), …

The function definitions are inserted by the linker that will look for the

correct definitions in the corresponding library. For the functions printf(),

scanf() for instance, this will be the stdio library.

 87

6.1.1 Mathematical standard functions

The mathematical standard functions supported by C are grouped into the

standard library “math”.

To include the necessary function declarations, the header file “math.h”

needs to be included in the program.

Table 8 shows an overview of the most commonly used math functions

provided:

Function declaration description example

double cos(double x); cos(𝑥) (𝑥 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) cos (
𝜋

2
) = 0.0

double sin(double x); sin(𝑥) (𝑥 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) sin (
𝜋

2
) = 1.0

double tan(double x); tan(𝑥) (𝑥 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) tan (
𝜋

4
) = 1

double acos(double x); arccos(𝑥) (𝑟𝑒𝑠 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) acos(1.0) = 0.0

double asin(double x); arcsin(𝑥) (𝑟𝑒𝑠 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) asin(0.0) = 0.0

double atan(double x); arctan(𝑥) (𝑟𝑒𝑠 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) atan(0.0) = 0.0

double atan2(double y, double x); arctan (
𝑦

𝑥
) (𝑟𝑒𝑠 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠) atan(1,4) = 0.24

double exp(double x); 𝑒𝑥 exp(1.0) = 2.718

double log(double x); ln (𝑥) log(2.718) = 1.0

double log10(double x); log (𝑥) log(1000) = 3

double pow(double x, double y); 𝑥𝑦 pow(2,5) = 32.0

double sqrt(double x); √𝑥 sqrt(9.0) = 3.0

double floor(double x);
rounds x to the largest

integer ≤ x

floor(123.54)

= 123.0

double ceil(double x);
rounds x to the

smallest integer ≥ x

ceil(123.54)

= 124.0

double fabs(double x);
absolute value of x

(|𝑥|)

fabs(−2.5) = 2.5

Table 8: math library functions

Learning note

The function pow uses calculation methods that need a lot of computations.

Therefore, do not use the function pow for simple exponentiations like 𝑥²

and 𝑥³. Use 𝑥 ∗ 𝑥 or 𝑥 ∗ 𝑥 ∗ 𝑥 instead.

Example:

Write a program that prints a table with the cosine of all angles between 0°

and 360°. Change the angles with steps of 30°.

This problem can be solved as indicated by the flowchart of Figure 26:

angle < 360 ?

true

false

angle = 0

convert to radians

start

declarations

angle + 30 deg

stop

Cosine function

print table line

print table header

Figure 26: flowchart standard function cos example

The corresponding C code and screen output are shown in Code 21.

1 /*

2 this program prints the cosine of angles between 0 and 360

3 degrees

4 */

5 #include <stdio.h>

6 #include <math.h>

7 #define M_PI 3.14159265358979323846

8

9 int main(void)

10 {

11 int degrees;

12 double radians, res;

13

14 printf(" x | cos(x) \n");

15 printf(" ----------------- \n");

16

17 for (degrees = 0; degrees <= 360; degrees += 30)

18 {

19 radians = (double)degrees*M_PI / 180;

20 res = cos(radians);

21 printf(" %3d | 7.4f \n", degrees, res);

22 }

23

24 return 0;

25 }

 89

Code 21: example math standard library

The line “#include <math.h>” takes care of including all math function

declarations into the program. As a result, the cosine function can now be

used.

To use a function, simply write the name of that function followed by

parenthesis (). If the function used requires one or more inputs

(=arguments), these arguments need to be placed in between the

parenthesis in the order specified by the function declaration.

With the line “res=cos(radians);”, the math standard function “cos” is

called to compute the cosine of the angle “radians”. Remark that radians

is a variable of the type double. This is needed since the cosine function

takes a double as argument as can be seen in the function declaration. The

assignment operator “=” takes care of assigning the result of the cosine

calculation to the variable res. Also this variable needs to be of the type

double as dictated by the function declaration.

The line “#define M_PI 3.14159265358979323846” defines M_PI to be

equal to 3.14159265358979323846. The precompiler will replace every

M_PI in the program by this number. Commonly used mathematical

constants are also defined in “math.h” To use them add

“#define _USE_MATH_DEFINES” before the line “#include <math.h>”. The

explicit definition of M_PI in the program is now no longer needed.

6.1.2 Other standard functions

In this section an overview of the most commonly used functions of some

standard libraries will be given.

6.1.2.1 Functions for string manipulations <string.h>

int strlen(char *s);

int strcmp(char *s, char *t);

int strncmp(char *s, char *t, int n);

char *strcpy(char *s, char *t);

char *strncpy(char *s, char *t, int n);

char *strcat(char *s, char *t);

char *strncat(char *s, char *t, int n);

char *strchr(char *s, int ch);

6.1.2.2 Functions for character handling <ctype.h>

int isalnum(int ch);

int isalpha(int ch);

int iscntrl(int ch);

int isdigit(int ch);

int isgraph(int ch);

int islower(int ch);

int isprint(int ch);

int ispunct(int ch);

int isspace(int ch);

int isupper(int ch);

int isxdigit(int ch);

int tolower(int ch);

int toupper(int ch);

6.1.2.3 Standard lib functions <stdlib.h>

double atof(char *s);

int atoi(char *s);

long atol(char *s);

exit(int status);

int system(char *s);

int abs(int n);

long labs(long n);

int rand(void);

6.1.2.4 More C libraries

<errno.h> error handling

<float.h> floating point precision

<signal.h> signals

<stddef.h> special types

<time.h> dates and time

6.1.3 Generation of random numbers

To generate a random number, the C standard library function rand(),

declared in the header file stdlib.h, can be used. This rand() function

generates a random integer between 0 and RAND_MAX (a constant defined in

stdlib.h).

To demonstrate the rand() function, let’s write a program that prints 10

random integers ranging from 1 to 100.

Simply using the function rand() results in integers that can be much

larger than 100! To limit the numbers to 100, the rand() function output

needs to be scaled down. This can be accomplished by computing the

remainder of the integer division by 100:

rand()%100

 91

resulting in an integer number ranging from 0 to 99. Shifting this result to

the interval [1, 100] can then be done by adding 1:

rand()%100 + 1

The program that prints 10 of these random numbers can then be written

as shown in Code 22:

1 #include <stdio.h>

2 #include <stdlib.h> //contains definition of rand()

3

4 int main(void)

5 {

6 int i;

7 for (i = 0; i<10; i++)

8 printf("%4ld", rand() % 100 + 1);

9 printf(" \n");

10 return 0;

11 }

Code 22: random number generation

Executing the program of Code 22 again produces:

So it appears that these numbers are not that random after all! Actually,

the function rand() generates pseudo-random numbers. Calling the rand

function repeatedly produces a series of numbers that appears to be

random. However, this sequence is repeated each time the program is

executed. This pseudo-random behavior is very useful during the debug

stage of a program. It is needed to reproduce and effectively solve possible

programming errors.

However, once a program is debugged, it should be possible to generate

true random numbers. To this end, the function srand() can be used. This

function takes an unsigned integer as input and determines a starting value

or seed for the rand() function. Different values for the seed parameter,

will result in different series of random numbers. As such, to obtain

different results each time the program is executed, the seed needs to be

changed in every run. This can be done automatically be using the function

time(NULL), that will return the number of seconds elapsed since 0 o’clock

January 1st 1970. The function time() is declared in the header file time.h.

Including the function srand() in the example of Code 22 results in:

1 #include <stdio.h>

2 #include <stdlib.h> //needed for the functions rand() and srand()

3 #include <time.h> //needed for the function time()

4

5 int main(void)

6 {

7 int i;

8 srand(time(NULL));

9 for (i = 0; i<10; i++)

10 printf("%4d", rand() % 100 + 1);

11 printf(" \n");

12 return 0;

13 }

Code 23: usage of srand() function

Executing this program several times results in different screen outputs as

can be seen in Figure 27.

Figure 27: random number generation using srand()

Example:

Write a program that picks a random number in the interval [1,100]. The

user needs to guess the number chosen. If the guess was too high or too

low, the program prints “too high” or “too low” respectively. If the guess is

correct, the program prints the number of guesses needed to find the secret

number.

1 /*

2 game: guess the secret number

3 */

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <time.h>

7

8 int main(void)

9 {

10 int secret, number;

11 int counter;

12

13 counter = 0;

14 srand(time(NULL));

15 secret = rand() % 100 + 1;

16 printf("Search the secret number in the interval [1,100] \n");

 93

17 do

18 {

19 printf("Try your luck: ");

20 scanf("%d%*c", &number);

21 counter++;

22 if (number > secret) printf("Your guess was too high!\n");

23 if (number < secret) printf("Your guess was too low!\n");

24 } while (number != secret);

25

26 printf("\nYou needed %d guesses to find the secret number!\n",

27 counter);

28 return 0;

29 }

Code 24: guess the secret number

6.2 Programmer-defined functions

Next to the provided standard functions, programmers can use self-defined

functions to accomplish specific tasks that were not included in the standard

libraries. Using self-defined functions is needed to split the problem in sub

problems, to avoid code repetition and to be able to reuse code in different

programs.

Every function can be described as a black box, that takes inputs or

arguments and has a certain result or return value. This function principle is

shown in Figure 28.

Like standard functions, also custom functions need a declaration and a

definition. The declaration needs to be written before the first function call

and contains the function name and the types of the return value and

parameters or inputs of the function:

return-value-type <function_name>(list of parameter types);

The function definition can be written anywhere in the code. The format of a

function definition is:

return-value-type <function_name>(list of parameters + their types)

{

 statements;

}

function

arguments return value

Figure 28: general function principle

Learning note

To avoid compile errors and to keep the code well-structured always adhere

to following style rules:

- write the function declarations in the beginning of the source code,

before the main function definition.

- write the custom function definitions after the main function definition.

Once the function declaration and definition are written, the function can be

called from everywhere in the program. Like standard functions, custom

functions are called using the function name followed by parenthesis. If

arguments are to be passed on to the function, these arguments are put in

between the parenthesis.

A flowchart showing the program flow when a function is used is shown in

Figure 29:

statements

start main

declarations

stop main

function call

statements

statements

start
function

declarations

stop function

Figure 29: function flowchart

To increase the readability of the flowcharts, the dotted lines will be left out

from now on!

6.2.1 Void functions without parameters

Void functions are functions without return value. In its most general form,

a void function without parameters can be described as:

void <function_name>(void);

To indicate that there is no return value, the function name is preceded by

the word void. Simply omitting a return-value-type will result in the

assumption of an integer return value. As such, the word void before the

function name is absolutely necessary to indicate that no return value will

be present. In the same way, the word void is used in between the

parenthesis following the function name to indicate that no parameters are

needed.

 95

Example:

Write a program that prints several lines of 60 ‘-’ characters.

1 #include <stdio.h>

2 #define LINELENGTH 60

3

4 void line(void); /* function declaration */

5

6 int main(void)

7 {

8 line(); /* function call */

9 line();

10 line();

11 return 0;

12 }

13

14 void line(void) /* function definition */

15 {

16 int i;

17

18 for(i=0; i<LINELENGTH; i++)

19 {

20 printf(“-”);

21 }

22

23 printf(“\n”);

24 }

Code 25: example void functions without parameters

6.2.2 Void functions with parameters

In many cases, the caller needs to pass information to the function. This is

done by the use of function parameters that are written between

parenthesis after the function name. These parameters can then be used as

local variables inside the function. In the function definition, every

parameter is given a name and type resulting in:

void <function_name>(type par1, type par2, …)

{

 statements;

}

The function declaration only contains the types of the different

parameters:

void <function_name>(type, type, …);

When the function is called, the parameters in the function definition are

replaced by real arguments. Every argument is an expression that is

evaluated during the function call. The resulting argument value is then

used to initialize the formal parameters.

Example:

Write a program that prints several lines made out of ‘-’ characters. The line

lengths can vary.

1 /*

2 Use function to print out a line with different lengths

3 */

4

5 #include <stdio.h>

6

7 void line(int); /* function declaration */

8

9 int main(void)

10 {

11 line(10); /* function call */

12 line(20);

13 line(30);

14 line(40);

15 line(50);

16

17 return 0;

18 }

19

20 void line(int length) /* function definition */

21 {

22 int i;

23

24 for (i = 0; i < length; i++)

25 printf("-");

26

27 printf("\n");

28 }

Code 26: example void function with parameters

The function declaration

void line(int);

tells the compiler that the function with name “line” has no return value

(void) and expects an integer value as input (int).

The function line is called with the statement “line(40);”. The argument

value 40 is copied to the argument length inside the function line. In this

function, the for loop takes care of printing the correct amount of “-”

characters.

 97

6.2.3 Functions with return value.

As shown in Figure 28, a function can also produce a result that needs to be

given back to the function caller. This function result is called the function-

return-value and is written before the function name in both the function

declaration and the function definition.

Example:

write a program that reads a real base and a non-negative integer exponent

and calculates the exponentiation.

1 /*

2 example of function with return value

3 */

4

5 #include <stdio.h>

6 double exponentiation(double, int); /* function declaration */

7

8 int main(void)

9 {

10 double a, m;

11 int n;

12 printf("Exponentiation \n");

13 printf("Enter base: ");

14 scanf("%lf%*c", &a);

15 printf("Enter (non-negative) exponent: ");

16 scanf("%d%*c", &n);

17 m = exponentiation(a, n); /* function call */

18 printf("The result is %16.8f \n", m);

19 return 0;

20 }

21

22 /* function definition */

23 double exponentiation(double base, int exponent)

24 {

25 double result = 1.0;

26 int i;

27 for (i = 0; i<exponent; i++)

28 {

29 result *= base;

30 }

31 return result;

32 }

Code 27: example function with return value

The statement “return result;” inside the function exponentiation,

returns the result to the function main where exponentiation was called.

In this example, this result is assigned to the variable m.

Remark

When the return statement is executed, the return value is passed back to

the caller function. On top, the program execution returns to the caller

function!

As a result, statements written after the return statement in a function will

be ignored!

6.3 Storage classes and scope of variables

Every variable has its own storage class and scope. The storage class

indicates how long a variable remains valid while the scope gives

information on where the variable can be accessed.

6.3.1 Storage class auto – local variables

Auto variables have automatic storage duration, meaning that they will be

created upon entrance of the block in which they are defined, exist while

the block is active and are destroyed when that block is exited.

The scope of these variables is local to the block in which they are defined.

No block outside the defining block has direct access to automatic variables!

These variables may be declared with the keyword auto but this is not

mandatory. If no storage class is written, the class auto is used as well. As

such, if no keyword is added, the variables defined in a function have a

scope local to this function!

6.3.2 Storage class extern – global variables

External variables have static storage duration, meaning that memory will

be allocated when the program execution starts and will remain allocated

until the program terminates.

An example of external variables are global variables. These variables are

created by placing the variable declaration outside any function. In this

case, the keyword extern does not need to be added. The variable will be

external by default.

The scope of global variables is the entire source code following the

declaration. If these variables are not initialized in the declaration, they will

be initialized to zero automatically.

Learning note

Global values can be accessed and altered from everywhere in the program!

Therefore avoid using global variables!!

 99

The program in Code 28 demonstrates the difference between local and

global variables. Note that, when entering the function, the local variable a

belonging to the function has priority over the global variable a. Since the

variable b is not declared inside the function, every calculation or

assignment done with that variable, refers to the global variable b.

1 /*

2 Program with global and local variables

3 demonstration of the "scope" of a variable

4 */

5 int a, b; /* global variables */

6 void f(void); /* function declaration */

7

8 int main(void)

9 {

10 a = 5;

11 b = 7;

12 printf("in the main function a = %d and b = %d \n", a, b);

13 f();

14 printf("after the function call a = %d and b = %d \n", a, b);

15 return 0;

16 }

17

18 void f(void)

19 {

20 int a; /* local variable, the global var “a” is invisible */

21 a = 15;

22 b = 17;

23 printf("in the function a = %d and b = %d \n", a, b);

24 }

Code 28: difference between global and local variables

Learning note

To maximize the reusability of functions, avoid all external dependencies in

functions. This can be accomplished by using local variables only. Do not

use global variables.

6.3.3 Storage class register

This is a special case of the storage class auto. If the word register is

written in front of a variable declaration, it suggests the compiler to allocate

an automatic variable in a high-speed CPU-register, if possible.

Of course, this only makes sense if speed is of outmost importance for that

variable.

Example:

1 /*

2 Program with a register - variable

3 */

4 #define LIMIT 1000

5

6 int main(void)

7 {

8 register int i; /* local variable of type register*/

9 for (i = 0; i<LIMIT; i++)

10 {

11 printf("%8d", i);

12 }

13 return 0;

14 }

Code 29: register storage class

6.3.4 Storage class static

Like variables of the storage class extern, also static variables have a

static storage duration, meaning that memory will be allocated when the

program execution starts and will remain allocated until the program

terminates.

The scope of these variables is often (but not necessary) limited! If a

static variable is defined in a block, the scope of that variable is identical

to the scope of automatic variables. Therefore, the variable will keep on

existing after the execution of the code block, but none of the other code

blocks can access that variable.

Static variables are initialized only once!

Code 30 shows an example of static variable usage.

1 /*

2 example with a static variable

3 */

4

5 void f(void);

6

7 int main(void)

8 {

9 f();

10 f();

11 f();

12 return 0;

13 }

14

15 void f(void)

16 {

17 static int i = 5; /* static variable (local to function f) */

18 printf("i = %d \n", i);

19 i++;

20 }

 101

Code 30: storage class static

6.4 Structured programming example

Write a program that reads the coefficients a, b and c of the quadratic

equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and prints the roots.

To solve this problem, we will divide it in several smaller sub problems:

- if the coefficient a = 0, the equation is reduced to a linear equation. We

will write a separate function to solve linear equations and one to solve

quadratic equations. This is represented in the flowchart below:

read coefficients

start main

declarations

stop main

linear
equation

coeff of x² ≠ 0
quadratic
equation

false

true

- The algorithm needed to solve a linear equation is shown in Figure 31:

identical equation

start linear
equation

declarations

stop linear
equation

coeff of x ≠ 0

false

true

cte ≠ 0

false

true false equation

calculate solution

Figure 30: structured programming example main function

Figure 31: structured programming example function linear equation

- To solve a quadratic equation, the discriminant needs to be calculated.

Depending on the value of the discriminant, we have 2 real, 1 real or 2

complex roots. Also these parts can be written in separate functions:

start

quadratic
equation

declarations

stop linear
equation

D > 0

false

true

D = 0

false

true

calculate D

D < 0

false

true

2 real roots

1 real root

2 complex
roots

- Finally, the 3 last functions can be visualized as follows:

start 2 real
roots

declarations

calculate roots

print roots

stop 2 real
roots

start 1 real
root

declarations

calculate root

print root

stop 1 real
root

start 2
complex

roots

declarations

calculate roots

print roots

stop 2
complex

roots

Figure 33: structured programming example functions root calculation

Translating into C code results in:

1 /*

2 solving a quadratic equation

3 */

4

5 #include<stdio.h>

6 #include<math.h>

7

8 /* function declarations*/

9 void linear(float, float);

10 void quadratic(float, float, float);

11 void tworealroots(float, float, float);

12 void oneroot(float, float);

13 void twocomplexroots(float, float, float);

14

Figure 32: structured programming example function quadratic equation

 103

15 int main(void)

16 {

17 float a, b, c;

18 printf("Solving a quadratic equation. \n");

19 printf("Enter the coefficients a, b and c ");

20 scanf("%f%f%f%*c", &a, &b, &c);

21

22 if (a)

23 {

24 quadratic(a, b, c);

25 }

26 else

27 {

28 linear(b, c);

29 }

30

31 return 0;

32 }

33

34 /* function definitions */

35 /* function to solve the linear equation ax+b=0 */

36 void linear(float a, float b)

37 {

38 if (a)

39 {

40 printf("linear equation with solution: %f \n", -b / a);

41 }

42 else

43 {

44 if (b) printf("False equation \n");

45 else printf("Identical equation \n");

46 }

47 }

48

49 /* function to solve a true quadratic equation*/

50 void quadratic(float a, float b, float c)

51 {

52 float d;

53 d = b * b - 4 * a * c;

54 if (d > 0) tworealroots(a, b, d);

55 if (d == 0) oneroot(a, b);

56 if (d < 0) twocomplexroots(a, b, d);

57 }

58

59 void tworealroots(float a, float b, float d)

60 {

61 float sqrt_d, x1, x2;

62 sqrt_d = sqrt((double)d);

63 x1 = (-b + sqrt_d) / 2 / a;

64 x2 = (-b - sqrt_d) / 2 / a;

65 printf("Two real roots: %f and %f \n", x1, x2);

66 }

67

68 void oneroot(float a, float b)

69 {

70 printf("One root %f \n", -b / 2 / a);

71 }

72

73 void twocomplexroots(float a, float b, float d)

74 {

75 float re, im;

76 re = -b / 2 / a;

77 im = sqrt((double)(-d)) / 2 / a;

78 printf("2 complex roots: %f+%fi and %f-%fi \n",re,im,re,im);

79 }

Code 31: structured programming example

6.5 Exercises

6.1. Write a program that reads an angle in degrees and prints the

corresponding sine. You can use standard functions.

6.2. Write a program that prints a table with 2 columns. The first column

contains all angles from 0 till 360 degrees with steps of 30 degrees. The

second column contains the corresponding sine values.

6.3. Write a program that calculates the square root of a number entered

by the user.

6.4. Write a program that reads the lengths of the sides a and b of a

right-angled triangle and prints the length of the hypotenuse c and one

of the acute angles.

examples:

input: 2 1 output: 2.24 63°

input: 1 1.732 output: 2.00 60°

6.5. Write a program for a guessing game. First a random number

between 1 and 100 is chosen by the program. Afterwards, the user can

start guessing. If the guess was too high or too low, the program needs

to print “too high” or “too low”. This is repeated until the number was

found. In the end, the program prints how many guesses the user

needed to find the secret number.

6.6. Write a program that prints a table with 2 columns. The first column

contains 𝑥 values from -5 till +5 with a step of 0.5. The second column

contains the corresponding 𝑦 values according to the equation

 𝑦 = 2𝑥2 + 2𝑥 − 3

Make sure the calculation of the y values is done in a separate function.

6.7. Write a function with header:

void printline(int number, char c)

that prints a line of number symbols c followed by a newline character.

Write a main program that calls this function several times with different

parameters.

example: the statement

printline(40, ‘*’);

results in

**

 105

6.8. Write a function that reads an integer number in the interval [0 , 10]

and returns that number as function return value. If the number is not

in the correct interval, the function needs to ask a new number until a

correct value was entered.

The main program is something like:

int main(void)

{

 int number;

 number = readnumber();

 printf(“The number read is %d\n”, number);

 return 0;

}

make sure you write the declaration of the function readnumber()

before the main function and the definition of the function after the main

function.

6.9. Write a function with header:

int readnumber(int lower_boundary, int upper_boundary)

that reads an integer number in the interval [lower_boundary,

upper_boundary] and returns that number as function return value. Also

in this case, the function can only stop asking an integer number if a

correct value was entered.

Write a main function that calls this function and prints the resulting

number.

6.10. Write a function with header:

double exponentiation(double base, int exponent)

that returns 𝑏𝑎𝑠𝑒𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 as function return value.

Write a main function that reads a base and exponent, that calls the

function exponentiation and that prints the result. Do not use the

standard function pow!

6.11. Write a function with header:

int gcd(int number1, int number2)

that returns the greatest common divisor of the numbers number1 and

number2 as function return value.

Write a main program that reads 3 integer numbers, calculates the gcd

of those 3 numbers and prints the result.

Hint: gcd(a, b, c) = gcd(a, gcd(b, c))

6.12. Write a program that reads a number of scores. The scores are all

positive integer numbers. A negative number is entered to indicate that

all scores were entered.

For each score, a bar with a length equal to the score is drawn. To this

end, a predefined symbol needs to be printed as many times as the

score. (for loop).

Write a function draw_bar that takes a score as input and draws a bar

with corresponding length. The scores and the wanted symbol are read

in the main function.

