C for Embedded Systems

Ir. Sofie Beerens

Embedded systems







Table of Contents

List Of iHUSEratioNS ..t 9
I o) i e U < PP 9
LiSt Of tablES 1uviiiii i e 11
List Of COdE @XamMPIES ..viriiri i e 12
12 oo e [ ¥ T ot o o T 17
1 Programming languages......ccvicvimrerierie i i s s s snassasnansannas 19
1.1 INErodUCiON oo 19
1.2 Machine languages (first generation)......cccoooiiiiiiiiiiii i, 20
1.3 Assembly languages (second generation) .......cccovviiiiiiiiiiii i, 20
1.4 High-level [anguages ... ..o 21
1.5 Processing a high-level language program ..........coceviiiiiiiiininnnnns. 22
1.5.1 Phase 1: creating @ program ....occviii i i i i i i i 22
1.5.2 Phase 2: translate the source code into machine language........... 22
1.5.3 Phase 3: lINKING...ioiiiiiiii e 22
1.5.4 Phase 4: exXeCULION ..oviiiiii i e 23
2 Program deSign ...cceciviimmimsmsmsesssesssnsssasssasssasssnnsnnnsnnnnns 24
2.1 AlGOrtNMS e 24
2.2 Structured program development ......c.cooiiiiiiiiiiiiiii 24
2.3 Do Yol 8 g 1= o= o o AP 25
2.4 o (0T 1 1= 0 26
3 Programming in C: an introduction.......ccccvvciiiciniccnnsnnenennes 27
3.1 A fIFSt PrOgram e e 27
3.1 L COMIMIENES ttttitit ittt 27
3.1.2  #include <Stdio > viiiiiiierriiiiinrreerriiiiarrereriiiirteeeriiiiireeeeann 28
3.1.3  int Main (VOId) {  } teviirereeesreiinnseeesssesnnsseeesssssnnsseeessesnnnnneeseenn 28
3.1.4 printf (MHello, WOTrLd\N") ; teiiiiieriiieeriiieerrieesrineerrineesrineesenees 28
3.2 =] .01 0 L= 29
3.2.1 Variable definitions ....cviviiii 29
3.2.2 Assignment statements ... 30
3.2.3 printf("%f mile equals %f kilometer\n", miles, km); ....... 30
3.3 EXaMIPIE 3 i e 30
3.4 EXaMIPIE 4 i 32
3.5 EXaMIPIE 5 i 32
4 Basic concepts of C programming .....ccccvverieriersernessassassansansas 35
4.1 Indentation ..o 35
4.2 IdentifiarS o e 35
4.3 VA ADIES e 36
2 G 0 N (o ol =T o) o 36
4.3.2 Variable definition and data types .......coviiiiiiiiiiiii i 36
4.3.3 Variable initialization ......ccooiiiiii 38
4.3.4 Example: variables.C ..o 38
4.4 EX PSS IONS ittt e 40



4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.2
4.6
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.8

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.3

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.5

7.1
7.2

ArithmetiC @XPraSSIiONS .ot e 40

Conditional EXPreSSIiONS ..vuiiii i i 41
PrECEAENCE Lottt e e 42
Assignment statements ... 43
The assignment operator '=" ... i 43
Arithmetic assignment operators.......c.coviiiiiii i 44
TYPECASTING . ettt e 45
Simple input and oUtpUL ... 46
<315 o N o i () 46
LS 1= 5o A (T 48
FEES () ) PUES () terrreeannneesssessnnnneessesssnnnnesssssssnnnressssssnnnneessssnnnns 49
FetChar (), PULCRAT () tererrrerinnnneesseesnnnnneesssessnnneessssssnnnneessssnnnns 50
EXEICISES .ttt 50
Controlling the program flOW .......ccuverieririerirnesm s ssssassansans 55
o 11l 3 = o PP 55
Selection statements ... 57
The if selection statement ... 57
The if .. else selection statement.........c.coviiiiiiiiiiiiiis 58
The switch statement........coiiiiii s 63
=] o 1] 66
Repetition statements ..o 70
The for statement .. i e 70
The while statement ..o e 72
The do .. while statement .....coiiiiiiiii e 75
break AN CoONMTInUE tiiiiiitrriiiiireerrriistrerererinsreesserannsseersrennnns 77
LOOD EXAMIPIES ittt e 80
=] o 1] 82
LT o Lot ' Y 1 - 86
Standard fUNCEIONS ..o i e i e 86
Mathematical standard functions..........cccooiiiiiiiiiiiii 87
Other standard fuNCLIONS .....ocviii i e 89
Generation of random NUMDbDErS .....oviiiiiii i 90
Programmer-defined functionS.......c.coiiiiiiiiii s 93
Void functions without parameters .........ccooiiiiiiiiiii 94
Void functions with parameters.........c.coiiiii 95
Functions with return value. .......coooiiiiiii s 97
Storage classes and scope of variables .........c.ccviviiiiiiii 98
Storage class auto — local variables .........cccoviiiiiiii 98
Storage class extern — global variables ..........ccooviiiiiiiiiii e, 98
StOrage Class regiSter vviii i et 99
STOrage Class StaticC.uiiiie i eens 100
Structured programming eXample......ccoooiiiiiiiiiii s 101
=] o 1= 104
Y o = Y 109
372 i 0 109

Array declaration ....ooviii i 109



7.3
7.4
7.5
7.6
7.7
7.8
7.8.1
7.8.2
7.9

8.1
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.5
8.5.1
8.5.2
8.6

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.2
9.3

10

10.1
10.2
10.3
10.4

11

11.1
11.2
11.2.1
11.2.2
11.3
11.4
11.4.1
11.4.2
11.5
11.6

Array initialization ..o 110
o 1= 1V U 1= 1= 110
Operations ON AITAYS . ouuiie i i i areare e ranerare e raneraneanes 112
Passing arrays to functions .........coiiiiiiiiiiiiic i 112
Array boUNdaries ...oiiiii i 115
Programming examples USiNng arraysS.....ccccveveiereienenenieienenenn. 116
The sieve of Eratosthenes ..o 116
NI o Tl a Lo =1 o = ) V£ T 117
EXEICISES vttt e 119
R o 3 1 e 123
StriNg CONStaANt ..ot e 123
String variable. ... 123
Passing strings to fUNCLIONS ......coviiiiiiii e 125
StriNG fUNCHIONS 1. 126
il I8 =3 o 126
S ol <72 126
LS ot 1< S 127
Programming examples using Strings .......ccvoeviiiiiiiiiiiiiiiiiinnnenn 127
Demonstration of several string functions ...........c.ccoviiiiiiienn. 127
Sorting 2 strings alphabetically........ccoooiiiiiiii 128
=] o =T < 129
Multidimensional arrays ...ccccvecvermssmasmsmasssansmansnanssansnnnss 130
Two dimensional arrays of NnUMbErs .....c.cooiiiiiiiiiiiiiiici e 130
D= TolF=1 o= o 1P 130
INitialiZation ..o 131
MaLFiX USAQGE +ouriiieiiitiii i 131
Passing a 2D array to a function .........ccoiiiiiiiiiiiiiiiiic 132
2D array example: Pascal’s triangle ......ccoooiiiiiiiiiiiiiii 134
Arrays Of SEHNGS «iviii i e 136
=] g of 7= 138
Sorting and searching arrays....ccccvcririerierisiessesresrassassanas 143
Sorting arrays of numbers ... 143
Sorting arrays of StHNgS .c.viiiiii i 145
BiNary SEarCh .. 147
=] o =T < 150
oo T 3 1 =T o 151
D] T oV o] o [ PP 151
Declaration and initialization .......c.coooviiiiiii 152
D= TolF=] =1 o I PP 152
Initialization ..o 152
Address and dereference operator .....ccvvevvevieiieiiiiri e, 152
Passing arguments to functions .......c.coiviiiiiiii 154
Pass DY ValUe ..o 154
Pass DY referenCe ..oovvieiii i e 156
o] ) =T = [ o Lo =Y o = ) V£ T PP 157

Pointer versions of some string functions............ccoviiviiiinnnen. 158



11.6.1
11.6.2
11.6.3
11.7

11.7.1
11.7.2
11.7.3
11.8

12

12.1
12.2
12.3
12.4
12.5
12.5.1
12.5.2
12.5.3
12.5.4
12.5.5
12.5.6
12.5.7
12.5.8
12.6

13
13.1
13.2
13.2.1
13.2.2
13.3
13.4
13.4.1
13.4.2
13.5

14

14.1
14.2
14.3
14.3.1
14.3.2
14.4
14.4.1
14.4.2
14.5
14.5.1

Sl 183 o W 158
LS ol ale) o7 158
LS ol a5 11« P 159
Pointers to fuNCLiONS.....cv i 159
FUNCHion POINEErS .o e 159
Array of function poiNters ......ccvviiiiiiiiii 160
Function pointers as function argument ..........ccoooiiiiiiiiiie, 161
EXEICISES it e 163
Comma operator, const, typedef, enumerations and bit

operations....cciciiciic i i 168
The COMMA OPEratOr . vttt e 168
L5074 1Yo L= 168
TYPe QUAlIIEIS .ot 169
The enumeration type ... 169
Bit OperationS....c.viiuiii i 172
BitWise AND L..uuiiiiiii i e 172
BitWiISE OR L.iiiiiiii it e 172
BitWise XOR ittt 173
One’s complement ... 173
Left Shift . 173
RIGht Shift .. e 174
EXaMIPIE o 174
MaASKING .ttt 175
EXBICISES 1ttt 176
The C preproCeSSOr ..ucuuerierierrassassansansansanssnsanssnssnssnssnssnsnnnnns 179
B [T Ol o] /=T 0] o Yol 1Yo ] ol 179
#define preprocessor direCtive......covviiiiiiiiiiiiii e 179
Symbolic CONStants . c.viiiii 179
1 =T o 1= P 180
#include preprocessor direCtive ...ocvvviiiiiiiii e 182
Conditional compilation.........cooiiiiiii 182
#ifdef preprocessor directive .......covviiiiiiiiiiii 183
#if preprocessor direCtive ..o 183
EXBICISES 1t 184
File handling in C ....c.cciiiiiiiiirss s s sne s snm s snmsnnnas 185
File POINEEr . 185
Opening and closing a text file......coiiiiiii e 186
Read and write 1 symbol to atextfile ....cooviiiiiiiiiiiiiiine, 188
Read one symbol: fgetc.iiiiiiii i aneaaeane e 188
Write one symbol: fputc vuviiiiii i 189
Read and write a full lineto a text file .....coovviiiiii 190
Read a full liNe: fgets ciuiiii i i e i e 190
Write @ full liNe: fpULS viriiiii i e aaeas 191
Formatted read and write to a text file ......ccooviiiiiiiiiin, 192
Formatted printing to a file: fprintf.iiiiiiiieeees 192



14.5.2 Formatted reading from a file: fscanf....ccoiiiiiiiiiiiiiiiienns 192

14.6 stdin, stdoUt ANd StAer T iiiiiiiiiiiiie i araareaneanaanenes 193
14.7 Binary files versus text files ......ccoviiiiiiiiiiiii 194
14.8 Opening and closing a binary file ... 194
14.9 Writeto a binary file: fwrite «iiiiiiiiiiiiiiiiii e 195
14.10 Read from a binary file: fread.....coiiiiiiiiiiiiiiii 197
14.11 More binary file fuNCtioNS......ccviiiii 198
1102 e function fseek

.......................................................................................... 198
2 function ftell

.......................................................................................... 199
14.12 Direct acCess fileS c.vviuiiiiiii i 199
I G R =] ol 1= 201
15 StruCtUresS...cii i i s 204
15,1 DEfinitioN i e 204
15.2 Defining a structure ..o 204
15.3 Accessing structure members......coooiiiiiiiiiiii 205
15.4 Nested StruCtures .....ccviiiiiiiiiii e 206
15.5 Structures and functionS.....c.oiiiiiiiiiiii e 207
15.6 Comparing 2 StrUCLUIES .. iviiiii i s s n e aneeas 207
15.7 Pointers to StruCtUresS .. ..o e 208
15.8 Files Of StrUCLUIES ..vvviiiiii i e aeas 209
T T o =] ool 1= 213
16 Command line arguments ...cccccvermrmsrsrn i i s srassassansans 218
ST =T oo T = oo o v PP 218
T =] ool 1= 219
17 Dynamic memory allocation......ccciverirvnnmmnrmsnsmsnsnansnansnanss 221
17.1  IntrodUCHion .ovii i e 221
17.2  The fuNCHiON Mal loc . iiiii ittt i i i i e e raae e aaaeeas 221
17.3  The fuNCHION free viviiiiii i i it it e naeeas 222
17.4  The fUNCHION T8 1100 tiiiiiiititeeriiiiitrtesstiiinssseessesinnssseesseannnnnees 223
17.5 The fuNCliON Calloc . iiiiiiiiiiii i i i i i e e aaeeas 224
i S D] o 1= 1 o T (o= o o= NV P 225
8 b =] o =T = 227
18 Dynamic data structures.......coicvieriririeie i i s s sresresnnnnans 229
18.1  INtrodUCHion cuviii i 229
18.2  LinKed 1SS tiiiiiiii i i e e e 229
18. 2.1 DEfiNitiON cu ettt i e 229
18.2.2 Creating a single-linked list.........coooiiiii i 230
18.2.3 Insertion of a new node in a single-linked list..................coetts 234
18.2.4 Removal of a node in a single-linked list...........cocviiiiiiiinnn. 237
18.2.5 Double-linked liSt....uiiiiiiii i e 238
18.2.6 Circular inked lSt ....ccviiiiiii e 238
18.2.7 SEACK it e 238

18.2.8 QUEBUE vttt 239



18.3  EXEICISES vt e 239
I = - 1 T = 244
Attachments....cciociiiis i i i s s s r s n 245
1. Visual Studio Express 2013 for Desktop ....ccvvvviiiiiiiiiiii i, 245
1.1 Creation of @ New project......cooeieiiiiii e 245
1.2 Creation of a new source file ....ocviiiiiiiiiiiici 246
1.3 Compile and run @ Program.. oo e 247

2. ASCIT table iuiiiiiiiii 248



List of illustrations

List of

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10

Figure 11:
Figure 12:
Figure 13:
Figure 15:
Figure 14:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

Figure 23:

figures

example of machine language code ........cooviiiiiiiiiiiiiiii e, 20
example of machine language code written in hex notation ...... 20
example of assembly language code .......ccovviiiiiiiiiiiiiiieienens 20
difference between compiler and interpreter..........cccovvvvvinnn. 21
processing flow for high-level language programs.................... 23
think first, code later ..o e 25
INAENtatioN ... 35
Ivalue and rvalue of a variable ... 36
difference between i++ and +4i ..o 40
: rules of precedence for operators in C......cocvvviiiiiiiiiiiiiieinnnnns 42

flowchart sequential program .......cccociiiiiiiiiiiiiii 56
flowchart if selection statement ... 57
flowchart if ... else statement..........cooiiiiiiii, 58
even-odd SOIULION 2 ... 59
even-odd SOIULION 1 ... 59
flowchart switch statement ... 63
flowchart switch eXample ..o 64
flowchart £or l00P i 70
flowchart for loop example ...cooviiiiiiiiiii 71
flowchart of while l0OP iiiiiiiii e 73
flow chart while loop example ... 73
flow chart do ... whileexample 1.....ccociiiiiiiiiiii e 75

1101Vl A= 1 By Y= 1 < 77


file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828208
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828211
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828214
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828217
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828219
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828221
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828224

Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:

Figure 49:

continue in while I00OP .iiviiiiiiii i e 79
CONEINUE IN £0r [00P ittt e 79
flowchart standard function cos example........ccoviiiiiiiiinnnns 88
random number generation USiNg srand () c.veevvieiiieiieiineiinens 92
general function prinCiple.....c.cciviiiiiiiiii i 93
function flowchart ... 94
structured programming example main function.................. 101
structured programming example function linear equation.... 101
structured programming example function quadratic equation102
structured programming example functions root calculation.. 102
array ‘a’ with 10 integers......ccooiiiiiiiiiii 109
= = )V 0 =1 0 1= 112
passing arrays to functions ........cccviiiiiiiiiiiiic 113
string constant ... 123
string variable ... 124
logical structure of a 2-dimensional array ..........cccovviiininnnns 130
physical structure of a 2-dimensional array ...........ccccevvuenne. 131
flowchart looping through a matrixX .........coooiiiiiiiiiiiiiiiienne, 132
Pascal's triangle.. ..o 134
array of Strings...cciiiiiiiii 136
flowchart sorting algorithm numbers ..., 143
flowchart binary search algorithm ... 147
POINter PrinCiple . i 151
[0 ] ] g1 =] ol wo = o or= )V 157
reading binary file with text editor ... 196

reading binary file with hex editor...........coooiiiiiiiinn, 196


file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828228
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828229
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828232
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828234
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828235
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828236
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828238
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828239
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828240
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828241
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828242
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828243
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828246
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828247
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828248
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828249
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828250
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828251

Figure 50: direct access file......oovviiiiiiiiiiii 200

Figure 51: command line arguments ......ccoiiiiiiiiii i i i caee 218
Figure 52: linked list.. ... e 229
Figure 53: double-linked list......ccoiiiiiiiii 238
Figure 54: circular single-linked list.......c.coiviiiiiii e, 238
FIgUre 551 StaCK ciiiiii i 238
FIGUIre 56 QUEUE ittt et aeaaaas 239
Figure 57: solution with 6 projects. ......ooiiiiiiiii e, 245
Figure 58: New Project WindOoW ......ccviiiiiiiiii i 245
Figure 59: application settings window .........cocoiiiiiiiiiiiiiiiis 246
Figure 60: add NeW iTeM .o 246
Figure 61: Add New Item WIiNdOW .....ccoiiiiiiiiiiiiiiiii e aeas 247

List of tables

Table 1: overview of the most commonly used data typesin C ............... 37
Table 2: overview of arithmetic operators in C.......ccocviiiiiiiiiinen, 40
Table 3: equality, relational and logical operators .........cccveeviiiiiiiiinnnnen. 41
Table 4: arithmetic assignment operators ........cocoviiiiiiiiiiiiiiiie 44
Table 5: conversion SPeCIfiars ....uiiii i 46
Table 6: €SCaAPE SEQUENCES ..ttt ittt ittt rae et et ae e e aaeaaneaanes 47
Table 7: flowchart symbols.......cooiiii 56
Table 8: math library funCtionNS .....ooiiiii e 87
Table 9: bitwise OpPerators....c.vvi i 172
Table 10: file Opening MOdeS......ccouiiiiii e 186
Table 11: binary file Opening MOdES .......ccooiiiiiiiiiiiiii e 195

Table 12: arguments of fuNCLiON fwrite .oviviiiiiiiiiiii i i e 195


file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828256
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828257
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828258
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828259
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828260
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828261
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828262
file:///C:/Users/u0088734/Documents/Tempus-DESIRE/C%20for%20embedded%20systems/cursus.docx%23_Toc415828263

Table 13: arguments of funNction fread.....vovviiiiiiiiiiiiic e 197

Table 14: list of values to be used as origin in the function fseek ......... 198

List of code examples

Code 1: @ first € Program. ... e s 27
Code 2: code to convert 10 miles into Km ......oooiiieiiiii e 29
Code 3: read a number of miles and convertitto km ..........ocviiiiiinnn. 31
Code 4: compute the sum and difference of 2 integer numbers............... 32
Code 5: computation of the gcd of 2 positive integer numbers................ 33
Code 6: example variables.c (code and screen output) ........cocvivviiinnnnnns 39
Code 7: typecasting eXamPle. ..ot e 45
Code 8: reading strings with gets and scanf ...........ccoiiiiiiiiiiiiinnne, 50
Code 9: example even - odd solution 1 ..o 59
Code 10: example even - odd solution 2 .....cccviiiiiiiiiiiiiii e 60
Code 11: exXample Of SWitCh tiiiiiiiiiiii i e aaeas 65
Code 12: alternative code for switch eXample.....cooviiiiiiiiiiiiennenes 65
Code 13: for l0op eXample ..o 72
Code 14: while [00p eXample ..o e 74
Code 15: do ... while eXample 1 ..o 76
Code 16: do ... while eXamPle 2 .iiiiiiiiiiiii i enneaneanennes 77
Code 17: break EXaMPIe. . i 78
Code 18: continue statement ... 80
Code 19: 100p eXamMPle 1 . 81
(©oTs [<R 10 B [0 To] s I =3 ¢= 12 2] o1 L= PP 81
Code 21: example math standard library.........ccoooviiiiiiiiiiee 89

Code 22: random number generation ........ccovieiiiiiiiiii e 91



Code 23: usage of srand () fUNCHiON ... 92

Code 24: guess the secret NUMbEr ... 93
Code 25: example void functions without parameters.........ccooveviivviinnn. 95
Code 26: example void function with parameters...........cccoiiiiiiiiiinnne. 96
Code 27: example function with return value............coooiiiiiiiiiiiin e, 97
Code 28: difference between global and local variables...............ccoouviie. 99
Code 29: register storage Class.....oovieiiieiiii e eeas 100
Code 30: Storage Class StatiC vuvrvvrririiriirerrerneiieiierierieranrasaaneaneaneanenes 101
Code 31: structured programming example........ccooiiiiiiiiiiiiiinn, 103
Code 32: array usage example ..o 111
Code 33: array NAME .ouiiiiiiiiiiii s r s a e aenes 112
Code 34: array with functions example.....ccoiiiiiiiiiiiiiiii 114
Code 35: array usage outside of array boundaries.............ccceviiininnnn. 115
Code 36: sieve of Eratosthenes.........coooiviiiiii 117
Code 37: MEIrgIiNG @ITAYS tueiiuiiitiiitiitii i e e eat e eaeaaeaaneas 119
Code 38: passing strings to functions ........ccooiiiiiiiiiiii 126
Code 39: string fUNCHION Strlen civiiiiiiiiiiiii e aaeas 126
Code 40: string fUNCHION StrCpY «viiiiiiiiiii e e 126
Code 41: string eXample 1 ..o 127
Code 42: printing 2 strings alphabetically..........ccoooiiiiiiiiiiiiie, 128
Code 43: reading student marks by looping through a 2D array............ 132
Code 44: passing a 2D array to a function.........ccooiiiiiiiiiiiiciiiciee 134
Code 45: Pascal's triangle ... 135
Code 46: sorting arrays of NUMDbErs .....cccviiiiiiiiiiiiicic e 145
Code 47: sorting arrays of NAMES ......oiiiiiii e eees 147

Code 48: binary searCh.......cviviiiiii 149



Code 49: demonstration of &« and * operators......ccooviviiiiiiiiiii e, 153

Code 50: POINtEr USAGE. .. cui ittt e e e ans 154
Code 51: pass by value. ..o 155
Code 52: pass by referenCe.....coviiiiiiii i 156
Code 53: pointers and armrays ..oovvivviiiiiiiii i ar s 158
Code 54: fuNCLioN POINTEI ..ot e 159
Code 55: array of function pointers ......c.ccviiiiiiiiiiii i 160
Code 56: function pointer as function argument (add - subtract)........... 161
Code 57: function pointer as function argument (sum of squares)......... 162
Code 58: example enumeration type ...ccoviviiiiiii i 170
Code 59: example of enumeration type 2...ccoviiiiiiiiiiiiiiiiiii e 171
Code 60: example bit operations........coviiiiiiiiiiiiii 174
Code 61: bit MaskiNg ..ocviiiii i 175
Code 62: opening and closing @ file ....c.oviiiiiiiiii e 187
Code 63: read 1 symbol from afile .coooviiiiiiiii 188
Code 64: copy a file using fgetc and fputC.......covvvvviiiiiiiiii e, 189
Code 65: printing the content of a file line by line .....ccccoviiiiiiiiiinn. 190
Code 66: append a line of text to an existing text file ........cccoeviiiiinnn. 191
Code 67: formatted printing to a file......ccoovviiiii i 192
Code 68: formatted reading from afile......cocoviiiiiiiiiiii s 193
Code 69: fwrite EXamM Pl i i 196
Code 70: fread EXamMPle. . 197
Code 71: fseek EXaAMPIe i 198
Code 72: ftell eXamMPle i 199
Code 73: usage of direct access files ... 201

Code 74: usage of nested structures .......ccooiviiiiiiiiiiii i e 206



Code 75: example structures and functions.........c.ccoiiiiiiiiiiiiiieiiennen, 207

Code 76: passing structures to functions by reference ...........cccovveinnii. 209
Code 77: writing structures to files......cccviiiiiiiiiiii 210
Code 78: reading structures from files.......ccviiiiiiiiiiiiiiii 211
Code 79: phone numbers program with menu ...t 213
Code 80: command line arguments ......ooiiiiiiiiiiiic e 218
Code 81: malloc and free eXample ..o 223
Code 82: USAGE Of 181 10C titiitiiriiriiniitiineieieiie it rieraerarsareaneanaaneanenes 224
Code 83: USAGE Of Callotuiiiiiiiiiitiiitiiii i a et eaeeaeaaeaaneas 225
Code 84: dynamiC @rmays .uvveiieiiiiiiiiiiiiiire e raaaaasaaenes 226
Code 85: dynamic multidimensional array.........cccooviiiiiiiiiiiiiinn, 226
Code 86: self-referential structure ........ccooiiiiiiiies 229
Code 87: creation of a single-linked list .........cooviiiiiiiii s 231
Code 88: creation of a single-linked list (improved code) .............cc...e. 232
Code 89: creation of a single-linked list using 100pS........cccvvviviiiininnnnns 234

Code 90: using a linked list to order alphabetically .......cccccvviiiiiiinnn.n. 236






Introduction

To understand the advantages of using C as programming language for
embedded systems, we need to go back in history.