The screen dialog should look like:

 Enter scores: 2 12 18 3 -5

 What symbol would you like to use? =

 score = 2 ==

 score = 12 ============

 score = 18 ==================

 score = 3 ===

6.13. Write a program with the functions:

- hello: that welcomes the user and explains what is expected

- main: that asks the user to enter 5 times 2 numbers

- sum: that asks the user to enter the sum of the previously entered

 numbers and gives feedback to the user

- goodbye: that thanks the user for his/her cooperation

 Welcome, this program will ask you to solve 5 sums.

 enter 2 numbers < 100: 15 16

 what is the sum of 15 and 16? 31

 according to you, the sum of 15 and 16 equals 31. That

 is correct

 enter 2 numbers < 100: 26 32

 what is the sum of 26 and 32? 50

 according to you, the sum of 26 and 32 equals 50. That

 is not correct

 …

 Thanks for your cooperation.

 107

6.14. Since a year is not exactly 365 days, we have a leap year once every

4 years except if the year is dividable by 100. If the year is dividable by

400, the year is considered as a leap year anyway.

Write a function with header:

int isLeapYear(int year)

that determines if a year is a leap year or not and gives a different

function return value for both cases.

Write also a function with header:

int numberOfDays(int month, int year)

that calculates the number of days in the month month of the year

given.

Write a main function that reads a month and a year and prints the

number of days in that month of that year.

examples:

month 2 of 2000 has 29 days

month 2 of 1900 has 28 days

month 1 of 1950 has 31 days

6.15. Write a function with as parameters 3 integer numbers that

represent a day, month and year. This function calculates and returns a

factor according to following formula:

𝑓𝑎𝑐𝑡𝑜𝑟 = 365 ∗ 𝑦𝑒𝑎𝑟 + 𝑑𝑎𝑦 + 31 ∗ (𝑚𝑜𝑛𝑡ℎ − 1) + [
𝑦𝑒𝑎𝑟 − 1

4
] − [[

𝑦𝑒𝑎𝑟 − 1

100
+ 1] ∗

3

4
]

 for the months January and February

 with [x] being the integer part of x

𝑓𝑎𝑐𝑡𝑜𝑟 = 365 ∗ 𝑦𝑒𝑎𝑟 + 𝑑𝑎𝑦 + 31 ∗ (𝑚𝑜𝑛𝑡ℎ − 1) − [0,4 ∗ 𝑚𝑜𝑛𝑡ℎ + 2,3] + [
𝑦𝑒𝑎𝑟

4
]

− [[
𝑦𝑒𝑎𝑟

100
+ 1] ∗

3

4
]

for the months March till December.

Write a main function that reads 2 dates, calculates the number of days

in between these 2 dates by calculating the difference between the 2

factors of the corresponding dates.

6.16. Consider the first quadrant of a circle in a square with side 1. If you

generate a large amount of (x, y) coordinates with x and y belonging to

the interval [0, 1], you have a collection of points belonging to the

square. If you now count all points that belong to the quadrant of the

circle with equation 𝑥2 + 𝑦2 < 1, and divide this amount by the total

amount of points generated, you will find approximately the number
𝜋

4
.

Write a program that generates 100 000 points and uses it to calculate

the number 𝜋 approximately. Run the program several times and

compare the results. What if you increase the number of points?

6.17. Write a program that asks the user to choose between 3 options:

 1. Draw an empty square

 2. Draw a filled square

 3. Stop

The program repeats itself until the user chooses the option 3 (Stop).

Use the functions ‘empty_square’ and ‘filled_square’

The screen dialog should look like:

 109

7 Arrays

Objectives

This chapter explains the use of the array data structure. You will learn how

to declare and initialize an array and how to refer to one array element.

Also passing arrays to functions as arguments is discussed.

7.1 Definition

An array is a data structure, used to store a collection of elements of the

same type. Although an array is used to store a collection of data, it is often

more useful to think of an array as a collection of variables of the same

type. Each of those elements are identified by the same array name but

with a different array index (see Figure 34).

7.2 Array declaration

In C all variables must be declared before they are used. This is needed to

make sure the correct amount of memory is reserved. Arrays also occupy

memory and as such they need to be declared as well. To allow for correct

computation of the total amount of memory needed, the data type of each

element as well as the number of elements the array will contain, is

specified. In its most general form, the declaration of an array can be

written as:

type <array_name>[number_of_elements];

int a[10]; // declares an array of 10 integer elements

All arrays consist of contiguous memory locations. The lowest memory

address corresponds to the first element of the array and is referred to with

index 0, the highest address corresponds to the last element and can be

accessed with index “number_of_elements – 1”. The array “a” with 10

integers can be visualized as shown in Figure 34:

a[0] 5

a[1] -6

a[2] 58

a[3] 12358

a[4] -25

a[5] 0

a[6] 15

a[7] -7896

a[8] 2

a[9] 25

index

name

Figure 34: array ‘a’ with 10 integers

As array index also variables or expressions can be used. To access a valid

array element, that variable or expression needs to evaluate to a positive

integer belonging to the interval [0, number_of_elements – 1].

7.3 Array initialization

Entering a value into a specific array element can be done by the

statement:

name[index] = value;

Hence, initialization of the array can be done as shown in the code below:

int a[5];

a[0] = 25;

a[1] = -2;

a[2] = 125;

a[3] = -25;

a[4] = 7;

Arrays can also be initialized in the definition of the array with an initializer

list as follows:

int a[5] = {25, -2, 125, -25, 7};

Or, if all values are to be set to the same number (zero for instance) a for

loop can be used:

int i;

int a[10];

for(i=0; i<10; i++)

{

 a[i] = 0;

}

7.4 Array usage

If we want to actually use arrays, we need the possibility to both write to

and read from the array elements. Reading a value from a specific array

element can be done by the statement:

variable = name[index];

In most programs, the elements of the array will not only be of the same

type but also of the same kind. Meaning that they will have similar

meaning. As a result, the elements of the array will often be treated in the

same way. This can be achieved using a for loop as can be seen in following

example.

Example:

write a program that reads 100 integers and prints them in reverse order.

 111

1 /*

2 read 100 integers and print them in reverse order

3 */

4 #include <stdio.h>

5 #define SIZE 100

6

7 int main(void)

8 {

9 int numbers[SIZE];

10 int i;

11

12 printf("Enter %d integers: \n", SIZE);

13 //read the integers one by one in a for loop

14 for (i = 0; i < SIZE; i++)

15 {

16 printf("Enter integer %3d: ", i + 1);

17 scanf("%d%*c", &numbers[i]);

18 }

19

20 printf("In reverse order: \n");

21 //print the array elements starting from the last one down

22 for (i = SIZE - 1; i >= 0; i--)

23 {

24 printf("%8d", numbers[i]);

25 }

26

27 printf(" \n");

28 return 0;

29 }

Code 32: array usage example

Note the difference between the scanf and the printf statements!

As indicated before, you can consider an array as a group of variables that

belong together. Taking this approach into account, one array element

(numbers[i]) can be treated like a normal variable. Therefore, if the

address of the variable is needed, like in the scanf function, the address

operator & needs to be added, whereas no extra operator is needed in the

printf function. The printf function only needs the value of the variable,

not the address.

Before the main function definition, an extra precompiler directive is added:

#define SIZE 100

This allows to specify the size of the array with a symbolic constant. It

makes programs more scalable. If for instance in the above example the

number of integers needs to be changed into 5 instead of 100, it is

sufficient to change only the #define preprocessor directive.

Learning note

Use symbolic constants for all array sizes in your program

Common mistake

Do not end the #define preprocessor directive with a semicolon! This is not

a C statement!

7.5 Operations on arrays

Consider 2 arrays a and b, both consisting of 5 elements of the type int. If

we want to copy the elements of array a into array b, it cannot simply be

done by assigning one array to the other!!

b = a;

does not work if a and b are arrays!

The name of an array points to a series of variables rather than one single

variable. It can be seen as the starting address of the array as shown in

Code 33 and Figure 35. Since the starting addresses of the arrays are fixed

during program execution, the address of array b cannot be changed inside

the program!

1 #include <stdio.h>

2 #define SIZE 5

3

4 int main(void)

5 {

6 int a[SIZE];

7

8 printf("\ta = %d\n\t&a[0] = %d\n", a, &a[0]);

9

10 return 0;

11 }

Code 33: array name

As a result, operations on arrays like copy, addition, comparison, … always

need to be done looping over all array elements.

7.6 Passing arrays to functions

To pass an array to a function, simply use the array name without brackets

as function argument:

int a[5];

function(a);

a[0] a[1] a[2] a[3] a[4] a

Figure 35: array name

 113

The name of an array evaluates to the starting address of that array.

Therefore, instead of passing the full array to the function, actually, the

array starting address is passed to the function. As a result, the formal

parameter in the function gets the same starting address as the one in the

calling function. Or, in other words: the array in the function is the same as

the one in the calling function. So, when the called function modifies array

elements in its function body, it is modifying the elements of the original

array! This is illustrated in Figure 36.

Since all information needed in the called function is the starting address of

the original array, there is no need to specify the length of the array in the

function declaration and definition. Therefore, often the array length is

passed on to the function as an extra parameter (see Figure 36).

Example:

Write a program that reads 100 integers and prints them in reverse order,

using different functions to read and print the integers.

1 /*

2 read 100 integers and print them in reverse order

3 use different functions to read and print the integers

4 */

5 #include <stdio.h>

6 #define SIZE 5

7

8 /* function declarations*/

9 void readnumbers(int [], int);

10 void printnumbers(int [], int);

11

12 int main(void)

13 {

14 int numbers[SIZE];

15 readnumbers(numbers, SIZE); //pass array name to function

16 printnumbers(numbers, SIZE); //pass array name to function

17 return 0;

18 }

#define SIZE 3

void f(int [], int);

int main(void)

{

int a[SIZE];

f(a, SIZE);

return 0;

}

void f(int array[], int length)

{

 statements:

}

a

array

Figure 36: passing arrays to functions

19 /*function definitions*/

20 void readnumbers(int x[], int length)

21 //x and numbers refer to same memory location

22 {

23 int i;

24 printf("Enter %d integers: \n", length);

25

26 for (i = 0; i < length; i++)

27 {

28 printf("Enter number %3d: ", i + 1);

29 scanf("%d%*c", &x[i]);

30 }

31 }

32

33 void printnumbers(int r[], int length)

34 //r and numbers refer to same memory location

35 {

36 int i;

37 printf("In reverse order: \n");

38

39 for (i = length - 1; i >= 0; i--)

40 {

41 printf("%8d", r[i]);

42 }

43

44 printf(" \n");

45 }

Code 34: array with functions example

Common mistake

Since all array modifications done by the called function directly modify the

elements of the original array, there is no need to return an array explicitly

from a function!!

Remark

If only 1 array element needs to be passed on to a function, you do not

need to pass the full array. 1 element can be treated like a normal variable.

Passing the value of that 1 element can be done by using array[i] as

function argument.

 115

7.7 Array boundaries

In the array declaration, you need to specify the size of the array. For

instance “int x[5];” declares an array with 5 integers that can be

addressed as x[0], x[1], x[2], x[3] and x[4].

Unfortunately, the C compiler only verifies if every index used is an integer.

It will not flag an error if an index outside the array boundaries is used! As

a result, memory locations outside the memory reserved for the array will

be used, which leads to dangerous and unpredictable behavior. This is

illustrated in Code 35.

1 int main(void)

2 {

3 int b[2];

4 int a[2];

5 b[0] = 1;

6 b[1] = 1;

7 a[0] = 1;

8 a[1] = 1;

9 printf("a[0]=%d,a[1]=%d,b[0]=%d,b[1]=%d\n",a[0],a[1],b[0],b[1]);

10

11 /*unpredictable behavior: b[2] is an invalid array location!*/

12 b[2] = 100;

13 printf("a[0]=%d,a[1]=%d,b[0]=%d,b[1]=%d\n",a[0],a[1],b[0],b[1]);

14

15 return 0;

16 }

With following expected result:

Unfortunately, running the same program on another machine or at a

different time can just as well result in:

Code 35: array usage outside of array boundaries

Common mistake

Not respecting the boundaries of an array is a common mistake that leads

to errors that are difficult to find!

Learning note

Only use indices in the interval [0, number_of_elements – 1]

7.8 Programming examples using arrays

7.8.1 The sieve of Eratosthenes

The sieve of Eratosthenes is an efficient method to identify prime numbers.

We will use it to find all prime numbers < 1000. The algorithm can be

described as follows:

1. Make an array with 1000 elements and fill every element with the

number 1 (except for the elements with index 0 and 1, since 0 and 1

are for sure no prime numbers).

2. Start with the element with index 2 (2 is a prime number, so this

element remains 1).

3. Mark all multiples of two. To this end, change the content of every array

element with an index that is a multiple of 2, from 1 into 0.

4. Find the first array element with an index > 2 that was not marked yet.

5. Repeat the algorithm from step 2.

To make the program more readable and better structured, we will divide it

in smaller sub problems or functions. In the solution of Code 36 the

following functions are used:

- initialize: to fill all sieve elements with 1

- mark_multiples: to mark out all elements with a non-prime index

- print_sieve: to print all prime numbers

Translating into C code results in:

1 /*

2 find all prime numbers < MAX using the sieve of Eratosthenes

3 */

4 #include <stdio.h>

5 #define MAX 1000

6

7 void initialize(int[]);

8 void mark_multiples(int[]);

9 void print_sieve(int[]);

10

11 int main(void)

12 {

13 int sieve[MAX];

14

15 initialize(sieve);

16 mark_multiples(sieve);

17 print_sieve(sieve);

18 return 0;

19 }

20

21 void initialize(int sieve[])

22 {

23 int i;

24

25 sieve[0] = sieve[1] = 0;

26

27 for (i = 2; i<MAX; i++)

28 sieve[i] = 1;

29 }

 117

30 void mark_multiples(int sieve[])

31 {

32 int i, j;

33

34 for (i = 2; i<MAX; i++)

35 {

36 if (sieve[i])

37 {

38 for (j = 2 * i; j < MAX; j += i)

39 sieve[j] = 0;

40 }

41 }

42 }

43

44 void print_sieve(int sieve[])

45 {

46 int i;

47

48 printf("Prime numbers:\n");

49

50 for (i = 2; i < MAX; i++)

51 {

52 if (sieve[i])

53 printf("%4d", i);

54 }

55

56 printf("\n");

57 }

Code 36: sieve of Eratosthenes

7.8.2 Merging arrays

As a second example, we will write a program that reads 2 lists of 5

ascending integer numbers. Afterwards, the 10 numbers are printed

together in ascending order. To this end, we will use twice the same

function ReadArray. Printing is done with another function (PrintArray).

1 /*

2 merging arrays

3 */

4 #include <stdio.h>

5 #define SIZE 5

6

7 void ReadArray(int[], int);

8 void PrintArray(int[], int[], int);

9

10 int main(void)

11 {

12

13 int a[SIZE];

14 int b[SIZE];

15

16 ReadArray(a, SIZE);

17 ReadArray(b, SIZE);

18 PrintArray(a, b, SIZE);

19

20 return 0;

21 }

22

23 void ReadArray(int x[], int length)

24 {

25 int i;

26

27 printf("Enter %d integer numbers:\n", length);

28

29 for (i = 0; i < length; i++)

30 {

31 printf("Enter number %3d: ", i + 1);

32 scanf("%d%*c", &x[i]);

33 }

34 }

35

36 void PrintArray(int a[], int b[], int length)

37 {

38 int i, j;

39

40 i = 0;

41 j = 0;

42

43 printf("\nMerging the 2 lists results in:\n");

44

45 while (i < length && j < length)

46 {

47 if (a[i] < b[j])

48 {

49 printf("%d ", a[i]);

50 ++i;

51 }

52 else

53 {

54 printf("%d ", b[j]);

55 ++j;

56 }

57 }

58

59 while (i < length)

60 {

61 printf("%d ", a[i]);

62 ++i;

63 }

64

65 while (j < length)

66 {

67 printf("%d ", b[j]);

68 ++j;

69 }

70

71 printf("\n");

72 }

 119

Code 37: merging arrays

7.9 Exercises

7.1. Write a program that reads the temperatures of a whole week into 1

array ‘temperature[]’ and prints the mean temperature for that week.

 Enter temperature for day 0: 5

 Enter temperature for day 1: 5

 Enter temperature for day 2: 5

 Enter temperature for day 3: 5

 Enter temperature for day 4: 6

 Enter temperature for day 5: 6

 Enter temperature for day 6: 6

 The mean temperature for this week is 5.43

7.2. Change the previous exercise such that all days with a temperature

warmer than 10°C are printed.

 Enter temperature for day 0: 1

 Enter temperature for day 1: 8

 Enter temperature for day 2: 10

 Enter temperature for day 3: 12

 Enter temperature for day 4: 15

 Enter temperature for day 5: 14

 Enter temperature for day 6: 9

 All days with a temperature > 10°C:

 day 3

 day 4

 day 5

7.3. Repeat exercise 7.1 using 2 functions. Make a function to read the

temperatures and a separate function to calculate the mean

temperature. Printing the mean must be done in the main program.

7.4. Repeat exercise 7.2 but this time, use 3 separate functions to read

the temperatures (“ReadTemp”), to determine which days are warmer

than 10°C (“Calculate”) and to print the days found (“PrintDays”).

Extra: ask the user to enter a temperature limit.

7.5. Write a program with following main function:

 #include <stdio.h>

 #define SIZE 12

 #define COLUMNS 3

 void ReadArray(int [], int);

 void PrintMatrix(int [], int, int);

 int main(void)

 {

 int a[SIZE];

 ReadArray(a, SIZE);

 PrintMatrix(a, SIZE, COLUMNS);

 return 0;

 }

- The function ReadArray reads 12 (SIZE) numbers and stores them in

 the one dimensional array a

- The function PrintMatrix prints the 12 numbers on 4 lines of 3

 (COLUMNS) numbers each

By adapting only SIZE and COLUMNS the program must also be able to

print for instance 20 numbers in a 5 x 4 matrix.

7.6. Change exercise 7.5 such that after every row, the sum of all

elements in that row is printed.

7.7. Change exercise 7.6 such that under every column, the sum of all

elements in that column is printed.

7.8. Write a program with a main function and 3 extra functions.

- In the main function an array of 100 integers is declared and the 3

 extra functions are called.

- The first function reads 1 integer in the interval [0, 100]. This

 integer represents the effective number of elements the array will

 contain. This integer needs to be returned to the main program.

- The second function reads the correct number of integers and stores

 them in the array.

- The third function prints the previously read integers.

 121

 The main function looks like:

 int main(void)

 {

 int row[MAX];

 int size;

 size = ReadSize(0, MAX);

 ReadArray(row, size);

 PrintArray(row, size);

 return 0;

 }

7.9. Same as exercise 7.8 but without asking the user to enter the

effective number of integers. The user enters the integers and ends with

999 to indicate the end of the reading process. 999 can NOT be stored

in the array!

The main function looks like:

 int main(void)

 {

 int row[MAX];

 int size;

 size = ReadArray(row);

 PrintArray(row, size);

 return 0;

 }

7.10. Add an extra function to exercise 7.9 that calculates the mean value

of all entered integers and returns that mean value to the main function.

The mean must be printed in the main function.

The header of this extra function could be like:

 double CalcMean(int row[], int size)

7.11. Repeat exercise 7.10 but this time, write a function that searches

the max value of all integers entered and returns that max value to the

main function.

7.12. Write a program with functions that merges 2 ordered rows (ordered

from small to large) into 1 ordered row.

 Enter ordered row: 5 9 12 54 78

 Enter ordered row: 2 3 34 45 102

 The merged row is: 2 3 5 9 12 34 45 54 78 102

7.13. Add an extra function to exercise 7.9 or 7.10 such that before

printing, the largest and smallest integers are interchanged. Changing

places needs to happen inside the array, do not use a second array.

Using an auxiliary variable is allowed.

7.14. Write a program with functions:

- a first function reads 20 numbers and stores them in an array.

- a second function makes sure none of the numbers in the array

 occurs more than once. To this end, the second, third, … occurrence

 of a number is removed from the array and all other array elements

 are shifted to the left.

 Enter a list of 20 numbers:

 2 5 3 4 6 5 3 4 6 7 2 4 4 5 3 2 1 6 1 7

 Following numbers are stored in the cleaned up array:

 2 5 3 4 6 7 1

7.15. Write a program that generates 6 different random numbers in the

interval [1, 42]. Use an array to store the numbers and to make sure all

6 numbers are different.

7.16. Write a program with functions. A first function reads 2 rows of

maximal 10 positive integers. The reading process stops when a 0 or 10

integers are entered. (do not store the number 0!)

A second function checks if both rows contain numbers that are equal.

 Enter a row of max 10 integers (stop with 0):

 4 4 12 9 5 0

 Enter a row of max 10 integers (stop with 0):

 9 9 4 12 4 5 9 12 4 4

 The rows:

 4 4 12 9 5 0

 and

 9 9 4 12 4 5 9 12 4 4

 contain equal numbers.

7.17. Write a program that simulates the rolling of 2 dice. Rolling 2 dice

always results in a value between 2 and 12. How many times will every

possible value occur if the dice are rolled 400 times?

- declare an array in the main function to keep the occurrences for

 every possible value

- a first function simulates 400 rolls with 2 dice and calculates the

 values. (hint: rand()%6+1 results in a random number from 1 to 6,

 and as such simulates the rolling of 1 die)

- A second function prints the occurrences.

- extra: print a horizontal bar chart with the occurrences. Use the

 symbol “#” to draw the bars. Use a function DrawLine to accomplish

 this part of the program

 123

8 Strings

Objectives

In this chapter, the concept of arrays is used to define strings. You will

learn how to declare, initialize and manipulate strings. Passing strings to

functions will be explained as well as using special string functions.

There is no special data type to define strings in C. Instead, a string is

represented as a sequence of characters, ended by a special string-

termination character called the null byte (‘\0’).

8.1 String constant

A string constant consist of a series of characters enclosed in double

quotes. It may consist of any combination of digits, letters, escaped

sequences and spaces.

In memory, it is stored as a sequence of characters followed by a null byte

as shown in the example of Figure 37. In the compiled version of a

program, the string constant will be replaced by the starting address of that

string constant in memory. Therefore, a string must be seen as an address.

8.2 String variable

A string variable is basically an array of characters that must be large

enough to hold all symbols of the strings you want to store and 1 extra

symbol for the null byte.

The name of a string variable is the starting address of the memory

reserved for the character array. The string declaration nails down to a

declaration of a character array as shown in Figure 38.

…

01001000 H

01100110 e

01101100 l

01101100 l

01101111 o

00000000 \0

…

“Hello”

Figure 37: string constant

Assigning value to a string variable can be done in different ways:

1. assign individual characters to the string variable:

s[0]= ‘a’;

s[1]= ‘b’;

s[2]= ‘c’;

s[3]= ‘\0’; or s[3] = (char)0;

Remark that the individual characters get single quotes! With double

quotes, “a” represents a string consisting of the character a and the

null byte.

2. Using string functions:

strcpy(s, “abc”);

The function strcpy, assigns the characters a, b and c to the string

s and adds a null byte after the last character.

3. Reading a string from the keyboard:

scanf(“%s%*c”, s);

gets(s);

both scanf and gets will read the user input and store it in the

string s, adding a null byte at the end. scanf will stop reading at a

space, tab or newline while gets will stop only at a newline

character.

Remark that in the scanf function, there is no address operator (&)

before the name of the string s. This is because a string is an array

of characters and the name of an array represents the starting

address of that array. As such the name s already evaluates to the

string’s starting address so no & is needed here.

4. Initialization together with declaration:

char s[20] = “abc”;

while compiling, memory will be reserved for an array of 20 bytes.

The first 3 elements of that array will be filled with the characters

‘a’, ‘b’ and ‘c’. The forth element will be filled with a null byte.

s[0]

s[1]

s[2]

s[62]

s[63]

char s[64]; s

Figure 38: string variable

 125

Common mistake

None of the methods mentioned above will verify the string boundaries. It

is your own responsibility to make sure the string variable is large enough

to hold the strings you want to store + a null byte!

Common mistake

Assigning strings with a simple assignment operator is not possible!!

The statement

s = “abc”;

cannot be used since both the string variable s and the constant string

“abc” represent fixed addresses that cannot be changed!

8.3 Passing strings to functions

Since strings are arrays of characters, strings are passed to functions like

any other array:

- The formal function parameter gets the starting address of the string

during the function call.

- When the called function modifies the string inside its function body, the

original string in the calling function will also be changed.

Example:

Write a program that reads a string from the keyboard and converts it to

capital letters. Use a separate function that converts the individual

characters into capitals.

1 /*

2 convert lowercase letters into uppercase letters

3 */

4 #include <stdio.h>

5 void convert(char[], char[]);

6

7 int main(void)

8 {

9 char in[32];

10 char out[32];

11 printf("Enter a string: ");

12 gets(in);

13 convert(in, out);

14 printf("in = %s \nout = %s \n", in, out);

15 return 0;

16 }

17

18 void convert(char in[], char out[])

19 {

20 int i = 0;

21 while ((out[i] = in[i]) != '\0')

22 {

23 if (out[i] >= 'a' && out[i] <= 'z') out[i] += 'A' -'a';

24 i++;

25 }

26 }

Code 38: passing strings to functions

Note that the conditional expression in the while loop consists of 2 parts:

(out[i] = in[i]) != '\0'

First the character stored in in[i] is copied to out[i]. Afterwards this

symbol is compared to the null byte to detect the end of the string.

Converting from small letters to capital letters is done based upon the fixed

difference in ASCII values between lowercase and uppercase letters. An

ASCII table can be found in Attachment 2.

8.4 String functions

In this section a possible implementation of some commonly used string

functions is shown. Of course, these functions can be included via

“string.h”, so you do not need to copy these codes into your programs.

8.4.1 strlen

strlen(s); returns the length of string s (null byte not included)

1 int strlen(char s[])

2 {

3 int i=0;

4

5 while(s[i] != ‘\0’)

6 ++i;

7

8 return i;

9 }

Code 39: string function strlen

8.4.2 strcpy

strcpy(s,t); copies string t into string s (null byte is also copied)

1 int strcpy(char s[], char t[])

2 {

3 int i=0;

4

5 while((s[i] = t[i]) != ‘\0’)

6 ++i;

7 }

Code 40: string function strcpy

 127

8.4.3 strcmp

strcmp(s,t); returns

- an integer < 0 if string s < string t (alphabetically)

- 0 if string s and string t are equal

- an integer > 0 if string s > string t (alphabetically)

1 int strcmp(char s[], char t[])

2 {

3 int i;

4

5 for(i = 0; s[i] == t[i]; i++)

6 {

7 if(s[i] == ‘\0’)

8 return 0;

9 }

10 return s[i] – t[i];

11 }

8.5 Programming examples using strings

8.5.1 Demonstration of several string functions

1 /*

2 using string functions from the standard library “string”

3 */

4 #include <stdio.h>

5 #include <string.h>

6

7 int main(void)

8 {

9 char s1[32];

10 char s2[32];

11

12 strcpy(s1, "abc def.");

13 strcpy(s2, "ghi_x");

14

15 printf("s1=\"%s\" and s2=\"%s\"\n", s1, s2);

16 printf("s1 consists of %d symbols and s2 consists of %d

 symbols\n", strlen(s1), strlen(s2));

17 printf("The function strcmp(s1,s2) returns %d as function return

 value\n", strcmp(s1, s2));

18

19 return 0;

20 }

Code 41: string example 1

8.5.2 Sorting 2 strings alphabetically

1 /*

2 Printing 2 strings alphabetically

3 */

4 #include <stdio.h>

5 #include <string.h>

6

7 int main(void)

8 {

9 char name1[32];

10 char name2[32];

11 int comp;

12

13

14 printf("Enter a name: ");

15 gets(name1);

16 printf("Enter a second name: ");

17 gets(name2);

18

19 comp = strcmp(name1, name2);

20

21 if (comp == 0)

22 {

23 printf("\"%s\" and \"%s\" are equal\n", name1, name2);

24 }

25 else

26 {

27 if (comp < 0)

28 {

29 printf("\"%s\" , \"%s\"\n", name1, name2);

30 }

31 else

32 {

33 printf("\"%s\" , \"%s\"\n", name2, name1);

34 }

35 }

36

37 return 0;

38 }

Code 42: printing 2 strings alphabetically

Remark

The function strcmp determines the alphabetical order of strings based

upon the ASCII values of the individual characters. Therefore, alphabetic

ordering with strings containing both small letters and capitals or strings

containing special characters or spaces will not always give a correct result.

To avoid this, first convert the names into strings containing only capitals

and remove all spaces and special characters before sorting.

 129

8.6 Exercises

8.1. Write a program with functions.

- The first function reads a name.

- The second function prints the name.

8.2. Read 3 words separately into 3 different strings. Make a 4th string

that contains the 3 words separated by a space and print the content of

the 4th string.

 enter the first word: this

 enter the second word: is

 enter the third word: it

 this is it

8.3. Write a function with a string as parameter and an integer 1 (true)

or 0 (false) as return value. The function tests whether the entered

string is a palindrome or not. A palindrome is a word that reads the

same backward and forward. (ex: noon, radar, rotor, racecar, …)

Write also a main function to test it.

8.4. Repeat exercise 8.3 but this time for palindrome sentences.

examples: “Was it a car or a cat I saw?” or “Eva, can I stab bats in a

cave?” (note that punctuation, capitalization and spaces are ignored)

8.5. Repeat exercise 8.3 but this time for sentences that form a word

based palindrome.

examples: “He says: it is true, true is it, says he”

8.6. Write a program that reads a string and prints every word of that

string separately on a new line.

8.7. Write a program that reads 2 names and prints them alphabetically.

8.8. Repeat exercise 8.7 but now with 3 names.

8.9. Repeat exercise 8.8 but make sure also following names are sorted

correctly: O’Neil, Mac Alastair, Macbride, mac Caba, O Neal, Orman

Hint: use your own string compare function that first copies the strings

in capitals and without punctuation and spaces and uses strcmp on the

copies)

9 Multidimensional arrays

Objectives

In this chapter the concept of arrays is extended to multidimensional

arrays. Declaration, initialization, usage and passing multidimensional

arrays to functions will be treated both for arrays of numbers and arrays of

strings.

All arrays discussed in chapters 7 and 8 are examples of one-dimensional

arrays. C offers the possibility to use arrays with more than 1 dimension,

called multidimensional arrays. Though, in principle, the number of

dimensions is not limited, we will mainly discuss 2 and 3 D arrays.

9.1 Two dimensional arrays of numbers

A common use of two dimensional arrays is to represent tables of values

arranged in rows and columns, also called matrices.

9.1.1 Declaration

In its most general form the declaration of a 2-dimensional array looks like:

type <name>[MAX_ROW][MAX_COLUMN];

where MAX_ROW / MAX_COLUMN indicate the number of rows / columns of

the matrix.

ex: int m[5][3];

This declaration reserves memory for a 2-dimensional array with 5 rows

and 3 columns. To address a particular table element, both a row and

column index must be specified as illustrated in Figure 39.

 column 0 column 1 column 2

row 0 m[0][0] m[0][1] m[0][2]

row 1 m[1][0] m[1][1] m[1][2]

row 2 m[2][0] m[2][1] m[2][2]

row 3 m[3][0] m[3][1] m[3][2]

row 4 m[4][0] m[4][1] m[4][2]

array name

row index

column index

Figure 39: logical structure of a 2-dimensional array

 131

 In memory, this array is saved as 1 row of consecutive elements. First, all

elements of row 0 are stored, then all elements of row 1, … For the array

example of Figure 39, this is shown in Figure 40.

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] … m[4][2]

Figure 40: physical structure of a 2-dimensional array

9.1.2 Initialization

A 2-dimensional array can be initialized element by element or when it is

defined. If all elements need to be initialized to the same value, a loop can

be used (see section 9.1.3).

Examples:

int m[2][3];

m[0][0] = 0;

m[0][1] = 1;

m[0][2] = 2;

m[1][0] = 10;

m[1][1] = 11;

m[1][2] = 12;

int m[2][3] = { {0,1,2} , {10,11,12} };

The values are grouped by row. The first set of braces groups the values of

row 0, the second set the values of row 1.

9.1.3 Matrix usage

To initialize, change, read the individual matrix elements, loops can be

used. Since printing a matrix must be done row by row, most programmers

will loop through the matrix on a row by row basis. Every row contains the

same number of elements (equal to the number of columns), so addressing

all row elements one by one can be done by looping over the different

columns within that row. This is illustrated in the example of Code 43.

Example:

Write a program that reads the marks of 5 students for 2 different subjects

and stores them in a 2-dimensional array.

Looping through the matrix can be illustrated in the flowchart of Figure 41.

valid row?

true

false

start

start with row 0

valid column?

true

start with
column 0

declarations

read mark

next column

next rowfalse

stop

Figure 41: flowchart looping through a matrix

Translating into C code yields:

1 #include <stdio.h>

2 #define MAX_ROWS 5

3 #define MAX_COLUMNS 2

4

5 int main(void)

6 {

7 float marks[MAX_ROWS][MAX_COLUMNS];

8 int row, column;

9

10 //loop through rows

11 for (row = 0; row < MAX_ROWS; row++)

12 {

13 //loop through all columns in one row

14 for (column = 0; column < MAX_COLUMNS; column++)

15 {

16 printf("Enter marks for student %d, subject %d: ",

 row+1, column+1);

17 scanf("%f%*c", &marks[row][column]);

18 }

19 }

20 return 0;

21 }

Code 43: reading student marks by looping through a 2D array

9.1.4 Passing a 2D array to a function

To pass a multidimensional array to a function, the array name is used as

function argument just like for 1-dimensional arrays. As a result, the array

starting address will be passed to the function and all modifications done on

the matrix inside the called function, will be carried out on the original

matrix.

However, there is one difference. As explained before, the length of a 1D

array does not need to be specified in the function declaration and

 133

definition. For multidimensional arrays all dimensions except the first one

need to be specified!

This can be explained for the case of a 2-dimensional array. Remember that

the array elements are stored in one long row, starting with all elements of

row 0, followed by the elements of row 1, … If the matrix element

mat[i][j] must to be accessed, the memory location needed can be

calculated by:

starting address of the array + i * MAX_COLUMN + j

As clearly indicated by this formula, the first dimension (MAX_ROWS) is not

needed to calculate the correct memory location whereas the second

dimension is.

Example:

Add an extra function to the example of Code 43 to print the student marks

as a 2-dimensional matrix.

1 #include <stdio.h>

2 #define MAX_ROWS 5

3 #define MAX_COLUMNS 2

4

5 void PrintMarks(float[][MAX_COLUMNS], int, int);

6

7 int main(void)

8 {

9 float marks[MAX_ROWS][MAX_COLUMNS];

10 int row, column;

11

12 for (row = 0; row < MAX_ROWS; row++)

13 {

14 for (column = 0; column < MAX_COLUMNS; column++)

15 {

16 printf("Enter marks for student %d, subject %d: ",

 row + 1, column + 1);

17 scanf("%f%*c", &marks[row][column]);

18 }

19 }

20

21 PrintMarks(marks, MAX_ROWS, MAX_COLUMNS);

22

23 return 0;

24 }

25

26 void PrintMarks(float m[][MAX_COLUMNS], int maxrow, int maxcol)

27 {

28 int row, column;

29 printf("\n");

30

31 for (row = 0; row < maxrow; row++)

32 {

33 for (column = 0; column < maxcol; column++)

34 {

35 printf("%5.2f\t", m[row][column]);

36 }

37 printf("\n");

38 }

39 }

Code 44: passing a 2D array to a function

9.1.5 2D array example: Pascal’s triangle

Pascal's triangle is a triangular array containing the

coefficients of the different terms of the expansion of

(𝑎 + 𝑏)𝑛.

Each number in the triangle is the sum of the two

numbers directly above. The first eight rows of

Pascal’s triangle are illustrated in Figure 42.

Following code will print n rows of Pascal’s triangle

where n needs to be entered by the user:

1 /*

2 printing n rows of Pascal's triangle

3 */

4 #include <stdio.h>

5 #define MAX 20

6

7 int ReadDimension(void);

8 void MakeTriangle(int[][MAX], int);

9 void PrintTriangle(int[][MAX], int);

10

11 int main(void)

12 {

13 int a[MAX][MAX];

14 int n;

15

16 printf("Pascal's triangle\n");

17

18 n = ReadDimension();

19 MakeTriangle(a, n);

20 PrintTriangle(a, n);

21

22 return 0;

23 }

Figure 42: Pascal's triangle

 135

24 int ReadDimension(void)

25 {

26 int d;

27

28 do

29 {

30 printf("Enter dimension (in [0 .. %2d[): ", MAX);

31 scanf("%d%*c", &d);

32 } while (d >= MAX);

33

34 return d;

35 }

36

37 void MakeTriangle(int a[][MAX], int n)

38 {

39 int i, j;

40

41 a[0][0] = 1;

42

43 for (i = 1; i <= n; ++i)

44 {

45 a[i][0] = 1;

46 a[i][i] = 1;

47 }

48

49 for (i = 2; i <= n; ++i)

50 {

51 for (j = 1; j<i; ++j)

52 {

53 a[i][j] = a[i - 1][j - 1] + a[i - 1][j];

54 }

55 }

56 }

57

58 void PrintTriangle(int a[][MAX], int n)

59 {

60 int i, j;

61

62 for (i = 0; i <= n; ++i)

63 {

64 for (j = 0; j <= i; ++j)

65 {

66 printf("%6d", a[i][j]);

67 }

68 printf("\n");

69 }

70 }

Code 45: Pascal's triangle

9.2 Arrays of strings

As explained before, a string is an array of characters. Therefore, an array

of strings is a 2-dimensional array of characters where every row contains a

string.

Figure 43 shows an array with name “students” for 5 strings of maximal 9

characters + 1 null byte.

students[0]

students[1]

students[2]

students[3]

students[4]

The name of the array “students” refers to the starting address of the full

matrix. To access an individual character of one of the strings use both row

and column index. For instance “students[1][2]” points to the symbol in

row 1, column 2 (second row, third column).

To manipulate a full string at once, use a row index only. “students[1]”

selects the string on row 1 (second row). This is a 1D array of characters,

therefore “students[1]” points to the starting address of row 1.

Example:

Write a program that:

- reads a list of names and stores them in an array. The list of names

 ends with an empty string (enter only).

- reads an extra name

- checks if the extra name is present in the array or not

Following functions will be used:

- ReadList: reads the list of names and returns the number of names

 entered

- ReadName: reads 1 name

- Find: looks for 1 name in the array of names and returns the index

 number of that name in the array or -1 if the name was not

 found.

1 /*

2 find a name in a list of names

3 */

4

5 #include <stdio.h>

6 #include <string.h>

7 #include <stdlib.h>

8

9 #define MAX 50

10 #define LEN 20

char students[5][10];

Figure 43: array of strings

 137

11 int ReadList(char[][LEN]);

12 void ReadName(char[]);

13 int Find(char[][LEN], int, char[]);

14

15 int main(void)

16 {

17 char matrix[MAX][LEN];

18 char name[LEN];

19 int size, result;

20

21 // Read the list of names

22 size = ReadList(matrix);

23

24 // Read the name to be found

25 ReadName(name);

26

27 // Look for name in the list

28 result = Find(matrix, size, name);

29

30 if (result >= 0)

31 printf("The name \"%s\" was found at place %d.\n", name,

 result+1);

32 else

33 printf("The name \"%s\" was not found.\n", name);

34

35 return 0;

36 }

37

38 int ReadList(char a[][LEN])

39 {

40 int i = 0;

41 char name[LEN];

42 printf("Enter name %2d (Enter = end) : ", i);

43 gets(name);

44

45 while (i < MAX && name[0] != '\0')

46 {

47 strcpy(a[i], name);

48 printf("Enter name %2d (Enter = end) : ", ++i);

49 gets(name);

50 }

51 if (i == MAX)

52 {

53 printf("Array is full!\n");

54 exit(1);

55 }

56 else

57 {

58 return i;

59 }

60 }

61

62 void ReadName(char x[])

63 {

64 printf("Enter the name you want to search for: ");

65 gets(x);

66 }

67

68 int Find(char a[][LEN], int n, char b[])

69 {

70 int i;

71 for (i = 0; i<n; ++i)

72 {

73 if (strncmp(a[i], b, LEN) == 0)

74 return i;

75 }

76 return -1;

77 }

9.3 Exercises

9.1. Write a program with functions.

- in the main function, a table of 10 x 10 is defined

- the first function (FillMatrix) fills the matrix as shown below

- the second function (PrintMatrix) prints the content of the matrix.

 1 2 3 4 5 6 7 8 9 10

 2 4 6 8 10 12 14 16 18 20

 3 6 9 12 15 18 21 24 27 30

 4 8 12 16 20 24 28 32 36 40

 5 10 15 20 25 30 35 40 45 50

 6 12 18 24 30 36 42 48 54 60

 7 14 21 28 35 42 49 56 63 70

 8 16 24 32 40 48 56 64 72 80

 9 18 27 36 45 54 63 72 81 90

 10 20 30 40 50 60 70 80 90 100

9.2. Write a program with functions that first reads 2 x 10 integers and

stores them on the first 2 rows of a matrix. In the third row, the sum of

the corresponding numbers in the first 2 rows is stored. Finally, the full

matrix is printed. Use the functions ReadRow, Calculate and

PrintMatrix

 Enter 2 x 10 integers:

 1 2 3 4 5 6 7 8 9 10

 1 2 2 1 3 4 1 1 2 1

 Table:

 1 2 3 4 5 6 7 8 9 10

 1 2 2 1 3 4 1 1 2 1

 2 4 5 5 8 10 8 9 11 11

9.3. Write a program with functions that reads a list of integers and

prints all integers of that list followed by the number of occurrences.

The list is ended with the number 999 that cannot be taken into

account. The list contains maximal 10 different numbers.

 Enter a list of integers (end with 999):

 -10 9 25 -10 100 25 25 3 0 25 100 3 999

 The different numbers in this list are:

 -10 2

 9 1

 25 4

 100 2

 3 2

 0 1

 139

 Hint: use a 10 x 2 matrix. The first column contains the different

 integers and the second column the number of occurrences for

 the corresponding integer. Every time an integer is read, the

 program verifies if that number is already present or not. If

 already present, the number of occurrences is augmented,

 otherwise the number is added to the first free line with a number

 of occurrences equal to 1 in the second column.

9.4. Write a program that reads a square matrix, calculates its transpose

and prints both the original and the transposed matrix. The matrix

cannot be larger than 10 x 10. The wanted dimension is read at the

start of the program. Reading the dimension, reading the matrix

elements, transposing the matrix and printing the matrix is done in 4

different functions.

Remember:

[

𝑎0,0 𝑎0,1 𝑎0,2

𝑎1,0 𝑎1,1 𝑎1,2

𝑎2,0 𝑎2,1 𝑎2,2

]

𝑇

= [

𝑎0,0 𝑎1,0 𝑎2,0

𝑎0,1 𝑎1,1 𝑎2,1

𝑎0,2 𝑎1,2 𝑎2,2

]

9.5. Write a program with functions that:

- declares an array with dimensions 10 x 10 in the main

- uses a function to read the array elements

- uses a function to find the min and max element in the array and

 swaps them (inside the array, using an auxiliary variable is allowed)

- uses a function to print the array after swapping

9.6. Write a program with a main and 2 extra functions:

- declare an array of 10 strings in the main function

- the first function reads the 10 names and stores them in the array

- the second function prints the names in the array to the screen

9.7. Write a program with a main and 2 extra functions:

- declare an array of 10 strings in the main function

- the first function reads names until the word “end” or the maximum

 of 10 names is entered and stores them in the array

- the second function prints the names in the array to the screen

9.8. Write a program that reads a letter, converts it to Morse code and

prints the result to the screen. You can use following array that contains

the Morse codes for the letters A, B, C, … consecutively:

const char *morse[]={".-", "-...", "-.-.", "-..", ".", "..-

.", "--.", "....", "..",".---", "-.-", ".-..", "--", "-.", "-

--", ".--.", "--.-", ".-.", "...", "-", "..-", "...-", ".--",

"-..-", "-.--", "--..", NULL};

 Enter a letter: c

 Corresponding Morse code: -.-.

9.9. Write a program that reads a word and prints it in Morse code to the

screen. You can use the function from the previous exercise to write the

Morse code letter by letter to the screen.

Enter a word: bread

Morse code: -... .-. . .- -..

9.10. Write a program to process test results.

To guarantee the product quality, a company takes a sample of N

finished parts (0 < N ≤ 20) and submits them to a series of M tests

(0 < M ≤ 10). If a part fails one or more tests, data is sent to the

computer in the format:

 PartNumber TestNumber Result

where 1 ≤ PartNumber ≤ N and 1 ≤ TestNumber ≤ M

and Result = 1 for a small error

 = 3 for a fatal error

A part is rejected if at least 1 fatal error or at least 3 small errors have

occurred.

The program first reads the amount of parts tested (N) and the number

of tests executed per part (M). Then, the test results for all failed parts

are read until 0 0 0 is entered.

The program prints:

- a table with a line for every tested part (so also the ones that did

 not fail any test) containing information on the test results and a

 final assessment

- a second table with a line per test containing the number of parts

 that did not fail, the number of parts that showed a small error

 and the number of parts that showed a fatal error.

The program uses functions:

- a function ReadNumber that is used twice. Once to read the number

 of parts tested (N) and once to read the number of tests (M).

 Make sure only valid numbers are accepted.

- a function to read all test data

- a function to print the results per part

- a function to print the results per test

- optional: a function to count the number of occurrences of a certain

 value in a certain column

Hint: Use a matrix of 20 x 10 of which the upper left corner of N rows

 and M columns is used. Put every entry in the right place in that

 matrix. The first table to be printed is then just a printout of the

 used section of the matrix accompanied by some text. The second

 table can be constructed by counting the occurrences of the

 numbers 0, 1 and 3 in every column of the matrix.

 141

 The screen dialog should look like:

 How many parts did you test? 5

 How many tests did you run? 3

 Enter the test results (end with 0 0 0):

 4 1 1

 5 3 3

 3 2 3

 2 3 1

 3 3 1

 4 3 1

 4 2 1

 0 0 0

 Results per part:

 part number tests assessment

 1 2 3

 1 0 0 0 accepted

 2 0 0 1 accepted

 3 0 3 1 rejected

 4 1 1 1 rejected

 5 0 0 3 rejected

 Results per test:

 test failures

 none small fatal

 1 4 1 0

 2 3 1 1

 3 1 3 1

9.11. Write a program that simulates seat reservations in a theater. Let’s

consider a room with 3 rows of 4 seats each. Define a matrix of 3 x 4

that represents the room. Every matrix element must be large enough

to contain a string of maximal 10 symbols, resulting in a 2D array of

strings which is a 3D array of characters! The program repeats itself

until the user enters 0 0 0 or until all seats are taken.

In every program run, a name, row number and seat number are read.

If the seat is still available, the name is stored in the corresponding row

and column of the matrix. If the seat was already taken, the program

prints “occupied”. After every seat reservation, all reservations are

printed to the screen.

Use functions to write the program:

- declare the room in the main program

- write a function to print the current reservations

- write a function to initialize the reservations

- write a function to read the inputs and check the availability of the

 wanted seat

 Welcome. The theater has 3 rows of 4 seats each.

 The current reservations are:

 Enter a new seat reservation: Mary 1 2

 The current reservations are:

 . Mary . .

 Enter a new seat reservation: Carl 3 3

 The current reservations are:

 . Mary . .

 . . Carl .

 Enter a new seat reservation: end

 The final seat reservations are:

 . Mary . .

 . . Carl .

 143

10 Sorting and searching arrays

Objectives

In this chapter we will look into different methods to sort arrays and search

elements in an array.