The origin of C is closely tied to the development of the Unix operating
system. C was developed by Dennis M. Ritchie and Brian W. Kernighan.
They decided to rewrite the full Unix operating system in the B language,
developed by Ken Thompson. The need to improve the B language to
overcome some shortcomings, led to the development of C.

Although, the C language was brought to the market already in 1972, it
only became popular in 1978 after the publication of the book “The C
programming language” (written by both C language inventors).

C is a flexible, well-structured and very compact language. It was designed
to provide low-level access to memory, to provide language constructs that
map efficiently to machine instructions, and to require minimal run-time
support. Therefore, C was useful for many applications that had formerly
been coded in assembly language, such as in system programming.

Despite its low-level capabilities, the language was designed to encourage
cross-platform programming. A C program can be compiled for a very wide
variety of computer platforms and operating systems. The language has
become available on a very wide range of platforms, from embedded
microcontrollers to supercomputers.

Programming in C needs to be done very carefully. As C provides you with a
lot of freedom and flexibility, it is important to be aware of what exactly you
are doing. The C compiler assumes you are an experienced designer that
takes care of accessing hardware the correct way. A well-known saying
about Cis: “C provides enough rope to hang yourself.” The aim of this
course is to provide you with the right handles to start writing your own
(complex) programs.

Many other programming languages were influenced by C like e.g. C#,
Java, JavaScript, PHP, ...



b

Learning outcomes
At the end of this course students are able to:

o analyze existing C code and understand how an existing program
works. Students can read and predict the outcome of programs
written in C syntax.

o create a well-structured program in C code containing functions. To
accomplish this, students must be able to logically analyze concrete
problems, divide these problems into smaller sub problems, convert
each one of those sub problems into algorithms and translate each
one of those algorithms into C syntax.

o choose the appropriate data structures to represent the different
variables in the C program.

o allocate memory dynamically.

o perform operations on bits using C syntax.

o create a C program using file handling.

Assessments

The theory will be assessed in a written exam.
Questions will mainly check the comprehension of the C syntax in all its
aspects.

The practical work will be assessed in a practical exam on a computer. A C
program and corresponding flowchart must be built to solve one or more
problems. Assessment will be based on quality of the flowchart, outcome of
the program, algorithms chosen, usage of functions with parameters,
correct choice of data structures, correct memory allocation, efficiency,
programming layout, readability and reusability of the C code.



1 Programming languages
Objectives

This chapter highlights the difference between computer language and
different programming languages. At the end of this chapter, one should
understand how a high-level language program is processed and the type of
errors that can occur during the different processing steps.

1.1 Introduction

In today’s life, computers can no longer be ignored. Many people have
access to a PC and use it to perform all sorts of tasks like searching the
internet for information, computing a household budget, getting in contact
with friends and family, storing pictures, ...

Next to this, smaller and less obvious versions of computers can be found in
all sorts of embedded systems like smartphones, tablets, camera’s, car
control systems, heartrate monitors and more.

The reason for using computers in all these systems is that computers can
perform computations and make logical decisions much faster than human
beings can. To accomplish this, the computer needs to be driven by a
sequence of instructions called a computer program. The set of programs
enabling the usage of the computer system is referred to as software.

Programs are written in programming languages. Such a language must
contain certain elements to:

- allow efficient information storage in memory

- allow communication with the user through mouse, keyboard, screen, ...

- allow reading of large amounts of data from hard disk, DVD,... and
writing results to these memory devices.

- use the processor to make computations.

Some of these languages contain instructions that are directly
understandable by computers. Other require intermediate translation steps.



1.2 Machine languages (first generation)

Machine languages can be understood directly by the computer. As different
processors have different hardware architectures, a computer can only
directly understand its own machine language.

A program written in machine language constists of a sequence of binary
processor instructions where every instruction consists of a sequence of
bits.

10100101
01100000
01100101
01100001
10000101
01100010

Figure 1: example of machine language code

The piece of code shown above is a program for a 6502 processor that adds
the content of memory location 0x60 (hexadecimal) to the content of
memory location 0x61 and stores the result in memory location 0x62.

To improve readability, these bit sequences are often written in
hexadecimal notation resulting for this example in:

A5
60
65
61
85
62

Figure 2: example of machine language code written in hex notation

As can be seen from the example above, these programs are very difficult
to understand for humans.

1.3 Assembly languages (second generation)

Assembly languages were developed to make the instructions more
readable for humans. Therefore, the sequences of bits were replaced by
symbolic codes (usually based upon English like abbreviations).
Unfortunately this results in code that is incomprehensible to computers
until translated to machine language. The translator programs needed to
accomplish this task are called assemblers.

Translating the example of figure 1 in assembly language results in:

LDA 060 (load content at memory address 0x60)
ADC 061 (add with carry to the content of memory address 0x61l)
STA 062 (store result in memory address 0x62)

Figure 3: example of assembly language code




1.4 High-level languages

One of the disadvantages of assembly languages is that each assembly
language instruction corresponds to exactly one machine language
instruction. As such, programs written in assembly can easily become very
long.

To speed up the process of writing programs, several high-level languages
were developed. In all of these languages, single statements can
accomplish substantial tasks. The syntax used resembles normal written
language (mostly English), but with very strict regulations.

A program written in a high-level language is incomprehensible to a
computer until translated into machine language. Depending on the high-
level languages used, this translation is accomplished with a compiler or an
interpreter. A compiler translates the complete source program at once. An
interpreter translates one instruction at the time and executes that
instruction directly.

compiler
machine
source

statement 1
statement 2 full set of

. . execute
instructions

statement n

interpreter
machine

source
statement 1 execute

statement 2 instructions execute

statement n

Figure 4: difference between compiler and interpreter

Some examples of high-level languages:

FORTRAN (FORmula TRANslator, 1956):
very efficient for mathematical computations

COBOL (Common Business Oriented Language):
used mainly for administration and accounting programs

BASIC (Beginners All-purpose Symbolic Instruction Code, 1965): very
straight forward, but not well structured

PASCAL (Niklaus Wirth, 1970, named after Blaise Pascal):
well-structured language, used mainly for educational purposes.



- C (Dennis M. Ritchie and Brian W. Kerninghan, 1972):
well-structured and very efficient programming language available
for most types of machines. It is widely used to develop systems
that demand high performance, such as operating systems,
embedded systems, real-time systems and communication systems
as well as application software.

- LISP (LISt Processing Language): for “artificial intelligence”

- C++ (B. Stroustrup, 1986): C + object-oriented (OO = Object Oriented)

1.5 Processing a high-level language program

High-level language programs typically go through different phases to be
executed.

1.5.1 Phase 1: creating a program

A standard text-editor is used to enter the wanted code into an ascii file.
This file is commonly called the source code.

In this course, we will use the development environment “Visual Studio
Express 2013 for Desktop” (see attachment 1). This environment contains a
build-in editor that allows for easy program writing. All C program source
codes should have names ending in .c (e.g.: programl.c)

1.5.2 Phase 2: translate the source code into machine
language

In the second phase, the source code is compiled (translated) into machine
language instructions resulting in an object code (e.g.: programl.obj or

programl.o).

In a C system, this step is preceded by the execution of the preprocessor.
The preprocessor searches for special directives written in the source code
and performs the actions described. (see chapter 13 for more information
on preprocessor directives).

After the execution of the preprocessor, the source code is translated into
machine language instructions. When the compiler cannot recognize a
certain statement, because of a syntax error for instance, the compiler
issues an error message. These types of errors are called syntax errors or
compile errors and must be corrected by editing the source code.

1.5.3 Phase 3: linking

All library functions referred inside the source code are added to the object
file to create an executable program. (e.g.: programl.exe). This process is
called linking and is performed by a linker. Errors occurring during this step
are called link errors (such as calling non existing functions). Also in this



case, the source code needs to be corrected and all steps starting from
phase 1 have to be executed again.

1.5.4 Phase 4: execution

Before execution, the program must be placed into memory. This is done by
the loader. Additional components from shared libraries are loaded into
memory as well.

Finally, the computer can execute the program. Errors occurring at this
stage are called run time errors. These errors are caused by mistakes in the
program logic like e.g. errors in the solution method used.

Source
Code Object Executable
File File File
if a<h 11011001 li011001
(Lilh ref) (Likh ref) gloooloo
do while [ 00010111 |3 ooololll
EEE-Y 10101011 10101011
(Lilh ref) (Likh ref) 11111100
A
10111101
lilloo001
Library 00000011
F"es gloooloo
10011101
11111100

Figure 5: processing flow for high-level language programs



2 Program design
Objectives

In this chapter, the importance of thinking before coding is emphasized.
The concept of an algorithm and how to use such an algorithm to write a
computer program is explained. Special care was given to understanding
the normal execution order and learning how to change that order in a well-
structured way.

2.1 Algorithms

Writing computer programs nails down to writing algorithms in a computer
language.

An algorithm is a step-by-step procedure that describes how to reach a
predefined goal starting from an initial state and initial input in a finite time

slot

Some well know algorithm examples are:

a cooking recipe

- a construction manual
installation instructions
solve a set of equations

All of these algorithms consist of 3 phases:

1. description of the initial state and initial inputs
e.g. ingredients needed for the cake
2. step-by-step description of the procedure to be followed
e.g. how and in what order you need to mix the ingredients
3. description of the desired final state
e.g. the cake itself

The language used to describe these algorithms is often incomprehensible
to a computer. It needs to be translated into a programming language and
afterwards compiled into computer language. An algorithm, written in
programming language, is called a program.

2.2 Structured program development

There is more to programming than simply writing code! It involves all
activities needed to write a computer program to solve a particular
problem:

1. Description of the problem (what exactly needs to be done?)
2. Problem analysis



Nousw

Divide into smaller sub problems

Write an algorithm for every sub problem
Translate these algorithms into code

Test all parts separately

Combine all sub codes and test the full code

Only the process of translating the algorithms into code is language
dependent! Very often this is even the easiest part. Therefore, learning how
to program in C also includes learning how to develop correct and efficient

algorithms.

Think first, code later!

Figure 6: think first, code later

2.3 Documentation

In the process of solving a problem, documentation writing is often
considered as a burden. However, it is important to make sure that after
some time you or any other programmer can still easily understand and
modify the code.

To accomplish this, following rules should be taken into account:

- use meaningful names

- use clear arrangement of the code (use the correct indentation)

- write appropriate, enlightening comments

- clearly indicate the different parts of the code and describe their function
- write basic documentation containing:

o

@)
@)
O

version, date, programmer
description of the problem
examples of execution
user manual



2.4 Program

A computer program is a sequence of instructions that are to be interpreted
and executed by a processor. These instructions are executed one after the
other in the order in which they’re written. This is called sequential
execution.

At some point, a different execution order might be needed. Therefore,
some control statements will be needed.

In modern programming, the concept of well-structured coding has become
very important. To accomplish this, we will make use of 3 types of
statements:

- sequential statements (normal execution order)

- selection statements (conditional execution of a group of
statements)

- repetition statements (repeat a group of statements a number
of times)



3 Programming in C: an introduction
Objectives

In this chapter some basic concepts of C programming are highlighted
based on a few simple programming examples. At the end of this chapter
you should have a basic understanding of:

- the structure of a C program

- variables and variable declaration statements

- assignment statements

- the usage of the standard functions printf and scanf

- the existence of control statements like if and while

3.1 A first program

We begin by writing a simple program that prints the text “Hello, world” on
the screen. For more information on how to setup a first project see
attachment 1. The program code and screen output are shown in Code 1.

1 /*

2 My first program

3 this program will print the line "Hello, world" to the screen
4

5 written by SBE 15/12/2014

6 */

7

8 #include <stdio.h>

10 int main(void)

11 {

12 printf ("Hello, world\n");
13 return O;

14 }

G (€ = | - A

Hello, world -

Code 1: a first C program

3.1.1 Comments

All text placed in between /* and */ is regarded as comments. The C
compiler will ignore this portion of the code.

Since C is very well suited to write big programs, it is very important to
make sure every part of the program is started with meaningful comments.
These should at least indicate how the code works and for sure describe the
outcome of that portion of the program.

In this example, a title, the outcome of the program and some information
on author and creation date were written into the file as comments.



3.1.2 #include <stdio.h>

Every line starting with # is a preprocessor directive. Before compiling, the
preprocessor will look for these directives and process them first.
“#include <stdio.h>" tells the preprocessor to include the header file
“stdio.h” into the program. This file contains some function declarations
(not definitions) for standard input/output functions like printf, scanf, ...
The function definitions are located in the C standard library. The linker will
take care of including all used functions into the executable. Next to
function declarations, this header file also contains some definitions of
constants (e.g. EOF, NULL) and macro’s.

3.1.3 int main(void) { }

Every C program contains one or more functions. A function can be
recognized by the parentheses () following the function name. One of those
functions must be the function main (). Every C program will automatically
start by executing this main function.

When calling a function, extra information can be passed on to that
function. This extra information is called a function parameter and is put in
between the parentheses (). To indicate that the main function does not
have any parameters, the keyword void is used.

Functions can also return a result. The keyword int to the left of main
indicates that the main function returns an integer value.

The full content of the main function is written in between an opening brace
( { ) and a closing brace (} ). Every step of the function is described in a
statement. The full collection of statements in between braces is called a
block.

3.1.4 printf (“Hello, world\n”);

The main function in this example contains 2 statements:
“printf (*..”);” and “return 0;".

A statement consists of an expression, followed by a semicolon (;). In C,
every statement, even the last statement of a function, ends in a
semicolon. There is no semicolon after “int main ()" because here we start
the definition of the function main, hence “int main ()" is not a statement.
However, if a function call is made, a semicolon needs to be added at the
end.

The statement used here is

printf (“Hello, world\n”);



this is a call to the standard function printf. It will write all text in between
the double quotes (*”) literally to the screen, except if an escape character
(\) is used. When such an escape character is encountered in a string, the
compiler takes the next character into account and combines it with the
backslash to determine what to do. \n for instance means a newline.
Therefore adding \n to the string in the printf function causes the cursor
to position itself at the beginning of the next line.

The statement “return 0;” is added at the end of the main () function to
set the return value of that function to the integer value 0.

3.2 Example 2

Convert 10 miles into km and print the result to the screen.

#include <stdio.h>

int main (void)
{
float km, miles;
miles = 10.0;
km = miles * 1.609;
printf ("$f mile equals %f kilometer\n", miles, km);
return O;

O o -Jo U d whN -

M C:\Windows\system32\cmd.exe

10.000000 mile equals 16.090000 kilometer

Code 2: code to convert 10 miles into km

Explanation:

float km, miles; variable definitions
miles = 10; assignment statements
km = miles * 1.606;

printf ("%f .. $f .\n", miles, km); standard function printf

3.2.1 Variable definitions

To store all sorts of values for use by the program, we need to easily
address different memory locations. In C, this can be obtained by the use of
variables. A variable is a symbolic name used to address a certain memory
location. The variables used in the programming example above are km and

miles.

All variables need to be defined with a name and data type before they can
be used in a program. In this example, we use 2 variables of the type
float, which means that they will hold real numbers.




3.2.2 Assignment statements

An assignment statement consists of two parts: an expression at the right-
hand side and a variable that will hold the result of that expression at the
left-hand side.

The statement "miles = 10;” indicates that the value 10 must be stored in
the variable with name miles.

The statement “km = miles * 1.606;” indicates that the value of the
variable miles will be multiplied with 1.606. Afterwards, the result will be
stored in the variable km.

3.2.3 printf ("%$f mile equals %f kilometer\n", miles, km);

This is again a function call to the standard function printf. However, this
time, printf has 3 arguments: "%f mile equals %f kilometer\n",
miles and km.

The first argument is called the format string. It contains some literal
characters to be displayed and some format conversion specifiers (%£).
Every format conversion specifier starts with %. The letter £ stands for
floating point number, indicating that a real number will be printed instead
of the “s£” sign in the format string. The second argument “"miles” specifies
the value to be printed instead of the first occurrence of “%£”. The second
occurrence of “s£” will be replaced by the content of the variable “km”.

The function printf takes care of converting the internal representation of

the variable into the form requested by the conversion specifier (decimal
form in this case) before printing it to the screen.

3.3 Example 3

Extend the previous code with the possibility to obtain a distance in miles
from the user, convert it to km and print the result to the screen.

1 /*

2 Program that reads a distance in miles and converts it to km
3 */

4

5 #include <stdio.h>

6

7 int main (void)

8 {

9 float km, miles;

10

11 printf ("Enter the number of miles: ");

12 scanf ("%$f%*c", &miles);

13 km = miles * 1.609;

14 printf ("$f mile equals %f kilometer\n", miles, km);
15 return 0;




© Windows\system32\cmd.exe

Enter the number of miles: 100

100.000000 mile equals 160.899994 kilometer

Code 3: read a number of miles and convert it to km

Explanation:

The statement

scanf ("$f%*c", &miles);

uses the standard function scanf to obtain a value from the user. This
function reads from the standard input which is usually the keyboard
(through a command line interface).

In this example, scanf has 2 arguments: a format string (the first
argument) and a memory location. The %f conversion specifier indicates
that the data entered by the user will be a real number. scanf will wait
until the user enters a decimal number, convert it to the correct internal
representation and store it to the memory location indicated by the second
argument.

The second argument begins with an ampersand (&) followed by the
variable name. The & in this expression means “address of”. In the above
example “smiles” indicates the address or the location in memory where
the variable miles is stored.

The last part of the format string (%*c) indicates that yet another character
(%c) needs to be read and disregarded (*). Adding “%*c” at the end of the
format string allows to remove the enter from the input-buffer.



3.4 Example 4

Write a program that obtains 2 integer numbers from the user and prints
the sum and difference of those two numbers to the screen.

1 /*

2 exampled.c

3 this program computes sum and difference of two integer numbers
4 */

5

6 #include<stdio.h>

7

8 int main (void)

9 {

10 int numberl, number2, sum, difference;

11 printf ("Enter 2 integer numbers: ");

12 scanf ("$d%d%$*c", &numberl, &number?2);

13 sum = numberl + number2;

14 difference = numberl - number2;

15 printf ("\nThe sum equals %d, the difference equals %d.\n",sum,
16 difference) ;

17 return O;

18 1}

Enter 2 integer numbers: 25 -6

The sum equals 19, the difference equals 31.

Code 4: compute the sum and difference of 2 integer numbers

Explanation:

The statement

scanf ("%$d%d%*c", &numberl, &number?2);

uses the standard function scanf to obtain 2 integer values from the user.
The $d%d%*c conversion specifiers indicate that the data entered by the
user will be a sequence of 2 integer numbers, followed by an enter that
does not need to be stored in memory. The first integer number read by the
program, will be stored at the memory location indicated by &numberl
(address of the variable numberl), the second number at the location
referred to by snumber?.

3.5 Example 5

This example shows a program that obtains two integer numbers from the

user, computes their greatest common divisor (gcd) and prints it to the

screen. For the computation of the gcd we will use the algorithm of Euclid:
1. Store the 2 integer numbers in the variables x and y such that x <y

Compute the remainder after y is divided by x

Store the value of x in the var y and the remainder in the var x

Repeat steps 2 and 3 until the remainder equals 0

The variable y contains the gcd

uiAWN




Example: compute the greatest common divisor of 34017 and 16966
the remainder of 34017/16966 equals 85

o the remainder of 16966/85 equals 34
o the remainder of 85/34 equals 17
o the remainder of 34/17 equals 0
o the greatest common divisor of 34017 and 16966 equals 17
1 /* computation of the gcd of 2 integer numbers */
2
3 #include <stdio.h>
4
5 int main (void)
6 {
7 long int numberl, number?2;
8 long int x, y, remainder;
9
10 printf ("Computation of the greatest common divisor.\n");
11 printf ("Enter 2 positive integer numbers: ");
12 scanf ("%$1d%1d%*c", &numberl, &number2);
13
14 /* put the smallest integer in x, the biggest one in y*/
15 if (numberl < number?2)
16 {
17 x = numberl;
18 y = number2;
19 }
20 else
21 {
22 X = number?2;
23 y = numberl;
24 }
25
26 /*assign a starting value to the variable remainder*/
27 remainder = x;
28
29 while (remainder != 0)
30 {
31 remainder = y % x;
32 y = X;
33 x = remainder;
34 }
35
36 printf ("gcd(%1d, %$1d) = %1d \n", numberl, number2, vy);
37 return 0;
38 1}

N C\Windows\systen

Computation of the greatest common divisor.
Enter 2 positive integer numbers: 34017 16966
gcd(34017, 16966) = 17

Code 5: computation of the gcd of 2 positive integer numbers

Explanation:

This example contains 2 new types of statements: an if and a while
statement. Both are examples of control statements.

Control statements can be used to alter the sequential execution of a
program. Here, the if statement is used to determine the smallest of the 2




numbers and store it in the variable x. The while statement is used to
translate the 4™ step in Euclid’s algorithm. It repeats the computation steps
until the remainder equals 0.

Control statements will be treated in depth in chapter 5.



4 Basic concepts of C programming

Objectives

The basic concepts of C programming, highlighted in the previous chapter
are explained in depth. At the end of this chapter you should have a good
understanding of:

indentation rules

naming rules

variables and variable declaration and initialization statements
expressions

assignment statements

typecasting

simple input/output functions

4.1 Indentation

C is a free format language. The compiler does not take white spaces into
account, meaning that newlines and whitespaces can be inserted wherever
wanted. However, to keep the code easily readable to everyone, we will
follow some basic formatting rules.

Braces group statements together. Every statement f
inside the braces should be indented 1 tab (= 4 |

int main (void)

spaces). Both the opening and closing braces must be <—> .-

placed straight under the first letter of the function
they belong to (see Figure 7).

i}

Figure 7: indentation

4.2 Identifiers

Every program needs a number of hames or identifiers like names of
variables, functions, ...

All identifiers need to comply with following rules:

all identifiers start with a letter

identifiers consist of letters, digits and/or underscores ( _ )

in ANSI-C, only the first 31 symbols of a name are significant
C is case sensitive!

Keywords (see table below) cannot be used as identifiers



auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char enum long struct while
const extern register switch

continue float return typedef

default for short union

4.3 Variables
4.3.1 Concept

A variable is a symbolic name used to address a certain memory location.
The compiler will replace all variable names with their corresponding
memory addresses.

A variable has a memory location (Ivalue) indicated by the variable name
and a value (rvalue). The variable in the example in Figure 8 has the name
number and a value of 10.

Code: In memory:
int number;
number = 10; number | 10

Figure 8: lvalue and rvalue of a variable

As a variable name, the programmer can choose any valid identifier (see
4.2).

Learning note

Choosing meaningful variable names helps to make the program more
understandable. A meaningful name can save a few lines of comments.

4.3.2 Variable definition and data types

All variables need to be defined with a name and data type before they can
be used in a program. The data type will determine the number of bytes
needed to store that variable in memory and the type of operations allowed
on it. In the example of Figure 8, the variable with name number is defined
to be of the type int, which means that it will hold integer numbers.
Depending on the system you work on, the amount of bytes needed to
store integer values will be 2 or 4.



[._

Learning note

Place the variable definitions immediately after the left brace that starts the
(main) function. As such, all variables are automatically defined before
being used.

Table 1 shows an overview of the most commonly used types in C along
with the number of bytes needed and the allowed minimum and maximum
values.

minimum maximum
\AI
char 1 symbols 0 255 \n'
\OI
integer 32,
short int 2 numgers -32 768 32 767 0x32,
0123
integer 32,
int 2 numgers -32 768 32 767 0x32,
0123
integer 32,
or4 9 -2 147 483 648 | 2 147 483 647 | 0x32,
numbers
0123
integer 32,
long int 4 9 -2 147 483 648 | 2 147 483 647 | 0x32,
numbers
0123
real 12.3
float 4 3.4e-38 3.4e38 .5
numbers
5e4
real 12.3
double 8 1.7e-308 1.7e308 .5
numbers Se4

Table 1: overview of the most commonly used data types in C

Remark

Internally, the integer constant 0 is represented by 0000 0000 whereas the
character ‘0’ is represented by 0011 0000 (see ASCII table in attachment 2)




]
S e——

4.3.3 Variable initialization

Once a variable is defined, it corresponds to a certain memory location that
is big enough to hold the specified type of data. However, the variable does
not have a value (rvalue) yet. To assign a value to the variable, an

assignment statement is needed.

In some cases, the value of the variable needs to be set before it can be

used in a computation. The variable needs to be initialized. In the example
of Figure 8, the variable number is initialized with the integer number 10 by
the statement: “number=10; ”. After execution of this statement, the value
10 will be stored at the memory location the variable number is assigned to.

In C, a variable can be defined and initialized in one statement:

|int number = 10;

Remark

Whenever a value is placed in a memory location, this new value replaces
the previous value in that location!
Whenever a value is read from a memory location, the content of that

location remains intact.

4.3.4 Example: variables.c

w
w
—

1 #include <stdio.h>

2 #include <string.h>

3

4 int main (void)

5 {

6 int 1, J;

7 char c;

8 float x, f;

9 double ff;

10 char s[64]; // s can contain a series of chars (=string)
11 i=2;

12 j =57/ 3;

13 c = "A"; // 0100 0001

14 c=c+ 1;

15 x =5/ 3;

16 f=5.0/ 3;

17 ff = 5.0 / 3;

18 strcpy (s, "Hello, world");

19 printf("i = %d\n", 1i);

20 printf("j = %d\n", J);

21 printf ("c = %c sd %0 $x\n", ¢, ¢, ¢, c);

22 printf("x = %20.17f\n", x);

23 printf("f = %20.17f\n", f);

24 printf("ff = %$20.17f\n", ff);

25 printf("s = %s\n", s);

26 printf ("\n");

27 printf ("The size of an int is %d bytes.\n", sizeof (int));

28 printf ("The size of a char is %d bytes.\n", sizeof (char));
29 printf ("The size of a float is %d bytes.\n", sizeof (float));
30 printf ("The size of a double is %d bytes.\n", sizeof (double));
31 printf ("The size of the string s is %d bytes.\n", sizeof(s));
32 return 0;




66 102 L ¥
1.00000000000000000
1.66666662693023680

= 1.G66666666666666TH
= Hello, world

size of an int is 4 bytes.

size of a char is 1 bytes.

size of a float is 4 bytes.

size of a double is 8 bytes.

size of the string s is 64 bytes.

Code 6: example variables.c (code and screen output)
Some explanation:

1. 3 =57/ 3;
the variable j is defined as type int. Therefore only integer values
can be stored in this variable. As the division of 5 by 3 equals 1.667,
only the integer part 1 is stored into variable j.

2. strcpy(s, "Hello, world");
This is a function call to the standard function strcpy that copies the
constant string “Hello, world” into the string variable s. The
preprocessor directive “#include <string.h>” was added at the
top to include the definition of the function strcpy into the program.

3. printf("c = %c $d %0 $x\n", ¢, ¢, ¢, c);
This statement prints the variable c in 4 different formats. First the
value of c is printed as a character (%3c), secondly as an integer
number in decimal format (%d). The conversion specifier $o is used
to print c as an integer number in octal format and finally $x obtains
the hexadecimal format of the same integer number.

4., sizeof
C provides the operator sizeof to determine the size in bytes of a
data type.



X

4.4 Expressions

4.4.1 Arithmetic expressions

In most C programs, one or more calculations will be needed. To this end,

the C language is equipped with a number of arithmetic operators as

summarized in Table 2.

operation operator example
addition + a+b
subtraction - a-b
multiplication * a*b
division / a/b
remainder % a%b
increment ++ i++ or ++i
decrement -- i-- or --i

Table 2: overview of arithmetic operators in C

Some remarks:

- the division of two integer numbers yields an integer number:

eg.1/2=0but1.0/2=0.5

- the remainder operand % yields the remainder after integer division:

eg.5%3 =2

As such it can only be used with integer numbers.
- the increment (decrement) operand increments (decrements) the
content of the variable with 1. Writing ++ (--) before or after the

variable yields different results:

e.g. what is the value of i and j in following code examples?

i=1; i=1;

j=1; j=1;

J=i++ J=++1i;

yields

i=2; i=2;

j=1; =2

explanation

Use the current value of i in the First increment i by 1, then use
expression (j=i), afterwards the new value of i in the
increment i by 1. expression (j=i)

Figure 9: difference between i++ and ++i

Common mistake

Attempting to divide by 0 results in a run time error that causes the

program to stop.




4.4.2 Conditional expressions
Conditional expressions evaluate to one of following results:

- true (every value different from 0 is seen as true)
- false (0)

Conditional expressions are formed by using the equality operators, the
relational operators and the logical operators as summarized in Table 3.

operator example meaning of example
equality operators
== X ==y x is equal toy
1= xl=y X is not equal to y
relational operators
< X<y x is less than y
<= X <=y X is less than or equal to y
> X >y X is greater than y
>= X>=y X is greater than or equal to y
logical operators
! Ix not x (logical not)
&& X && y x andy (logical and)
[ x|y xory (logical or)

Table 3: equality, relational and logical operators

The above operators can be combined into complex conditional expressions
as shown by the examples below.

Algebra: x€]2.0,52] or 20<x <5.2
C: 20<x && x <=15.2

Explanation: Condition to test for a leap year
C: year%4 == 0 && year%100! =0 || year%400 == 0

Common mistake

The symbols in the operators ‘=="', ‘'I=’, *<="and *>=' cannot be separated
by one or more spaces!

Common mistake

Often the equality operator ‘=="is confused with the assignment
operator ‘'=".

The expression ‘x=5" is always true since the assignment operator takes
care of assigning the value 5 to the variable x which is not equal to 0.
The expression ‘x==5"is true only if the variable x contains the value 5.



Some expressions can cause run time errors under certain specific
conditions only. E.g. the test ‘t/n > 1’ will cause the program to fail
whenever the variable n becomes equal to 0.

In C, these type of run time errors can be avoided using complex
conditional expressions. If more than one operand is used, the evaluations
will be done from left to right. Expressions further down the test will only be
evaluated if needed.

To make the test ‘t/n > 1’ error proof, it can be rewritten to:
n=08&& t/n >1 or n==0 || t/n>1

4.4.3 Precedence

If an expression contains more than one operator, C will apply these
operators in a sequence that is determined by the rules of precedence as
summarized in Figure 10. The operators that were not treated yet will be
explained in later chapters.

Highest priority )L -> .

' ++ -- - (type) *(content) &(address) sizeof

*x [ o

<< >> (shift)

& (bit-AND)

" (bit exclusive OR)

| (bit OR)

&& (AND)

Il (OR)

-~J

: (conditional operator)

= 4= -= * = /= 0/0=

Lowest priority , (comma-operator)

Figure 10: rules of precedence for operators in C



In case two or more operators with the same level of precedence occur in
one expression, the associativity of the operators is used. Most operators
associate from left to right:

1+2-3+4-5 equals (((1+2)-3)+4)-5

However, C contains some operators that associate from right to left:
- unary operators
(operators that have only 1 operand like: !, unary +, unary -, ++, --)
- assignment operators
eg. a=b=0 isinterpretedas a=(b=0)
- conditional operator (?:)

Learning note

To avoid confusion about the computation order in a complex expression,
use parenthesis () to group parts of the expression.

4.5 Assignment statements

4.5.1 The assignment operator ‘=’

To change the value stored in a variable, an assignment statement is used.
In its most general form, the assignment statement can be written as:

<variable> = <expression>

The expression on the right-hand side of this statement will first be
evaluated into a result. Afterwards, this result will be assigned to the
variable written on the left-hand side of the assignment operator.

Examples:

sum = sum + number;
y=2 * cos(x) + 4;
Common mistake

A calculation in an assignment statement must be at the right side of the
‘=" operator!



4.5.2 Arithmetic assignment operators

C provides a humber of assignment operators for abbreviating assignment
expressions. For example the statement

x = x + a;

can be abbreviated with the addition assignment operator ‘+=’ as

operator example: example: @ explanation
abbreviated standard

+= X += a x =x+ a increase x with a

-= x -= a X =X - a decrease x with a

*= X *= a X =x * a multiply x with a

/= x /= a x=x/ a divide x by a

o v o o v - % s o4 calculate the remainder of the
division of x by a

Table 4: arithmetic assighment operators

Common mistake

The arithmetic and the assignment operator cannot be separated by one or
more spaces!



4.6 Typecasting

In C, an expression has a value and a type. If for example the variables x
and y are defined to be of the integer type, the result of the expression
‘x/y’ will also be an integer. More precisely, the integer division of x by y
will be performed in which any fractional part is truncated. So, even if this
result is stored in a variable of the type float, the fractional part of the
division will be lost.

To avoid this truncation, it is sufficient to explicitly convert the variable x
into a float. This can be achieved by typecasting the variable x as follows:

result = (float)x / y;

In the above example, ' (float)x’ results in a temporary floating point
copy of the variable x. As a result, the division will no longer be an integer
division and yields a floating point result.

Actually, the division will be performed only after one extra action by the
compiler. Due to the explicit type conversion of the variable x, x and y are
now of different types. Since in C arithmetic expressions can only be
evaluated if all operands are of the same type, a temporary floating point
copy of the variable y will be made automatically, resulting in a floating
point division. The result of this division is then assigned to the variable
result.

In general explicit type conversion can be achieved by preceding the
operand to be converted by the wanted type in between parenthesis:

(type) operand

A code example showing the effect of typecasting can be seen in Code 7.

1 #include <stdio.h>

2

3 int main (void)

4 {

5 int x, y;

9 float resl, res2;

7 x =1;

8 y = 2;

9 resl = x / y;

10 res2 = (float)x / y;
11 printf ("resl = %8.4f \nres2 = %8.4f\n", resl, res2);
12 return O;

13 1}

Code 7: typecasting example




4.7 Simple input and output

4.7.1 printf ()

The standard function printf () is a very powerful function that allows
formatted printing to the screen in a flexible manner. To this end, the
function printf () can have an arbitrary number of arguments that can be
divided into 2 groups: the format control string and the other arguments.

The printf () function has the form:

printf (format control string, argumentl, argument2, ..)

The format control string starts and ends with double quotes (*”). It
contains some literal characters to be displayed, some format conversion
specifiers and some escape sequences. Every format conversion specifier
starts with %, every escape sequence starts with \ . For example:

printf (“The letter %c stands for %$s\n”, ‘a’, “alpha”);

4.7.1.1 Format conversion specifiers

The format conversion specifiers in the above example are “%c” and “%s”.
The letter ¢ stands for character, indicating that a character will be printed
instead of the “%c” sign in the format control string. The letter s stands for
string, indicating that a series of characters (=a string) will be printed
instead of the “%s” sign in the format control string. The second argument
‘a’ specifies the value to be printed instead of the first format specifier “%c”.
The second format specifier “%s” will be replaced by the constant string
“alpha”. The function printf () takes care of converting the internal
representation of the arguments into the form requested by the conversion
specifier before printing it to the screen. Table 5 shows an overview of the
most commonly used conversion specifiers.

conversion argument printed as ...

specifier

short (int) | shd integer value, decimal notation

int 5d integer value, decimal notation

int SX integer value, hexadecimal notation

long (int) | s1d integer value, decimal notation

float St real value, fixed point notation

float Se real value, scientific (exponential) notation
double 51t real value, fixed point notation

char sc individual character

string 5s string of characters

Table 5: conversion specifiers




4.7.1.2 Escape sequences

Next to conversion speficiers, the format control string can also contain
escape sequences. An escape sequence starts with the character '\’ . When
such an escape character is encountered in a string, the compiler takes the
next character into account and combines it with the backslash to
determine what to do. ‘\n’ for instance means a newline. Therefore adding
"\n’ to the format control string in the printf () function causes the cursor
to position itself at the beginning of the next line. Table 6 shows an
overview of the most commonly used escape sequences

escape description

sequence

\a Alert (audible (bell) or visual alert)

\b Backspace (cursor moves back one position)

\f Formfeed (cursor moves to start of next logical page)
\n Newline (cursor moves to beginning of next line)

\r Carriage return (cursor moves to beginning of current line)
\t Horizontal tab (cursor moves to next horizontal tab pos)
\v Vertical tab (cursor moves to next vertical tab position)
\7? Question mark

\! Single quotation mark

\" Double quotation mark

AN\ Backslash

\xdd ASCII character in hex notation

\O Null character

Table 6: escape sequences

4.7.1.3 Field widths and precision

The field width specifies the size of the field the data is printed in. This field
width can be set by inserting an integer number between the percent sign
(%) and the conversion specifier.

Examples:

%$8d field width = 8 character positions,
if the printed integer is smaller than 8 positions, the integer
will be right-aligned

%$-8d field width = 8 character positions,
if the printed integer is smaller than 8 positions, the integer
will be left-aligned

%$-40s the printed string will be left-aligned in a total field width of

40 symbols.



The function printf also enables you to set the print precision. To this end,
a dot followed by an integer number must be inserted before the conversion
specifier.

%$16.81f total field width = 16 character positions,
8 digits after the comma will be printed (leaving a maximum
of 8 digits before the comma)
if the printed number is smaller than 16 positions, it will be
right-aligned

o\

.2f print with 2 digits after the decimal point

4.7.2 scanf ()

The function scanf () allows to read formatted input from the stdin (mostly
the keyboard).

The scanf () function has the form:
scanf (format control string, argumentl, argument2, ..)

The format control string starts and ends with double quotes (*”). It
contains a sequence of 1 or more format conversion specifiers to specify
type and format of the data to be retrieved from stdin. This data is then
stored in memory locations pointed to by the additional arguments.

As a result, all additional arguments in a scanf function must be addresses.
This can be achieved by putting the operator s (= address of) before the
name of the variable. Some variable names already represent an address
(like names of strings and pointers). In those cases the « sigh must be
omitted.

Examples:

scanf (“%d%*c”, snumber) ; read an integer number from the stdin
and store it in the variable number

scanf (“$f%$f%*c”, skm, smiles); read two real numbers, store the first
one in the variable km and the second
one in the variable miles

scanf (“$1f%*c”, &ff) ; read a real number and store it as a
double in the variable £f

",S); read a string and store it in the variable
s. Note that s is a string so it is already
an address without adding the &
operator.

scanf (“%$s%*c



Remark

The ‘$*c’ at the end of all format conversion strings in the above examples
indicates that a character (in this case the <Enter>-symbol) must be read
but not saved into a variable. In this way the <Enter>-symbol is cleared
from the stdin buffer and can no longer be taken as input in a next scanf
statement.

Common mistake

All additional arguments of the scanf function must be addresses. Using a
variable name without & sign is a very common mistake! Be aware that
some variable names already are addresses (like strings and pointers).
These variables cannot be preceded by the s sign.

4.7.3 gets (), puts ()

The function

gets (argument)

reads characters from stdin until a newline or EOF character is read and
stores these characters as a string in the memory location the argument
points to. This string does not contain the ending newline character. To
make it a valid string, a null byte (\0) is automatically appended.

The function

puts (argument)

writes the string that is stored at the memory location the argument points
to, to the screen followed by a newline character.

The following example shows the difference between the function gets and
the function scanf when a string is to be read.

1 #include <stdio.h>

2

3 int main (void)

4 {

5 char s[32];

6 char t[32];

7 printf ("Enter name and first name: ");
8 gets(s);

9 printf ("Enter name and first name: ");
10 scanf ("%$s", t);

11 printf("s = %$s\nt = %$s\n", s, t):;

12 return 0;

=
w
—




Enter name and first name: Brad Pitt
Enter name and first name: Brad Pitt
s Brad Pitt

t Brad

Code 8: reading strings with gets and scanf

As can be seen in the example of code 8, the function gets reads a full line
(all characters until a newline is read), whereas the function scanf (“*%s”,
..) only reads the first string (until a white space character or newline
character is read) !

4.7.4 getchar (), putchar ()

The function getchar () reads the next character from stdin and returns it
as an integer.

The function putchar () writes 1 character to stdout.

4.8 Exercises

4.1. Write a program that asks the user to enter an integer nhumber, stores
this number in a variable of the type short (short int) and prints it
back to the screen. What values can be entered? What is the biggest
number you can enter and print correctly?

4.2. Repeat the previous exercise but this time use a variable of the type
int or long.

4.3. Write a program that
- asks the user to enter 2 integer numbers in one line
- obtains those 2 numbers using only one call of the function scanf
- prints both numbers on the next line

the screen dialogue should look like:

Enter 2 integer numbers: 17 7
The entered numbers are 17 and 7

4.4, Write a program that asks the user to enter 2 real numbers and prints
their sum and product to the screen.



4.5. Write a program that asks the user to enter 2 integer numbers and
prints the result and remainder of the integer division of both
numbers and the real quotient

the screen dialogue should look like:

Enter 2 integer numbers: 17 7
integer quotient = 2
remainder = 3

quotient = 2.43

4.6. Write a program that asks the user to enter 2 real numbers, calculates
the quotient and stores it into a variable of the type float. Print the
quotient with 20 numbers after the decimal point.

4.7. Write a program that asks the user to enter hours, minutes and

seconds separately and prints them in a sentence like:
The entered time is: hh hours mm minutes and ss seconds

where hh and mm can only be integer numbers. ss can have digits
after the decimal point

4.8. Write a program that asks the user to enter name and first name
separately and prints them on 1 line. Test your program with names
that contain white spaces (ex: Julia Rose Smith)

4.9. Write a program that asks the user to enter the radius of a circle,
calculates the surface area of that circle and prints the result to the
screen. (m can be approximated as 3.141592653589793. Define & as
a constant in your program).

4.10. Write a program that asks the user to enter a number of seconds
and prints the corresponding number of days, hours (<24), minutes
(<60) and seconds (<60).
ex: 90061 sec = 1 day 1 hour 1 minute and 1 second

4.11. Write a program that asks the user to enter 5 integer numbers one
by one. While reading the numbers, the program calculates the sum.
At the end, the mean of all 5 humbers is printed with a precision of 2
digits after the digital point. Try to limit the number of variables in
your program to 2 (or max 3) but do not introduce loops yet.

4.12. Write a program that asks the user to enter an amount of money
(e.g. 13578) in euro and prints the corresponding number of notes
(500, 200, 100, 50, 20, 10, 5) and coins (2, 1). Always use the
minimal number of notes and coins possible.

4.13. Rewrite the previous program such that cents (50, 20, 10, 5, 2, 1)
are also included (e.g. 13578,78). Be aware that the % operator can
only be used with integer operands!



4.14. Consider an electrical circuit consisting of two series resistors R1 and
R2. If a voltage U is applied to this circuit, the current flowing in this
circuit will be I = Fum according to Ohm’s law. The voltage (V2)

across the resistor R2 will then be defined by V2 =1.R2 .

Write a program that asks the user to enter the values for U, R1 and

R2 and prints the values of I and V2 to the screen.

4.15. Write a program that reads 6 integer numbers and prints them in a

table format with 3 rows and 2 columns.

the screen dialogue should look like:

Enter 6 integer numbers: 1 22 33 4 5 6

1 22
33 4
5 6

4.16. Rewrite the previous exercise such that lines are placed around the
table and in between the numbers:

Enter 6 integer numbers:

| 11 22 |
|===mmmmmm=e |
| 331 4
|====m=mm=—- |
| 51 6|

1 22 33 456

4.17. Rewrite the previous exercise with real numbers. Make sure the
decimal points are nicely aligned.

4.18. Write a program that asks the user to enter name, first name,
street, number, zip code and town name. Afterwards, the program
outputs this data in the format:

first name name
street number
zip code town



4.19. Write a program that asks the user to enter the invoice number, the
number of products ordered and the price per unit. Calculate the total
amount to be paid and print it to the screen.

the screen should look like:

Enter invoice number: 12
Enter the number of products ordered: 50
Enter the price per unit: 599

INVOICE NUMBER PRICE/UNIT TOTAL
12 50 599 29950

4.20. Write a program that asks the user to enter an integer number with
3 digits and prints the number backwards.

Enter an integer number with 3 digits: 123
The number printed backwards is: 321

Hint: 321 = 3 = 100 + 2 * 10 + 1with1=%§ ,2=§ and 3 = remainder
4.21. Write a program that prints the date of Easter for a year entered by
the user.
Easter is held on the first Sunday after the first full moon of the
spring. Easter is delayed by 1 week if the full moon is on Sunday.
According to Jean Meeus, Spencer Jones and Butcher, the Easter date
in year J can be calculated as follows (all divisions are integer
divisions):

a = remainder of the division of | by 19

J
b =100
¢ = remainder of the division of | by 100
b
d=-
4
e = remainder of the division of b by 4
b+8
- 25
b-f+1)

3
h = the remainder of the division of (19+*a + b — d — g + 15) by 30
=S
‘T4
k = the remainder of the division of c by 4
| = the remainder of the divisionof (32 + 2*xe + 2%xi — h-k)by7
_(a + 11xh + 22x*1)
- 451
h+1—-7+xm+ 114
31
day = 1 + the remainder of the divisionof (h + | — 7xm + 114) by 31

m

month =




This formula is valid for the Gregorian calendar and as such only after
1582.