10.1 Sorting arrays of numbers

In this example, we will use following functions:

- ReadSize: to read how many integers will need to be ordered

- ReadArray: to read the set of integers

- SortArray: orders the integers ascending

- PrintArray: prints the ordered integers

- FindIndexSmallest: searches the index belonging to the smallest

 number

The flowchart of Figure 44 illustrates the algorithm used for the functions

SortArray and FindIndexSmallest:

valid index?

true

false

start
SortArray

start with index 0

min != first el
(sub)row?

true

FindIndexSmallest

declarations

swap min and first
element

increase index

stop
SortArray

false

start
FindIndexSmallest

Smallest = index
first non-ordered

element

declarations

start with next
element

valid index?

true

false

current el <
smallest?

true

false

smallest = current
index

increase index

return smallest

stop
FindIndexSmallest

Figure 44: flowchart sorting algorithm numbers

The full C program can be written as follows:

1 /*

2 sorting an array of integer numbers

3 */

4

5 #include <stdio.h>

6

7 #define MAX_SIZE 10

8

9 int ReadSize(void);

10 void ReadArray(int[], int);

11 void SortArray(int[], int);

12 int FindIndexSmallest(int[], int, int);

13 void PrintArray(int[], int);

14

15 int main(void)

16 {

17 int row[MAX_SIZE];

18 int size;

19

20 printf("Sorting a list of integers\n");

21

22 // read number of integers that will be entered

23 size = ReadSize();

24

25 // read integers

26 ReadArray(row, size);

27

28 // order row

29 SortArray(row, size);

30

31 // print ordered row

32 PrintArray(row, size);

33

34 return 0;

35 }

36

37 int ReadSize(void)

38 {

39 int n;

40

41 do

42 {

43 printf("Enter the number of integers you want to

 sort:[1..%d] ", MAX_SIZE);

44 scanf("%d%*c", &n);

45 } while (n < 1 || n > MAX_SIZE);

46

47 return n;

48 }

49

50

51 void ReadArray(int a[], int n)

52 {

53 int i;

54

55 printf("Enter %d integers:\n", n);

56

57 for (i = 0; i < n; ++i)

58 scanf("%d%*c", &a[i]);

59 }

60

 145

61 void SortArray(int r[], int n)

62 {

63 int i, temp, IndexSmallest;

64

65 for (i = 0; i < n - 1; ++i)

66 {

67 // find index smallest number in (sub)row

68 IndexSmallest = FindIndexSmallest(r, n, i);

69

70 // if smallest element != first element of (sub)row,

 switch first and smallest

71 if (r[IndexSmallest] != r[i])

72 {

73 temp = r[IndexSmallest];

74 r[IndexSmallest] = r[i];

75 r[i] = temp;

76 }

77 }

78 }

79

80 int FindIndexSmallest(int a[], int n, int start)

81 {

82 int i, index_s;

83

84 index_s = start;

85

86 for (i = start + 1; i < n; ++i)

87 if (a[i] < a[index_s])

88 index_s = i;

89

90 return index_s;

91 }

92

93 void PrintArray(int x[], int a)

94 {

95 int j;

96

97 printf("The ordered row:\n");

98

99 for (j = 0; j<a; ++j)

100 printf("%8d", x[j]);

101
102 printf("\n");

103 }

Code 46: sorting arrays of numbers

10.2 Sorting arrays of strings

We will use the same sorting algorithm as in section 10.1. The only

difference is that we will use the string function strcmp to alphabetize the

names.

1 /*

2 sorting an array of names

3 */

4 #include <stdio.h>

5

6 #define MAX_SIZE 10

7 #define MAXLENGTH 32

8

9 int ReadSize(void);

10 void ReadArray(char[][MAXLENGTH], int);

11 void SortArray(char[][MAXLENGTH], int);

12 int FindIndexSmallest(char[][MAXLENGTH], int, int);

13 void PrintArray(char[][MAXLENGTH], int);

14

15 int main(void)

16 {

17 char row[MAX_SIZE][MAXLENGTH];

18 int size;

19

20 printf("Sorting a list of names\n");

21 size = ReadSize();

22 ReadArray(row, size);

23 SortArray(row, size);

24 PrintArray(row, size);

25

26 return 0;

27 }

28

29 int ReadSize(void)

30 {

31 int n;

32

33 do

34 {

35 printf("Enter the number of names you want to

 sort:[1..%d] ", MAX_SIZE);

36 scanf("%d%*c", &n);

37 } while (n < 1 || n > MAX_SIZE);

38

39 return n;

40 }

41

42 void ReadArray(char a[][MAXLENGTH], int n)

43 {

44 int i;

45

46 printf("Enter %d names:\n", n);

47

48 for (i = 0; i < n; ++i)

49 gets(a[i]);

50 }

51

52 void SortArray(char r[][MAXLENGTH], int n)

53 {

54 int i, IndexSmallest;

55 char temp[MAXLENGTH];

56

57 for (i = 0; i < n - 1; ++i)

58 {

59 IndexSmallest = FindIndexSmallest(r, n, i);

60 if (strcmp(r[IndexSmallest], r[i]))

61 {

62 strcpy(temp, r[IndexSmallest]);

63 strcpy(r[IndexSmallest], r[i]);

64 strcpy(r[i], temp);

65 }

66 }

67 }

68

69 int FindIndexSmallest(char a[][MAXLENGTH], int n, int start)

70 {

71 int i, index_s;

72 index_s = start;

73 for (i = start + 1; i < n; ++i)

74 if (strcmp(a[i], a[index_s]) < 0)

75 index_s = i;

76 return index_s;

77 }

 147

78 void PrintArray(char x[][MAXLENGTH], int a)

79 {

80 int j;

81

82 printf("The ordered row:\n");

83

84 for (j = 0; j < a; ++j)

85 printf("%s\n", x[j]);

86

87 printf("\n");

88 }

Code 47: sorting arrays of names

10.3 Binary search

Searching an array can be done in different ways. The most straight

forward method is the one we have used so far: simply checking the

elements of the array one by one from the first element until the last one.

This is called linear searching.

If for instance a number needs to be found in an ordered row, a binary

search algorithm will be much more efficient. In this case, the number to be

found is compared to the middle number of the array. If both are equal, the

number is found. If not, we will go on searching but only in the first or

second half of the original row. So with one check, we can immediately

eliminate half of the row. The search continues according to the same

principle until the number is found or the remaining part of the row is

empty.

This algorithm of the binary search is represented in Figure 45:

row not
empty?

true

false

start
BinSearch

start with full row

middle ==
number?

false

determine middle
element

declarations

row = left half

stop
BinSearch

true

middle < number?

false

return middle
index

return -1

row = right halftrue

Figure 45: flowchart binary search algorithm

The full C program can be written as shown in Code 48.

1 /*

2 binary search in an ordered row of integers.

3 */

4

5 #include <stdio.h>

6 #include <stdlib.h>

7

8 #define MAX_SIZE 10

9

10 int ReadSize(void);

11 void ReadArray(int[], int);

12 int ReadNumber(void);

13 int BinSearch(int[], int, int);

14

15 int main(void)

16 {

17 int a[MAX_SIZE];

18 int size, number, index;

19

20 // number of integers you want to read (< MAX_SIZE)

21 size = ReadSize();

22

23 // read the array of integers

24 ReadArray(a, size);

25

26 // read the number to search for

27 number = ReadNumber();

28

29 // find number in row + determine position

30 index = BinSearch(a, size, number);

31

32 if (index >= 0 && index < size)

33 printf("The number is present on place %d\n", index);

34 else

35 printf("The number is not present.\n");

36

37 return 0;

38 }

39

40

41 int ReadSize(void)

42 {

43 int n;

44

45 do

46 {

47 printf("How many integers do you want to

 enter [1..%2d]: ", MAX_SIZE);

48 scanf("%d%*c", &n);

49 } while (n < 1 || n > MAX_SIZE);

50

51 return n;

52 }

53

54 int ReadNumber(void)

55 {

56 int n;

57

58 printf("Enter the number to search for: ");

59 scanf("%d%*c", &n);

60

61 return n;

62 }

 149

63 void ReadArray(int x[], int a)

64 {

65 int i;

66

67 printf("Enter the %d integers, ordered from smallest to

 largest:\n", a);

68

69 for (i = 0; i < a; ++i)

70 {

71 scanf("%d%*c", &x[i]);

72

73 // test if well ordered

74 if (i > 0 && x[i] < x[i - 1])

75 {

76 printf("The ordering is not correct\n");

77 exit(5);

78 }

79 }

80 }

81

82 int BinSearch(int a[], int n, int g)

83 {

84 int first, last, middle;

85

86 first = 0;

87 last = n - 1;

88

89 while (last >= first)

90 {

91 // integer division!!

92 middle = (first + last) / 2;

93

94 // determine new subarray if number not found yet

95 if (a[middle] == g)

96 return middle;

97 else if (a[middle] < g)

98 first = middle + 1;

99 else

100 last = middle - 1;

101 }

102 return -1;

103 }

Code 48: binary search

10.4 Exercises

10.1. Write a program with functions.

- In the main function, an array of 10 integers is declared.

- A first function reads the 10 integers and stores them in the

 array.

- A second function swaps the first integer with the min value

 present in the array. Swapping must be done in the same

 array, without using a second array. Using an extra auxiliary

 variable is allowed. All other numbers need to stay in their

 original places.

- A third function prints the array after swapping.

10.2. Bubble sort is another method used to order arrays. It is an

algorithm that repeatedly steps through the list to be sorted. In each

pass, each pair of adjacent items is compared and swapped if they

are in the wrong order. If, for instance, ordering from smallest to

largest is needed, the biggest element will end up at the end of the

list after the first pass. The algorithm, is named for the way bigger

elements "bubble" to the end of the list. The next pass can stop a bit

sooner (the last element is already in place). How many passes are

needed? Can you stop sooner?

Write a program, with functions, that orders a list of numbers using

the bubble sort method.

10.3. Use bubble sort to order a list of names.

10.4. Write a program with (minimal) 4 functions that:

- reads a list of 9 integers. The integers must be entered in

 ascending order. Make sure your program verifies if the

 numbers entered are correctly ordered. If not, the program

 prints a message and stops execution.

- reads a 10th integer.

- finds the correct location for this 10th integer within the sorted

 list and inserts it there.

- prints the final list.

10.5. Write a sorting program based upon exercise 10.4.

- read an integer.

- read a next integer and put it in the correct place in the list.

- repeat step 2 until all numbers are read.

This method is called insertion sort.

 151

11 Pointers

Objectives

In this chapter the basic concepts of pointers are explained. At the end of

this chapter, one should be able to:

- declare and initialize a pointer

- use pointers and pointer operators

- understand the close relationship between pointers and arrays

- use pointers to pass arguments by reference to a function

- use pointers to functions

Pointers are an extremely powerful programming tool. Some C

programming tasks are performed more easily with pointers, and other

tasks, such as dynamic memory allocation, cannot be performed without

using pointers. Pointers are used, for example, to have a function directly

modify a variable passed to it. It is also possible to use pointers to

dynamically allocate memory, which means that you can write programs

that can handle big amounts of data on the fly. You don't need to know,

when you write the program, how much memory you need.

This chapter will treat the basic concepts of pointers. Using pointers for

dynamic memory allocations will be treated in chapter 17.

11.1 Definition

In C, every variable has a type, an address in memory and a value. A

pointer is a variable whose value is the address of another variable. Hence,

you can say that the pointer “points” to that other variable. This is

illustrated in Figure 46:

9 129B4A

402AAC

variable

pointer

memory address

129B4A

129B4A

Figure 46: pointer principle

11.2 Declaration and initialization

11.2.1 Declaration

Like every variable in C, a pointer variable must be declared before it can

be used. In its most general form, a pointer declaration can be written as:

<target_datatype> * <name>;

The * in the declaration indicates that the variable is a pointer. For instance

int *ptr;

declares the pointer variable with name ptr that can point to a variable of

the type int.

Remark

When a pointer is declared, memory is reserved to store an address only!

No memory is reserved for the variable the pointer will refer to, nor does

the pointer point to any variable yet!

11.2.2 Initialization

Pointers should be initialized when defined or they should be assigned a

value. Pointers can be initialized to NULL or an address. A pointer initialized

to NULL is a pointer that points to nothing.

Learning note

To avoid unexpected behavior, always initialize pointers!

11.3 Address and dereference operator

Now that the pointer is declared and initialized, we still need to make sure it

points to the variable of our choice. To this end, the address of that variable

must be assigned to the pointer.

To determine the memory address of a variable, the address operator & is

used:

int *p = NULL; //declaration and initialization of the pointer

int a = 5; //declaration of the integer variable a

p = &a;

The statement “p = &a;” assigns the address of the integer variable a to

the pointer p. As a result, the pointer p now points to the variable a.

 153

On the other hand, it must also be possible to read the value of the variable

the pointer is pointing to. The operator to be used is called the

dereferencing operator and is represented by the symbol *.

int *p = NULL; //declaration and initialization of the pointer

int a = 5; //declaration of the integer variable a

p = &a;

printf(“%d”, *p);

The statement “printf(“%d”, *p);” will output the number 5 to the

screen. *p performs the dereferencing operation on the pointer p. It reads

the address stored in the pointer variable p, goes to that memory location

and returns the value stored at that location.

The same operator can be used to store values into the variable the pointer

refers to:

*p = 8;

When above statement is executed, the address stored in the pointer

variable p will be read and the number 8 will be stored at that memory

location. Therefore, in the above example, the variable a will get the value

8.

The example of Code 49 demonstrates the address and the dereferencing

operator:

1 #include <stdio.h>

2

3 int main(void)

4 {

5 int a = 5;

6 int *p = NULL;

7 p = &a;

8 printf("The address of the variable a: %x\n", &a);

9 printf("The content of the variable p: %x\n", p);

10 printf("The content of the variable a: %d\n", a);

11 printf("The content of the variable p points to: %d\n", *p);

12 printf("The address of the pointer variable: %x\n\n", &p);

13 return 0;

14 }

Code 49: demonstration of & and * operators

Common mistake

Dereferencing a pointer that was not initialized nor assigned to a specific

memory location is a commonly made mistake.

The following pointer example shows how pointers can be changed to point

to different variables in 1 program. Of course, the pointer always points to

one variable at a time!

1 #include <stdio.h>

2

3 int main(void)

4 {

5 int a, b;

6 int *p = NULL;

7

8 p = &a;

9 *p = 5;

10

11 p = &b;

12 printf("Enter an integer: ");

13 scanf("%d%*c", p);

14

15 printf("a = %d,\tb = %d\n", a, b);

16

17 return 0;

18 }

Code 50: pointer usage

Note that the scanf function gets p as argument. The argument must

indicate the memory address where the integer can be stored. This address

is stored in the pointer variable p.

Common mistake

Using an address operator before a pointer variable in a scanf function call

results in unexpected behavior of the program.

11.4 Passing arguments to functions

11.4.1 Pass by value

If a function with parameters is called, the values of the arguments are

copied to the function parameters. Inside the function, these parameters

can change value. Once the function is finalized, the changes done to the

function parameters are not automatically copied to the original variables

used as arguments. If one of the changed values needs to be copied to the

calling function, a return statement must be used. This behavior is

illustrated in the example of Code 51.

 155

1 #include <stdio.h>

2 #define SIZE 10

3

4 int function(int, int[]);

5

6 int main(void)

7 {

8 int i, n, res;

9 int b[SIZE];

10

11 n = 5;

12 for (i = 0; i < SIZE; ++i)

13 b[i] = i;

14

15 printf("Before the function call: n = %d\n", n);

16 printf("and the array b contains: ");

17 for (i = 0; i < SIZE; ++i)

18 printf("%4d", b[i]);

19

20 res = function(n, b);

21

22 printf("\n\nAfter the function call: n = %d,\n", n);

23 printf("the array b contains: ");

24 for (i = 0; i < SIZE; ++i)

25 printf("%4d", b[i]);

26

27 printf("\nand res = %d\n", res);

28

29 return 0;

30 }

31

32 int function(int x, int y[])

33 {

34 int i;

35

36 x = x * x;

37

38 for (i = 0; i < SIZE; ++i)

39 y[i] = i * i;

40

41 return x;

42 }

Code 51: pass by value

In this example, the value of n is copied into the function parameter x. In

the function, x is modified, but the variable n in the main function remains

unchanged. The array b on the other hand is changed from within the

function. In the case of an array, the starting address of that array is

passed to the function. As a result the array in the function (y) and the

original array (b) point to the same memory location!

11.4.2 Pass by reference

Often, the changes carried out on the parameters in the called function

need to affect also the arguments in the calling function. To this end, a

mechanism similar to passing arrays to functions needs to be used. Instead

of passing the value of a variable to the function, the address of that

variable needs to be passed to the function parameter. As a result, the

function parameter is now a pointer that points to the original variable. So,

through the pointer in the called function, the original variable can be

altered.

Code 52 shows an example with a swap and a read function that use pass

by reference.

1 #include <stdio.h>

2

3 void read(int *, int *);

4 void swap(int *, int *);

5

6 int main(void)

7 {

8 int a, b;

9

10 read(&a, &b);

11

12 printf("\nBefore the function call: a = %d and b = %d\n", a, b);

13 swap(&a, &b);

14 printf("After the function call: a = %d and b = %d\n", a, b);

15

16 return 0;

17 }

18

19 void read(int *x, int *y)

20 {

21 printf("Enter two integer numbers: ");

22 scanf("%d%d%*c", x, y);

23 }

24

25 void swap(int *x, int *y)

26 {

27 int temp;

28

29 temp = *x;

30 *x = *y;

31 *y = temp;

32 }

Code 52: pass by reference

The pointers x and y in the functions swap and read point to the original

variables a and b. Therefore, a and b can be modified directly from inside

the functions.

 157

11.5 Pointers and arrays

Pointers and arrays are closely related in C. For instance, pointers can be

used to point to an element in an array.

Consider following array and pointer declarations:

int arr[5] = {1, 2, 3, 4, 5};

int *arrPtr = NULL;

The name of an array evaluates to the starting address of the array.

Therefore, an array name can be considered as a pointer to the first array

element. To make sure the pointer arrPtr points to the first element of the

array arr the following statement can be used:

arrPtr = arr;

or alternatively:

arrPtr = &arr[0];

At this point, the pointer is set as illustrated in Figure 47.

The value of the array element arr[2] can be accessed with the pointer

expression:

*(arrPtr + 2);

arrPtr contains the starting address of the array. Adding an offset of 2 to

that starting address, brings us to the element with index 2 inside the

array.

Alternatively, since the array name and the pointer both contain the same

memory address, we can use the array notation in combination with the

pointer name, resulting in:

arrPtr[2];

Or, we could move the pointer such that it points directly to the array

element with index 2:

arrPtr += 2;

arrPtr arr[0] arr[4]

Figure 47: pointer to array

Example:

1 #include <stdio.h>

2

3 int main(void)

4 {

5 int numbers[5], *point;

6

7 point = numbers;

8 *point = 10;

9

10 point++;

11 *point = 20;

12

13 point = &numbers[2];

14 *point = 30;

15

16 point = numbers + 3;

17 *point = 40;

18

19 point = numbers;

20 *(point+4) = 50;

21

22 for(int n=0; n<5; n++)

23 printf("%d\t",numbers[n]);

24

25 return 0;

26 }

Code 53: pointers and arrays

11.6 Pointer versions of some string functions

To illustrate the usage of pointers, some string functions are rewritten.

11.6.1 strlen

1 int strlen(char *s)

2 {

3 char *p = s;

4 while(*p != '\0')

5 p++;

6 return p - s;

7 }

11.6.2 strcpy

1 void strcpy (char *s, char *t)

2 {

3 while((*s = *t) != '\0')

4 {

5 s++;

6 t++;

7 }

8 }

 159

11.6.3 strcmp

1 int strcmp (char *s, char *t)

2 {

3 for (; *s == *t; ++s, ++t)

4 {

5 if (*s == '\0')

6 return 0;

7 }

8 return *s - *t;

9 }

11.7 Pointers to functions

11.7.1 Function pointers

Like variables, functions need to be stored in memory. Therefore, also

functions have a starting address. In C, it is possible to declare a pointer

that points to the starting address of a function.

As an example we will write a program with a main and two functions where

one of the functions is called by the use of a function pointer.

1 #include <stdio.h>

2

3 float OneThird(float);

4 float OneFifth(float);

5

6 int main()

7 {

8 float(*pf)(float);

9 pf = OneThird;

10 printf("%f\n", (*pf)(3.0));

11 return 0;

12 }

13

14 float OneThird(float x)

15 {

16 return x / 3;

17 }

18

19 float OneFifth(float x)

20 {

21 return x / 5;

22 }

Code 54: function pointer

The line

float (*pf) (float);

declares a variable pf that is a pointer (*pf) to a function that receives a

float as parameter and returns a float. The parentheses around *pf are

needed to indicate that pf is a pointer.

Without those parentheses, the instruction would become:

float * pf (float);

which declares a function with name pf that receives a float as argument

and has a pointer to a float as return value.

The next statement:

pf = OneThird;

assigns the starting address of the function with name OneThird to the

pointer pf. Like arrays, the name of a function refers to the starting

address of that function in memory.

To use the function the pointer is pointing to, the pointer needs to be

dereferenced. On top the correct function arguments need to be passed:

printf("%f\n", (*pf)(3.0));

11.7.2 Array of function pointers

Function pointers are commonly used in programs where a user can select a

function to be carried out from a list of options. Using an array of function

pointers to all possible functions, the user’s choice can be translated into an

index that allows to select the correct function pointer from the array. This

is illustrated in the next example:

1 #include <stdio.h>

2

3 int add(int, int);

4 int subtract(int, int);

5

6 int main(void)

7 {

8 int a, choice;

9 int(*fptr[2])(int, int) = { add, subtract };

10

11 printf("Enter your choice:\n");

12 printf("\t0:\taddition (10 + 2)\n\t1:\tsubtraction (10 - 2)\n");

13 scanf("%d%*c", &choice);

14

15 a=(*fptr[choice])(10, 2);

16

17 printf("The requested operation gives: %d\n", a);

18 return 0;

19 }

20

21 int add(int x, int y)

22 {

23 return x + y;

24 }

25

26 int subtract(int x, int y)

27 {

28 return x - y;

29 }

Code 55: array of function pointers

 161

If the users chooses option 0 (addition), the element with index 0 is

selected in the array, resulting in a function pointer to the function with

name add.

11.7.3 Function pointers as function argument

Finally, function pointers allow using functions as parameters of other

functions as illustrated in the examples of Code 56 and Code 57.

Example:

add and subtract with a function that receives a function pointer as

argument

1 #include <stdio.h>

2

3 int add(int, int);

4 int subtract(int, int);

5 int domath(int(*)(int, int), int, int);

6

7 int main(void)

8 {

9 int a, b;

10

11 a = domath(add, 10, 2);

12 printf("Add with function pointer gives: %d\n", a);

13

14 b = domath(subtract, 10, 2);

15 printf("Subtract with function pointer gives: %d\n", b);

16

17 return 0;

18 }

19

20 int add(int x, int y) {

21 return x + y;

22 }

23

24 int subtract(int x, int y) {

25 return x - y;

26 }

27

28 // run the function pointer with inputs

29 int domath(int(*mathop)(int, int), int x, int y) {

30 return (*mathop)(x, y);

31 }

Code 56: function pointer as function argument (add - subtract)

The first argument of the function domath is a function pointer with name

mathop that can point to a function that receives two integers as inputs and

returns an integer. Calling the function domath with add as first parameter,

assigns the function add to the function pointer mathop.

Example:

calculate ∑ 𝑓2(𝑘)𝑛
𝑘=𝑚 where f(k) can be chosen from:

𝑓(𝑘) = 𝑠𝑖𝑛(𝑘)

𝑓(𝑘) =
1

𝑘

1 #include <stdio.h>

2 #include <math.h>

3

4 double inverse(double);

5 double SumOfSquare(double(*)(double), double, double);

6

7 int main(void)

8 {

9 double start, end, res;

10 start = 1;

11 end = 3;

12

13 res = SumOfSquare(sqrt, start, end);

14

15 printf("The squares of the square root function

 add up to: %lf\n", res);

16

17 res = SumOfSquare(inverse, start, end);

18

19 printf("The squares of the inverse function

 add up to: %lf\n\n", res);

20 return 0;

21 }

22

23 double inverse(double x)

24 {

25 return 1.0 / x;

26 }

27

28 double SumOfSquare(double(*fptr)(double), double m, double n)

29 {

30 int k;

31 double sum = 0;

32 for (k = m; k < n; k++)

33 {

34 sum += (*fptr)(k)* (*fptr)(k);

35 }

36 return sum;

37 }

Code 57: function pointer as function argument (sum of squares)

 163

11.8 Exercises

11.1. Write a program without arrays that:

- declares 3 variables of the type double in the main function

- reads all 3 variables with one function call to the function

 ReadValues

- prints the values of the 3 variables in the main function

11.2. Write a program to swap two numbers. The first number is stored in

the variable number1 and the second in the variable number2. After

the swap the variable number1 contains the second number and

number2 contains the first number. Use functions: Read, Swap,

Print. Do not use arrays!

 Enter 2 numbers: 5 10

 The value of the first variable is 5, the value of the

 second variable is 10.

 After the swap, variable 1 contains 10 and variable 2

 contains 5.