Some test values:

Year Easter date
2005 March 27
2006 April 16
2007 April 8
2008 March 23
2009 April 12
2010 April 4
2011 April 24
2012 April 8
2013 March 31
2014 April 20




5 Controlling the program flow

Objectives

)
In this chapter, the different control structures in C are explained. At the e
end of this chapter you should be able to use:
- flowcharts

- selection statements (if, if ... else and switch) to select actions
- iteration statements (while, do ... while and for) to repeat actions

Normally, statements in a program are executed one by one in the order in
which they are written.

Rather often, this sequential execution needs to be broken. C provides two
groups of control statements that allow to create all possible program flows.
The first group consists of selection statements. They are used whenever a
certain statement or group of statements can only be executed in well-
defined conditions. Selection statements will be explained in section 5.2.

The second group contains the repetition statements and allows to repeat
one or a group of statements a number of times. Repetition statements will
be treated in section 5.3.

To visualize the wanted program flow, we will make use of flowcharts. This
will be handled in section 5.1.

5.1 Flowchart

As indicated in chapter 2, it is important to think before coding. Therefore,
every program writing process should start with the construction of an
algorithm. Since a picture is worth a 1000 words, it is useful to first draw a
graphical representation of that algorithm before translating the algorithm
into C code. This does not only allow to clearly show the expected program
flow, but also allows for faster detection of possible reasoning errors.

Different types of graphical representations exist in literature. In this
course, flowcharts will be used.



Since flowcharts can serve different purposes, only a small subset of
possible flowchart symbols will be used. Table 7 shows an overview of these
symbols.

symbol description

Indicates the start or end of a program
start end or function

statement represents an action or statement

represents a function call. The flowchart
subroutine of that function can then be written
separately.

true represents a test for a certain condition.

This condition can either be true or false
(yes or no). The arrow representing true
false (false) can be either of the 2 arrows.

different symbols in the correct order.

l flow lines are used to connect the

Table 7: flowchart symbols

In Figure 11 an example of a flowchart for a pure sequential program is

shown.
start

Action 2

Action 3

\ 4
stop

Figure 11: flowchart sequential program




5.2 Selection statements

C provides three types of selection statements. The first type is the if
selection statement that either performs an action if a certain condition is
met or skips the action otherwise. The second type is the if .. else
statement that allows to perform one out of two actions depending on
whether the condition is met or not. The last type (switch) allows to select
one of many possible actions.

5.2.1 The if selection statement

General form:

if (<expression>)
<statement 1>;
<statement 2>;

if the expression between parenthesis yields a number different from 0
(=true), statement 1 is executed followed by statement 2. On the other
hand, if the expression equals 0 (=false), statement 1 is skipped and
statement 2 is executed directly.

If more statements are to be executed when a certain condition is met, the
statements can be grouped into a code block:

if (<expression>)
{
<statement 1>;
<statement 2>;

}

<statement 3>;

The flowchart of the if statement is shown in Figure 12.

trueﬁ

false statement 1

v

statement 2

&
<
A

A

statement 3

Figure 12: flowchart if selection statement




5.2.2 The if .. else selection statement

5.2.2.1 General form

if (<expression>)
<statement 1>;
else
<statement 2>;
<statement 3>;

if the expression between parenthesis yields a number different from 0
(=true), statement 1 is executed followed by statement 3. If the expression
equals 0 (=false), statement 2 is executed followed by statement 3. Also in
this case, the statements 1 and 2 can be block-statements:

if (<expression>)
{
<statement>;
<statement>;

}

else

{
<statement>;
<statement>;

The flowchart now looks like:

fallse statement
statement
statement
Y
statement
\ 4
Figure 13: flowchart if ... else statement

Learning note

Note that the braces in the if statement and in the if .. else statement
are always placed right under the first letter of if (or else) and that all
body statements are indented! This improves the readability of the code!




Example:
Write a C program that reads an integer number and prints either even or
odd depending on the number read.

A first possible solution is represented by the flowchart in Figure 14. Of
course also the flowchart in Figure 15 is valid for this example. Which one
to choose is entirely up to the programmer.

read an integer read an integer
number number
false false
true true
¢ \ 4 ¢ v
print: even print: odd print: odd print: even
v \ 4
= =
Figure 14: even-odd solution 1 Figure 15: even-odd solution 2

Translating the flowchart of Figure 14 into C code yields:

1 /*

2 read an integer number and print odd or even depending on
3 the number read

4 */

5

6 #include <stdio.h>

7

8 int main (void)

9 {

10 int number;

11

12 printf ("Enter an integer number: ");

13 scanf ("$d%*c", &number);

14

15 if (number $ 2 == 0)

16 {

17 printf ("The number %d is even\n", number);
18 }

19 else

20 {

21 printf ("The number %d is odd\n", number);
22 }

23

24 return 0;

25 1}

Code 9: example even - odd solution 1




The test in the if statement should not necessarily be a logical expression.
It can be any mathematical expression as shown in Code 10. The flowchart
corresponding to this solution is represented in Figure 15.

1 /*

2 read an integer number and print odd or even depending on
3 the number read

4 */

5

6 #include <stdio.h>

7

8 int main (void)

9 {

10 int number;

11

12 printf ("Enter an integer number: ");

13 scanf ("$d%*c", &number);

14

15 if (number % 2)

16 {

17 printf ("The number %d is odd\n", number) ;
18 }

19 else

20 {

21 printf ("The number %d is even\n", number);
22 }

23

24 return 0;

25 1}

Code 10: example even - odd solution 2

In the above code the expression “number % 2” equals O if the variable
“number” contains an even value. So if an even number is entered, the
statements belonging to else are executed.

Common mistake

Often the equality operator ‘=="is confused with the assignment
operator ‘=" :

if (x = 5)

{
The statements written here will always be executed! The
expression ‘x=5’ is always true since the assignment
operator takes care of assigning the value 5 to the
variable x which is not equal to 0!

Common mistake

No semicolon (;) can be placed after the condition!

if (x == 5);

{
These statements will always be executed since the “;”
ends the if statement!




5.2.2.2 The conditional operator (?:)

The conditional operator in C is closely related to the if .. else statement.
It takes 3 operands. The first one is a condition, the second one is the value
for the entire conditional expression if the condition is true and the third
one will be used as value for the entire expression if the condition is false.

General form:

|<condition> ? <value if condition is true> : <value if condition is false>

Example:

can be written with the conditional operator as:

|z =a<b?2a+1:b-1:;

More examples:

printf ("%$4d%c", ali]l , ((i+1) % 10 2 Y " : “\n’ ) );
printf (number $ 2 ? "odd" : "even");

printf ("%d is ",year);
printf (year%4==0 && year%100!=0 || year%$400==0? "a leap year\n" : "no
leap year\n");

5.2.2.3 Nested if .. else statements.

The code-blocks inside the if statement can again contain an if .. else
statement. As such nested if .. else statements are created:

if (expressionl)
{

statement;

}

else

{

if (expression?2)

{

statement;

statement;




Learning note

Watch the indentation of the different body statements! Make sure
indentation is done correctly to avoid confusion!

An else in such a control structure belongs to the latest if that did not get
an else yet. Correct indentation can help to quickly understand which else
belongs to which if statement.

Following example shows the importance of correct indentation:

1 #include <stdio.h>

2 int main (void)

3 {

4 int number;

5 printf ("Enter integer number: ");
9 scanf ("$d%*c", &number);

7 if (number > 70)

8 if (number > 80)

9 printf ("passed with great honor!\n");
10 else

11 printf ("ok.\n");

12}

What do you expect if for instance the number 65 is entered?

The indentation chosen in the example above is misleading. It suggests that
the result for a number smaller than or equal to 70, is the text “ok” printed

to the screen. Instead, nothing will appear since the else that contains the

print statement belongs to the last if without else being if (number > 80)

Correctly indenting the else results in:

1 #include <stdio.h>

2 int main (void)

3 {

4 int number;

5 printf ("Enter integer number: ");
[ scanf ("$d%*c", &number);

7 if (number>70)

8 if (number>80)

9 printf ("passed with great honor!\n");
10 else

11 printf ("ok.\n");
12}

If the e1se must belong to the first i f, brackets need to be added:

1 #include <stdio.h>

2 int main (void)

3 {

4 int number;

5 printf ("Enter integer number: ");
6 scanf ("%d%*c", &number);

7 if (number>70)

8 {

9 if (number>80)

10 printf ("passed with great honor!\n");
11 }

12 else

13 printf ("ok.\n");




5.2.3 The switch statement
To select one of many actions, nested if statements can be used. If the
choice for the right action can be made based upon the result of an integer

expression, a switch statement is shorter and provides a clearer structure.

General form:

switch (<integer expression>)
{
case <valuel>
<0 or more statements>;
break;
case <value2>
<0 or more statements>;
break;

default:
<0 or more statements>;

}

<next statement>

The value of the integer expression is tested against the constant integral
values of every case. At the first match, the corresponding statements are
executed. If the last statement corresponding to that specific case is a
break; the execution of the switch will stop and the <next statement>
after the switch will be handled. If not, the statements belonging to the
next case will be executed.

If no match is found, the default statements are executed. The default can
be omitted. In that case, nothing will happen when no match occurs.

The switch statement can be represented by the flowchart of Figure 16.

!

switch
(integer expression)

statement block
true—» executed if value 1is —» break;
matched

false

statement block
true—» executed if value 2is —» break; >
matched

false

v

]
false

statement block
executed if no value is
matched

next statement

|

Figure 16: flowchart switch statement



Common mistake

Do not forget to put a break at the end of each case (unless the break is
left out intentionally).

Example:

Write a C program that reads a letter and prints a country name depending
on the letter read as follows: a/A = Argentina, b/B = Brazil, h/H =
Honduras, m/M = Mexico, p/P = Peru. All other letters yield the sentence
“Unknown country”.

A possible solution is represented by the flowchart in Figure 17.

start

t

declarations

}

read a letter

|

switch
(letter)

true

N

false

true. print ‘Argentina’ —>» break;

§+

false

true

¢

false

true. print ‘Brazil’ | —» break; >

false

]
false

Print *‘Unkown country”

.A_

stop

Figure 17: flowchart switch example



Translation into C code yields:

1 /*

2 read a letter and print the corresponding country
3 */

4 #include <stdio.h>

5

6 int main (void)

7 {

8 char symbol;

9

10 printf ("Enter a letter: ");

11 symbol = getchar();

12

13 switch (symbol)

14 {

15 case 'a': // letter was lowercase a
16 case 'A': // or uppercase a
17 printf ("Argentina\n") ;

18 break; // necessary to exit switch
19 case 'b':

20 case 'B':

21 printf ("Brazil\n");

22 break;

23 case 'm':

24 case 'M':

25 printf ("Mexico\n") ;

26 break;

27 case 'p':

28 case 'P':

29 printf ("Peru\n");

30 break;

31 case 'h':

32 case 'H':

33 printf ("Honduras\n") ;

34 break;

35 default: // catch all other letters

36 printf ("Unknown country\n");

37 break; // optional since switch will exit anyway
38 }

39

40 return 0;

41 1}

Code 11: example of switch

The switch in the above example can be written much shorter if we make
use of the string function “toupper () ” that converts a lowercase character

into an uppercase character:

switch (toupper (symbol))
{
case 'A':
printf ("Argentina\n");
break;
case 'B':
printf ("Brazil\n");
break;
default:
printf ("Unknown country\n");
break;

Code 12: alternative code for switch example




5.2.4 Exercises

5.2.1.

5.2.2.

5.2.3.

5.2.4.

5.2.5.

5.2.6.

5.2.7.

Write a program that asks the user to enter an integer number and
prints whether that number is positive or not (= negative or 0!).

Write a program that asks the user to enter an integer number and
prints whether that number is even or odd.

Write a program that asks the user to enter a real number and prints
whether that number lies in [5,10[ or not ([5,10[ means 5 < x < 10)

Write a program that asks the user to enter a real number and prints
whether for that number, each one of the following conditions is met
or not:

condition A: 3 < x < 8.5
condition B: x < 3 0OR54<x<7.30Rx>13
condition C: x # 3 AND x < 9.75

examples:

0 matches conditions: not A, B, C

3 matches conditions: A, not B, not C
8 matches conditions: A, not B, C

15 matches conditions: not A, B, not C

Write a program that asks the user to enter a real number and prints
whether that number is positive, zero or negative.

Write a program that asks the user to enter 5 integer numbers one
by one. While reading the numbers, the program calculates the
minimum of those numbers. At the end, this minimum is printed. Try
to limit the number of variables in your program to 2 (or max 3) but
do not introduce loops yet.

Write a program that compares your speed with the speed limit. If
you are speeding, the program will calculate your fine. If not,
nothing happens. The fine consists of a fixed amount of € 100 and a
variable amount of € 2.5 for every km over the speed limit.

The screen should look like:

Be aware! Speeding is heavily fined!

Enter your speed: 131

Enter the speed limit: 120

Your speed is 11 km/h over the speed limit.

Your fine amounts 127.5 euro.




5.2.8. Write a BMI (Body Mass Index) calculator. BMI is a measure of body
fat based on height and weight that applies to adult men and
women. It can be calculated with the following formula:

weigth in kg

BMI =
(heigth in m) * (heigth in m)

The BMI is divided into different categories:
— underweight < 18.5

- normal weight 18.5 - 24.9

- overweight 25 - 29.9

- obesity > 30

Ask the height and weight of the user, calculate his/her BMI and
print the category the user belongs to.

5.2.9. Write a program that first reads 3 integer numbers that represent
the current date and then reads again 3 integer numbers to be
interpreted as a birth date. Based upon this information the program
prints the age of that person in years and months.

Enter the current date: 6 1 2015
Enter your birth date: 25 1 1985
Your age is: 29 years and 11 months

5.2.10. Write a program that reads a start and end time, calculates
the time difference and prints it in the format hh hours mm minutes
ss seconds. You can read hours, minutes and seconds separately. If
the start time appears to be later than the end time, you can
assume the start time to be from the previous day.

examples:

start 21212 | 31218 |52345 |2100

end 31517 |31517 |71030 |4 3015

time difference | 135 0259 14645 |7 3015
5.2.11. Write a program that reads 3 numbers and prints them

ranked form small to large.

5.2.12. Write a program that reads a digit (0, 1, ... , 9) and prints this
digit as a word. If the entered number is not a digit, a warning
should be printed:

Enter a digit: 3
You have entered the digit three.

Enter a digit: 23
The number you entered is not a digit.




5.2.13. Write a program that asks the user to enter an instruction in
the format:
numberl operand number2
For the operand, the user can choose +, -, * or /. The program
calculates the mathematical result and prints it to the screen.

Tip: read the instruction with
scanf ("%£%c%f%s*c", &getall, &operand, &getal2) ;
and use switch (operand)

Enter an expression (without spaces!): 245/16
245 / 16 = 15.31

5.2.14. A gas company calculates its prices as follows:
- for a consumption < 1m3 € 20,00
- for a consumption > 1m3 € 20 for the first m3 + € 3,5/m3

for the part over 1m3
The total amount needs to be increased with a tax of 21%.
Write a program that asks the user to enter his/her consumption and
prints an invoice to the screen showing consumption, cost prince,
tax amount and total amount.

5.2.15. The equivalent resistance (Req) for 2 parallel resistors R1 and
Rz can be calculated with:
1 _ 1 + 1
Ry Ry R,

Write a program that reads the values of Ri and Rz, calculates Req
and prints it to the screen. Make sure the program also works
correctly for an Ri1 and/or Rz equal to 0!

5.2.16. Write a program that calculates the length of the third side of
a right-angled triangle based upon the lengths of the 2 other sides
and prints it to the screen. To this end, ask the user to enter the
length of all 3 sides in the order: side: sidez> hypotenuse. A zero is to
be entered for the side for which you wish to calculate the length.

(hypotenuse)? = side? + side;

5.2.17. Write a program that reads 3 integer numbers that are to be
interpreted as a date and prints the corresponding day of the week.

The day of the week can be calculated as follows:

factor
day of the week = factor - [ ] *7



where
- [X] equals the integer part of X
- day of the week is represented by 0 to 6 for Saturday till Friday.

_ _ _ year—1 _ year—1 E
factor = 365 x year + day + 31 x (month — 1) + — [( oo T 1) * 4]

valid for January and Februari

- factor = 365 * year + day + 31 * (month — 1) — (0.4 * month + 2.3) + y‘;ﬂ —
year 3
[( 100 T 1) * Z]

valid for March till December

5.2.18. Write a program that asks the user to enter the coefficients a,
b and c of a quadratic equation with general form ax? + bx + ¢ =0
and prints all real roots of this equation. Make sure the program
does not crash for certain values of the coefficients!

a b (o roots

1 1 -6 two real roots: -3 and 2

2 1 -6 two real roots: -2 and 1.5

1 1 1 no real roots

1 -4 -4 double real root: 2

0 1 1 one solution: -1

0 0 1 no solutions (inconsistent equation)
0 0 0 identity




5.3 Repetition statements

In every programming language there are circumstances were you want to
do the same thing many times. For instance you want to print the same
words ten times. You could type ten printf functions, but it is easier to use
a loop. To this end, C provides 3 repetition statements:

- for statement

- while statement

- do .. while statement

5.3.1 The for statement

The for statement is used for counter-controlled repetition. It allows to
iterate a block of statements a predefined number of times.

In its most general form, the for loop can be described as:

for (<initialization>; <test expression>; <step expression>)
{
<statement>;
<statement>;
}

<next statement>;

A counter variable is used to count the number of repetitions. At the start of
the for loop, the counter variable needs to be initialized once as expressed
in the <initialization> expression. As long as the <test expression> is
met (result # 0), the block statements are executed and the counter
variable is increased / decreased. The <step expression> describes how
the counter variable needs to be changed after every loop execution. When
the counter variable no longer matches the <test expression> (the test
yields 0), the loop is terminated and execution continues with the <next
statement> after the for loop.

In a flowchart, the for loop looks like:

|

initialisation
counter variable

—false (0) @

true (20)

-

next statement

Figure 18: flowchart for loop




Learning note

Note that the braces in the for loop are always placed right under the first
letter of for and that all body statements are indented! This improves the
readability of the code!

Example:
read 10 integer numbers and print their sum.

Figure 19 shows the flowchart of an algorithm using a for loop.

declarations

counter = 0

read integer
number

add to previous
sum

increase counter

Figure 19: flowchart for loop example

The corresponding C code and screen output are shown in Code 13.

1 # include <stdio.h>

2

3 # define REP TIMES 10

4

5 int main (void)

6 {

7 int number, counter, sum=0;

8

9 for (counter = 0; counter < REP_TIMES; counter++)
10 {

11 printf ("Enter an integer number: ");

12 scanf ("$d%*c", &number);

13 sum += number;

14 }

15

16 printf ("\nThe sum of these numbers equals: %d.\n", sum);
17

18 return 0;

=
e}
—




—_

an integer number:
an integer number:
an integer number:
an integer number:
an integer number:
an integer number:

an integer number:
an integer number:
an integer number:
an integer number:

= WA NFWN

o]

The sum of these numbers equals: 55.

Code 13: for loop example

Remark
If only one statement is to be repeated, the braces can be left out:
for (i=0; i< line length; i++)

printf (“-");
printf (“"\n”) ;

Common mistake

The counter is changed by the step expression written at the start of the for
loop. As such, the counter does not need to be changed inside the loop!

5.3.2 The while statement

The while statement is used for condition-controlled repetition. It allows to
iterate a block of statements as long as a condition remains true. In this
case it is usually not know in advance how many times the loop will be
executed. Of course, the loop must be written such that the condition will
become false at some point.

In its most general form, the while loop can be described as:

<initialization>;

while (<condition>)

{
<statement>;
<statement>;

<change condition variables>;

}

<next statement>;

Some condition variables are used to determine whether the loop needs to
be executed again or not. These condition variables need to be initialized
before the start of the while loop in the <initialization> statement. As
long as the <condition> is true (result # 0), the block statements are




executed. To avoid ending up with an infinite loop, at least one of these
loop statements needs to take care of changing the condition variables such
that in the end the condition will become false (0). When this happens, the
loop is terminated and execution continues with the <next statement>
after the while loop.

In a flowchart, the while loop looks like:

|

initialisation
condition
variable(s)

—false (m@

true (#0)

change condition
variable(s)

next statement

¢

Figure 20: flowchart of while loop

Learning note

Note that the braces in the while loop are always placed right under the
first letter of while and that all body statements are indented! This
improves the readability of the code!

Example:
read integer numbers until the number 999 is entered and print their sum.

Figure 21 shows the flowchart of an algorithm based on a while loop.

( start

L

declarations

read integer
number

number != 999

i

false

true

]

add to previous

read integer
number

print sum

( stop

.

Figure 21: flow chart while loop example



The corresponding C code and screen output are shown in Code 14:

N

0 J oUW

11
12
13
14
15
16
17
18
19
20
21
22
23
24

/*
read integer numbers until the number 999 is entered and print
their sum

*/

# include <stdio.h>

int main (void)
{

int number, sum;

sum = 0;
printf ("Enter an integer number (end with 999): ");
scanf ("$d%*c", &number) ;

while (number != 999)

{
sum += number;
printf ("Enter an integer number (end with 999): ");
scanf ("$d%*c", &number) ;

}
printf ("\nThe sum of these numbers equals: %d.\n", sum);

return O;

an integer number (end with 999):
an integer number (end with 999):
an integer number (end with 999):
an integer number (end with 999):

an integer number (end with 999):
an integer number (end with 999):

The sum of these numbers equals: 20.

Code 14: while loop example

Common mistake

(
\ ‘\X ) The condition variables need to be changed explicitly inside the while loop!
This is often forgotten, resulting in an endless loop!
o™ Common mistake
Pad
— The condition variables need to be initialized correctly before entering the

loop, otherwise the results of the program will probably be incorrect!




5.3.3 The do .. while statement

The do .. while repetition statement is similar to the while repetition
statement.

In its most general form, the do .. while loop can be described as:

<initialization>;
do
{
<statement>;
<statement>;

<change condition variables>;
}while (<condition>);
<next statement>;

In the do .. wile statement, the condition is tested after the execution of
the loop statements, whereas in the while statement, the condition is
tested first. As a result, the loop statements in a do .. while loop are
always executed at least once. In a while loop on the other hand, it is
possible that the loop statements are never executed.

Learning note

Note that the braces in the do .. while loop are always placed right under
the first letter of do and that all body statements are indented! This
improves the readability of the code!

Example 1:
read integer numbers until the number 999 is entered and print their sum.