11.3. Write a program that converts a number of seconds into a number of

hours, minutes and seconds. Reading the number of seconds and

printing the result is done in the main function. The calculations are

done in a separate function. No arrays are to be used!

 Enter a time in seconds: 10000

 The entered time of 10000 seconds equals 2 hours,

 46 minutes and 40 seconds.

11.4. Write a program that reads an amount of money (≤ € 200) and that

determines the minimum number of notes and coins needed to

obtain that amount. Write a function for the calculations and a

function to print to the screen. Do not use arrays!

 Enter an amount of money: 195

 195 euro can be obtained with:

 1 hundred

 1 fifty

 2 twenty

 1 five

 0 one

11.5. Write a program that reads the temperatures of a full week, finds

the min and max temperatures and prints them together with all

entered temperatures.

print the temperatures as follows:

 Mon Tue Wed Thu Fri Sat Sun

Day 5.0 5.5 7.0 6.0 7.5 8.0 8.5

Night -1.5 -0.5 0.0 -1.0 0.0 1.0 1.5

Print also min and max temperatures of day and night together with

the day that temperature was measured:

Min: Night: Mon = -1.5

 Day: Mon = 5.0

Max: Night: Sun = 1.5

 Day: Sun = 8.5

The temperatures are stored in a 2D array with row 0 for the

temperatures measured during the day and row 1 for the

temperatures measured during the night. The names of the days are

stored in a separate array (you cannot store numbers and text in the

same array).

Use 3 functions: Read, Print and Calculate. Pass the indexes of

the min and max temperatures for day and night by reference.

11.6. Write the function print_string to finalize the next program. The

function print_string prints a string, received as argument,

character by character using the function putchar().

 #include <stdio.h>

 #include <string.h>

 #define MAXSTRING 100

 void print_string(char *c);

 int main(void)

 {

 char s1[MAXSTRING], s2[MAXSTRING];

 strcpy(s1, “Mary, Mary, quite contrary.\n”);

 strcpy(s2, “How does your garden grow?\n”);

 print_string(s1);

 print_string(s2);

 strcat(s1, s2);

 print_string(s1);

 }

 165

11.7. Write a program that reads a word and converts it as follows:

- the first 2 characters are printed.

 Ex: “qwerty” => print qw

- the first and second character are compared. The largest one

 is printed. Ex: q < w => print w as third letter

- now, compare the second and third character and again print

 the largest. Ex: w > e => print w as forth letter

- repeat until the word is finished

Once the conversion is finished, the program prints also the

alphabetically smallest and largest letter.

The function main contains:

- asking the question “again?” and reading a 0 or 1 as answer

- printing the largest and smallest letter

The function Read takes care of:

- reading a word. Make sure only words of 2 or more

 characters can be entered.

The function Print takes care of:

- determining the smallest and largest letter and passing

 them to the main program with pointers

- converting and printing the word

 Enter a word or a series of letters:

 qwerty

 qwwwrty

 largest = y and smallest = e

 again? (1=yes, 0=no): 1

 Enter a word or a series of letters:

 beverage

 beevvrrgg

 largest = v and smallest = b

 again? (1=yes, 0=no): 0

11.8. Write a program that prints the tables of multiplication of an integer

number entered by the user up to a limit that is also entered by the

user. Keep on repeating the program until 0 0 is entered.

Use following functions:

- Read: read 2 integers (number and limit)

- CalcPrint: prints the table of multiplication and calculates

 the sum of the odd and even numbers

- main: calls the functions Read and CalcPrint and prints the

 sum of the odd and even numbers

No arrays can be used!

 enter the number you want to use for the table of

 multiplication:

 5

 enter the limit:

 32

 5

 10

 15

 20

 25

 30

 the sum of the even numbers is 60

 the sum of the odd numbers is 45

 enter the number you want to use for the table of

 multiplication:

 0

 enter the limit:

 0

 Thanks!

 167

11.9. Write a program that performs a mathematical computation on 2

numbers entered by the user.

The numbers are read in the function Read (do not use arrays!)

The main function:

- calls the function Read

- asks the user to choose an operator. Do this with a menu.

 Make sure only valid inputs are allowed.

- uses a function pointer that points to the correct function

 (use a switch statement to select the correct function)

- prints the result

 Enter 2 integer numbers: 10 5

 Choose an operand:

 0 addition

 1 subtraction

 2 multiplication

 3 division

 4

 Choose an operand:

 0 addition

 1 subtraction

 2 multiplication

 3 division

 0

 The result of this operation is: 15

11.10. Repeat the previous exercise but this time:

- make an array of function pointers where the function

 pointer stored at index 0 points to addition, at index 1 to

 subtraction, …

- write a separate function “Choose” that returns the user’s

 choice to the main program

- make sure the integer returned by the function Choose is

 equal to the index corresponding to the correct function

 pointer.

12 Comma operator, const, typedef,

enumerations and bit operations

Objectives

In this chapter some smaller topics often used in C programming are

grouped together. You will learn about:

- the comma operator

- using the type qualifier const instead of the #define precompiler

directive

- using typedef to create aliases for existing types

- using enumerations combined with typedef

- using bit operations to manipulate individual data bits

12.1 The comma operator

Expressions can be separated by a comma operator. The expressions are

evaluated from left to right and the last one determines the final value.

for(i = 0, j = n-1; i < n ; i++, j--)

 b[j] = a[i];

After every loop execution the variable i will be increased with 1 and the

variable j will be decreased with 1. This example can be rewritten as:

for (i = 0; i < n; i++)

 b[n-i-1] = a[i];

In the next example, the scanf function first reads a new value of n before

the condition (n > 0) is checked.

sum = 0;

while(scanf(“%d%*c”, &n), n > 0)

 sum += n;

printf(“The sum is %d\n”, sum);

12.2 typedef

In C it is possible to create an alias for a previously defined type. To avoid

using complex type names, which is the case for enumeration types (see

section 12.4) , you can define your own self explaining aliases using the

keyword typedef.

typedef int INTEGER;

defines INTEGER as an alias for the type int. The new type INTEGER can be

used instead of the standard type int:

INTEGER counter, size;

 169

The above declaration reserves memory for the 2 variables counter and

size that are of the type INTEGER or int.

12.3 Type qualifiers

Different type qualifiers exist in C. In section 6.3, we discussed already the

type qualifiers register and static. Another very useful type qualifier in

the C language is const.

Constants can be defined in 2 different ways:

- Using the preprocessor directive #define:

this is what we have done up till now. The preprocessor will replace

every instance of the constant by the value linked to it in the #define

directive.

- Using the type qualifier const:

Using the const prefix allows to declare constants with a specific type as

follows:

const type variable = value;

Example:

const int linelength = 80;

this statement assigns the value of 80 to the variable linelength. Since

the const prefix is used, linelength can no longer be changed after

initialization.

12.4 The enumeration type

The enum keyword allows to create a new type that consists of a limited list

of elements. Variables of such an enumeration type store one of the values

of the enumeration set.

For example, the enumeration:

enum days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

creates a new type called enum days. Variables of that type can hold any

one of the identifiers Sun till Sat. Internally, these identifiers are

represented by integers starting from 0 for Sun until 6 for Sat.

The declaration:

enum days d1, d2;

creates 2 variables of the type enum days.

Using the keyword typedef allows to create an alias for the type enum days

as follows:

typedef enum days {Sun, Mon, Tue, Wed, Thu, Fri, Sat} Day;

The declaration of the variables d1 and d2 can now be done by:

Day d1, d2;

Example:

Print the days of the week using an enumeration type.

1 #include <stdio.h>

2

3 typedef enum days { Sun, Mon, Tue, Wed, Thu, Fri, Sat } Day;

4

5 void PrintDay(Day);

6

7 int main(void)

8 {

9 Day d1, d2;

10 d1 = Mon;

11

12 if (d1 == Mon)

13 printf("First working day of the week\n");

14

15 for (d2 = Wed; d2 < Sat; d2++)

16 PrintDay(d2);

17 return 0;

18 }

19

20 void PrintDay(Day d)

21 {

22 switch (d)

23 {

24 case Mon: printf("Monday\n"); break;

25 case Tue: printf("Tuesday\n"); break;

26 case Wed: printf("Wednesday\n"); break;

27 case Thu: printf("Thursday\n"); break;

28 case Fri: printf("Friday\n"); break;

29 case Sat: printf("Saturday\n"); break;

30 case Sun: printf("Sunday\n"); break;

31 }

32 }

Code 58: example enumeration type

Note that a switch is used to translate the identifiers Sun till Sat into real

weekdays. Remember that a switch statement can only be used if the

expression evaluates to an integer number. This is the case since the

identifiers are internally stored as integer numbers.

 171

Replacing the for loop in the above example by:

for(d2 = Wed; d2 < Sat; d2++)

 printf(“%d ”, d2);

will change the output into: 3 4 5

The integer numbers linked to the different identifiers can also be set

explicitly as shown in the example of Code 59:

1 #include <stdio.h>

2

3 typedef enum Months_t { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,

SEP, OCT, NOV, DEC } Months_t;

4

5 int main()

6 {

7 enum WindDirections_t { NO_WIND, SOUTH_WIND, NORTH_WIND,

 EAST_WIND, WEST_WIND };

8 enum WindDirections_t windDirection = NORTH_WIND;

9

10 Months_t month = DEC;

11

12 printf("Month is: %d\n", month);

13 printf("Wind direction is: %d\n", windDirection);

14

15 month = (Months_t)(month - 1);

16 printf("Month is: %d\n", month);

17

18 enum Security_t{TOP_SECURE=100,BLACK_OPS=1000,NO_SECURE=0 };

19 enum Security_t securitylevel = TOP_SECURE;

20 printf("security level is : %d\n", securitylevel);

21

22 switch (windDirection)

23 {

24 case NORTH_WIND:

25 printf("This is North Wind\n");

26 break;

27 case NO_WIND:

28 printf("There is No Wind\n");

29 break;

30 default:

31 printf("Default case\n");

32 break;

33 }

34

35 return 0;

36 }

Code 59: example of enumeration type 2

The statement:

enum Security_t{TOP_SECURE=100, BLACK_OPS=1000, NO_SECURE=0 };

defines a new type called enum Security_t with identifiers TOP_SECURE,

stored internally as 100, BLACK_OPS, stored internally as 1000 and

NO_SECURE stored internally as 0.

12.5 Bit operations

All data is internally stored as a sequence of bits. Depending on the data

type chosen, the number of bits needed to represent the data is different. A

character for instance is represented by 1 byte or 8 bits.

Bitwise operators allow to directly manipulate the bits themselves. This can

be very useful for instance to manipulate the content of registers inside an

embedded system.

An overview of the bitwise operators is shown in Table 9:

operator meaning

& bitwise AND

| bitwise OR

<< left shift

>> right shift

~ one's complement

^ bitwise XOR

Table 9: bitwise operators

12.5.1 Bitwise AND

short int w1 = 25, w2 = 77, w3;

w3 = w1 & w2;

The bits in w3 are set to 1 if the corresponding bits in w1 and w2 are both 1:

w1 0000 0000 0001 1001 25

w2 0000 0000 0100 1101 77

--

w3 0000 0000 0000 1001 9

12.5.2 Bitwise OR

short int w1 = 25, w2 = 77, w3;

w3 = w1 | w2;

The bits in w3 are set to 1 if at least 1 of the corresponding bits in w1 and w2

is 1:

w1 0000 0000 0001 1001 25

w2 0000 0000 0100 1101 77

--

w3 0000 0000 0101 1101 93

 173

12.5.3 Bitwise XOR

short int w1 = 25, w2 = 77, w3;

w3 = w1 ^ w2;

The bits in w3 are set to 1 if the corresponding bits in w1 and w2 consist of

an odd number of 1’s:

w1 0000 0000 0001 1001 25

w2 0000 0000 0100 1101 77

--

w3 0000 0000 0101 0100 84

12.5.4 One’s complement

short int w1 = 25, w3;

w3 = ~w1;

The bits in w3 are set to 1 if the corresponding bits in w1 are set to 0 and

vice versa:

w1 0000 0000 0001 1001 25

--

w3 1111 1111 1110 0110 65 510

12.5.5 Left shift

short int w1 = 25, w3;

w3 = w1 << 2;

The bits of w1 are shifted 2 positions to the left. The last 2 positions on the

right are filled with 0:

w1 0000 0000 0001 1001 25

w3 0000 0000 0110 0100 100

Remark that shifting 2 positions to the left is equivalent to multiplying with

2². In general, shifting n positions to the left is equivalent to multiplying

with 2𝑛.

12.5.6 Right shift

short int w1 = 25, w3;

w3 = w1 >> 2;

The bits of w1 are shifted 2 positions to the right. The 2 leftmost positions

are filled with 0 or 1 depending on the value of the MSB of w1:

w1 0000 0000 0001 1001 25

w3 0000 0000 0000 0110 6

short int w2 = 0xCF83, w4;

w4 = w2 >> 2;

w2 1100 1111 1000 0011 -12 413

--

w3 1111 0011 1110 0000 -3 104

Remark that shifting 2 positions to the right is equivalent to dividing by 2².

In general, shifting n positions to the right is equivalent to dividing by 2𝑛.

12.5.7 Example

1 #include <stdio.h>

2

3 int main(void)

4 {

5 short int a, b;

6

7 a = 0x5A03; // 0101 1010 0000 0011 = 23043

8 b = 0xCF83; // 1100 1111 1000 0011

9

10 printf("size of int = %d\n", sizeof(int));

11 printf("a = %8x\n", a);

12 printf("b = %8x\n\n", b);

13 printf("~a = %8x\n", ~a); //1010 0101 1111 1100

14 printf("a & b = %8x\n", a & b); //0100 1010 0000 0011

15 printf("a | b = %8x\n", a | b); //1101 1111 1000 0011

16 printf("a ^ b = %8x\n", a ^ b); //1001 0101 1000 0000

17 printf("a>>4 = %8x\n", a >> 4); //0000 0101 1010 0000

18 printf("a<<4 = %8x\n\n", a << 4); //0101 1010 0000 0011 0000

19 return 0;

20 }

Code 60: example bit operations

 175

12.5.8 Masking

Consider the example of a 16 bit register out of which only the 4 MSB’s (the

4 left most bits) need to be read. Using the above bit operators, one could

shift all bits 12 positions to the right such that the 4 MSB’s become the only

bits left.

Example:

Suppose the register a contains the value 23043 (0101 1010 0000 0011).

a>>12 then results in: 0000 0000 0000 0101

Since leading zero’s are not be taken into account, this is equivalent to 101

which is the value of the 4 MSB’s.

Unfortunately, this is true only if the MSB of the register a is a 0! In that

case the leftmost positions will be filled with 0 resulting in leading zero’s

that can be ignored. However, if the MSB is a 1, shifting the bits 12

positions to the right will result in a series of 12 1’s before the bits of

interest:

a = -24523 (1010 0000 0011 0101)

a>>12 results in: 1111 1111 1111 1010, which is equivalent to -6. The 4

MSB’s on the other hand are 1010 which represents the number 10!

To get rid of the leading 1’s, the result of the shift operation will be treated

with a bitmask that turns all bits to zero except for the ones we are

interested in. This process is called bit masking.

In the above example the masking can be done by using a bitwise AND

operation of the shifted number and the bit sequence that contains 0 on all

positions except on the positions corresponding to the bits of interest:

0000 0000 0000 1111 or 0x000F in hex notation.

(a>>12) & 0x000F results in 0000 0000 0000 1010

A programming example that returns the 4 MSB’s of a number is shown in

Code 61

1 #include <stdio.h>

2

3 int main(void)

4 {

5 short number;

6 printf("Enter an integer [-32768,32767]: ");

7 scanf("%hd%*c", &number);

8 printf("Number:\ndec: %hd \nhex: %x.\n\n", number, number);

9 number = number >> 12; //shift 12 positions to the right

10 printf("number shifted:\ndec: %hd or hex: %x.\n\n", number,

 number);

11 number = number & 0x000f; //masking to remove leading 1's

12 printf("4 MSB’s:\ndec: %hd of hex: %x.\n\n", number, number);

13 return 0;

14 }

Code 61: bit masking

12.6 Exercises

12.1. Write a program with following screen output:

 Current Month | Previous Month

 January | December

 Februari | January

 March | February

 April | March

 May | April

 June | May

 July | June

 August | July

 September | August

 October | September

 November | October

 December | November

Make use of:

- an enum type “month”:

 enum t_month{Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,

 Oct, Nov, Dec}

- a function “lastMonth” that has the current month (type enum

 t_month) as input and returns the previous month

- a function “PrintMonth” that takes a variable of the type enum

 t_month as input and prints that month to the screen

- a for loop to run through all 12 months

12.2. Write a program “next-day” with:

- a function “read” that asks the user to enter a day and a month as

 integers and returns those values to the main function (hint: use

 pointers)

- a function “NextDay” that has the current day and month as

 arguments, calculates the next day and returns that next day to the

 main function (assume the day is not part of leap year)

- a function “PrintDay” that takes a day and a month as input and

 prints them to the screen

- use an enum type for the months

 Enter the current day and month (as integers): 29 3

 The current day is: March 29

 The next day is: March 30

 Enter the current day and month (as integers): 30 4

 The current day is: April 30

 The next day is: May 1

 177

12.3. Write a program that reads an integer, stores it in a variable of the

type short int and prints the integer as a sequence of 4 nibbles

(nibble = 4 bits). The nibbles can be printed in decimal or in hex format.

Make sure the leftmost nibble is printed first and the rightmost is

printed last. Determining the values of the nibbles needs to be done

using bit operations only. Make use of functions in your program.

 input: 23043 (=0x5A03)

 output: 5 10 0 3

 input: -21345 (=0xAC9F)

 output: 10 12 9 15

12.4. Write a function with return value that rotates the bits of a short

int 4 positions to the left. The bits that are shifted out at the left side,

must be reentered at the right side. Rotating needs to be done inside

the variable that was entered.

Write a program that uses this function.

 input: 20480

 output: 5

 (20480 = 0x5000 -> rotation yields: 0x0005)

 input: 23043

 output: -24523

 (23043 = 0x5A03 -> rotation yields: 0xA035)

 input: -24523

 output: 858

 (-24523 = 0xA035 -> rotation yields: 0x035A)

12.5. Write a function that prints the binary representation of a short int

using bit operations. Write a program that uses this function.

 input: 23043

 output: 0101 1010 0000 0011

 input: -24523

 output: 1010 0000 0011 0101

12.6. Consider a register of the CANSPI MCP2515 chip. The register

contains 8 bits out of which the 2 MSB’s (bits 6 and 7) are the

“synchronization Jump Width Length bits” and the 6 LSB’s (bits 0 till 5)

are the “Baud Rate Prescaler bits” (see figure below)

Write a program that asks the user to enter a number that fits this

register (1 byte) and that prints the corresponding “Baud Rate Prescaler

bits” (hex and binary format) and the “Synchronization Jump Width bits”

(hex and binary format).

12.7. Write a function that produces a (pseudo) random number in the

interval [1, 32767]. Make use of the following algorithm:

- use a SEED different form 0 (ex: 3254)

- store this seed number into a 16 bit static short int variable

 (static is needed to continue with the changed value when the

 function is called several times)

- perform a XOR operation on the bits 14 and 13 (the bits are

 numbered from left to right as follows: 15, 14, 13, …, 2, 1, 0)

- shift the number 1 bit to the left and fill the rightmost bit with the

 result of the XOR operation

- make sure bit 15 remains 0 (to keep the number in the correct

 range)

- the number you have now is a pseudo random number

Write a program that calls this function 10 times. Check the result.

 179

13 The C preprocessor

Objectives

This chapter explains how preprocessor directives can be used to:

- include files like a self-written header file

- define symbolic constants

- write macros

- use conditional compilation to specify which portions of the code need to

be compiled in specific situations only

13.1 The C preprocessor

As explained in section 1.5, a program written in C code needs to traverse

different steps before it can be executed. First, the C preprocessor or parser

will search for preprocessor directives in the source code and take the

appropriate action. Next, the compiler will translate the code produced by

the preprocessor into an object-file. Finally, the linker will create an

executable.

Preprocessor directives always begin with #. Only white spaces or

comments can be written on the same line before a preprocessor directive.

13.2 #define preprocessor directive

#define can be used to define both symbolic constants and macros.

13.2.1 Symbolic constants

The #define preprocessor directive allows to allocate symbolic names to

constants used inside the program.

The general format is:

#define symbolic-name replacement-text

The result of this directive is that the preprocessor will look for all

occurrences of the symbolic-name in the source code and replace each

occurrence with the replacement-text before the source code is compiled.

#define MAX 100

#define YES 1

if(i < MAX)

 answer = YES;

In the above example, the word MAX will be replaced with the value 100 and

the word YES with the value 1.

The preprocessor directive #undef discards the symbolic constant from

there on.

#undef MAX

Common mistake

Preprocessor directives are different from C statements. Therefore, no

semicolon can be placed at the end of such a directive.

Common mistake

No assignment operator can be placed in between the symbolic name and

the corresponding replacement text! Doing so results in strange behavior!

For instance:

#define MAX = 100

will cause the preprocessor to replace every occurrence of the word MAX

with the replacement text “= 100”!

13.2.2 Macros

A macro is basically a symbolic constant with arguments, defined in a

#define preprocessor directive.

Like for a symbolic constant, all occurrences of the macro name will be

replaced by the replacement text. The only difference is the presence of the

arguments that will be substituted in the replacement text before replacing

the macro name occurrences.

#define MAX(a,b) ((a) > (b) ? (a) : (b))

Wherever MAX(x,y) appears in the file, the values of x and y will replace

the letters a and b in the macro. Afterwards, the full replacement text with

a and b substituted, will replace MAX(x,y).

For instance the statement:

y= 2 * MAX(i+1, j-1);

will be replaced by:

y = 2 * ((i+1) > (j-1) ? (i+1) : (j-1));

The parenthesis around every a and b in the replacement text are needed

to force the correct order of evaluation when the macro arguments happen

to be an expression rather than a single value.

 181

Consider for example the following macro definition:

#define SQUARE(x) x * x

The statement

x = SQUARE(a+b);

will be replaced by

x = a+b * a+b;

Taking the rules of precedence into account, the above expression is

equivalent to:

x = a + (b * a) + b;

which is not the same as (a+b)² ! Using parenthesis around every x results

in the macro definition:

#define SQUARE(x) (x)*(x)

In this case the above statement will be replaced by:

x = (a+b)*(a+b);

as intended.

Common mistake

No white space can be written in between the macro name and its list of

arguments.

Common mistake

Putting too little parenthesis around the macro arguments in the

replacement text is a commonly made error that can result in strange

program output.

Be careful in using macro’s that evaluate their arguments more than once

like in the macro SQUARE defined above. If the macro argument is an

expression that changes the variable value like for instance incrementing

the variable, the change will be carried out more than once! For instance,

the statement

x = SQUARE(++a);

will be replaced by

x = (++a)*(++a);

Using functions is safer in this case.

Macro examples:

#define IS_LEAPYEAR(j) ((j)%4 == 0 && (j)%100 != 0 || (j)%400 == 0)

#define SWAPINT(x,y) (int help=x; x=y; y=help;)

#define ISDIGIT(c) ((c)>='0' && (c)<='9')

#define TOLOWER(c) ((c) – 'A' + 'a')

Remark

A macro is different from a function! Using a macro will result in a text

substitution, not in a function call!

13.3 #include preprocessor directive

With the #include preprocessor directive a copy of the specified file will be

included in the source code.

The 2 standard formats for the #include directive are:

#include <filename>

#include “filename”

In the first case, the filename is enclosed in angle brackets (< >). This

instructs the preprocessor to search for the file with name filename in the

standard include directory. If the file is not found, a preprocessor error will

be issued.

If the filename is enclosed in double quotes (“ ”), like in the second format,

the preprocessor will look for the file in the directory that contains the

source code file. If not found in that directory, the standard include

directory will be searched instead. This is typically used to include

programmer defined header files:

#include “header.h”

Programmer defined header files contain preprocessor definitions,

declarations of structures, function prototypes, enumerations, typedef’s

and, if needed, global variables.

13.4 Conditional compilation

Conditional compilation allows to control which preprocessor directives are

carried out and what portion of the source code will be compiled. A

conditional preprocessor directive can be followed by a constant integer

expression only.