Figure 22 shows the flowchart of an algorithm based on a do .. while loop.

declarations

Initialisations
(sum, number)

Figure 22: flow chart do ... while example 1




The corresponding C code and screen output are shown in Code 15:

1 /*

N

read integer numbers until the number 999 is entered and print
their sum

3 */

4 # include <stdio.h>

5

6 int main (void)

7 {

8 int number, sum;

9

10 sum = 0;

11 number = 0;

12

13 do

14 {

15 sum += number;

16 printf ("Enter an integer number (end with 999): ");
17 scanf ("$d%*c", &number);

18 } while (number != 999);

19

20 printf ("\nThe sum of these numbers equals: %d.\n", sum);
21

22 return 0;

23 1}

# | C:\Users\u0088734\Documents\Tempus-DESIRE\C for embedded ems\chapter5\Debug\06-exam.. : E
Enter an integer number (end with 999): &

Enter an integer number (end with 999): 4 E
Enter an integer number (end with 999): 3

Enter an integer number (end with 999): 5

Enter an integer number (end with 999): 2

Enter an integer number (end with 999):. 999

The sum of these numbers equals: 20.

Code 15: do ... while example 1

Common mistake

The semicolon at the end of the do .. while is often forgotten!

Example 2:

ask the user to choose between the symbols *1’, *2, '3’ and '4’. Keep asking

for a new choice until a valid symbol was entered.

This can be achieved by following code:

# include <stdio.h>
int main (void)
{

char choice;

do
{
printf ("Enter your choice [1, 2, 3 of 4]: ");
scanf ("$c%*c", &choice);
0 } while (choice < '1' || choice > '4");

O oW Jo Ul wN




11

12 printf ("Your choice: %c", choice);
13

14 return 0;

15 1}

Code 16: do ... while example 2

5.3.4 break and continue

break and continue statements are used to change the program flow in
loops.

5.3.4.1 break

In section 5.2.3 we discussed the use of break in a switch statement.
There the break was used to immediately stop the execution of the switch
and continue with the next statement after the switch.

A break statement can also be used in a for, while or do .. while
loop. In these cases, the break statement will immediately terminate the
execution of the nearest enclosing loop and will pass control to the
statement following that loop.

Using a break statement in a for or while loop can be represented by the
flowchart in Figure 23.

Initialisation

true

v

statements

v

- Test? _>—true—» break

false

Y.

~—

false
v

change condition
variables

]
!

next statement

Figure 23: flowchart break




Example:
read integer numbers until the number 999 is entered and print their sum.
If the sum exceeds 50, the loop must be terminated as well.

A possible solution is to use a break statement inside the loop:

1 /*

2 Read integer numbers until the number 999 is entered and print
3 their sum. If the sum exceeds 50, the program must be terminated.
4 */

5 # include <stdio.h>

6

7 int main (void)

8 {

9 int number, sum;

10

11 sum = 0;

12 printf ("Enter an integer number (end with 999): ");

13 scanf ("$d%*c", &number) ;

14

15 while (number != 999)

16 {

17 sum += number;

18 if (sum > 50) break;

19 printf ("Enter an integer number (end with 999): ");
20 scanf ("$d%*c", &number) ;

21 }

22

23 printf ("\nThe sum of these numbers equals: %d.\n", sum);
24

25 return O;

26}

Code 17: break example

A better solution in this case would be to check the sum in the condition of
the while loop. The C code for the loop then looks like:

15 while (number != 999 && sum <= 50)

16 {

17 sum += number;

18 printf ("Enter an integer number (end with 999): ");
19 scanf ("$d%*c", &number);

20 }

5.3.4.2 continue

When a continue statement is used in a for, while or do .. while loop,
the remainder of the loop statements is skipped and the next loop iteration
is performed.

In the case of a while or do .. while control structure, the loop condition is
tested immediately after the execution of the continue statement. In a for
repetition statement on the other hand, the step expression is executed
first before evaluating the loop condition.




Common mistake

Changing the loop condition variables of a while or do ..

while control

structure after the continue statement can result in an endless loop!

The continue statement can be included in a flowchart as shown below:

Initialisation

—false. Condition?

i

true

statements continue
_— T~ change condition
< ? ~—true—>| i
~_ Test? - true CEREES

~
false

i

change condition
variables

next statement

P
i

Initialisation

step expression |€—

Condition?

true

statements

= Test?  >—tru e—>

T
false

next statement

Figure 24: continue in while loop

Example:

Figure 25: continue in for loop

read integer numbers until the number 999 is entered and print the sum of

all positive numbers read.

A possible solution using a continue statement is described in Code 18:

1 /*

2 read integer numbers until the number 999 is entered and print
3 the sum of all positive numbers

4 */

5 # include <stdio.h>

6

7 int main (void)

8 {

9 int number, sum;

10

11 sum = 0;

12

13 printf ("Enter an integer number (end with 999): ");

14 scanf ("$d%*c", &number);

15

16 while (number != 999)

17 {

18 if (number < 0)

19 {

20 printf ("Enter an integer number (end with 999): ");
21 scanf ("%$d%*c", &number);

22 continue;

23 }

24 sum += number;

25 printf ("Enter an integer number (end with 999): ");
26 scanf ("$d%*c", &number);




28

29 printf ("\nThe sum of these numbers equals: %d.\n", sum);
30

31 return 0;

32}

Code 18: continue statement

Also in this case, the continue statement is not really necessary. The loop
statements could also be rewritten as follows:

16 while (number != 999)

17 {

18 if (number >= 0)

19 sum += number;

20 printf ("Enter an integer number (end with 999): ");
21 scanf ("$d%*c", &number);

22 }

Learning note

Avoid using break and continue statements in loops!

5.3.5 Loop examples

5.3.5.1 Example 1

Write a C program that reads a number of integers and prints their mean

and maximum value. To end the reading process, the user enters 999.
Make sure 999 is not taken into account in your calculations.

1 #include <stdio.h>

2 int main (void)

3 {

4 int number, sum, counter, max;

5 float mean;

6 sum = counter = 0;

7 printf ("Enter a number of integers, end with 999 \n");
8 scanf ("$d%*c", &number);

9 while (number != 999)

10 {

11 sum += number;

12 counter++;

13 if (counter == | | number > max) max = number;
14 scanf ("$d%*c", &number);

15 }

16 if (counter == 0)

17 printf ("No integers were entered! \n");

18 else

19 {

20 printf ("The maximum number is: %d \n", max);
21 mean = (float)sum / counter;

22 printf ("The mean is %8.2f \n", mean);

23 }

24 return 0;




T - H
# | CA\Users\u0088734\Documents\Tempus-DESIRE\C for embedded systems\chapter5\Debug\12-exam.. ]

Enter a number of integers, end with 999
2 5 87 3 998 -75 999

The maximum number is: 998

The mean is 170.00

Code 19: loop example 1

5.3.5.2 Example 2

Write a C program that reads a text symbol by symbol and prints the
number of symbols read and how many times the letter ‘e’ or ‘E’ occurs in
the text. To end the reading process, the user enters <Ctrl-Z><Enter>
(EOF).

To solve this problem, we will make use of the function getchar () that
reads 1 symbol and returns the ASCII value of that symbol. If <Ctrl-
Z><Enter> is entered, getchar will return EoF (defined as -1 in stdio.h).

1 #include <stdio.h>

2 int main (void)

3 {

4 char c;

5 int number symbols = 0;

6 int number e = 0;

7 printf ("Enter a text, end with <ctrl-Z><Enter> \n");
8 c = getchar();

9 while (¢ != EOF)

10 {

11 number symbols++;

12 if (c == 'e' || ¢ == 'E') number e++;

13 c = getchar();

14 }

15 printf (" \n\n");

16 printf ("%d symbols read, ", number symbols);

17 printf ("%d symbols were \'e \' or \'E \'\n", number e);
18 return 0;

19 1}

i —
m: C:\Users\u0088734\Documents\Tempus-DESIRE\C for embedded systems\chapter5\Debug\13-exam.. LE.L[

Enter a text, end with <ctrl-Z><Enter>
I love programming in C. Even if it gets hard sometimes!

57 symbols read, & symbols were ‘e ' or 'E °

Code 20: loop example 2




e

5.3.6 Exercises

5.3.1.

5.3.2.

5.3.3.

5.3.4.

5.3.5.

5.3.6.

Write a program with only 1 variable, that prints the humbers -3, -1,
1, 3,5, ..., 25, comma separated to the screen. Nothing needs to be
read from the keyboard.

Write a program that asks the user to enter an integer number and
prints the multiplication table of that number

The screen dialog should look like:

Enter an integer number: 7

The table of multiplication of 7 is:
1 x 7 =7

2 x 7 =14

20 x 7 =140

Write a program that asks the user to enter an integer number n and
prints the sum 1+2+3+4+...+n.

Write a program that prints a filled square to the screen by printing
22 lines of 40 black rectangles (the ASCII code for a black rectangle
is 219).

Write a program that first asks the user to enter an integer number.
Afterwards more integers are asked until the sum of those integers
equals or exceeds the first number entered.

Enter the limit: 15
Enter an integer number:
Enter an integer number:

o B W

Enter an integer number:
Enter an integer number: 5
The limit of 15 is reached or exceeded!

Write a program that asks the user to enter an integer number in the
interval [-2, 4.5[ (i.e. -2 < number < 4.5) and prints it to the screen.
If a wrong number is entered, a new number must be requested until
a valid number is entered.



5.3.7. Write a program that asks the user to enter an integer number in the
interval [-30 , 30]. Make sure only valid numbers can be entered!
This number is then printed as a bar graph made out of * symbols.
Negative numbers are drawn from the middle to the left, positive
numbers are drawn from the middle to the right. Points are used to
fill up the empty places. The entered number itself is printed in the
end.
Repeat the program until a 0 is entered.

number: 12

number: 0

5.3.8. Write a program that sums 10 numbers entered by the user and
computes the mean of those 10 numbers. Try to use only 3 variables
in your program. Calculate the sum while reading the numbers.

5.3.9. Write a program that prints the mean of a number of integers. The
exact number of integers is not known upfront. If the number 999 is
read, the program stops reading new numbers. 999 cannot be taken
into account for the calculation of the mean.

5.3.10. Write a program that reads a natural number n, calculates n!
and prints the result to the screen.
ol=1

nl=1x2x3x..xnwithn>0

5.3.11. Write a program that reads 2 numbers: a base b (b € R) and
an exponent n (n € N). Afterwards, the exponentiation b" is
calculated and the result is printed to the screen. Calculate b™ with a
loop. Do not use a standard function.

5.3.12. Repeat exercise 5.3.11 but with n being an integer (both
positive and negative values are possible).

5.3.13. Write a program that prints the minimum and maximum
value of 10 numbers entered by the user. Use only 4 variables in
your program.



5.3.14. Repeat exercise 5.3.13 but this time also print when the
minimal and maximal number were entered.

Enter 10 numbers: 5 98 6 -5 78 -20 4 6 8 2
maximum: 98 at place 2
minimum: -20 at place 6

5.3.15. Write a program that calculates the greatest common divisor
of 2 positive integers. Use Euclid’s algorithm to determine the gcd. In
this algorithm, the biggest number is replaced by the difference of
both numbers. Repeat this until both numbers are equal. This
number is the gcd. Print the gcd and all intermediate steps.

Enter 2 positive integer numbers: 114 90

114 90
24 90
24 66
24 42
24 18

6 18
6 12
6 6

The gcd of 114 and 90 equals 6.

5.3.16. Write a program that draws a tower upside down using the
ASCII character 219 (B). The tower consists of a sequence of
squares. The top square has a side defined by the user. The next
square is 2 blocks smaller, the next one is again 2 blocks smaller, ...
New towers are drawn until the user enters ‘n’.

This program builds a tower upside down!

How wide should the tower be?
(enter an odd number between 3 and 15)
7

Do you want to build another tower? (y/n) y
How wide should the tower be?




5.3.17. Write a program that draws a zigzag line until the user enters
'n’ to stop. The first portion of the line is made out of a number of
blocks determined by the user. The next portion is only half that
length, ... If the user wants to draw several zigzag lines, make sure
they are all well positioned and drawn correctly.

Welcome to ZIGZAG world!
How wide do you want your ZIGZAG line?
Enter a number between 3 and 60: 20

/

%

M
’

Do you want to draw another ZIGZAG line? (y/n) n

5.3.18. Write a program that determines the maximum out of 10
numbers entered by the user. The program also prints the number of
times the maximal value was entered.

5.3.19. Write a program that asks the user to enter a positive integer
and prints all rows of consecutive positive integers with a sum equal
to the first integer entered.

Enter an integer > 0: 87 Enter an integer > 0: 64

87 is the sum of: 64 is the sum of:
12 13 14 15 16 17 no solution
28 29 30

43 44




6 Functions
Objectives

In this chapter you will learn to write more complex programs using
functions. Both, the built-in standard functions as well as programmer-
defined functions, will be discussed.

As a special case, the generation of random numbers will be treated.

You will learn how to pass information to and retrieve information from a
function. Attention will also be given to the scope of variables used in the
different functions of your program.

Most computer programs are built to solve more complex problems than the
ones we have treated so far. To develop a computer program for complex
problems, it is good practice to divide the problem into smaller and more
manageable sub-problems or modules. Then, for each of those modules, an
algorithm must be written and translated into C code.

To support this process of structured programming, C provides the concept
of functions. At least one function is always present in every C program:
the main () function! A function in Cis a block of code that performs a task
and then returns control to a caller. It has its own name and can be called
from different places in the program. As such, functions can also be used to
avoid repetition of code.

C provides 2 types of functions: standard functions and programmer-
defined functions. Both types of functions will be discussed in this chapter.

6.1 Standard functions

The C standard library provides a lot of functions that perform common
mathematical calculations, string manipulations, input/output, and many
other useful tasks. In this section, we will discuss only a few of these
libraries. It is worthwhile to look into the full set of standard functions
provided.

Like everything in C, functions need to be declared before they can be used
in a program. The declarations of standard functions are grouped into
header files (one header file per standard library). This is why we have
included “<stdio.h>" in all previous programs. This header file contains
the declarations of functions like printf (), scanf (), ...

The function definitions are inserted by the linker that will look for the
correct definitions in the corresponding library. For the functions printf (),
scanf () for instance, this will be the stdio library.



6.1.1 Mathematical standard functions

The mathematical standard functions supported by C are grouped into the

standard library “math”.

To include the necessary function declarations, the header file "math.h”

needs to be included in the program.

Table 8 shows an overview of the most commonly used math functions

provided:
Function declaration description example
double cos (double x); cos(x) (x inradians) cos (g) =0.0
double sin(double x); sin(x) (x in radians) sin (g) =1.0
double tan(double x); tan(x) (x in radians) tan (%) =1

double acos (double x);

arccos(x) (res in radians)

acos(1.0) = 0.0

double asin (double x);

arcsin(x) (res in radians)

asin(0.0) = 0.0

double atan (double x);

arctan(x) (res in radians)

atan(0.0) = 0.0

double atan2 (double vy,

double Xx);

arctan (%) (res inradians)

atan(1,4) = 0.24

double exp (double x);

ex

exp(1.0) = 2.718

double log(double x); In(x) log(2.718) = 1.0
double 1loglO (double x); log(x) log(1000) =3
double pow(double x, double y); xY pow(2,5) = 32.0
double sqgrt (double x); Vx sqrt(9.0) = 3.0
double floor (double x); !‘ounds x to the largest | floor(123.54)
integer < x =123.0
i1(123.54
double ceil (double x); rounds x to the ceil(123.54)
smallest integer > x =124.0

double fabs (double x);

absolute value of x

(Ix1)

fabs(—2.5) = 2.5

Table 8: math library functions

Learning note

The function pow uses calculation methods that need a lot of computations.
Therefore, do not use the function pow for simple exponentiations like x?

and x3. Use x * x or x * x * x instead.




Example:
Write a program that prints a table with the cosine of all angles between 0°
and 360°. Change the angles with steps of 30°.

This problem can be solved as indicated by the flowchart of Figure 26:

print table header

true

convert to radians
I

print table line
angle + 30 deg

Figure 26: flowchart standard function cos example

The corresponding C code and screen output are shown in Code 21.

1 /*

2 this program prints the cosine of angles between 0 and 360
3 degrees

4 */

5 #include <stdio.h>

6 #include <math.h>

7 #define M PI 3.14159265358979323846

8

9 int main (void)

10 {

11 int degrees;

12 double radians, res;

13

14 printf (" x | cos(x) \n");

15 printf (" -—-----—-----———- \n") ;

16

17 for (degrees = 0; degrees <= 360; degrees += 30)
18 {

19 radians = (double)degrees*M PI / 180;
20 res = cos (radians);

21 printf (" %3d | 7.4f \n", degrees, res);
22 }

23

24 return 0;

[\
[&)]
—




Code 21: example math standard library

The line “#include <math.h>” takes care of including all math function
declarations into the program. As a result, the cosine function can now be
used.

To use a function, simply write the name of that function followed by
parenthesis (). If the function used requires one or more inputs
(=arguments), these arguments need to be placed in between the
parenthesis in the order specified by the function declaration.

With the line “res=cos (radians) ; 7, the math standard function “cos” is
called to compute the cosine of the angle “radians”. Remark that radians
is a variable of the type double. This is needed since the cosine function
takes a double as argument as can be seen in the function declaration. The
assignment operator “=" takes care of assigning the result of the cosine
calculation to the variable res. Also this variable needs to be of the type
double as dictated by the function declaration.

The line “#define M PI 3.14159265358979323846” defines M PI to be
equal to 3.14159265358979323846. The precompiler will replace every

M PI in the program by this number. Commonly used mathematical
constants are also defined in "math.h” To use them add

“#define USE MATH DEFINES” before the line “#include <math.h>”. The
explicit definition of M _PI in the program is now no longer needed.

6.1.2 Other standard functions

In this section an overview of the most commonly used functions of some
standard libraries will be given.

6.1.2.1 Functions for string manipulations <string.h>

int strlen(char *s);

int strcmp (char *s, char *t);

int strncmp (char *s, char *t, int n);
char *strcpy(char *s, char *t);

char *strncpy(char *s, char *t, int n);



char *strcat (char *s,
char *strncat (char *s,
char *strchr (char *s,

char *t);
char *t,
int ch);

int n);

6.1.2.2 Functions for character handling <ctype.h>

isalnum(int
isalpha (int
iscntrl (int
isdigit (int

int (

(

(

(
isgraph (int

(

(

(

(

int
int
int
int
int
int
int
int

islower (int
isprint (int
ispunct (int
isspace (int

I

I

I

’

’

I

I

’

ch
ch
ch
ch
ch
ch
ch
ch
ch
ch

int
int
int
int

isupper (int
isxdigit (int c
tolower (int ch
toupper (int ch

)7

I

I

)
)
)
)
)
)
)
)7
)
)
h
)
)

6.1.2.3 Standard lib functions <stdlib.h>

double atof (char *s);
int atoi(char *s);
long atol (char *s);
exit (int status);

int system(char *s);
int abs (int n);

long labs(long n);
int rand(void);

6.1.2.4 More C libraries

error handling

floating point precision
signals

special types

dates and time

<errno.h>
<float.h>
<signal.h>
<stddef.h>
<time.h>

6.1.3 Generation of random numbers

To generate a random number, the C standard library function rand (),
declared in the header file stdlib.h, can be used. This rand () function
generates a random integer between 0 and RAND MAX (a constant defined in
stdlib.h).

To demonstrate the rand () function, let’s write a program that prints 10
random integers ranging from 1 to 100.

Simply using the function rand () results in integers that can be much
larger than 100! To limit the numbers to 100, the rand () function output
needs to be scaled down. This can be accomplished by computing the
remainder of the integer division by 100:

rand () %100



resulting in an integer number ranging from 0 to 99. Shifting this result to
the interval [1, 100] can then be done by adding 1:

rand () %100 + 1

The program that prints 10 of these random numbers can then be written
as shown in Code 22:

1 finclude <stdio.h>

2 #include <stdlib.h> //contains definition of rand()
3

4 int main (void)

5 {

6 int i;

7 for (i = 0; i<10; i++)

8 printf ("%$41d", rand() % 100 + 1);
9 printf (" \n");

10 return 0O;

11 }

| C:\Users\u0088734\Documents\Temp
= ocume

42 68 35 1 70 25 79 59 63 6

Code 22: random number generation

Executing the program of Code 22 again produces:

H_J C:\Users\u0088734\Documents\Tempus-DESIRE\C for embedded sys

1=
¥ 42 68 35 1 70 25 79 59 63 65 -

So it appears that these numbers are not that random after all! Actually,
the function rand () generates pseudo-random numbers. Calling the rand
function repeatedly produces a series of numbers that appears to be
random. However, this sequence is repeated each time the program is
executed. This pseudo-random behavior is very useful during the debug
stage of a program. It is needed to reproduce and effectively solve possible
programming errors.

However, once a program is debugged, it should be possible to generate
true random numbers. To this end, the function srand () can be used. This
function takes an unsigned integer as input and determines a starting value
or seed for the rand () function. Different values for the seed parameter,
will result in different series of random numbers. As such, to obtain
different results each time the program is executed, the seed needs to be
changed in every run. This can be done automatically be using the function
time (NULL), that will return the number of seconds elapsed since 0 o’clock
January 15t 1970. The function time () is declared in the header file time.h.




Including the function srand () in the example of Code 22 results in:

1 #include <stdio.h>

2 #include <stdlib.h> //needed for the functions rand() and srand()
3 #include <time.h> //needed for the function time ()
4

5 int main (void)

6 {

7 int 1i;

8 srand (time (NULL) ) ;

9 for (i = 0; 1<10; i++)

10 printf ("%$44d", rand() % 100 + 1);

11 printf (" \n");

12 return O;

13 1}

Code 23: usage of srand () function

Executing this program several times results in different screen outputs as
can be seen in Figure 27.

15 38 37 91 B5 B4 B9 51 37 27

EW“"“* Debug\voorbeel...

29 85 91 39 28 27 32 108 87 53

Figure 27: random number generation using srand()

Example:

Write a program that picks a random number in the interval [1,100]. The
user needs to guess the number chosen. If the guess was too high or too
low, the program prints “too high” or “too low” respectively. If the guess is
correct, the program prints the number of guesses needed to find the secret
number.

1 /*

2 game: guess the secret number
3 */

4 #include <stdio.h>

5 #include <stdlib.h>

6 #include <time.h>

7

8 int main (void)

9 {

10 int secret, number;

11 int counter;

12

13 counter = 0;

14 srand (time (NULL) ) ;

15 secret = rand() % 100 + 1;

16 printf ("Search the secret number in the interval [1,100] \n");




17 do

18 {

19 printf ("Try your luck: ");

20 scanf ("$d%*c", &number) ;

21 counter++;

22 if (number > secret) printf ("Your guess was too high!\n");
23 if (number < secret) printf ("Your guess was too low!\n");
24 } while (number != secret);

25

26 printf ("\nYou needed %d guesses to find the secret number!\n",
27 counter) ;

28 return O;

29 1}

Code 24: guess the secret number

6.2 Programmer-defined functions

Next to the provided standard functions, programmers can use self-defined
functions to accomplish specific tasks that were not included in the standard
libraries. Using self-defined functions is needed to split the problem in sub
problems, to avoid code repetition and to be able to reuse code in different
programs.