 183

13.4.1 #ifdef preprocessor directive

The general format of the #ifdef preprocessor directive is:

#ifdef <identifier>

 C code to be compiled if the identifier has been defined

#else

 C code to be compiled if the identifier has not been defined

#endif

This is often used to enclose printf statements that are only to be

compiled if a debug constant is set:

#define DEBUG

int main(void)

{

 …

 #ifdef DEBUG

 printf(“the values of the variables at this point are: … ”, …);

 #endif

 …

 return 0;

}

If the symbolic constant DEBUG is not set, the printf statement will not be

compiled and as such it will not be part of the executable.

An example of using #ifdef to control the execution of preprocessor

directives is shown below:

#ifndef PI

#define PI 3.14159265358979

#endif

13.4.2 #if preprocessor directive

The usage of #if is similar to the one of #ifdef except that #if can be

followed by a constant expression:

#define TEST 1

int main(void)

{

 …

#if TEST

 printf(…);

#endif

 return 0;

}

13.5 Exercises

13.1. Define a macro with name MIN to determine the smallest of 2 values.

Write a program that tests the macro.

Example:

 The minimum of -9 and 10 = -9

13.2. Define a macro TOLOWER(c) that changes c into a small letter if c is a

capital letter or leaves c as is otherwise. Write a program that tests the

macro.

Example:

 Enter characters, end with 0: A B D c d 0

 a b d c d

13.3. Define a macro MAX3 that determines the maximum of 3 values.

Write a program that tests the macro.

Hint: define a macro MAX2 that determines the maximum of 2

 values and use it as follows:

 MAX3(a, b, c) = MAX2(MAX2(a, b), c)

Example:

 The maximum of 20, 10 and -5 = 20

13.4. Define macro’s IS_CAPITAL and IS_SMALL that result in a 0 if the

character entered is a capital or a small letter respectively. Write a

program that tests the macro’s.

Example:

 Is A a capital letter? 1

 Is A a small letter? 0

13.5. Define a macro IS_LETTER that results in the value 1 if the argument

is a letter. Use the macro’s from exercise 13.4 to define this macro.

Write a program that tests the macro’s.

Example:

 Is a a letter? 1

 Is * a letter? 0

 185

14 File handling in C

Objectives

This chapter explains how files can be accessed from a C program. At the

end of this chapter, one should be able to:

- understand the difference between text files and binary files

- open and close a file in different modes

- read data from a text file and a binary file

- write data to a text file and a binary file

- update data in binary files

14.1 File pointer

All data used in the programs written up till now, was stored in variables.

Unfortunately, this type of storage is temporary and as such all data is lost

as soon as the program terminates. To allow for long term storage, files

need to be used.

A file can be described as a sequence of bytes that is stored on a secondary

storage device, which is generally some kind of disk. Hence, to manipulate

files, the program needs to store all kinds of information about those files.

To this end, a special structure called FILE is defined in <stdio.h>. When

opening a file, a new file control block of the type FILE will be created and

a pointer to that block (FILE *) will be provided.

C provides no specific I/O statements, therefore a series of functions was

added to the standard library stdio. Some of those functions will be

handled in more detail in the next sections.

Every file manipulation in C consists of the following 3 steps:

1. Open the file

2. Read and or write operations

3. Close the file

We will first discuss how to open and close a file. Afterwards different

functions to read from files or write data into a file will be explained.

14.2 Opening and closing a text file

Creating a new file control block of the type FILE and initializing all fields of

that block with the correct data is done using the function fopen:

FILE * = fopen(char * name, char * mode);

The function fopen has 2 input parameters.

The first parameter is a string that defines the name of the file to be

opened. This filename can include path information in an absolute or

relative way.

Common mistake

If path information is to be added to the file name, be aware that the

backslash sign “\” has a special meaning when used in a literal string.

Therefore, every directory separation character “\” needs to be written

twice!

The second parameter “mode” defines how the file needs to be opened. The

mode parameter needs to be written with a small letter, in between double

quotes and must be one of the options listed in Table 10.

mode description

“r” Open an existing file for reading.

“w”
Create a new file for writing. If the file already exists, erase

the current content.

“a”
Append data at the end of the file. If the file does not exist, it is

first created.

“r+” Open an existing file for update (reading and writing).

“w+”
Create a new file for reading and writing. If the file already

exists, erase the current content.

“a+”

Open an existing file or create a new file for reading and

appending. Writing operations are carried out at the end of the

file, for reading operations, repositioning is possible.

Table 10: file opening modes

If the file was opened successfully, the function fopen returns a pointer of

the type FILE * to the newly created file control block. If not, the value

NULL is returned instead.

Once all read and write operations on the file are done, the file control block

can be cleared by closing the file with the function fclose:

int fclose(FILE * filepointer);

 187

where filepointer points to the file control block you want to erase. If the

file closure was successful, the function fclose returns 0. If not, the value

EOF is returned.

The usage of the functions fopen and fclose is demonstrated in Code 62.

1 #include <stdio.h> // contains I/O functions

2 #include <stdlib.h> // contains function exit()

3

4 int main(void)

5 {

6 FILE * fp;

7 fp = fopen("MyFile.txt", "r");

8 if (fp == NULL)

9 {

10 printf("Error opening file \"MyFile.txt\" for read.\n");

11 if ((fp = fopen("MyFile.txt", "w")) == NULL)

12 {

13 printf("Error creating file \"MyFile.txt\".\n");

14 exit(1);

15 }

16 printf("New file \"MyFile.txt\" was created.\n");

17 }

18 else

19 {

20 printf("\"MyFile.txt\" was successfully opened\n");

21 }

22 fclose(fp);

23 return 0;

24 }

Code 62: opening and closing a file

With the statement

fp = fopen("MyFile.txt", "r");

a new file control block is made, the file pointer fp now points to that file

control block. To avoid malfunctioning of the program in case for instance

the file does not exist yet, the program checks if fp has valid content before

starting any file operation:

if(fp == NULL){ … }

Both operations can be combined into 1 single instruction:

if((fp=fopen("MyFile.txt", "r")) == NULL)

{

 printf("Error opening file \"MyFile.txt\" for read.\n");

 exit(1);

}

In case of an error during the opening operation, the function exit() will

simply stop the program in a controlled way. It is good practice to print a

line of text explaining why the program stopped before actually exiting the

program.

Common mistake

Omitting the parenthesis around the expression

fp=fopen("MyFile.txt", "r")

is a commonly made mistake. As a result, the filepointer fp will not be

linked correctly to the opened file.

14.3 Read and write 1 symbol to a text file

14.3.1 Read one symbol: fgetc

The function fgetc, with function declaration:

int fgetc(FILE *fp);

reads one character from the file referenced by fp and returns the ASCII

value of that character as an integer. If the end of the file is reached or if a

reading error occurred, the function fgetc returns the constant EOF. To

check which one of the 2 occurred, the functions ferror and feof can be

used.

The following example shows how the text of a file can be printed to the

screen using the function fgetc.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

6 int main(void)

7 {

8 FILE * fp;

9 int symbol;

10

11 if ((fp = fopen(FILENAME, "r")) == NULL)

12 {

13 printf("The file \"%s\" cannot be opened.\n", FILENAME);

14 exit(1);

15 }

16

17 while ((symbol = fgetc(fp)) != EOF)

18 putchar(symbol);

19

20 printf("\n");

21 fclose(fp);

22 return 0;

23 }

Code 63: read 1 symbol from a file

 189

14.3.2 Write one symbol: fputc

The function fputc, with function declaration:

int fputc(int char, FILE *fp);

writes one character to the file referenced by fp. The function fputc takes

the ASCII value of the character to be written (int char) as input and

returns that ASCII value, except if a writing error occurred. In the case of

an error, the value EOF will be returned.

Changing the program of Code 63 to make a file copy results in:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define IN "text.txt"

5 #define OUT "copy.txt"

6

7 int main(void)

8 {

9 FILE *fin, *fout;

10 int symbol;

11

12 if ((fin = fopen(IN, "r")) == NULL)

13 {

14 printf("The file \"%s\" cannot be opened.\n", IN);

15 exit(1);

16 }

17

18 if ((fout = fopen(OUT, "w")) == NULL)

19 {

20 printf("The file \"%s\" cannot be opened.\n", OUT);

21 exit(2);

22 }

23

24 while ((symbol = fgetc(fin)) != EOF)

25 fputc(symbol, fout);

26

27 fclose(fin);

28 fclose(fout);

29 printf("The file was copied.\n");

30 return 0;

31 }

Code 64: copy a file using fgetc and fputc

First, the two files are opened in read and write mode respectively. In every

execution of the while loop one symbol of the file "text.txt" is read

(fgetc(fin)) and written into the file "copy.txt" (fputc(symbol, fout)).

14.4 Read and write a full line to a text file

14.4.1 Read a full line: fgets

The function fgets, with function declaration:

char * fgets(char *s, int max, FILE *fp);

reads a sequence of symbols from the file referenced by fp, and stores

them in the string s. The read process stops when a newline character is

found, the maximal number of symbols defined by the parameter max is

read (null byte included) or the end of the file is reached. At the end of the

symbol sequence a null byte is added automatically.

The function returns the string that was read except if the end of the file is

reached or if a reading error occurred. In that case, the function fgets

returns the constant NULL. To check which one of the 2 occurred, the

functions ferror and feof can be used.

The following example reads a text file line by line and prints the lines to

the screen.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

6 int main(void)

7 {

8 FILE * fp;

9 int i = 0;

10 char line[BUFSIZ]; // BUFSIZ is defined in stdio.h to be 512

11

12 if ((fp = fopen(FILENAME, "r")) == NULL)

13 {

14 printf("The file \"%s\" cannot be opened\n", FILENAME);

15 exit(1);

16 }

17

18 while (++i, fgets(line, BUFSIZ, fp) != NULL)

19 printf("%d %s", i, line);

20

21 fclose(fp);

22 printf("\n");

23 return 0;

24 }

Code 65: printing the content of a file line by line

 191

14.4.2 Write a full line: fputs

The function fputs, with function declaration:

int fputs(char *s, FILE *fp);

writes a sequence of symbols, stored in the string s, to the file referenced

by fp. If successful, the function returns a non-negative value, otherwise

EOF is returned.

The example of Code 66 reads a line of text from the keyboard and

appends it to a file.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

6 int main()

7 {

8 FILE * pFile;

9 char sentence[BUFSIZ];

10

11 printf("Enter sentence to append: ");

12 gets(sentence);

13

14 if ((pFile = fopen(FILENAME, "a")) == NULL)

15 {

16 printf("The file \"%s\" cannot be opened\n", FILENAME);

17 exit(1);

18 }

19

20 fputs(sentence, pFile);

21 fputc('\n', pFile); //add a newline after the sentence

 into the file

22 fclose(pFile);

23 return 0;

24 }

Code 66: append a line of text to an existing text file

Note that a newline character is written explicitly to the file to avoid writing

all sentences on 1 single line. In other words: fputs does not automatically

put a newline character at the end of the string written.

14.5 Formatted read and write to a text file

Formatted writing to and reading from files is done with the functions

fprintf and fscanf respectively that are very similar to the functions

printf and scanf.

14.5.1 Formatted printing to a file: fprintf

The function fprintf is declared in <stdio.h> as:

int fprintf(FILE *fp, format control string, arguments);

except for the first argument that indicates the file to write to, this is

identical to the printf function. Beside strings, using fprintf also allows

other data types to be written to the file. This is shown in example Code 67.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

6 int main(void)

7 {

8 FILE * fp;

9

10 char name1[12] = "Smith";

11 int age1 = 55;

12 float weight1 = 99.56;

13 char name2[12] = "Jones";

14 int age2 = 45;

15 float weight2 = 56.78;

16

17 if((fp = fopen(FILENAME, "w"))==NULL)

18 {

19 printf("The file \"%s\" cannot be opened\n", FILENAME);

20 exit(1);

21 }

22

23 fprintf(fp, "%s %d %f\n", name1, age1, weight1);

24 fprintf(fp, "%s\t%d\t%f\n", name2, age2, weight2);

25

26 fclose(fp);

27 printf("The file was written\n");

28 return 0;

29 }

Code 67: formatted printing to a file

14.5.2 Formatted reading from a file: fscanf

Reading strings and symbols can be done using the functions fgetc and

fgets as described above. However, if only one word needs to be read or if

a number needs to be read, formatted reading is needed. To this end, the

function fscanf is defined as:

int fscanf(FILE *fp, format control string, arguments);

 193

Also this function is identical to its scanf equivalent except for the file

pointer. The return value of this function is a non-negative integer if

successful.

Code 68 shows the C code needed to read the file written in Code 67 and

print it to the screen.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

6 int main(void)

7 {

8 FILE * fp;

9

10 char name[12];

11 int age;

12 float weight;

13

14 if ((fp = fopen(FILENAME, "r")) == NULL)

15 {

16 printf("The file \"%s\" cannot be opened\n", FILENAME);

17 exit(1);

18 }

19

20 while (fscanf(fp, "%s%d%f", name, &age, &weight) > 0)

21 {

22 printf("name: %-12s age: %3d weight: %5.2f\n", name,

 age, weight);

23 }

24

25 fclose(fp);

26 printf("\n");

27 return 0;

28 }

Code 68: formatted reading from a file

The format control string "%s%d%f" indicates that first a string, then an

integer and finally a float must be read and stored in the addresses given

by the arguments name, &age and &weight.

Note that the spaces or tabs in between the values printed in the file are

not taken into account by the fscanf function.

14.6 stdin, stdout and stderr

When program execution begins, 3 files are opened automatically with

associated FILE pointers stdin, stdout and stderr. stdin points to the

standard input, stdout to the standard output and stderr to the standard

error.

As such, the statement printf(“Hello world\n”);

is identical to fprintf(stdout, “Hello world\n”);

and getchar(); can be replaced by fgetc(stdin);

Similarly scanf(), gets() and puts() can be substituted by their

corresponding file functions.

The principle of connecting files to the standard input and output also

allows to redirect them to a file starting from the command line. If for

instance prog is an executable, the command line input:

prog > out

will run the program with name prog and redirect the standard output to

the file with name out. Similarly the command:

prog < in

makes the program prog read all standard input from the file with name in.

14.7 Binary files versus text files

Text files are used to make the information in the file readable to the user.

However, many files in a computer system contain information that is only

to be read or updated by the system itself. As a result, this information

does not need to be formatted and can be copied straight from memory

into the file. This results in files containing a sequence of bytes that are not

necessarily to be interpreted as text characters. Opening such a binary file

with a text editor is usually not very useful.

14.8 Opening and closing a binary file

The functions fopen and fclose are used to open and close binary files:

FILE * = fopen(char * name, char * mode);

int fclose(FILE * filepointer);

As with text files, the first parameter of the function fopen is a string that

defines the name of the file to be opened and can include path information.

The second fopen parameter “mode” defines how the file needs to be

opened. The possible mode options are identical to the ones used for text

files except that the letter ‘b’ is added at the end to indicate that a binary

file is being opened. This is illustrated in Table 11.

 195

mode description

“rb” Open an existing binary file for reading.

“wb”
Create a new binary file for writing. If the file already exists,

erase the current content.

“ab”
Append data at the end of the binary file. If the file does not

exist, it is created first.

“rb+” Open an existing binary file for update (reading and writing).

“wb+”
Create a new binary file for reading and writing. If the file

already exists, erase the current content.

“ab+”

Open an existing binary file or create a new binary file for

reading and appending. Writing operations happen at the end

of the file, for reading operations, repositioning is possible.

Table 11: binary file opening modes

14.9 Write to a binary file: fwrite

The function fwrite, with function declaration:

size_t fwrite(void *ptr, size_t size, size_t count, FILE *fp);

writes count elements of size bytes starting from the address ptr from

memory into the file corresponding to the filepointer fp. The return value is

an unsigned int (size_t) that indicates the amount of elements written

and is equal to 0 if an error occurred.

The meaning of each argument is listed in Table 12:

argument description

ptr starting address in memory

size size (in bytes) of 1 element

count number of elements (size bytes each)

fp filepointer

Table 12: arguments of function fwrite

Example: write a series of 3 floats to a binary file.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "myfile.bin"

5

6 int main(void)

7 {

8 FILE* pFile;

9 float buffer[3] = { 1.0, 11.5, 48.45 };

10 pFile = fopen(FILENAME, "wb");

11 if (pFile == NULL)

12 {

13 printf("The file %s cannot be opened.\n", FILENAME);

14 exit(1);

15 }

16

17 fwrite(buffer, sizeof(float), 3, pFile);

18 fclose(pFile);

19 return 0;

20 }

Code 69: fwrite example

In the above example, buffer is the name of an array so it represents the

starting address of that array in memory. To determine the number of

bytes needed for 1 element, in this case 1 float, the function sizeof is

used.

Opening “myfile.bin” in a text editor results in unreadable content:

Figure 48: reading binary file with text editor

Reading binary files can be done using a hex editor. Such a program shows

the bytes stored in the file in hexadecimal mode:

Figure 49: reading binary file with hex editor

The numbers in the above figure are the hexadecimal representations of the

floats written. Reading the content of such a binary file is easier using the

function fread and the build-in printf formatting to print the numbers in

readable format to the screen.

 197

14.10 Read from a binary file: fread

The function fread, with function declaration:

size_t fread(void *ptr, size_t size, size_t count, FILE *fp);

reads count elements of size bytes from the file corresponding to the

filepointer fp to the memory location ptr. The return value is an unsigned

int (size_t) that indicates the amount of elements read and is equal to 0

if an error occurred or the end of the file is reached.

The meaning of each argument is listed in Table 13.

argument description

ptr address in memory

size size (in bytes) of 1 element

count number of elements (size bytes each)

fp filepointer

Table 13: arguments of function fread

Example: read the file “myfile.bin” and print its content to the screen.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "myfile.bin"

5

6 int main(void)

7 {

8 FILE* pFile;

9 float number;

10

11 if ((pFile = fopen(FILENAME, "rb")) == NULL)

12 {

13 fputs("File error\n", stderr);

14 exit(1);

15 }

16

17 printf("The numbers in the file \"%s\" are:\n", FILENAME);

18 while (fread(&number, sizeof(float), 1, pFile))

19 printf("%.2f\n", number);

20

21 fclose(pFile);

22 return 0;

23 }

Code 70: fread example

14.11 More binary file functions

14.11.1 function fseek

The function fseek, with function declaration:

int fseek(FILE * fp, long offset, int origin);

places the file position pointer for the file referenced by fp to the byte

location that is the sum of origin and offset. The return value is equal to

0 unless an error occurred. In the case of an error the value -1 is returned.

The argument origin must be one of the values listed in Table 14.

origin description

SEEK_SET beginning of the file

SEEK_CUR current location in the file

SEEK_END end of the file

Table 14: list of values to be used as origin in the function fseek

Code 71 shows an example of fseek usage.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #define FILENAME "example.txt"

4

5 int main(void)

6 {

7 FILE* pFile;

8 pFile = fopen(FILENAME, "w");

9 if (pFile == NULL)

10 {

11 printf("The file %s cannot be opened.", FILENAME);

12 exit(1);

13 }

14

15 fputs("This is an apple.", pFile);

16 fseek(pFile, 9, SEEK_SET);

17 fputs(" sam", pFile);

18 fclose(pFile);

19 return 0;

20 }

Code 71: fseek example

The statement “fseek(pFile, 9, SEEK_SET);” places the file position

pointer at an offset of 9 bytes (and thus 9 letters) from the beginning of the

file. The next statement “fputs(" sam", pFile);” starts writing the

symbols " sam" from byte 9 on, overwriting the content that is already

there, resulting in following content for the file “example.txt”:

 199

14.11.2 function ftell

The function ftell, with function declaration:

long ftell(FILE * fp);

returns the current offset of the file position pointer in the file referenced by

fp, with respect to the beginning of the file. This offset is expressed in

bytes. If an error occurs, the return value is -1L.

Using ftell to determine the length of a file is illustrated in Code 72.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #define FILENAME "example.txt"

4

5 int main(void)

6 {

7 FILE* pFile;

8 long size;

9

10 if ((pFile = fopen(FILENAME, "rb")) == NULL)

11 fputs("Error opening file\n", stderr);

12 else

13 {

14 fseek(pFile, 0, SEEK_END); //put position pointer at end

 of the file

15 size = ftell(pFile); //ask current position of

 position pointer

16 fclose(pFile);

17 printf("Size of %s: %ld bytes.\n", FILENAME, size);

18 }

19 return 0;

20 }

Code 72: ftell example

14.12 Direct access files

Binary files are often used to read and write arrays of data to and from

disk. More specifically, full structures can be written and read. We will treat

the subject of structures in chapter 15.

Such a structure can be used to represent certain records you want to save

like for instance all bank information from a certain person, address

information form a customer, …

Since full records can be written at once to a binary file and since we know

the length of 1 record, the data from 1 specific record can be accessed by

jumping directly to the wanted record. Using fseek, we can put the file

position pointer at the right place in the file as is illustrated in Figure 50.

Figure 50: direct access file

Therefore, binary files are often called direct access files.

Example:

the file records.dat contains the bank balances of 3 customers. Each one of

those bank balances is contained in a record with fixed length. The example

below, shows how to read the data from 1 record only.

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include "account.h"

4

5 int main(void)

6 {

7 FILE * fp;

8 Account account;

9 int recnr;

10

11 if ((fp = fopen(FILENAME, "rb")) == NULL)

12 {

13 printf("The file %s cannot be opened\n", FILENAME);

14 exit(1);

15 }

16

17 printf("Enter the record number: ");

18 scanf("%d%*c", &recnr);

19

20 fseek(fp, (long)(recnr-1) * sizeof(Account), SEEK_SET);

21

22 if (fread(&account, sizeof(Account), 1, fp) <= 0)

23 {

24 printf("Record %d of file %s does not exist.\n", recnr,

 FILENAME);

25 exit(1);

26 }

27

28 printf("The content of record %d is:\n%d\t%f\t%s\n", recnr,

 account.nr, account.balance, account.name);

29 fclose(fp);

30 return 0;

31 }

With account.h:

1 #ifndef _ACCOUNT_H

2 #define _ACCOUNT_H

3 #define FILENAME "records.dat"

4 typedef struct //used to define the fields of 1 record

5 {

6 int nr;

7 char name[25];

8 float balance;

9 } Account;

10 #endif

 201

Code 73: usage of direct access files

Based upon the record number entered, the file position pointer is set at

the start of the wanted record by the statement:

fseek(fp, (long)(recnr-1) * sizeof(Account), SEEK_SET);

where sizeof(Account) evaluates to the length of 1 record. Next, the

number of bytes equal to 1 record is read and stored in the variable

account. Afterwards, the different record fields are printed. A variable like

account that contains fields of different data types is called a structure.

Structures are explained in chapter 15.

14.13 Exercises

14.1. Use a text editor to create a text file that contains a few lines of text.

Write a program that reads the text file line by line and writes

everything to the screen.

14.2. Write a program that copies the text file line by line to a new file.

14.3. Write a program that copies the text file but this time with double

spacing. (instead of 1 newline, 2 newlines need to be placed at the end

of every line).

14.4. Write a program that copies the text file from exercise 14.3 to a new

file removing all empty lines.

14.5. Write a program that writes the lines of a text file to the screen. On

the screen, all lines need to be preceded by their line number.

14.6. Write a program that prints the content of 2 different text files

merged (one after the other) to the screen.

14.7. Write a program that asks the user to enter the file name, the file

extension and some text. The program creates that file and writes the

entered text to that file.

 Enter file name: test

 Enter file extension: txt

 Enter your text: This is a test.

 File has been opened with success!

 Text has been written

 File closed

14.8. Write a program that prints the first 20 lines of a text file to the

screen. If the user hits return on the keyboard, the next 20 lines are

printed. This is repeated until the end of the file is reached.

14.9. Use a text editor to create 2 different files that both contain a row of

integer numbers, ordered from small to large. Write a program that

prints the numbers of both files in 1 ordered row. The file content

cannot be saved into arrays to solve this problem.

 Example:

 numbers1.txt: 1 5 7 9 11 23 77 93 103

 numbers2.txt: 4 9 12 28 124 230

 yields: 1 4 5 7 9 9 11 12 23 28 77 93 103 124 230

14.10. Use a text editor to create 2 different files that both contain a

row of integer numbers, ordered from small to large. Write a program

that combines the numbers in both files to create 1 ordered row and

writes these numbers in that order to a new file. Again, no arrays can

be used.

14.11. Write a program that searches patterns in a text file. A

certain string (pattern) needs to be searched in the text file. Every line

that contains that pattern, must be printed. Print also the line number.

14.12. Write a program that asks the user to enter the name and

age of a chosen number of people and writes that data to a file. The

names do not contain any spaces.

 For how many people do you want to enter data? 3

 Enter name and age: Smith 40

 Enter name and age: Connelly 25

 Enter name and age: Jolie 39

results in a file containing:

 name: Smith

 age: 40

 name: Connelly

 age: 25

 name: Jolie

 age: 39

 203

14.13. Write a program that reads the file created in exercise 14.12

and prints all data to the screen.

14.14. Write a program that searches a name entered by the user in

the file created in exercise 14.12 and prints the corresponding age to

the screen. Make sure a message is printed when the name is not

present in the file.

 Enter the name of the person you want to find: Jolie

 name: Jolie

 age: 39

15 Structures

Objectives

In this chapter, the concept of structures is explained. You will learn how to

- define a new structure

- access the different members of a structure

- use struct variables as arguments and return values of functions

- use pointers to struct variables

- write to and read from files of structures

15.1 Definition

In chapter 7 the concept of arrays was introduced. These arrays are used to

combine different variables into 1. Unfortunately, all variables in an array

need to be of the same datatype. In real life, however, we often encounter

a group of variables of different datatypes that belong together. Such a

group of variables is called a record. To represent this real life situation,

structures will be used.

A structure combines a set of variables of different datatypes into 1

variable.

Example:

we can use a structure to combine all product data. A product has a product

number (type: int), a name or description (type: char *), an inventory level

(type: int), a purchase price (type: float) and a retail price (type: float).

15.2 Defining a structure

A structure must be defined using the struct statement as follows:

struct <name>{

 datatype elem1;

 datatype elem2;

 ...

};

The statement above defines a new data type. Variables of that new

datatype can be declared by:

struct <name> <variable_name>;

 205

For instance, the definition of the structure “product” looks like:

struct product{

 int number;

 char description[30];

 int inventory;

 float purchase;

 float retail;

};

and the declaration of variables of this new datatype is done as follows:

struct product art1, art2;

or an array of variables of this new datatype:

struct product art[100];

typedef can be used in combination with struct to define and name a new

data type. This new datatype can then be used to define structure variables

directly as follows:

typedef struct product{

 int number;

 char description[30];

 int inventory;

 float purchase;

 float retail;

}Product;

Product art1, art2, art[100];

or:

typedef struct{

 int number;

 char description[30];

 int inventory;

 float purchase;

 float retail;

}Product;

Product art1, art2, art[100];

Learning note

Note that the newly defined struct type can only be used after its

definition. Therefore, define structure variables always in the top section of

the source code or in the header file if any.

15.3 Accessing structure members

Once the structure is defined and variables of the new datatype are

declared, the different members of those variables need to be accessible.

To access any member of a structure, the dot operator (.) is used. This dot

operator is placed in between the variable name and the structure member

name.

Example:

art1.number = 12;

strcpy(art[20].description, “plasma TV”);

The individual structure members can be used like any other variable of

that same type as can be seen in the examples above.

Also the structure variables themselves are regarded as ordinary variables.

As a result, a structure variable can be used directly in an assignment which

is not the case for array variables:

art[0] = art1;

Initialization of a structure variable can also be done together with the

declaration as follows:

Product art1={12, “plasma TV”, 35, 245.50, 999.99};

15.4 Nested structures

Next to variables and arrays, structures can also contain other structures.

The following example shows how nested structures can be used.

1 #include<stdio.h>

2

3 typedef struct

4 {

5 unsigned short day;

6 char month[16];

7 unsigned int year;

8 } Date;

9

10 typedef struct

11 {

12 char name[32];

13 Date DateOfBirth;

14 } Person;

15

16 int main(void)

17 {

18 Person p = { "Mark Twain", { 7, "February", 1871 } };

19 printf("name : %s\n", p.name);

20 printf("date of birth: %s, %u, %u\n", p.DateOfBirth.month,

 p.DateOfBirth.day, p.DateOfBirth.year);

21 return 0;

22 }

Code 74: usage of nested structures

Note that the structure “Date” needs to be defined before it can be used in

the structure “Person”.

 207

15.5 Structures and functions

Individual structure members as well as entire structures can be passed to

a function as argument or returned from a function as function return

value.

When an individual structure member or an entire structure is passed to a

function as argument, it is passed by value, meaning that the structure

value in the calling function cannot be modified from within the called

function. The modifications done inside the called function can be returned

to the calling function by the use of a function return value. This is

illustrated in the example of Code 75 that shows the definition of the

function adapt.

Product adapt(Product x)

{

 x.number += 1000;

 x.retail *= 1.2;

 return x;

}

Code 75: example structures and functions

Calling the function can be done as follows:

art[5] = adapt(art1);

Like for any other variable that is passed by value, the values of the

structure members of art1 are copied into the variable x which acts as a

local variable in the function adapt. The return statement takes care of

copying all members of x into art[5].

15.6 Comparing 2 structures

C does not provide an equality operator that allows to directly compare 2

structures. Comparison can only be done by comparing the structure

variables member by member.

The following example shows a function that can be used to compare two

structures of the type Product:

int compare(Product x, Product y)

{

 if(x.number != y.number) return 0;

 if(x.inventory != y.inventory) return 0;

 if(x.purchase != y.purchase) return 0;

 if(x.retail != y.retail) return 0;

 return !strcmp(x.description, y.description);

}

15.7 Pointers to structures

Like for any other data type, pointers to structures can be declared as

shown in following example:

Product a;

Product *pa;

pa = &a;

Where pa is declared to be a pointer to a variable of the type Product. The

statement “pa=&a;” assigns the address of the structure variable a to the

pointer pa.

To access the individual structure members via the pointer variable, the ->

operator needs to be used:

pa->number = 1023;

strcpy(pa->description, “dvd”);

Pointers to structures also allow to pass a structure to a function by

reference as is illustrated in Code 76:

1 #include <stdio.h>

2

3 typedef struct {

4 int number;

5 char description[30];

6 int inventory;

7 float purchase;

8 float retail;

9 } Product;

10

11 void read(Product *);

12 void print(Product);

13

14 int main(void)

15 {

16 Product a;

17 read(&a); //variable a is passed by reference

18 print(a); //variable a is passed by value

19 return 0;

20 }

21

22 void read(Product *p)

23 {

24 printf("Enter product number : ");

25 scanf("%d%*c", &(p->number));

26

27 printf("Enter product description: ");

28 gets(p->description);

29

30 printf("Enter the product inventory level: ");

31 scanf("%d%*c", &(p->inventory));

32

33 printf("Enter purchase price: ");

34 scanf("%f%*c", &(p->purchase));

35

36 printf("Enter retail price: ");

37 scanf("%f%*c", &(p->retail));

38 }

39

 209

40 void print(Product z)

41 {

42 printf("Product number:\t%d\n", z.number);

43 printf("description:\t%s\n", z.description);

44 printf("inventory level:\t%d\n", z.inventory);

45 printf("purchase price:\t%.2f\n", z.purchase);

46 printf("retail price:\t%.2f\n", z.retail);

47 }

Code 76: passing structures to functions by reference

Common mistake

Note the parenthesis around the combination pointer->member when an

address operator (&) is used. Omitting these parenthesis is a commonly

made mistake that results in accessing wrong memory locations.

15.8 Files of structures

Structures can be written to or read from a binary file as a whole using the

functions fread and fwrite respectively. To determine the number of bytes

to be read or written, the function sizeof is used:

struct Person pers;

fread(&pers, sizeof(pers), 1, fptr);

the function fread will read all data from 1 person from the file referred to

by fptr, into the variable pers.

Similarly

struct Person person[20];

fread(person, sizeof(person[0]), 20, fptr)

will read all data from 20 persons from the file referred to by fptr and

store them in an array of structures called person.

The usage of the fwrite function in combination with structures, is

illustrated in Code 77. In this example, a file with phone numbers is

created:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include "phone.h"

5

6 int readPhone(Phone *);

7

8 int main(void)

9 {

10 Phone phone;

11 FILE* fp;

12

13 if ((fp = fopen(FILENAME, "wb")) == NULL)

14 {

15 printf("\"%s\" cannot be opened\n", FILENAME);

16 exit(1);

17 }

18

19 while (readPhone(&phone))

20 fwrite(&phone, sizeof(Phone), 1, fp);

21

22 fclose(fp);

23 return 0;

24 }

25

26 int readPhone(Phone *pa)

27 {

28 printf("Enter name (<enter> to stop): ");

29 gets(pa->name);

30

31 if (pa->name[0] == '\0')

32 return 0;

33

34 printf("Enter phone number : ");

35 gets(pa->phoneNr);

36 return 1;

37 }

With phone.h containing:

1 #ifndef _PHONE_H

2 #define _PHONE_H

3

4 #define FILENAME "phone.dat"

5

6 typedef struct {

7 char name[20];

8 char phoneNr[12];

9 } Phone;

10 #endif

Code 77: writing structures to files

The next example shows how to read the phone numbers back from the file

and print them to the screen.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include "phone.h"

5

6 void printPhone(Phone *);

7

 211

8 int main(void)

9 {

10 Phone phone;

11 FILE* fp;

12 if ((fp = fopen(FILENAME, "rb")) == NULL)

13 {

14 printf("\"%s\" cannot be opened\n", FILENAME);

15 exit(1);

16 }

17

18 while (fread(&phone, sizeof(Phone), 1, fp) >0)

19 printPhone(&phone);

20

21 fclose(fp);

22 return 0;

23 }

24

25 void printPhone(Phone *pa)

26 {

27 printf(" %-20s %-12s\n", pa->name, pa->phoneNr);

28 }

Code 78: reading structures from files

Finally, we can combine the write and read operation into 1 program and

add a menu to offer the user the possibility to choose what to do next:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include "phone.h"

5

6 char menu(void);

7 void add(FILE *);

8 void list(FILE *);

9 void search(FILE *);

10 void takeOut(FILE *);

11 void printPhone(Phone *, int);

12 void line(void);

13

14 int main(void)

15 {

16 FILE* fp;

17 int stop;

18

19 if ((fp = fopen(FILENAME, "r+b")) == NULL)

20 {

21 if ((fp = fopen(FILENAME, "w+b")) == NULL)

22 {

23 printf("\"%s\" cannot be opened\n", FILENAME);

24 exit(1);

25 }

26 }

27

28 stop = 0;

29

30 while (!stop)

31 {

32 switch (menu())

33 {

34 case 'e': stop = 1; break;

35 case 'a': add(fp); break;

36 case 'l': list(fp); break;

37 case 's': search(fp); break;

38 case 'r': takeOut(fp); break;

39 }

40 }

41 fclose(fp);

42 return 0;

43 }

44

45 char menu(void)

46 {

47 char s[16]; int i;

48 for (i = 0; i < MENU_SIZE; i++)

49 {

50 printf(" %s : %s\n", menutext[i][0], menutext[i][1]);

51 }

52 printf("Your choice: ");

53 gets(s);

54 return s[0];

55 }

56

57 void add(FILE *fp)

58 {

59 Phone a;

60 Phone *pa;

61 pa = &a;

62 memset(pa, '\0', sizeof(Phone)); // set all bytes in Phone to \0

63 printf("Name: ");

64 gets(pa->name);

65 printf("Phone Number: ");

66 gets(pa->phoneNr);

67 fseek(fp, 0, SEEK_END);

68 fwrite(pa, sizeof(Phone), 1, fp);

69 }

70

71 void list(FILE *fp)

72 {

73 Phone a;

74 Phone *pa;

75 int recnr = 0;

76 pa = &a;

77 line();

78 fseek(fp, 0, SEEK_SET);

79 while (fread(pa, sizeof(Phone), 1, fp) > 0)

80 {

81 // removed records with name[0]=='\0' cannot be printed

82 if (pa->name[0] != '\0')

83 printPhone(pa, recnr);

84 recnr++;

85 }

86 line();

87 }

88

89 void search(FILE *fp)

90 {

91 …

92 }

93

94 void takeOut(FILE *fp)

95 {

96 // put all bytes to '\0' in the record you want to remove

97 }

 213

98 void printPhone(Phone *pa, int recnr)

99 {

100 printf("%3d : %20s %12s\n", recnr, pa->name, pa->phoneNr);

101 }
102
103 void line(void)
104 {
105 int i;

106 for (i = 0; i<50; i++)

107 printf("-");

108 printf("\n");

109 }

With phone.h containing:

1 #ifndef _PHONE_H

2 #define _PHONE_H

3

4 #define FILENAME "phone.dat"

5 #define NLEN 25

6 #define PLEN 20

7 #define MENU_SIZE 5

8

9 typedef struct

10 {

11 char name[NLEN];

12 char phoneNr[PLEN];

13 } Phone;

14 char* menutext[][2] = {{"a","add"},{"l","list"},{"s","search"},

 {"r","remove"},{"e","end"}};

15 #endif

Code 79: phone numbers program with menu

15.9 Exercises

15.1. Write a program with functions:

- define a structure “Person” with 2 members: name and firstname

- declare an array of N persons (take N = 5 for instance)

- read the data of N persons

- print that data

write at least following functions:

- a function to read the data of 1 Person

- a function to print the data of 1 Person

The main program looks like:

#include <stdio.h>

#define N 5

typedef struct {

…

}Person;

void readPerson(…);

void printPerson(…);

int main(void)

{

 Person p[N];

 int i;

 printf(“Enter %d names (first name and surname)\n, N);

 for(i=0; i < N; i++) readPerson(&p[i]);

 printf(“The %d entered names are\n, N);

 for(i=0; i < N; i++) printPerson(p[i]);

 return 0;

}

15.2. Repeat exercise 15.1 with following additions:

- a structure Date with a day(int), a month(string) and a year(int)

- a function that reads a Date

- a function that prints a Date

- add a dateOfBirth to the structure Person. dateOfBirth must be

 of the type Date.

- the function to read a Date must be called in the function

 readPerson

- the function to print a Date must be called in the function

 printPerson

15.3. Repeat exercise 15.2 with addition of an enrollmentDate added to

the structure Person. Change only the structure Person and use the

existing functions to read and write a Date at the right place.

15.4. Define a structure Address with streetAndNr, postalCode, town

and phoneNr. Define a structure Student with a name, homeAddress and

schoolAddress. Write a program to test the structures defined.

Write a function that reads an Address:

 readAddress(Address *p)

Both addresses are read with this function. Change the parameters

passed on to the function to read in the correct type of address.

Ditto to print an Address:

 printAddress(Address p)

 215

15.5. Write a program that asks the user to enter the name and the home

town of 3 persons. Name and home town are stored in a structure

Person. The 3 persons are stored in an array. Afterwards, the program

asks the user to enter a name and searches the town that person lives

in.

Use the functions readPerson and searchTown

The function searchTown has 2 arguments:

- the array that needs to be searched

- a variable of the type Person that contains the name that needs to

 be searched. The town member of that variable needs to be filled

 with the town found by the function searchTown.

Reading the name of the person you want to search for is done in the

main function. Printing the resulting town can also be done in the main

function. If the name entered is not present in the array, an appropriate

message needs to be printed.

 Enter name: Smith

 Enter town or city: Berkeley

 Enter name: Minogue

 Enter town or city: London

 Enter name: O’Neil

 Enter town or city: Dover

 ==

 Enter the name of the person you want to search for: Smith

 This person lives in Berkeley

15.6. Write a program that reads name, age and salary of a chosen

number of people and stores that information into a file. All data of 1

person is stored in a structure. Once the data of 1 person is read, the

structure containing that data is written to a file at once. Afterwards,

the data of the next person is read, … Make sure the names can contain

spaces!

 How many people do you want to enter? 3

 Enter name: Smith

 Enter age: 25

 Enter salary: 1950

 Enter name: Minogue

 Enter age: 47

 Enter salary: 6500

 Enter name: O Neil

 Enter age: 66

 Enter salary: 2200

15.7. Write a program that reads the data from the file written in the

previous exercise. Print the data to the screen as follows:

 Name: Smith

 Age: 25

 Salary: 1950

 Name: Minogue

 Age: 47

 Salary: 6500

 Name: O Neil

 Age: 66

 Salary: 2200

15.8. Write a program that searches the age and wages of a person based

upon a name entered by the user:

 What’s the name of the person you want to search for? Smith

 Name: Smith

 Age: 25

 Salary: 1950

15.9. Now, we want to add the first name of all people in the file. Ask the

first names and save them together with the already existing data in a

new file. Print the list of data:

 Enter the first name of Smith: Will

 Enter the first name of Minogue: Kylie

 Enter the first name of O Neil: Kate

 following data was entered:

 Name: Smith

 First name: Will

 Age: 25

 Salary: 1950

 Name: Minogue

 First name: Kylie

 Age: 47

 Salary: 6500

 Name: O Neil

 First name: Kate

 Age: 66

 Salary: 2200

15.10. Complete the example of Code 79 in section 15.8 by writing

the missing functions.

 217

15.11. Repeat exercises 15.10 and add for each Person also street,

number, postal code and town information.

15.12. Make a text file that contains:

 Will Smith; 132 King Street; 2000; Berkeley

 Kylie Minogue; 47 Jason Street; 2850; London

 Kate O Neil; 65 York Street; 6547; Dover

or

 Will Smith 132 King Street 2000 Berkeley

 Kylie Minogue 47 Jason Street 2850 London

 Kate O Neil 65 York Street 6547 Dover

write a program that reads 1 of these text files line by line and adds the

data into the file of the previous exercise.

15.13. Repeat exercise 15.7 and add a function that prints the

addresses ordered alphabetically.

Hint: define a two dimensional array with a record number for every

person in the file:

Now order this matrix:

Read the records from the file in the order specified by the matrix: first

record number 4, then record number 5, …

Smith 1

Minogue 2

O Neil 3

Allen 4

Donovan 5

Allen 4

Donovan 5

Minogue 2

O Neil 3

Smith 1

16 Command line arguments

Objectives

In this chapter you will learn how to pass arguments to your programs from

the command line.

16.1 argc, argv[]

In C, it is possible to pass arguments to your program from the command

line. These arguments are handled by including the parameters int argc

and char * argv[] into the parameter list of the main function:

int main(int argc, char * argv[])

The parameter argc, short for argument counter, contains the number of

arguments passed from the command line including the program name. The

argument vector, argv[], contains an array of char pointers, pointing to the

first, second, … argument respectively.

Code 80 demonstrates the usage of the command line arguments.

1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 int i;

6 printf("argc = %d\n", argc);

7

8 for (i = 0; i < argc; i++)

9 {

10 printf("argv[%d] = %s\n", i, argv[i]);

11 }

12 return 0;

13 }

Code 80: command line arguments

Assuming that after compilation, the executable file for above program is

called myprogram, it produces following result:

Figure 51: command line arguments

 219

Note that the content of argv[] is depending on the arguments entered by

the user. If, for instance, the user enters too little arguments, a run time

error might occur. This can be avoided by verifying the number of

arguments entered before any further manipulations of the command line

arguments:

if (argc<3)

{

 printf(“too little arguments”);

 exit(1);

}

 Common mistake

Since argv[] is an array of char pointers, the different array elements are

pointers to strings! Saving a string into a variable must be done using the

function strcpy! Using a simple assignment operator is a commonly made

mistake.

Common mistake

If a number is to be passed to the program from the command line, the

corresponding string argv[i] must be converted into a number before

using it! Omitting the string to integer conversion is a commonly made

mistake. The conversion can be carried out with the function atoi().

16.2 Exercises

16.1. Write a program with name mycopy.exe that expects 2 command

line arguments and that copies one file to another.

Example:

mycopy text.txt copy.txt

copies the content of text.txt into the file copy.txt.

16.2. Write a program with command line arguments that compares two

text files. If the files are identical, the program will print an appropriate

message. If not, all lines containing differences must be printed to the

screen with their line numbers. If the files differ in more than 10 lines,

the program can stop printing after the 10th line.

extra: try to redirect the screen output to a text file without changing

the source code.

16.3. Write a program with command line arguments that calculates the

age (in number of years) of a number of people based upon their date

of birth and the current date.

- make a text file containing a number of names with their

 corresponding dates of birth. Make sure names and dates of birth

 are always written in the same way in the text file.

- write a function “read_person” to read the data of 1 person from the

 file and save that data into a struct of the type “Person”. This

 struct contains a name field and a field to save the date of birth,

 which is a struct of the type “Date”.

- call the program from the command line with the current date and

 the text file as arguments

- write a function “calculate” that calculates the age of a person in

 years, months and days. This function also determines which person

 is the oldest and which person has the longest name.

- printing the ages is done in the main function. Print also the names

 of the oldest person and of the person with the longest name.

 age_calc ages.txt 01 12 2014

 the ages are:

 Wilbur is 18 years old

 Tom is 18 years old

 Sarah is 15 years old

 Tom is the oldest of the 3 persons in the file.

 The person with the longest name is: Wilbur

 The text file ages.txt contains:

 Wilbur

 01 03 1996

 Tom

 25 12 1995

 Sarah

 06 06 1999

 221

17 Dynamic memory allocation

Objectives

In this chapter, the concept of allocating and freeing memory at run time is

explained.

Following functions will be handled:

- malloc

- free

- calloc

- realloc

17.1 Introduction

So far, memory allocations were done explicitly in the source code by

indicating the variable type and, for arrays and structures, also the variable

length. As a result, the programmer needs to know in advance how much

memory will be needed. If, for instance, there is some uncertainty on the

maximal number of array elements needed for program execution, the

programmer would be forced to choose a large enough number even if for

90% of the time the array will contain only 2 valid elements.

Therefore, dynamic memory allocation is used. It allows to allocate extra

memory while the program is running and to free that memory as soon as

possible.

The functions used to accomplish this are all defined in “stdlib.h” and will

be treated in the following sections.

17.2 The function malloc

The function malloc, with function declaration:

void * malloc(size_t size);

allocates size bytes in memory at runtime. If the memory allocation went

well, a pointer to the newly allocated memory is returned. Since malloc can

be used to allocate memory for all types of data, the returned pointer is of

the type void *. Hence, type casting to the wanted data type will be

needed. In case of an error during the memory allocation, NULL is returned

instead.

To determine the number of bytes needed, the function sizeof can be

used:

int *p;

p = (int *) malloc(sizeof(int));

Common mistake

The only reference to the dynamically created memory block is the pointer

returned by the malloc function. Reusing that pointer for other purposes

without freeing the memory first is a common mistake that leads to lost

objects like in the code below:

 char * p;

 p = (char *) malloc(32);

 strcpy(p, “lost”);

 p = (char *) malloc(32);

After copying the string “lost” into the first block of memory, the pointer p

is altered to point to yet another newly created memory block. Since the

memory containing the string “lost” has no name associated with it, it is

now no longer possible to retrieve it!

17.3 The function free

Once the dynamically allocated memory is no longer needed, it can be freed

using the function free as follows:

void free(void * ptr);

where ptr points to the memory block that needs to be released. If ptr is a

NULL pointer, nothing will happen.

The usage of the functions malloc and free is demonstrated in Code 81:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void)

5 {

6 int* p;

7 double* q;

8 int i, n;

9 char * buffer;

10

11 p = (int*)malloc(sizeof(int));

12 *p = 5;

13 printf("The value is %d\n", *p);

14 free(p);

15

16 q = (double*)malloc(sizeof(double));

17 *q = 5.25;

18 printf("The value is %lf\n", *q);

19 free(q);

20

21 printf("How long do you want the string? ");

22 scanf("%d%*c", &i);

23 buffer = (char*)malloc(i + 1); //+1 for the null byte at the end

24

25 if (buffer == NULL)

26 exit(1);

 223

27 for (n = 0; n<i; n++)

28 buffer[n] = rand() % 26 + 'a';

29

30 buffer[i] = '\0';

31 printf("Random string: %s\n", buffer);

32 free(buffer);

33

34 return 0;

35 }

Code 81: malloc and free example

17.4 The function realloc

If the size of a previously dynamically allocated memory block needs to be

changed, the function realloc can be used:

void * realloc(void *ptr, size_t size);

The pointer ptr points to the original memory block. If this pointer is NULL,

the function realloc acts like the function malloc. The new size, in bytes,

can be specified with the size argument. If size equals zero, the memory

ptr points to, is freed and the function returns NULL.