Every function can be described as a black box, that takes inputs or

arguments and has a certain result or return value. This function principle is
shown in Figure 28.

arguments return value
——= function )

Figure 28: general function principle

Like standard functions, also custom functions need a declaration and a
definition. The declaration needs to be written before the first function call
and contains the function name and the types of the return value and
parameters or inputs of the function:

return-value-type <function name>(list of parameter types);

The function definition can be written anywhere in the code. The format of a
function definition is:

return-value-type <function name>(list of parameters + their types)

{

statements;

}




Learning note

To avoid compile errors and to keep the code well-structured always adhere

to following style rules:

- write the function declarations in the beginning of the source code,
before the main function definition.

- write the custom function definitions after the main function definition.

Once the function declaration and definition are written, the function can be
called from everywhere in the program. Like standard functions, custom
functions are called using the function name followed by parenthesis. If
arguments are to be passed on to the function, these arguments are put in
between the parenthesis.

A flowchart showing the program flow when a function is used is shown in
Figure 29:

(/start main\w

start \
)4 function )

declarations v
/

v declarations
/
statements // i
/
/ statements
/
I function call

___________ (stop function)

- _
( stop main\w

N

N

Figure 29: function flowchart

To increase the readability of the flowcharts, the dotted lines will be left out
from now on!

6.2.1 Void functions without parameters

Void functions are functions without return value. In its most general form,
a void function without parameters can be described as:

void <function name>(void) ;

To indicate that there is no return value, the function name is preceded by
the word void. Simply omitting a return-value-type will result in the
assumption of an integer return value. As such, the word void before the
function name is absolutely necessary to indicate that no return value will
be present. In the same way, the word void is used in between the
parenthesis following the function name to indicate that no parameters are
needed.



Example:
Write a program that prints several lines of 60 ‘-’ characters.

1 #include <stdio.h>

2 #define LINELENGTH 60

3

4 void line (void); /* function declaration */
5

6 int main (void)

7 {

8 line () ; /* function call */
9 line () ;

10 line () ;

11 return O;

12 }

13

14 wvoid line(void) /* function definition */
15 {

16 int 1i;

17

18 for (i=0; i<LINELENGTH; i++)

19 {

20 printf (“-");

21 }

22

23 printf (“M\n”) ;

24 }

# | C\Users\u0088734\Documents\Tempus-DESIRE\C for embedded systems\chapterb\Debug\exa

Code 25: example void functions without parameters

6.2.2 Void functions with parameters

In many cases, the caller needs to pass information to the function. This is
done by the use of function parameters that are written between
parenthesis after the function name. These parameters can then be used as
local variables inside the function. In the function definition, every
parameter is given a name and type resulting in:

void <function name>(type parl, type par2, ..)

{

statements;

}

The function declaration only contains the types of the different
parameters:

|void <function name>(type, type, ..);

When the function is called, the parameters in the function definition are
replaced by real arguments. Every argument is an expression that is
evaluated during the function call. The resulting argument value is then
used to initialize the formal parameters.



Example:
Write a program that prints several lines made out of *-’ characters. The line
lengths can vary.

1 /*

2 Use function to print out a line with different lengths
3 */

4

5 #include <stdio.h>

6

7 void line (int); /* function declaration */
8

9 int main (void)

10 |

11 line (10); /* function call */

12 line (20);

13 1line (30);

14 line (40);

15 line (50);

16

17 return O;

18 }

19

20 wvoid line(int length) /* function definition */
21 |

22 int 1i;

23

24 for (1 = 0; 1 < length; i++)

25 printf("-");

26

27 printf ("\n");

28 }

| CAUsers\u0088734\Docum DESIRE\C for embedded systems\chapter6\Deb

Code 26: example void function with parameters
The function declaration
void line (int);

tells the compiler that the function with name “1ine” has no return value
(void) and expects an integer value as input (int).

The function 1ine is called with the statement “1ine (40);"”. The argument
value 40 is copied to the argument length inside the function 1ine. In this
function, the for loop takes care of printing the correct amount of “-”
characters.




6.2.3 Functions with return value.

As shown in Figure 28, a function can also produce a result that needs to be
given back to the function caller. This function result is called the function-
return-value and is written before the function name in both the function
declaration and the function definition.

Example:
write a program that reads a real base and a non-negative integer exponent
and calculates the exponentiation.

1 /*

2 example of function with return value

3 */

4

5 #include <stdio.h>

6 double exponentiation (double, int); /* function declaration */
7

8 int main (void)

9 {

10 double a, m;

11 int n;

12 printf ("Exponentiation \n");

13 printf ("Enter base: ");

14 scanf ("$1f%*c", ¢&a);

15 printf ("Enter (non-negative) exponent: ");
16 scanf ("%$d%*c", &n);

17 m = exponentiation(a, n); /* function call */
18 printf ("The result is %$16.8f \n", m);

19 return 0;

20 1}

21

22 /* function definition */
23 double exponentiation (double base, int exponent)

24

25 double result = 1.0;

26 int 1i;

27 for (i = 0; i<exponent; i++)
28 {

29 result *= base;

30 }

31 return result;

32}

1_'] Ch\Users\u0088734\Documents\Tempus-DESIRE\C for embedde

Exponentiation
Enter base: 2

Enter (non-negative) exponent: 3
The result is 8.00000000

Code 27: example function with return value

The statement “return result;” inside the function exponentiation,
returns the result to the function main where exponentiation was called.
In this example, this result is assigned to the variable m.




(._

Remark

When the return statement is executed, the return value is passed back to
the caller function. On top, the program execution returns to the caller
function!

As a result, statements written after the return statement in a function will
be ignored!

6.3 Storage classes and scope of variables

Every variable has its own storage class and scope. The storage class
indicates how long a variable remains valid while the scope gives
information on where the variable can be accessed.

6.3.1 Storage class auto — local variables

Auto variables have automatic storage duration, meaning that they will be
created upon entrance of the block in which they are defined, exist while
the block is active and are destroyed when that block is exited.

The scope of these variables is local to the block in which they are defined.
No block outside the defining block has direct access to automatic variables!

These variables may be declared with the keyword auto but this is not
mandatory. If no storage class is written, the class auto is used as well. As
such, if no keyword is added, the variables defined in a function have a
scope local to this function!

6.3.2 Storage class extern — global variables

External variables have static storage duration, meaning that memory will
be allocated when the program execution starts and will remain allocated
until the program terminates.

An example of external variables are global variables. These variables are
created by placing the variable declaration outside any function. In this
case, the keyword extern does not need to be added. The variable will be
external by default.

The scope of global variables is the entire source code following the
declaration. If these variables are not initialized in the declaration, they will
be initialized to zero automatically.

Learning note

Global values can be accessed and altered from everywhere in the program!
Therefore avoid using global variables!!



The program in Code 28 demonstrates the difference between local and
global variables. Note that, when entering the function, the local variable a
belonging to the function has priority over the global variable a. Since the
variable b is not declared inside the function, every calculation or
assignment done with that variable, refers to the global variable b.

1 /*

2 Program with global and local variables

3 demonstration of the "scope" of a variable

4 */

5 int a, b; /* global variables */

6 void f(void); /* function declaration */

5

8 int main (void)

9 {

10 a = 5;

11 b =17;

12 printf ("in the main function a = %d and b = %d \n", a, b);
13 £0);

14 printf ("after the function call a = %d and b = %d \n", a, b);
15 return 0;

16 }

17

18 wvoid f(void)

19 |

20 int a; /* local variable, the global var “a” is invisible */
21 a = 15;

22 b=17;

23 printf ("in the function a = %d and b = %d \n", a, b);

24 1}

stems\chapter6\Debug\example...

in the main function a = 5 and b
in the function a = 15 and b = 17
after the function call a = 5 and b

Code 28: difference between global and local variables

Learning note

To maximize the reusability of functions, avoid all external dependencies in
functions. This can be accomplished by using local variables only. Do not
use global variables.

6.3.3 Storage class register

This is a special case of the storage class auto. If the word register is
written in front of a variable declaration, it suggests the compiler to allocate
an automatic variable in a high-speed CPU-register, if possible.

Of course, this only makes sense if speed is of outmost importance for that
variable.




Example:

1 /*

2 Program with a register - variable
3 */

4 #define LIMIT 1000

5

6 int main(void)

7 {

8 register int i; /* local variable of type register*/
9 for (i = 0; i<LIMIT; 1i++)

10 {

11 printf ("%$8d", 1i);

12 }

13 return 0;

14 )

Code 29: register storage class

6.3.4 Storage class static

Like variables of the storage class extern, also static variables have a
static storage duration, meaning that memory will be allocated when the
program execution starts and will remain allocated until the program
terminates.

The scope of these variables is often (but not necessary) limited! If a
static variable is defined in a block, the scope of that variable is identical
to the scope of automatic variables. Therefore, the variable will keep on
existing after the execution of the code block, but none of the other code
blocks can access that variable.

Static variables are initialized only once!

Code 30 shows an example of static variable usage.

1 /*

2 example with a static variable
3 */

4

5 void f (void);

6

7 int main (void)

8 {

9 £0) 7

10 £0) 7

11 £0)7

12 return 0;

13 }

14

15 wvoid f(void)

16 {

17 static int 1 = 5; /* static variable (local to function f) */
18 printf("i = %d \n", 1i);

19 i++;

20 1}




® | C\Users\uD088734\Documents\Tempus-DESIRE\C for embedded sysi

Code 30: storage class static

6.4 Structured programming example

Write a program that reads the coefficients a, b and c of the quadratic
equation ax? + bx + ¢ = 0 and prints the roots.

To solve this problem, we will divide it in several smaller sub problems:
- if the coefficient a = 0, the equation is reduced to a linear equation. We

will write a separate function to solve linear equations and one to solve
quadratic equations. This is represented in the flowchart below:

declarations

read coefficients

equation

false

linear
equation

Figure 30: structured programming example main function

- The algorithm needed to solve a linear equation is shown in Figure 31:

‘,/étart linear
equation

/E:/c;eff of x # \ﬁ\ktrue calculate solution
/
_—
false
<</ cte#0 >>——true false equation

~_—

false

identical equation

‘/stop linear
equation

Figure 31: structured programming example function linear equation

}ﬁ /
\




To solve a quadratic equation, the discriminant needs to be calculated.
Depending on the value of the discriminant, we have 2 real, 1 real or 2
complex roots. Also these parts can be written in separate functions:

/" start \

( quadratlc )

\ equatlon/

< D>0 >—true II
false
< ;:\ %true II
false
\ roots
\‘/
false
/stop I\near\
\equatlon /

Figure 32: structured programming example function quadratic equation

Finally, the 3 last functions can be visualized as follows:

,/ start 2 \\

start 2 real
roots

start 1 real
root

complex |
roots

declarations

declarations

declarations

l

|

l

calculate roots

calculate root ‘

calculate roots

|

|

|

print roots print root print roots
/" stop 2
stop 2 real stop 1 real ( czniglex ‘
roots root \ o )

Figure 33: structured programming example functions root calculation

Translating into C code results in:

1 /*

2 solving a quadratic equation

3 */

4

5 #include<stdio.h>

6 #include<math.h>

7

8 /* function declarations*/

9 void linear (float, float);

10 wvoid quadratic(float, float, float);

11 wvoid tworealroots (float, float, float);
12 wvoid oneroot (float, float);

13 wvoid twocomplexroots (float, float, float);

—
N




15 1int main(void)

16 |

17 float a, b, c;

18 printf ("Solving a quadratic equation. \n");
19 printf ("Enter the coefficients a, b and ¢ ");
20 scanf ("$f%£f$f%*c", &a, &b, &c);

21

22 if (a)

23 {

24 quadratic(a, b, c);

25 }

26 else

27 {

28 linear (b, c);

29 }

30

31 return 0;

32}

33

34 /* function definitions */
35 /* function to solve the linear equation ax+b=0 */
36 void linear(float a, float b)

37 {

38 if (a)

39 {

40 printf ("linear equation with solution: %f \n", -b / a);
41 }

42 else

43 {

44 if (b) printf ("False equation \n");
45 else printf ("Identical equation \n");
46 }

47 }

48

49 /* function to solve a true quadratic equation*/
50 void quadratic(float a, float b, float c)

51 {

52 float d;

53 d=Db *b-4*a*c;

54 if (d > 0) tworealroots(a, b, d);

55 if (d == 0) oneroot(a, b);

56 if (d < 0) twocomplexroots(a, b, d);

57 }

58

59 wvoid tworealroots(float a, float b, float d)

60 |

6l float sqrt d, x1, x2;

62 sqrt d = sqgrt((double)d);

63 x1 = (b + sqrt d) / 2 / a;

64 x2 = (-b - sqrt d) / 2 / a;

65 printf ("Two real roots: %$f and %f \n", x1, x2);
66 }

67

68 void oneroot (float a, float b)

69 {

70 printf ("One root %f \n", -b / 2 / a);

71}

72

73 wvoid twocomplexroots (float a, float b, float d)
74 |

75 float re, im;

76 re =-b / 2/ a;

77 im = sqgrt((double) (-d)) / 2 / a;

78 printf ("2 complex roots: $f+%fi and %f-%fi \n",re,im,re,im);
79 1}

Code 31: structured programming example




6.5 Exercises

6.1. Write a program that reads an angle in degrees and prints the
corresponding sine. You can use standard functions.

6.2. Write a program that prints a table with 2 columns. The first column
contains all angles from 0 till 360 degrees with steps of 30 degrees. The
second column contains the corresponding sine values.

6.3. Write a program that calculates the square root of a number entered
by the user.

6.4. Write a program that reads the lengths of the sides a and b of a
right-angled triangle and prints the length of the hypotenuse c and one
of the acute angles.

examples:
input: 2 1 output: 2.24 63°
input: 1 1.732 output: 2.00  60°

6.5. Write a program for a guessing game. First a random number
between 1 and 100 is chosen by the program. Afterwards, the user can
start guessing. If the guess was too high or too low, the program needs
to print “too high” or “too low"”. This is repeated until the number was
found. In the end, the program prints how many guesses the user
needed to find the secret number.

6.6. Write a program that prints a table with 2 columns. The first column
contains x values from -5 till +5 with a step of 0.5. The second column
contains the corresponding y values according to the equation

y=2x?+2x-3
Make sure the calculation of the y values is done in a separate function.
6.7. Write a function with header:

void printline( int number, char c)

that prints a line of number symbols c followed by a newline character.
Write a main program that calls this function several times with different
parameters.

example: the statement
printline (40, ‘*’);

results in
P I b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b i b4



6.8. Write a function that reads an integer number in the interval [0, 10]
and returns that number as function return value. If the number is not
in the correct interval, the function needs to ask a new number until a
correct value was entered.
The main program is something like:

int main (void)
{
int number;
number = readnumber () ;
printf (“"The number read is %d\n”, number) ;
return 0;

make sure you write the declaration of the function readnumber ()
before the main function and the definition of the function after the main
function.

6.9. Write a function with header:

int readnumber (int lower boundary, int upper boundary)

that reads an integer number in the interval [lower_boundary,
upper_boundary] and returns that number as function return value. Also
in this case, the function can only stop asking an integer number if a
correct value was entered.

Write a main function that calls this function and prints the resulting
number.

6.10. Write a function with header:
double exponentiation (double base, int exponent)

that returns base®*?°"ent as function return value.

Write a main function that reads a base and exponent, that calls the
function exponentiation and that prints the result. Do not use the
standard function pow!

6.11. Write a function with header:
int gcd(int numberl, int number?2)

that returns the greatest common divisor of the numbers numberl and
number2 as function return value.

Write a main program that reads 3 integer numbers, calculates the gcd
of those 3 numbers and prints the result.

Hint: gcd(a, b, c) = gcd( a, gcd(b, c))



6.12. Write a program that reads a number of scores. The scores are all
positive integer numbers. A negative number is entered to indicate that
all scores were entered.

For each score, a bar with a length equal to the score is drawn. To this
end, a predefined symbol needs to be printed as many times as the
score. (for loop).

Write a function draw bar that takes a score as input and draws a bar
with corresponding length. The scores and the wanted symbol are read
in the main function.

The screen dialog should look like:

Enter scores: 2 12 18 3 -5
What symbol would you like to use? =

score = 2 ==
score = 12 ==—=—=========
score = 18

score = 3 ———

6.13. Write a program with the functions:
- hello: that welcomes the user and explains what is expected
- main: that asks the user to enter 5 times 2 numbers
- sum: that asks the user to enter the sum of the previously entered
numbers and gives feedback to the user
- goodbye: that thanks the user for his/her cooperation

Welcome, this program will ask you to solve 5 sums.

enter 2 numbers < 100: 15 16

what is the sum of 15 and 16?2 31

according to you, the sum of 15 and 16 equals 31. That
is correct

enter 2 numbers < 100: 26 32

what is the sum of 26 and 32?2 50

according to you, the sum of 26 and 32 equals 50. That
is not correct

Thanks for your cooperation.




6.14. Since a year is not exactly 365 days, we have a leap year once every
4 years except if the year is dividable by 100. If the year is dividable by
400, the year is considered as a leap year anyway.

Write a function with header:

int isLeapYear ( int year)

that determines if a year is a leap year or not and gives a different
function return value for both cases.

Write also a function with header:

int numberOfDays (int month, int year)

that calculates the number of days in the month month of the year
given.

Write a main function that reads a month and a year and prints the
number of days in that month of that year.

examples:

month 2 of 2000 has 29 days

month 2 of 1900 has 28 days

month 1 of 1950 has 31 days

6.15. Write a function with as parameters 3 integer numbers that
represent a day, month and year. This function calculates and returns a
factor according to following formula:

year — 1 year — 1 3
actor = * year a * (month — — * —
fact 365 * year + day + 31 * ( th 1)4—[ 7 ] [ 100 4—1] 2

for the months January and February
with [x] being the integer part of x

ear
factor = 365 * year + day + 31 * (month — 1) — [0,4 * month + 2,3] + [y 2 ]

year 3
— 1 —
[ 100 ]*4]

for the months March till December.

Write a main function that reads 2 dates, calculates the number of days
in between these 2 dates by calculating the difference between the 2
factors of the corresponding dates.



6.16. Consider the first quadrant of a circle in a square with side 1. If you
generate a large amount of (x, y) coordinates with x and y belonging to
the interval [0, 1], you have a collection of points belonging to the
square. If you now count all points that belong to the quadrant of the
circle with equation x? + y? < 1, and divide this amount by the total
amount of points generated, you will find approximately the humber %

Write a program that generates 100 000 points and uses it to calculate
the number = approximately. Run the program several times and
compare the results. What if you increase the number of points?

6.17. Write a program that asks the user to choose between 3 options:
1. Draw an empty square
2. Draw a filled square
3. Stop
The program repeats itself until the user chooses the option 3 (Stop).
Use the functions ‘empty square’and ‘filled square’

The screen dialog should look like:

What do you choose? -
1. Draw an empty square

2. Draw a filled square

3. Stop

11

Enter a valid choise: 1, 2 or 3!

What do you choose?

1. Draw an empty square
2. Draw a filled square
3. Stop

What do you choose?
1. Draw an empty square
2. Draw a filled square
3. Stop

What do you choose?
1. Draw an empty square
2. Draw a filled square
3. Stop

3

Thanks for playing with ust!yg




7 Arrays
Objectives

This chapter explains the use of the array data structure. You will learn how
to declare and initialize an array and how to refer to one array element.
Also passing arrays to functions as arguments is discussed.

7.1 Definition

An array is a data structure, used to store a collection of elements of the
same type. Although an array is used to store a collection of data, it is often
more useful to think of an array as a collection of variables of the same
type. Each of those elements are identified by the same array name but
with a different array index (see Figure 34).

7.2 Array declaration

In C all variables must be declared before they are used. This is needed to
make sure the correct amount of memory is reserved. Arrays also occupy
memory and as such they need to be declared as well. To allow for correct
computation of the total amount of memory needed, the data type of each
element as well as the number of elements the array will contain, is
specified. In its most general form, the declaration of an array can be
written as:

type <array name>[number of elements];

|int al[l0]; // declares an array of 10 integer elements

All arrays consist of contiguous memory locations. The lowest memory
address corresponds to the first element of the array and is referred to with
index 0, the highest address corresponds to the last element and can be
accessed with index “number of elements - 1”. The array “a” with 10
integers can be visualized as shown in Figure 34:

name » a[ 0] 5
a[ 1] -6
a[ 2] 58
a[ 3] 12358
al 4] -25
a[ 5] 0
a[ 6 ] 15
a[ 7 ] -7896
al 8] 2
a[ 9] 25

index

Figure 34: array ‘a’ with 10 integers



As array index also variables or expressions can be used. To access a valid
array element, that variable or expression needs to evaluate to a positive
integer belonging to the interval [0, humber_of_elements - 1].

7.3 Array initialization

Entering a value into a specific array element can be done by the
statement:

name [index] = value;

Hence, initialization of the array can be done as shown in the code below:

int a[5];
al[0] = 25;
all] = -2;
af[2] = 125;
al[3] = -25;
ald4] = 7;

Arrays can also be initialized in the definition of the array with an initializer
list as follows:

lint a[5] = {25, -2, 125, -25, 7};

Or, if all values are to be set to the same number (zero for instance) a for
loop can be used:

int 1i;
int a[l10];

for (1=0; i<10; i++)
{
ali]l = 0;

}

7.4 Array usage

If we want to actually use arrays, we need the possibility to both write to
and read from the array elements. Reading a value from a specific array
element can be done by the statement:

variable = name[index];

In most programs, the elements of the array will not only be of the same
type but also of the same kind. Meaning that they will have similar
meaning. As a result, the elements of the array will often be treated in the
same way. This can be achieved using a for loop as can be seen in following
example.

Example:
write a program that reads 100 integers and prints them in reverse order.



1 /*

2 read 100 integers and print them in reverse order
3 */

4 #include <stdio.h>

5 #define SIZE 100

6

7 int main (void)

8 {

9 int numbers[SIZE];

10 int i;

11

12 printf ("Enter %d integers: \n", SIZE);

13 //read the integers one by one in a for loop
14 for (i = 0; 1 < SIZE; 1i++)

15 {

16 printf ("Enter integer %3d: ", i + 1);
17 scanf ("$d%$*c", &numbers[il]);

18 }

19

20 printf ("In reverse order: \n");

21 //print the array elements starting from the last one down
22 for (i = SIZE - 1; i >= 0; i--)

23 {

24 printf ("%$8d", numbers[i]);

25 }

26

27 printf (" \n");

28 return O;

29 1}

Code 32: array usage example

Note the difference between the scanf and the printf statements!

As indicated before, you can consider an array as a group of variables that
belong together. Taking this approach into account, one array element
(numbers[i]) can be treated like a normal variable. Therefore, if the
address of the variable is needed, like in the scanf function, the address
operator & needs to be added, whereas no extra operator is needed in the
printf function. The printf function only needs the value of the variable,
not the address.

Before the main function definition, an extra precompiler directive is added:

#define SIZE 100

This allows to specify the size of the array with a symbolic constant. It
makes programs more scalable. If for instance in the above example the
number of integers needs to be changed into 5 instead of 100, it is
sufficient to change only the #define preprocessor directive.

Learning note

Use symbolic constants for all array sizes in your program

Common mistake

Do not end the #define preprocessor directive with a semicolon! This is not
a C statement!

% o



7.5 Operations on arrays

Consider 2 arrays a and b, both consisting of 5 elements of the type int. If
we want to copy the elements of array a into array b, it cannot simply be
done by assigning one array to the other!!

>

does not work if a and b are arrays!

The name of an array points to a series of variables rather than one single
variable. It can be seen as the starting address of the array as shown in
Code 33 and Figure 35. Since the starting addresses of the arrays are fixed
during program execution, the address of array b cannot be changed inside
the program!