If sufficient space is available to expand the original memory block to the

newly wanted size, the additional memory is allocated and the function

returns the same pointer ptr. If not, a new block of size bytes is allocated,

the content of the original memory block is copied into the new block and

the original memory block is freed. The function now returns a pointer to

the newly created block. In case the reallocation failed, the value NULL is

returned.

Code 82 shows an example where the function realloc is used:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void)

5 {

6 int input, n;

7 int count = 0;

8 int *numbers = NULL;

9 int *more_numbers;

10

11 do

12 {

13 printf("Enter an integer value (0 to end): ");

14 scanf("%d%*c", &input);

15 count++;

16

17 more_numbers = (int*)realloc(numbers, count * sizeof(int));

18

19 if (more_numbers != NULL)

20 {

21 numbers = more_numbers;

22 numbers[count - 1] = input;

23 }

24 else

25 {

26 free(numbers);

27 puts("Error (re)allocating memory");

28 exit(1);

29 }

30 } while (input != 0);

31

32 printf("Numbers entered: ");

33 for (n = 0; n<count; n++)

34 printf("%d ", numbers[n]);

35

36 printf("\n");

37 free(numbers);

38 return 0;

39 }

Code 82: usage of realloc

17.5 The function calloc

The function calloc, with function declaration:

void * calloc(size_t num, size_t size);

allocates memory for an array of num elements of size bytes each and

initializes all elements to 0. The return value is again a pointer to the

allocated memory block or NULL if the memory allocation failed.

In the example below, the function calloc is used to read and print an

array of integers:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void)

5 {

6 int i, n;

7 int* pData;

8 printf("Amount of numbers to be entered: ");

9 scanf("%d%*c", &i);

10 pData = (int*)calloc(i, sizeof(int));

 225

11

12 if (pData == NULL)

13 exit(1);

14

15 for (n = 0; n<i; n++)

16 {

17 printf("Enter number %d: ", n);

18 scanf("%d%*c", pData+n);

19 }

20

21 printf("You have entered: ");

22 for (n = 0; n<i; n++)

23 printf("%d ", pData[n]);

24

25 printf("\n");

26 free(pData);

27 return 0;

28 }

Code 83: usage of calloc

17.6 Dynamic arrays

As explained in chapter 7, arrays are stored in contiguous memory

locations. Therefore, an array of num elements of size bytes each will

occupy a memory block of num*size bytes. As a result, allocating memory

for such an array at runtime can be done using the function malloc as

illustrated in the next example:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(void)

5 {

6 double* p;

7 int i;

8 p = (double*)malloc(5 * sizeof(double)); // allocate memory for

9 an array of 5 doubles

10 *p = 1.11;

11 *(p + 1) = 2.22;

12 *(p + 2) = 3.33;

13 *(p + 3) = 4.44;

14 *(p + 4) = 5.55;

15

16 printf("The values in the array are: ");

17 for (i = 0; i<5; i++)

18 printf("%5.2f ", p[i]);

19

20 printf("\n");

21 free(p);

22 return 0;

23 }

Code 84: dynamic arrays

Also multidimensional arrays can be dynamically allocated using malloc.

Remember that an array of r rows and k columns, is stored in memory in

r*k contiguous memory locations.

Example:

Write a program that asks the user to enter the number of rows and

columns needed, that dynamically creates the requested array, fills it with

data and prints that data.

1 #include <stdio.h>

2 #include <stdlib.h>

3 void fillMatrix(int *, int, int);

4 void printMatrix(int *, int, int);

5

6 int main(void)

7 {

8 int rows, columns;

9 int *p;

10 printf("Enter the number of rows and columns for the matrix: ");

11 scanf("%d%d%*c", &rows, &columns);

12

13 p = (int *)malloc(rows*columns*sizeof(int));

14 fillMatrix(p, rows, columns);

15 printMatrix(p, rows, columns);

16 return 0;

17 }

18

19 void printMatrix(int *m, int r, int k)

20 {

21 int i;

22 for (i = 0; i < (r*k); i++)

23 {

24 printf("%4d\t", *(m + i));

25 if ((i + 1) % k == 0) //print only k elements per line

26 printf("\n");

27 }

28 }

29

30 void fillMatrix(int *m, int r, int k)

31 {

32 int i;

33 for (i = 0; i < (r*k); i++)

34 {

35 *(m + i) = i;

36 }

37 }

Code 85: dynamic multidimensional array

 227

17.7 Exercises

17.1. Write a program that sums all elements of the matrix diagonals and

prints the maximal array element. The matrix dimensions are chosen by

the user.

 What is the matrix dimension? 3

 Enter the matrix

 1 4 2

 2 5 1

 2 4 8

 The diagonal top left to bottom right sums up to 14

 The diagonal bottom left to top right sums up to 9

 The maximum number in the matrix is 8

Use a function readArray to read the content of the matrix and a

function calculate to calculate the diagonals and the maximum

number. Printing can be done in the main function.

17.2. Write a program that asks the user to enter the wanted number of

rows and columns, creates the matrix dynamically, fills it and prints the

content. Use a separate function to fill the matrix and one to print the

matrix. Fill every matrix element with (row+1)*(column + 1)

 Enter the number of rows and columns for the matrix: 2 4

 The matrix contains following elements:

 1 2 3 4

 2 4 6 8

17.3. Write a program with name “clients” that:

- reads customer numbers and corresponding customer names and

 stores them in an array of structs.

- reads customer numbers and corresponding customer addresses

 and stores them in a second array of structs. Use a different

 struct.

- can be called from the command line with the size of the arrays as

 argument (ex: clients 3)

- uses arrays of the correct size (use malloc)

- prints the customer data

use a separate function to read the data and one to print the data.

 clients 3

 Enter a list of 3 customer numbers and corresponding names:

 AB

 John Smith

 AC

 Tom Black

 AD

 Sarah White

 Enter a list of 3 customer numbers and corresponding

 addresses (the customer numbers must be identical to

 the ones above but can be entered in an arbitrary order.)

 AD

 London

 AB

 Paris

 AC

 Brussels

 All customer data:

 AB John Smith Paris

 AC Tom Black Brussels

 AD Sarah White London

 229

18 Dynamic data structures

Objectives

In this chapter, you will learn more about linked data structures. You will

learn how to create and manipulate linked lists, stacks and queues.

18.1 Introduction

In chapter 15, we introduced structures to group variables of different types

together to emphasis the cohesion between them. In this chapter, we will

use structures to create a special kind of data. To do so, we first need to

define a self-referential element. This is a structure that has a pointer to a

structure of the same type as one of its members as illustrated in the

example below:

typedef struct node

{

 char name[64];

 struct node *next;

} Node;

Code 86: self-referential structure

Combining these self-referential structures with dynamic memory

allocations allows to create a data structure that can grow and shrink at

execution time. Such data structures are called dynamic data structures.

Different types of dynamic data structures exist in C. In the next chapters

(single-)linked lists, queues and stacks will be treated. Next to linear data

structures, also binary trees are a commonly used examples of dynamic

data structures. Unfortunately, binary trees fall beyond the scope of this

course.

18.2 Linked lists

18.2.1 Definition

A linked list is a dynamic data structure that consist of a number of nodes.

Each node is a self-referential structure that contains one or more data

fields and one pointer member that is used to point to the next node. As a

result a chain of nodes is built. The first node of the list is accessed via a

head pointer. The last node of the list does not need to point to anything,

therefore, the link pointer of this node is set to NULL. Figure 52 shows an

example of a linked list with one data field per node.

Sarah Tom NULL John …

head

pointer

Figure 52: linked list

18.2.2 Creating a single-linked list

As node element, we will use the self-referential structure of Code 86. First

we start by creating a head pointer. This is a pointer that will point to a

node of the list hence it needs to be of the type Node *:

Node * head = NULL;

To create a first node in the list, memory needs to be allocated using

malloc with head pointing to the newly allocated memory block:

head = (Node*)malloc(sizeof(Node));

The only thing left to do now is assigning data to that first node:

printf(“Enter a name: ”); gets(s);

strcpy(head->name, s);

head->next = NULL;

resulting in:

The second node of the list is created using the same steps. This time the

newly allocated memory needs to be accessible from the next field of the

first node resulting in:

head->next = (Node*)malloc(sizeof(Node));

printf(“Enter a name: ”); gets(s);

strcpy(head->next->name, s);

head->next->next = NULL;

Combining all pieces of code shown above and adding the creation of a third

node in the list results in the C code of Code 87:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

head

head

head

S1

head

S1 S2

 231

5 typedef struct node

6 {

7 char name[64];

8 struct node *next;

9 } Node;

10

11 void printList(Node *ptr);

12

13 int main(void)

14 {

15 Node *head;

16 char s[64];

17 // create first node

18 head = (Node*)malloc(sizeof(Node));

19 head->next = NULL;

20

21 // read a name

22 printf("Enter a name: ");

23 gets(s);

24

25 // copy name to first node

26 strcpy(head->name, s);

27

28 // print current list

29 printList(head);

30

31 // create second node

32 head->next = (Node*)malloc(sizeof(Node));

33 head->next->next = NULL;

34

35 // read a name

36 printf("Enter a name: ");

37 gets(s);

38

39 // copy name to second node

40 strcpy(head->next->name, s);

41

42 // print current list

43 printList(head);

44

45 // create third node

46 head->next->next = (Node*)malloc(sizeof(Node));

47 head->next->next->next = NULL;

48

49 // read a name

50 printf("Enter a name: ");

51 gets(s);

52

53 // copy name to third node

54 strcpy(head->next->next->name, s);

55

56 // print current list

57 printList(head);

58 return 0;

59 }

60

61 void printList(Node *h)

62 {

63 printf("The list contains:");

64 while (h != NULL) //if h==NULL the list is finished

65 {

66 printf("%s ", h->name);

67 h = h->next; //move pointer h one node further

68 }

69 printf("\n");

70 }

Code 87: creation of a single-linked list

In the above example, addition of a new element requires running through

the full list. This is very unpractical. Therefore, we will rewrite the previous

example using a pointer that always points to the last element of the list:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 typedef struct node

6 {

7 char name[64];

8 struct node *next;

9 } Node;

10

11 void printList(Node *ptr);

12

13 int main(void)

14 {

15 Node *head;

16 Node *last;

17 char s[64];

18

19 // create first node

20 head = (Node*)malloc(sizeof(Node));

21 last = head;

22 last->next = NULL;

23 printf("Enter a name: ");

24 gets(s);

25 strcpy(last->name, s);

26

27 // print current list

28 printList(head);

29

30 // create second node

31 last->next = (Node*)malloc(sizeof(Node));

32 last = last->next;

33 last->next = NULL;

34 printf("Enter a name: ");

35 gets(s);

36 strcpy(last->name, s);

37 printList(head);

38

39 // create third node

40 last->next = (Node*)malloc(sizeof(Node));

41 last = last->next;

42 last->next = NULL;

43 printf("Enter a name: ");

44 gets(s);

45 strcpy(last->name, s);

46 printList(head);

47 return 0;

48 }

49

50 void printList(Node *h)

51 {

52 printf("The list contains:");

53 while (h != NULL)

54 {

55 printf("%s ", h->name);

56 h = h->next;

57 }

58 printf("\n");

59 }

Code 88: creation of a single-linked list (improved code)

head

S1

last

 233

Finally, we can introduce loops containing the instructions that are repeated

for every extra node creation:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 typedef struct node

6 {

7 char name[64];

8 struct node *next;

9 } Node;

10

11 void addNode(char *, Node **);

12 void printList(Node *ptr);

13

14 int main(void)

15 {

16 Node *head = NULL;

17 char s[64];

18

19 // read a name

20 printf("Enter a name (end with <Enter>): ");

21 gets(s);

22

23 // while there is input...

24 while (s[0])

25 {

26 // create a new node and insert into the list

27 addNode(s, &head);

28

29 // read next name

30 printf("Enter a name: ");

31 gets(s);

32 }

33 printList(head);

34 return 0;

35 }

36

37 void addNode(char *s, Node **h)

38 {

39 Node *new;

40 Node *temp;

41

42 // create a new node

43 new = (Node*)malloc(sizeof(Node));

44 new->next = NULL;

45

46 // copy s to the new node

47 strcpy(new->name, s);

48

49 // if there is no starting node yet, create one

50 if (*h == NULL)

51 {

52 *h = new;

53 }

54 // if there is a starting node, insert new node at end of list

55 else

56 {

57 temp = *h;

58

59 while (temp->next != NULL) // go to end of list

60 temp = temp->next;

61

62 temp->next = new; // insert the new node

63 }

64 }

65 void printList(Node *h)

66 {

67 printf("The list contains:");

68 while (h != NULL)

69 {

70 printf("%s ", h->name);

71 h = h->next;

72 }

73 printf("\n");

74 }

Code 89: creation of a single-linked list using loops

18.2.3 Insertion of a new node in a single-linked list

Suppose we build a list where all elements are ordered alphabetically.

Insertion of a new element needs to be done in the correct place respecting

the alphabetic ordering of the list. To this end, following steps are carried

out:

1. Creation of a new node:

2. Initialization of the pointers “prev” and “next”:

3. Positioning the pointers “prev” and “next” to the correct list

elements

new

B

head

A C

prev

next

head

A C

prev next

new

B

 235

4. Insertion of the new element in between the elements pointed to by

“prev” and “next”

Following code shows how a list can be used to alphabetize:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 typedef struct node

6 {

7 char name[64];

8 struct node *next;

9 } Node;

10

11 void insertNode(char s[], Node **ptr);

12 void printList(Node *ptr);

13

14 int main(void)

15 {

16 Node* head = NULL;

17 char s[64];

18

19 // read a name

20 printf("Enter a name: ");

21 gets(s);

22

23 // while still input...

24 while (s[0])

25 {

26 // create new node and insert in list (alphabetically)

27 insertNode(s, &head);

28 printf("Enter a name: ");

29 gets(s);

30 }

31 // print list

32 printList(head);

33 return 0;

34 }

35

36 void insertNode(char s[], Node **h)

37 {

38 Node *temp;

39 Node *prev;

40 Node *new;

41

42 // create new node

43 new = (Node*)malloc(sizeof(Node));

44 new->next = NULL;

45 strcpy(new->name, s);

head

A C

prev next

new

B

46 // if list is empty, first node = new node

47 if (*h == NULL)

48 {

49 *h = new;

50 }

51 else // if list is not empty, insert node in correct place

52 {

53 // if name new node<name first node, first node=new node

54 if (strcmp(s, (*h)->name) < 0)

55 {

56 new->next = *h;

57 *h = new;

58 }

59 else

60 {

61 // initialize pointers prev and temp

62 prev = *h;

63 temp = prev;

64

65 // while name new node > name current node and

 list not empty, go to next node

66 while (temp != NULL && strcmp(s, temp->name) >= 0)

67 {

68 prev = temp;

69 temp = temp->next;

70 }

71 // adjust pointers to insert node

72 new->next = temp;

73 prev->next = new;

74 }

75 }

76 }

77

78 void printList(Node *h)

79 {

80 printf("\n Ordered alphabetically:\n");

81 while (h != NULL)

82 {

83 printf("%s ", h->name);

84 h = h->next;

85 }

86 printf("\n");

87 }

Code 90: using a linked list to order alphabetically

 237

18.2.4 Removal of a node in a single-linked list

Removal of a specific node of a linked list can be done using following

steps:

1. find the node to be removed and the node preceding that one:

2. change the next pointer of the preceding node:

3. remove the node (free(remove)):

prev remove

head

A B C

prev remove

head

A B C

prev remove

head

A C

18.2.5 Double-linked list

Traversal of a single-linked list can only be done in one way. As a result, a

pointer to the previous node is needed for simple operations like insertion

and deletion of a node. To overcome this problem, we could add a link to

the previous element in each node resulting in following node structure:

typedef struct node

{

 char name[64];

 struct node *next;

struct node *prev;

} Node;

Linking different elements of above node type together results in a double-

linked list as illustrated in Figure 53.

18.2.6 Circular linked list

A circular linked list is a linked list in which the next pointer of the last node

points to the first node. Circular linked lists can be both single-linked and

double-linked. Figure 54 shows an example of a circular single-linked list.

18.2.7 Stack

A stack is a linear list that can only be accessed from its top. Adding and

removing nodes can be done only at one side of the list resulting in a Last

In First Out or LIFO behavior. The top element in the stack is referenced via

a stack pointer (stackPtr) as illustrated in Figure 55:

S1 S2 S3

Figure 53: double-linked list

Sarah Tom John …

head

pointer

Figure 54: circular single-linked list

Sarah Tom NULL John …

stackPtr first element last element

Figure 55: Stack

 239

18.2.8 Queue

A queue is another type of linear list. Nodes can only be added at the tail of

the queue and removed from the head of the queue, resulting in a FIFO or

First In First Out behavior. In this case a head pointer and a tail pointer will

be needed to refer to the 2 access points of the queue as can be seen in

Figure 56:

18.3 Exercises

18.1. Write a program that allows to build and adapt an alphabetically

ordered single-linked list with a command interpreter. Part of the code is

written below. Only the missing functions need to be programmed.

#include <stdio.h>

#include <string.h> // needed for strcpy() and strcmp()

#include <stdlib.h> // needed for malloc(), free()

#define STRLEN 64

typedef struct node

{

 char name[STRLEN];

 struct node *next;

} Node;

void showHelp(void);

void add(char *, Node **);

void removeElement(char *, Node **);

int isItem(char *, Node *);

int countItems(Node *);

void removeList(Node **);

void showList(Node *);

char * trim(char *);

int main(void)

{

 char instruction[STRLEN];

 Node *head = NULL;

 char *pi; // pi = pointer to the instruction

 printf("Test program for a single-linked list.\n");

 printf("\nEnter an instruction (h = help)\n");

 printf("\n> ");

Sarah Tom NULL John …

headPtr tailPtr

Figure 56: queue

 memset(instruction, '\0', STRLEN);

 gets(instruction);

 pi = trim(instruction);

 while (*pi != 'q')

 {

 switch (*pi)

 {

 case 'i': add(trim(pi + 1), &head);

 break;

 case 'd': removeElement(trim(pi + 1), &head);

 break;

 case 'f': if (isItem(trim(pi + 1), head))

 printf("\"%s\" is in the list.\n",

 trim(pi+1));

 else

 printf("\"%s\" is NOT in the list.\n",

 trim(pi+1));

 break;

 case 'l': showList(head);

 break;

 case 'n': printf(" Number of list items: %d\n",

 countItems(head));

 break;

 case 'r': removeList(&head);

 break;

 case 'h': showHelp();

 case 'q': break;

 default: printf(" Unknown instruction (h = help)\n");

 }

 printf("\n> ");

 memset(instruction, '\0', STRLEN);

 gets(instruction);

 pi = trim(instruction);

 }

 removeList(&head);

 return 0;

 }

void showHelp(void)

{

 printf("i <string> : inserts the element in <string>

 alphabetically into the list\n");

 printf("d <string> : removes the element in <string> from the

 list\n");

 printf("f <string> : searches the list and returns if the string

 is in the list or not.\n");

 printf("l : shows the full list\n");

 printf("n : returns the number of items in the list\n");

 printf("r : removes the full list\n");

 printf("h : shows the help menu (this list).\n");

 printf("q : end of the program (first remove the list)\n");

}

void add(char *s, Node **b)

{

 printf("This function inserts \"%s\" (alphabetically) into the

 list\n", s);

}

 241

void removeElement(char *s, Node **b)

{

 printf("This function removes \"%s\" from the list\n", s);

}

int isItem(char *s, Node *b)

{

 printf("This function searches \"%s\" in the list\n", s);

 return …;

}

int countItems(Node *b)

{

 printf("This function returns the number of items in the

 list\n”);

 return …;

}

void removeList(Node **b)

{

 Node * p = *b;

 while (p != NULL)

 {

 *b = p->next;

 free(p);

 p = *b;

 }

}

void showList(Node *b)

{

 if (b == NULL)

 {

 printf("The list is EMPTY\n");

 }

 else

 {

 printf("The list:\n");

 while (b != NULL)

 {

 printf("%s ", b->name);

 b = b->next;

 }

 }

 printf("\n\n");

}

char * trim(char *s)

{

 while (*s == ' ') s++;

 return s;

}

Remark: the function trim is not absolutely needed for this exercise. It

removes extra spaces at the beginning of an instruction or string.

18.2. Modify exercise 18.1 by using a double-linked list. The Node

structure is defined as follows:

typedef struct node

{

 char name[64];

 struct node * previous;

 struct node *next;

} Node;

Use a head pointer and an end pointer that points to the last element of

the list. Add also a function that prints the list in reverse order.

18.3. Write a program with a command interpreter that builds and

manipulates a stack.

The commands you need to support are:

p <string>: add a string to the stack (push)

d: remove an element from the stack and print it (pop)

l: show the full stack

q: end of the program. (remove the stack first)

Hint: declare a pointer to the last element of the stack (stackpointer)

18.4. Write a program with a command interpreter that builds and

manipulates a queue.

The commands you need to support are:

a <string>: add a string to the queue

d: remove an element from the queue and print it

l: show the full queue

q: end of the program. (remove the queue first)

Hint: declare a pointer to the first element of the queue (at this side

elements can be removed) and a pointer to the last element of the

queue (at this side elements can be added).

18.5. Modify exercise 18.1 using a single-linked circular list.

18.6. Modify exercise 18.2 using a double-linked circular list.

18.7. Add following commands to exercise 18.1 or 18.2.

s <filename> : saves the names in the list to a file

o <filename> : reads names from a file and inserts them into a list

 243

18.8. The problem of Josephus.

Suppose N people decide to commit suicide together. To do so, they

stand in a circle and every M people, 1 person is eliminated. What is the

order of elimination?

 Enter the number of people in the circle: 7

 Enter the number M: 4

 The order of elimination is: 4 1 6 5 7 3 2

Hint: use a circular list and count each time 4 items.

Literature

 Teach yourself programming in 21 days; Peter Aitken, Bradley L. Jones; Sams

Publishing; ISBN 0-672-30736-7

 C How to Program seventh edition, international edition; Harvey Deitel, Paul Deitel;

Pearson Education; ISBN 0-273-77684-3

 De programmeertaal C (4de vernieuwde editie); Al Kelley, Ira Pohl; Pearson

Education; ISBN 978-90-430-1669-8

 245

Attachments

1. Visual Studio Express 2013 for Desktop

In this course, we will use Visual Studio Express 2013 for Desktop as

development environment.

Visual Studio works with solutions and

projects.

One solution can contain one or more

projects and every project can contain one

or more source files, header files, text

files, …

 In figure 7, you see an example of a

solution called “structures” that includes

6 projects. The project

“DoubleLinkedList” contains a header file

“Header.h” and a source file

“DoubleLinkedList.c”

1.1 Creation of a new project

To create a new project, click “File -> New Project”. As a result, the “New

Project” wizard opens. Now, select “Templates -> Visual C++ -> Win32”

and make sure “Win32 Console Application” is highlighted in the right side

of the window (see Figure 58).

Enter a name for the new project and the new solution and make sure the

location for the new project directory is set correctly. Now press “OK” to

continue.

Figure 57: solution with 6 projects.

Figure 58: New Project window

A new window called “Win32 Application Wizard” opens. Click “next” to

open the “application settings” window. Make sure to unselect “Precompiled

header” and “Security Development Lifecycle (SDL) checks” and select

“Empty project” (see Figure 59). Now click “Finish” to start the creation of

the new project.

1.2 Creation of a new source file

To create a new source file, right click “source files” in the “solution

explorer” and choose “add -> new item” (see Figure 60).

Figure 60: add new item

Figure 59: application settings window

 247

The “Add New Item” window opens. Now, select “Visual C++ -> Code” and

make sure “C++ File(.cpp)” is highlighted in the right side of the window

(see Figure 61). Since we will write C code and not C++ code, the name of

the source file must end in “.c” instead of the suggested “.cpp”. Click “Add”

to create the new source file.

Figure 61: Add New Item window

1.3 Compile and run a program

Once the source code is written, the program can be compiled and run by

clicking the green button “Local Windows Debugger”.

By default, the program is run in debug mode showing all screen output in

a console window that will disappear at the end of the program. To keep the

window active, add a breakpoint before the statement “return 0;” in the

main function or precede that statement with “getchar();” to make sure

the program waits for a user input.

If you want to run the program without debugging, press CTRL-F5 instead.

2. ASCII table