1 #include <stdio.h>
2 #define SIZE 5

3

4 int main (void)

5 {

6 int a[SIZE];

7

8 printf ("\ta = %d\n\t&al[0] = %d\n", a, &al[0]);
9

10 return 0;

11 }

a = 3079848

&a[B] = 3079848

Code 33: array hame

a —>  a[0] a[1] a[2] a[3] a[4]

Figure 35: array name

As a result, operations on arrays like copy, addition, comparison, ... always
need to be done looping over all array elements.

7.6 Passing arrays to functions

To pass an array to a function, simply use the array name without brackets
as function argument:

int al[5];
function (a) ;




The name of an array evaluates to the starting address of that array.
Therefore, instead of passing the full array to the function, actually, the
array starting address is passed to the function. As a result, the formal
parameter in the function gets the same starting address as the one in the
calling function. Or, in other words: the array in the function is the same as
the one in the calling function. So, when the called function modifies array
elements in its function body, it is modifying the elements of the original
array! This is illustrated in Figure 36.

Since all information needed in the called function is the starting address of
the original array, there is no need to specify the length of the array in the
function declaration and definition. Therefore, often the array length is
passed on to the function as an extra parameter (see Figure 36).

#define SIZE 3
void f(int [], int);

int main (void)

( 1
int a[SIZE]; » a
f( SIZE) ;
retinrn 0;
}
void f(int arrayl[], int length) —» array
{
statements:

}

Figure 36: passing arrays to functions

Example:
Write a program that reads 100 integers and prints them in reverse order,
using different functions to read and print the integers.

1 /*

2 read 100 integers and print them in reverse order

3 use different functions to read and print the integers

4 */

5 #include <stdio.h>

6 #define SIZE 5

7

8 /* function declarations*/

9 void readnumbers (int [], int);

10 wvoid printnumbers(int [], int);

11

12 int main(void)

13 {

14 int numbers[SIZE];

15 readnumbers (numbers, SIZE); //pass array name to function
16 printnumbers (numbers, SIZE); //pass array name to function
17 return 0;




19 /*function definitions*/
20 wvoid readnumbers (int x[], int length)

21 //%x and numbers refer to same memory location
22 {

23 int 1i;

24 printf ("Enter %d integers: \n", length);
25

26 for (i = 0; i < length; i++)

27 {

28 printf ("Enter number %3d: ", i + 1);
29 scanf ("%d%*c", &x[1]);

30 }

31 }

32

33 wvoid printnumbers(int r[], int length)

34 //r and numbers refer to same memory location
35 {

36 int 1i;

37 printf ("In reverse order: \n");

38

39 for (i = length - 1; 1 >= 0; i--)

40 {

41 printf("%8d", r[il):

42 }

43

44 printf ("™ \n");

45 '}

Code 34: array with functions example

Common mistake

Since all array modifications done by the called function directly modify the
elements of the original array, there is no need to return an array explicitly
from a function!!

Remark

If only 1 array element needs to be passed on to a function, you do not
need to pass the full array. 1 element can be treated like a nhormal variable.
Passing the value of that 1 element can be done by using array[i] as
function argument.




7.7 Array boundaries

In the array declaration, you need to specify the size of the array. For
instance “int x[5];” declares an array with 5 integers that can be
addressed as x[0], x[1], x[2], x[3] and x[4].

Unfortunately, the C compiler only verifies if every index used is an integer.
It will not flag an error if an index outside the array boundaries is used! As
a result, memory locations outside the memory reserved for the array will
be used, which leads to dangerous and unpredictable behavior. This is
illustrated in Code 35.

1 int main (void)

2 {

3 int b[2];

4 int af[2];

5 b[0] = 1;

6 bl[l] = 1;

7 al0] = 1;

8 alll] = 1;

9 printf ("a[0]=%d,a[l1]=%d,b[0]=%d,b[1]=%d\n",a[0],a[1l],b[0],b([1]);
10

11 /*unpredictable behavior: b[2] is an invalid array location!*/
12 b[2] = 100;

13 printf ("a[0]=%d,a[l1]=%d,b[0]=%d,b[1]=%d\n",a[0],a[1l],b[0],b([1]);
14

15 return O;

16 }

With following expected result:

# || C\Users\u0088734\Documents\Tempus-DESIRE\C

Unfortunately, running the same program on another machine or at a
different time can just as well result in:

# | C:\Users\u0088734\Documents\Tempus-DESIRE\C for embeddi hapter7\Debug\examp

1, a[1] = 1, b[0O]
=1,

100, a[1i

Code 35: array usage outside of array boundaries

Common mistake
Not respecting the boundaries of an array is a common mistake that leads —

to errors that are difficult to find!

Learning note @3

Only use indices in the interval [0, number_of_elements - 1] \ )



7.8 Programming examples using arrays
7.8.1 The sieve of Eratosthenes

The sieve of Eratosthenes is an efficient method to identify prime numbers.
We will use it to find all prime numbers < 1000. The algorithm can be
described as follows:

1. Make an array with 1000 elements and fill every element with the
number 1 (except for the elements with index 0 and 1, since 0 and 1
are for sure no prime numbers).

2. Start with the element with index 2 (2 is a prime number, so this
element remains 1).

3. Mark all multiples of two. To this end, change the content of every array
element with an index that is a multiple of 2, from 1 into 0.

4. Find the first array element with an index > 2 that was not marked yet.

5. Repeat the algorithm from step 2.

To make the program more readable and better structured, we will divide it
in smaller sub problems or functions. In the solution of Code 36 the
following functions are used:

- initialize: to fill all sieve elements with 1
- mark multiples: to mark out all elements with a non-prime index
- print sieve: to print all prime numbers

Translating into C code results in:

1 /*

2 find all prime numbers < MAX using the sieve of Eratosthenes
3 */

4 #include <stdio.h>

5 #define MAX 1000

6

7 void initialize (int[]);

8 void mark multiples (int[]);
9 void print sieve(int[]);

10

11 int main(void)

12 |

13 int sieve[MAX];

14

15 initialize (sieve);

16 mark multiples (sieve);
17 print sieve(sieve);

18 return O;

19 1}

20

21 wvoid initialize(int sievel[])
22 |

23 int i;

24

25 sieve[0] = sieve[l] = 0;
26

27 for (i = 2; 1i<MAX; i++)
28 sieve[i] = 1;

29 1}




30 void mark multiples(int sievel[])
31 {
32 int i, j;

34 for (i = 2; i<MAX; i++)

35 {

36 if (sievel[i])

37 {

38 for (j = 2 * i; j < MAX; j += 1i)
39 sieve[j] = 0O;

42}

44 void print sieve(int sieve[])
45  {

46 int 1i;

48 printf ("Prime numbers:\n");
50 for (i = 2; i < MAX; 1i++)
51 {

52 if (sievel[i])

53 printf ("%44d", 1i);
54 }

56 printf ("\n");

Prime numbers:
2 3 5
T3 T9 83
179 181 191
283 293 307

419 421 431
547 557 563
661 673 BTT
811 821 823
a4t 953 967

Code 36: sieve of Eratosthenes

7.8.2 Merging arrays

As a second example, we will write a program that reads 2 lists of 5
ascending integer numbers. Afterwards, the 10 numbers are printed
together in ascending order. To this end, we will use twice the same
function ReadArray. Printing is done with another function (PrintaArray).

/*

merging arrays
*/
#include <stdio.h>
#define SIZE 5

void ReadArray (int[], int);
void PrintArray(int[], int[], int);

O 0 Jo Ul WN -




10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

int main (void)

int a[SIZE];
int b[SIZE];

ReadArray(a, SIZE);
ReadArray (b, SIZE);
PrintArray(a, b, SIZE);

return 0;

void ReadArray (int x[], int length)

int i;

printf ("Enter %d integer numbers:\n", length);
for (i = 0; i < length; i++)

{

printf ("Enter number %3d: ", i + 1);
scanf ("%d%*c", &x[1]);

void PrintArray(int al[], int b[], int length)

int i, Jj;

i=0;
j=20;

printf ("\nMerging the 2 lists results in:\n");

while (1 < length && J < length)
{
if (alil < b[3i])
{
printf("%d ", alil);
++1;

printf("sd ", b[j]);
++3;

}

while (i < length)

{
printf("%d ", alil):
++1i;

}

while (j < length)

{
printf("sd ", b[Jl);
++3;

}

printf ("\n");




5 integer numbers:
humber : 5
humber

humber

humber :

number :

5 integer numbers:

number
number
number
number
number

Merging the 2 sequences results in:
2 359 12 34 45 54 78 102

Code 37: merging arrays

7.9 Exercises

7.1. Write a program that reads the temperatures of a whole week into 1
array ‘temperature[]’ and prints the mean temperature for that week.

Enter temperature for day
Enter temperature for day
Enter temperature for day
Enter temperature for day
Enter temperature for day
Enter temperature for day
Enter temperature for day

o U W NP O
o O O U1 U U1 U1

The mean temperature for this week is 5.43

7.2. Change the previous exercise such that all days with a temperature
warmer than 10°C are printed.

Enter temperature for day 0: 1
Enter temperature for day 1: 8
Enter temperature for day 2: 10
Enter temperature for day 3: 12
Enter temperature for day 4: 15
Enter temperature for day 5: 14
Enter temperature for day 6: 9

All days with a temperature > 10°C:
day 3
day 4
day 5




7.3. Repeat exercise 7.1 using 2 functions. Make a function to read the
temperatures and a separate function to calculate the mean
temperature. Printing the mean must be done in the main program.

7.4. Repeat exercise 7.2 but this time, use 3 separate functions to read
the temperatures ("ReadTemp”), to determine which days are warmer
than 10°C (“calculate”) and to print the days found (*PrintDays”).
Extra: ask the user to enter a temperature limit.

7.5. Write a program with following main function:

#include <stdio.h>
#define SIZE 12
#define COLUMNS 3

void ReadArray(int [], int);
void PrintMatrix (int [], int, int);

int main (void)

{
int a[SIZE];
ReadArray(a, SIZE);
PrintMatrix (a, SIZE, COLUMNS) ;
return 0;

- The function ReadArray reads 12 (s1ze) numbers and stores them in
the one dimensional array a

- The function PrintMatrix prints the 12 numbers on 4 lines of 3
(coLuMNS) numbers each

By adapting only s1ZE and coLumMNs the program must also be able to
print for instance 20 numbers in a 5 x 4 matrix.

7.6. Change exercise 7.5 such that after every row, the sum of all
elements in that row is printed.

7.7. Change exercise 7.6 such that under every column, the sum of all
elements in that column is printed.

7.8. Write a program with a main function and 3 extra functions.

- In the main function an array of 100 integers is declared and the 3
extra functions are called.

- The first function reads 1 integer in the interval [0, 100]. This
integer represents the effective number of elements the array will
contain. This integer needs to be returned to the main program.

- The second function reads the correct number of integers and stores
them in the array.

- The third function prints the previously read integers.



The main function looks like:

int main (void)

{
int row[MAX];
int size;
size = ReadSize (0, MAX);
ReadArray (row, size);
PrintArray (row, size);
return 0;

7.9. Same as exercise 7.8 but without asking the user to enter the
effective number of integers. The user enters the integers and ends with

999 to indicate the end of the reading process. 999 can NOT be stored
in the array!

The main function looks like:

int main (void)

{
int row[MAX];
int size;
size = ReadArray (row) ;
PrintArray (row, size);
return 0;

7.10. Add an extra function to exercise 7.9 that calculates the mean value
of all entered integers and returns that mean value to the main function.
The mean must be printed in the main function.

The header of this extra function could be like:

double CalcMean (int row[], int size)
7.11. Repeat exercise 7.10 but this time, write a function that searches

the max value of all integers entered and returns that max value to the
main function.

7.12. Write a program with functions that merges 2 ordered rows (ordered
from small to large) into 1 ordered row.

Enter ordered row: 5 9 12 54 78
Enter ordered row: 2 3 34 45 102

The merged row is: 2 3 5 9 12 34 45 54 78 102




7.13. Add an extra function to exercise 7.9 or 7.10 such that before
printing, the largest and smallest integers are interchanged. Changing
places needs to happen inside the array, do not use a second array.
Using an auxiliary variable is allowed.

7.14. Write a program with functions:

- afirst function reads 20 numbers and stores them in an array.

- a second function makes sure none of the numbers in the array
occurs more than once. To this end, the second, third, ... occurrence
of a number is removed from the array and all other array elements
are shifted to the left.

Enter a list of 20 numbers:
253465340672 445321617

Following numbers are stored in the cleaned up array:
2534671

7.15. Write a program that generates 6 different random numbers in the
interval [1, 42]. Use an array to store the numbers and to make sure all
6 numbers are different.

7.16. Write a program with functions. A first function reads 2 rows of
maximal 10 positive integers. The reading process stops when a 0 or 10
integers are entered. (do not store the number 0!)

A second function checks if both rows contain numbers that are equal.

Enter a row of max 10 integers (stop with 0):
4 4 12 9 50

Enter a row of max 10 integers (stop with 0):
9 94 12 45 9 12 4 4

The rows:

4 4 12 950

and

9 9 412 45 9 12 4 4
contain equal numbers.

7.17. Write a program that simulates the rolling of 2 dice. Rolling 2 dice
always results in a value between 2 and 12. How many times will every
possible value occur if the dice are rolled 400 times?

- declare an array in the main function to keep the occurrences for
every possible value

- afirst function simulates 400 rolls with 2 dice and calculates the
values. (hint: rand()%6+1 results in a random number from 1 to 6,
and as such simulates the rolling of 1 die)

- A second function prints the occurrences.

- extra: print a horizontal bar chart with the occurrences. Use the
symbol “#"” to draw the bars. Use a function DrawLine to accomplish
this part of the program



8 Strings
Objectives

In this chapter, the concept of arrays is used to define strings. You will
learn how to declare, initialize and manipulate strings. Passing strings to
functions will be explained as well as using special string functions.

There is no special data type to define strings in C. Instead, a string is
represented as a sequence of characters, ended by a special string-
termination character called the null byte (*\0").

8.1 String constant

A string constant consist of a series of characters enclosed in double
quotes. It may consist of any combination of digits, letters, escaped
sequences and spaces.

In memory, it is stored as a sequence of characters followed by a null byte
as shown in the example of Figure 37. In the compiled version of a
program, the string constant will be replaced by the starting address of that
string constant in memory. Therefore, a string must be seen as an address.

—> 01001000 H

01100110 e

“Hello” —M8¥ — 01101100 1
01101100 1

01101111 o

00000000 \O

Figure 37: string constant

8.2 String variable

A string variable is basically an array of characters that must be large
enough to hold all symbols of the strings you want to store and 1 extra
symbol for the null byte.

The name of a string variable is the starting address of the memory
reserved for the character array. The string declaration nails down to a
declaration of a character array as shown in Figure 38.



char s[64];

v
9]
v
)]

Figure 38: string variable

Assigning value to a string variable can be done in different ways:

1. assign individual characters to the string variable:

s[0]= ‘a’;
s[1]= ‘b’;
s[2]= ‘c’;
s[3]1= *\0'; or s[3] = (char)O0;

Remark that the individual characters get single quotes! With double
quotes, “a” represents a string consisting of the character a and the
null byte.

2. Using string functions:

strcpy (s, “abc”);

The function strcpy, assigns the characters a, b and c to the string
s and adds a null byte after the last character.

3. Reading a string from the keyboard:

scanf (“%s%*c”, s);
gets(s);

both scanf and gets will read the user input and store it in the
string s, adding a null byte at the end. scanf will stop reading at a
space, tab or newline while gets will stop only at a newline
character.

Remark that in the scanf function, there is no address operator (s)
before the name of the string s. This is because a string is an array
of characters and the name of an array represents the starting
address of that array. As such the name s already evaluates to the
string’s starting address so no ¢ is needed here.

4. Initialization together with declaration:

char s[20] = “abc”;

while compiling, memory will be reserved for an array of 20 bytes.
The first 3 elements of that array will be filled with the characters
‘a’, 'b” and ‘c’. The forth element will be filled with a null byte.



Common mistake

None of the methods mentioned above will verify the string boundaries. It
is your own responsibility to make sure the string variable is large enough
to hold the strings you want to store + a null byte!

Common mistake

Assigning strings with a simple assignment operator is not possible!!
The statement

s = bc”;

cannot be used since both the string variable s and the constant string
“abc” represent fixed addresses that cannot be changed!

8.3 Passing strings to functions

Since strings are arrays of characters, strings are passed to functions like

any other array:

- The formal function parameter gets the starting address of the string
during the function call.

- When the called function modifies the string inside its function body, the
original string in the calling function will also be changed.

Example:

Write a program that reads a string from the keyboard and converts it to
capital letters. Use a separate function that converts the individual
characters into capitals.

1 /*

2 convert lowercase letters into uppercase letters
3 */

4 #include <stdio.h>

5 void convert (char[], char[]):

6

7 int main (void)

8 {

9 char in[32];

10 char out[32];

11 printf ("Enter a string: ");

12 gets (in) ;

13 convert (in, out);

14 printf ("in = %s \nout = %s \n", in, out);
15 return 0;

16 }

17

18 wvoid convert (char in[], char out[])

19 {

20 int i = 0;

21 while ((out[i] = in[i]) != "\0")

22 {

23 if (out[i] >= 'a' && out[i] <= 'z') out[i] += 'A' -'a';
24 i++;

25 }

26}




@ | C\Users\u0088734\Documents\Tempus-DESIRE\C for e

Enter a string: Hello lWorld !
in = Hello World !
= HELLO WORLD !

Code 38: passing strings to functions
Note that the conditional expression in the while loop consists of 2 parts:
(out[i] = in[i]) !'= '"\0O'

First the character stored in in[i] is copied to out [i]. Afterwards this
symbol is compared to the null byte to detect the end of the string.

Converting from small letters to capital letters is done based upon the fixed

difference in ASCII values between lowercase and uppercase letters. An
ASCII table can be found in Attachment 2.

8.4 String functions
In this section a possible implementation of some commonly used string

functions is shown. Of course, these functions can be included via
“string.h”, so you do not need to copy these codes into your programs.

8.4.1 strlen

strlen (s); returns the length of string s (null byte not included)

1 int strlen(char s[])

2 {

3 int i=0;

4

5 while( s[i] != *\0')
6 ++1i;

7

8 return 1i;

9 }

Code 39: string function strlen

8.4.2 strcpy

strcpy (s, t); copies string t into string s (null byte is also copied)

1 int strcpy(char s[], char tl[])

2 {

3 int i=0;

4

5 while ((s[i] = t[i]) != \0")
6 ++1;

-

Code 40: string function strcpy




8.4.3 strcmp

strcmp (s, t); returns

- aninteger < 0 if string s < string t (alphabetically)
-0 if string s and string t are equal

- aninteger > 0 if string s > string t (alphabetically)
1 int strcmp (char s[], char t[])

2 {

3 int i;

4

5 for(i = 0; s[i] == t[i]; i++)

6 {

7 if( s[i] == “\0’)

8 return O;

9 }

10 return s[i] - t[i];

11}

8.5 Programming examples using strings

8.5.1 Demonstration of several string functions

1 /*

2 using string functions from the standard library “string”

3 */

4 #include <stdio.h>

5 #include <string.h>

6

7 int main (void)

8 {

9 char sl1[32];

10 char s2[32];

11

12 strcpy(sl, "abc def.");

13 strcpy(s2, "ghi x");

14

15 printf ("sl=\"%s\" and s2=\"%s\"\n", sl, s2);

16 printf("sl consists of %d symbols and s2 consists of %d
symbols\n", strlen(sl), strlen(s2));

17 printf ("The function strcmp(sl,s2) returns %d as function return
value\n", strcmp(sl, s2));

18

19 return 0;

20 1}

# | CAUsers\ul088734\Documents\Tempus-DESIRE\C fo bedded

s1="abc def.” and s2="ghi_x"

s1 consists of 8 symbols and s2 consists of 5 symbols
The function strcmp(sl,s2) returns -1 as function return

Code 41: string example 1




[._

8.5.2 Sorting 2 strings alphabetically

1 /*

2 Printing 2 strings alphabetically
3 */

4 #include <stdio.h>

5 #include <string.h>

6

7 int main (void)

8 {

9 char namel[32];

10 char name2[32];

11 int comp;

12

13

14 printf ("Enter a name: ");

15 gets (namel) ;

16 printf ("Enter a second name: ");
17 gets (name2) ;

18

19 comp = strcmp(namel, name?2);

20

21 if (comp == 0)

22 {

23 printf ("\"%$s\" and \"%s\" are equal\n", namel, name2);
24 }

25 else

26 {

27 if (comp < 0)

28 {

29 printf ("\"%s\" , \"%s\"\n", namel, name2);
30 }

31 else

32 {

33 printf ("\"%s\" , \"%s\"\n", name2, namel);
34 }

35 }

36

37 return O;

38 }

Enter a name: Robin Hood

Enter a second name: King Arthur
"King Arthur” , "Robin Hood"

Code 42: printing 2 strings alphabetically

Remark

The function strcmp determines the alphabetical order of strings based
upon the ASCII values of the individual characters. Therefore, alphabetic
ordering with strings containing both small letters and capitals or strings
containing special characters or spaces will not always give a correct result.
To avoid this, first convert the names into strings containing only capitals
and remove all spaces and special characters before sorting.




8.6 Exercises

- The first function reads a name. =
- The second function prints the name.

8.1. Write a program with functions. (

8.2. Read 3 words separately into 3 different strings. Make a 4" string
that contains the 3 words separated by a space and print the content of
the 4% string.

enter the first word: this
enter the second word: is
enter the third word: it

this is it

8.3. Write a function with a string as parameter and an integer 1 (true)
or 0 (false) as return value. The function tests whether the entered
string is a palindrome or not. A palindrome is a word that reads the
same backward and forward. (ex: noon, radar, rotor, racecar, ...)
Write also a main function to test it.

8.4. Repeat exercise 8.3 but this time for palindrome sentences.
examples: "Was it a car or a cat I saw?” or “Eva, can I stab bats in a
cave?” (note that punctuation, capitalization and spaces are ignored)

8.5. Repeat exercise 8.3 but this time for sentences that form a word
based palindrome.
examples: “He says: it is true, true is it, says he”

8.6. Write a program that reads a string and prints every word of that
string separately on a new line.

8.7. Write a program that reads 2 names and prints them alphabetically.
8.8. Repeat exercise 8.7 but now with 3 names.

8.9. Repeat exercise 8.8 but make sure also following names are sorted
correctly: O’Neil, Mac Alastair, Macbride, mac Caba, O Neal, Orman
Hint: use your own string compare function that first copies the strings
in capitals and without punctuation and spaces and uses strcmp on the
copies)



9 Multidimensional arrays

Objectives

In this chapter the concept of arrays is extended to multidimensional
arrays. Declaration, initialization, usage and passing multidimensional

arrays to functions will be treated both for arrays of humbers and arrays of
strings.

All arrays discussed in chapters 7 and 8 are examples of one-dimensional
arrays. C offers the possibility to use arrays with more than 1 dimension,

called multidimensional arrays. Though, in principle, the number of
dimensions is not limited, we will mainly discuss 2 and 3 D arrays.

9.1 Two dimensional arrays of numbers

A common use of two dimensional arrays is to represent tables of values
arranged in rows and columns, also called matrices.

9.1.1 Declaration
In its most general form the declaration of a 2-dimensional array looks like:

type <name>[MAX ROW] [MAX COLUMN] ;

where MAX_ROW / MAX_COLUMN indicate the number of rows / columns of
the matrix.

ex: int m[5][3];
This declaration reserves memory for a 2-dimensional array with 5 rows

and 3 columns. To address a particular table element, both a row and
column index must be specified as illustrated in Figure 39.

column O column 1 column 2

row 0
row 1
row 2
row 3
row 4

array name

row index

column index

Figure 39: logical structure of a 2-dimensional array



In memory, this array is saved as 1 row of consecutive elements. First, all
elements of row 0 are stored, then all elements of row 1, ... For the array
example of Figure 39, this is shown in Figure 40.

[ m[01[0] [m[0][1] [ m{0][2] [m[1][0] [m[1][1] ] [ m[4]12] |

Figure 40: physical structure of a 2-dimensional array

9.1.2 Initialization

A 2-dimensional array can be initialized element by element or when it is
defined. If all elements need to be initialized to the same value, a loop can
be used (see section 9.1.3).

Examples:

int m[2]([3];

m[0] [0] = O;

m[0] [1] = 1;

m[0] [2] = 2;

m[1][0] = 10;

m[1][1] = 11;

m[1][2] = 12;

[int m[2](3] = { {0,1,2} , {10,11,12} }; |

The values are grouped by row. The first set of braces groups the values of
row 0, the second set the values of row 1.

9.1.3 Matrix usage

To initialize, change, read the individual matrix elements, loops can be
used. Since printing a matrix must be done row by row, most programmers
will loop through the matrix on a row by row basis. Every row contains the
same number of elements (equal to the number of columns), so addressing
all row elements one by one can be done by looping over the different
columns within that row. This is illustrated in the example of Code 43.

Example:
Write a program that reads the marks of 5 students for 2 different subjects
and stores them in a 2-dimensional array.

Looping through the matrix can be illustrated in the flowchart of Figure 41.



start with row 0

start with
column 0
false>| next row

true

next column

Figure 41: flowchart looping through a matrix

Translating into C code yields:

1 #include <stdio.h>

2 #define MAX ROWS 5

3 #define MAX_COLUMNS 2

4

5 int main (void)

6 {

7 float marks[MAX ROWS] [MAX COLUMNS];

8 int row, column;

9

10 //loop through rows

11 for (row = 0; row < MAX ROWS; row++)

12 {

13 //loop through all columns in one row

14 for (column = 0; column < MAX COLUMNS; column++)

15 {

16 printf ("Enter marks for student %d, subject %d: ",
row+l, column+1l);

17 scanf ("$f%*c", &marks[row] [column]) ;

18 }

19 }

20 return O;

21}

Code 43: reading student marks by looping through a 2D array

9.1.4 Passing a 2D array to a function

To pass a multidimensional array to a function, the array name is used as
function argument just like for 1-dimensional arrays. As a result, the array
starting address will be passed to the function and all modifications done on
the matrix inside the called function, will be carried out on the original
matrix.

However, there is one difference. As explained before, the length of a 1D
array does not need to be specified in the function declaration and




definition. For multidimensional arrays all dimensions except the first one
need to be specified!

This can be explained for the case of a 2-dimensional array. Remember that
the array elements are stored in one long row, starting with all elements of
row 0, followed by the elements of row 1, ... If the matrix element

mat [i] [§] must to be accessed, the memory location needed can be
calculated by:

starting address of the array + i * MAX COLUMN + jJ

As clearly indicated by this formula, the first dimension (MAX_ROWS) is not
needed to calculate the correct memory location whereas the second
dimension is.

Example:
Add an extra function to the example of Code 43 to print the student marks
as a 2-dimensional matrix.

1 #include <stdio.h>

2 #define MAX ROWS 5

3 #define MAX COLUMNS 2

4

5 void PrintMarks (float[] [MAX COLUMNS], int, int);

6

7 int main (void)

8 {

9 float marks[MAX ROWS] [MAX COLUMNS];

10 int row, column;

11

12 for (row = 0; row < MAX ROWS; row++)

13 {

14 for (column = 0; column < MAX COLUMNS; column++)

15 {

16 printf ("Enter marks for student %d, subject %d: ",
row + 1, column + 1);

17 scanf ("$f%*c", &marks[row] [column]) ;

18 }

19 }

20

21 PrintMarks (marks, MAX ROWS, MAX COLUMNS) ;

22

23 return O;

24 1}

25

26 wvoid PrintMarks (float m[] [MAX COLUMNS], int maxrow, int maxcol)
27 |

28 int row, column;

29 printf ("\n");

30

31 for (row = 0; row < maxrow; row++)

32 {

33 for (column = 0; column < maxcol; column++)
34 {

35 printf ("%$5.2f\t", m[row] [column]) ;
36 }

37 printf ("\n");

38 }

39}




marks student subject
marks student subject
marks student subject
marks student subject
marks student subject
marks student subject
marks for student subject
marks for student 4%, subject
marks for student 5, subject
marks for student 5. subject

11.00

9.00
18.00
12.00
13.00

Code 44: passing a 2D array to a function

9.1.5 2D array example: Pascal’s triangle

Pascal's triangle is a triangular array containing the
coefficients of the different terms of the expansion of
(a + b)™.

Each number in the triangle is the sum of the two
numbers directly above. The first eight rows of
Pascal’s triangle are illustrated in Figure 42.

Following code will print n rows of Pascal’s triangle
where n needs to be entered by the user:

=X

Figure 42: Pascal's triangle

/*
printing n rows of Pascal's triangle
*/
#include <stdio.h>
#define MAX 20

int ReadDimension (void) ;
void MakeTriangle (int[] [MAX], int);
9 void PrintTriangle (int[] [MAX], int);

O J o U WwWDN

11 int main(void)

12

13 int a[MAX] [MAX];

14 int n;

15

16 printf ("Pascal's triangle\n");
17

18 n = ReadDimension () ;
19 MakeTriangle (a, n);
20 PrintTriangle(a, n);
21

22 return 0;




24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

int ReadDimension (void)

{
int d;

do

{
printf ("Enter dimension
scanf ("$d%*c", &d);

} while (d >= MAX);

return d;

}

void MakeTriangle (int a[] [MAX],
{ int i, 3J;
afo][o] = 1;
for (i = 1; 1 <= n; ++1)
{ ali] [0] 1;
alil[i] 1;
}
for (i = 2; i <= n; ++1i)
{ for (3 = 1; j<i; ++3)
{ alil (3] =

}

void PrintTriangle (int a[] [MAX],
{

int i, 9;

for (i = 0; 1 ++1)

{

<= ny;

for <= 1i;

{

(3 = 0; 3 ++7
printf ("%$6d",
}

printf ("\n");

(in [O

int n)

ali - 1103 - 1]

int n)

)

alil(31);

4

MAX) ;

+ali - 11031

| CA\Users\u0088734\Documents\Tempus

Pascal's triangle
Enter dimension (in [0 ..

20[): 4

Code 45: Pascal's triangle




9.2 Arrays of strings

As explained before, a string is an array of characters. Therefore, an array
of strings is a 2-dimensional array of characters where every row contains a
string.

Figure 43 shows an array with name “students” for 5 strings of maximal 9
characters + 1 null byte.

char students[5][10];

students(0] | NN [N N [ [ N A
students( 1] | NN [N I I [ N (N B N
students(2] | NN [N N (N [ N A
students(3] | NN [N I AN [N BN N
scheey | | [ | [ | | [

Figure 43: array of strings

The name of the array “students” refers to the starting address of the full
matrix. To access an individual character of one of the strings use both row
and column index. For instance “students[1] [2]” points to the symbol in
row 1, column 2 (second row, third column).

To manipulate a full string at once, use a row index only. “students[1]
selects the string on row 1 (second row). This is a 1D array of characters,
therefore “students[1]” points to the starting address of row 1.

"

Example:

Write a program that:

- reads a list of names and stores them in an array. The list of names
ends with an empty string (enter only).

= reads an extra name

= checks if the extra name is present in the array or not

Following functions will be used:
- ReadList: reads the list of names and returns the number of hames
entered
- ReadName: reads 1 name
- Find: looks for 1 name in the array of names and returns the index
number of that name in the array or -1 if the name was not
found.

/*
find a name in a list of names

*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define MAX 50
0 #define LEN 20

O oW -Joyud wN




11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

int ReadList (char[] [LEN]);
void ReadName (char([]);
int Find(char[] [LEN], int, char[]):;

int main (void)

{
char matrix[MAX] [LEN];
char name [LEN];
int size, result;

// Read the list of names
size = ReadList (matrix);

// Read the name to be found
ReadName (name) ;

// Look for name in the list
result = Find(matrix, size, name);

if (result >= 0)
printf ("The name \"%s\" was found at place %d.\n",
result+1);
else
printf ("The name \"%s\" was not found.\n", name);

return O;

}

int ReadList (char a[][LEN])
{

int 1 = 0;
char name [LEN];
printf ("Enter name %2d (Enter = end) : ", 1i);

gets (name) ;

while (i < MAX && name[0] != '\0")
{
strcpy(ali], name);
printf ("Enter name %2d (Enter = end) : ", ++1i);
gets (name) ;
}
if (1 == MAX)
{
printf ("Array is full!\n");
exit (1) ;

return 1i;

}

void ReadName (char x[])

{
printf ("Enter the name you want to search for: ");
gets (x);

}

int Find(char a[][LEN], int n, char b[])
{

int 1i;

for (i = 0; i<n; ++1i)

{

if (strncmp(a[i], b, LEN) == 0)
return i;
}

return -1;

name,




9.3 Exercises

9.1. Write a program with functions.
- in the main function, a table of 10 x 10 is defined
- the first function (FillMatrix) fills the matrix as shown below
- the second function (PrintMatrix) prints the content of the matrix.
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100
9.2. Write a program with functions that first reads 2 x 10 integers and

9.3.

stores them on the first 2 rows of a matrix. In the third row, the sum of
the corresponding numbers in the first 2 rows is stored. Finally, the full

matrix is printed. Use the functions ReadrRow, Calculate and

PrintMatrix

Enter 2 x 10 integers:
123456718910
1221341121

Table:

10

11

Write a program with functions that reads a list of integers and

prints all integers of that list followed by the number of occurrences.
The list is ended with the number 999 that cannot be taken into
account. The list contains maximal 10 different numbers.

Enter a list of integers

-10
9
25
100
3

0

NN S 2N

(end with 999) :
-10 9 25 -10 100 25 25 3 0 25 100 3 999

The different numbers in this list are:




9.4.

9.5.

9.6.

9.8.

Hint: use a 10 x 2 matrix. The first column contains the different
integers and the second column the number of occurrences for
the corresponding integer. Every time an integer is read, the
program verifies if that number is already present or not. If
already present, the number of occurrences is augmented,
otherwise the number is added to the first free line with a number
of occurrences equal to 1 in the second column.

Write a program that reads a square matrix, calculates its transpose
and prints both the original and the transposed matrix. The matrix
cannot be larger than 10 x 10. The wanted dimension is read at the
start of the program. Reading the dimension, reading the matrix
elements, transposing the matrix and printing the matrix is done in 4
different functions.

Remember:
Qoo Qo1  Qo2]" Qoo Q10 G20
Q10 Q11 Q12| = |Q1 Q11 Gz
Azo0 Q21 Q2 Qo2 Q12 Gz
Write a program with functions that:

- declares an array with dimensions 10 x 10 in the main

- uses a function to read the array elements

- uses a function to find the min and max element in the array and
swaps them (inside the array, using an auxiliary variable is allowed)

- uses a function to print the array after swapping

Write a program with a main and 2 extra functions:

- declare an array of 10 strings in the main function

- the first function reads the 10 names and stores them in the array
- the second function prints the names in the array to the screen

Write a program with a main and 2 extra functions:

- declare an array of 10 strings in the main function

- the first function reads names until the word “end” or the maximum
of 10 names is entered and stores them in the array

- the second function prints the names in the array to the screen

Write a program that reads a letter, converts it to Morse code and
prints the result to the screen. You can use following array that contains
the Morse codes for the letters A, B, C, ... consecutively:

const char *morsel[]={".-", "-...", "-—-.,-=.", "—-_. ", ", ", ", .-

" " " " " " " " —_ "w "w "w "w "w "w "w "w "w "w

Enter a letter: c
Corresponding Morse code: -—.-.




9.9. Write a program that reads a word and prints it in Morse code to the
screen. You can use the function from the previous exercise to write the
Morse code letter by letter to the screen.

Enter a word: bread
Morse code: -... .-. . .- -..

9.10. Write a program to process test results.
To guarantee the product quality, a company takes a sample of N
finished parts (0 < N < 20) and submits them to a series of M tests
(0 < M < 10). If a part fails one or more tests, data is sent to the
computer in the format:

PartNumber TestNumber Result

where 1 < PartNumber £ Nand 1 £ TestNumber < M
and Result = 1 for a small error
=3 for a fatal error

A part is rejected if at least 1 fatal error or at least 3 small errors have
occurred.

The program first reads the amount of parts tested (N) and the number
of tests executed per part (M). Then, the test results for all failed parts
are read until 0 0 0 is entered.

The program prints:

- a table with a line for every tested part (so also the ones that did
not fail any test) containing information on the test results and a
final assessment

- a second table with a line per test containing the number of parts
that did not fail, the number of parts that showed a small error
and the number of parts that showed a fatal error.

The program uses functions:

- a function ReadNumber that is used twice. Once to read the number
of parts tested (N) and once to read the number of tests (M).
Make sure only valid numbers are accepted.

- a function to read all test data

- a function to print the results per part

- a function to print the results per test

- optional: a function to count the number of occurrences of a certain

value in a certain column

Hint: Use a matrix of 20 x 10 of which the upper left corner of N rows
and M columns is used. Put every entry in the right place in that
matrix. The first table to be printed is then just a printout of the
used section of the matrix accompanied by some text. The second
table can be constructed by counting the occurrences of the
numbers 0, 1 and 3 in every column of the matrix.



The screen dialog should look like:

How many parts did you test? 5

How many tests did you run? 3

Enter the test results (end with 0 0 0):
11

o B W N W o
ON W W WN W
O P P P W Ww

Results per part:

part number tests assessment
1 2 3

1 0O 0 O accepted

2 0O 0 1 accepted

3 0O 3 1 rejected

4 1 1 1 rejected

5 0O 0 3 rejected

Results per test:
test failures
none small fatal




9.11. Write a program that simulates seat reservations in a theater. Let’s
consider a room with 3 rows of 4 seats each. Define a matrix of 3 x 4
that represents the room. Every matrix element must be large enough
to contain a string of maximal 10 symbols, resulting in a 2D array of
strings which is a 3D array of characters! The program repeats itself
until the user enters 0 0 0 or until all seats are taken.

In every program run, a name, row number and seat number are read.
If the seat is still available, the name is stored in the corresponding row
and column of the matrix. If the seat was already taken, the program
prints “occupied”. After every seat reservation, all reservations are
printed to the screen.

Use functions to write the program:

- declare the room in the main program

- write a function to print the current reservations

- write a function to initialize the reservations

- write a function to read the inputs and check the availability of the
wanted seat

Welcome. The theater has 3 rows of 4 seats each.
The current reservations are:

Enter a new seat reservation: Mary 1 2
The current reservations are:
Mary

Enter a new seat reservation: Carl 3 3
The current reservations are:
Mary
Carl

Enter a new seat reservation: end
The final seat reservations are:
Mary

Carl




10 Sorting and searching arrays

Objectives

In this chapter we will look into different methods to sort arrays and search

elements in an array.

10.1 Sorting arrays of nhumbers

In this example, we will use following functions:

- ReadSize: to read how many integers will need to be ordered

- ReadArray: to read the set of integers

- SortArray: orders the integers ascending

- PrintArray: prints the ordered integers

- FindIndexSmallest: searches the index belonging to the smallest

number

The flowchart of Figure 44 illustrates the algorithm used for the functions

SortArray and FindIndexSmallest:

start
SortArray

m
start with index 0

. stop
?
valid index? false SortArray

true

v

FindIndexSmallest

min != first el false
(sub)row?

true

¢

swap min and first
element

increase index

start
FindIndexSmallest

declarations

Smallest = index
first non-ordered
element

start with next
element

>

valid index? false

return smallest

stop
FindIndexSmallest

true

current el <
smallest?

true

v

smallest = current
index

increase index

Figure 44: flowchart sorting algorithm numbers



The full C program can be written as follows:

1 /*

2 sorting an array of integer numbers
3 */

4

5 #include <stdio.h>

6

7  #define MAX SIZE 10

8

9 int ReadSize (void) ;

10 wvoid ReadArray(int[], int);
11 wvoid SortArray(int[], int);
12 int FindIndexSmallest (int[], int, int);
13 wvoid PrintArray(int[], int)

’

14

15 int main(void)

16 {

17 int row[MAX SIZE];

18 int size;

19

20 printf ("Sorting a list of integers\n");

21

22 // read number of integers that will be entered

23 size = ReadSize():;

24

25 // read integers

26 ReadArray (row, size);

27

28 // order row

29 SortArray(row, size);

30

31 // print ordered row

32 PrintArray(row, size);

33

34 return 0;

35 1}

36

37 1int ReadSize (void)

38 {

39 int n;

40

41 do

42 {

43 printf ("Enter the number of integers you want to
sort:[1..%d] ", MAX SIZE);

44 scanf ("$d%*c", &n);

45 } while (n < 1 || n > MAX SIZE);

46

47 return n;

48 }

49

50

51 wvoid ReadArray(int al[], int n)

52 {

53 int i;

54

55 printf ("Enter %d integers:\n", n);

56

57 for (i = 0; i < n; ++1)

58 scanf ("$d%*c", &ali]);

59 }

60




61 void SortArray(int r[], int n)
62 |
63

64

65 for
66 {
67

68

69

70

int i, temp, IndexSmallest;

(1 =0; 1 <n - 1; ++1)

IndexSmallest =

// if smallest element

// find index smallest number
FindIndexSmallest (r, n,

!= first element of

in (sub)row
i);

(sub) row,

switch first and smallest

71 if
72 {
73

74

75

76 }
77 }

78 }

79

80 int FindIndexSmallest (int al],
81 {
82

83

84

85

86

87

88

89

90

91 }
92

93 wvoid PrintArray(int x[],
94 {
95

96

97

98

99
100
101
102
103 }

(r[IndexSmallest]

temp =
r[IndexSmallest]
r[{i] = temp;

int i, index s;

index s = start;

start + 1; 1 < n;

(ali] < alindex_ s])
index s = i;

(i =
if

for

return index s;

int a)
int 3j;
printf ("The ordered row:\n");

for (3 = 0; j<a; ++3j)

printf ("%8d", x[j]);

printf ("\n");

int n,

++1)

'= r[i])

r[IndexSmallest];

r[il;

int start)

Code 46: sorting arrays of numbers

10.2 Sorting arrays of strings

We will use the same sorting algorithm as in section 10.1. The only
difference is that we will use the string function strcmp to alphabetize the

names.

/*

sorting an array of names
*/
#include <stdio.h>

#define MAX SIZE 10
#define MAXLENGTH 32

int ReadSize (void):;
void ReadArray (char[] [MAXLENGTH],
void SortArray (char[] [MAXLENGTH],

PP ©OWOowJo Ul W

= O

int) ;
int) ;




12 int FindIndexSmallest (char[] [MAXLENGTH], int, int);

13 wvoid PrintArray(char[] [MAXLENGTH], int);

14

15 int main (void)

16 {

17 char row[MAX SIZE] [MAXLENGTH];

18 int size;

19

20 printf ("Sorting a list of names\n");

21 size = ReadSize();

22 ReadArray (row, size);

23 SortArray(row, size);

24 PrintArray(row, size);

25

26 return 0;

27 1}

28

29 int ReadSize (void)

30 {

31 int n;

32

33 do

34 {

35 printf ("Enter the number of names you want to
sort:[1..%d] ", MAX SIZE);

36 scanf ("%$d%*c", &n);

37 } while (n < 1 || n > MAX SIZE);

38

39 return n;

40 }

41

42 wvoid ReadArray(char al[] [MAXLENGTH], int n)

43 {

44 int 1i;

45

46 printf ("Enter %d names:\n", n);

47

48 for (i = 0; i < n; ++1)

49 gets(alil);

50 }

51

52 wvoid SortArray(char r[] [MAXLENGTH], int n)

53 {

54 int i, IndexSmallest;

55 char temp [MAXLENGTH];

56

57 for (i = 0; 1 < n - 1; ++i)

58 {

59 IndexSmallest = FindIndexSmallest (r, n, 1i);

60 if (strcmp(r[IndexSmallest], r([i]))

61 {

62 strcpy (temp, r[IndexSmallest]);

63 strcpy(r[IndexSmallest], r[i]);

64 strcpy(r[i], temp);

65 }

66 }

67 }

68

69 int FindIndexSmallest (char al[] [MAXLENGTH], int n, int start)

70 |

71 int i, index_ s;

72 index s = start;

73 for (i = start + 1; i < n; ++i)

74 if (strcmp(ali], alindex s]) < 0)
75 index s = 1i;

76 return index_s;

77}




78 wvoid PrintArray(char x[] [MAXLENGTH], int a)
79 |

80 int j;

81

82 printf ("The ordered row:\n");
83

84 for (j = 0; 3 < a; ++3j)

85 printf ("%$s\n", x[j]1);
86

87 printf ("\n");

88 }

Code 47: sorting arrays of names

10.3 Binary search

Searching an array can be done in different ways. The most straight
forward method is the one we have used so far: simply checking the
elements of the array one by one from the first element until the last one.
This is called linear searching.

If for instance a number needs to be found in an ordered row, a binary
search algorithm will be much more efficient. In this case, the number to be
found is compared to the middle number of the array. If both are equal, the
number is found. If not, we will go on searching but only in the first or
second half of the original row. So with one check, we can immediately
eliminate half of the row. The search continues according to the same
principle until the number is found or the remaining part of the row is
empty.

This algorithm of the binary search is represented in Figure 45:

[~ start

BinSearch

declarations

start with full row

row not
empty?

false—| return -1

true
v v
([ stop
determine middle \_BinSearch
element K
T~
— middle == return middle
true—» 3
number? index
false
middle < number? true—>»| row = right half

false

row = left half

Figure 45: flowchart binary search algorithm




The full C program can be written as shown in Code 48.

1 /*

2 binary search in an ordered row of integers.
3 */

4

5 #include <stdio.h>

6 #include <stdlib.h>

5

8 #define MAX SIZE 10

9

10 int ReadSize (void);

11 wvoid ReadArray(int[], int);

12 int ReadNumber (void) ;

13 int BinSearch(int[], int, int):;

14

15 1int main(void)

16 |

17 int a[MAX SIZE];

18 int size, number, index;

19

20 // number of integers you want to read ( < MAX SIZE )

21 size = ReadSize();

22

23 // read the array of integers

24 ReadArray(a, size);

25

26 // read the number to search for

27 number = ReadNumber () ;

28

29 // find number in row + determine position

30 index = BinSearch(a, size, number);

31

32 if (index >= 0 && index < size)

33 printf ("The number is present on place %d\n", index);

34 else

35 printf ("The number is not present.\n");

36

37 return 0;

38 }

39

40

41 int ReadSize (void)

42 |

43 int n;

44

45 do

46 {

47 printf ("How many integers do you want to
enter [1..%2d]: ", MAX SIZE);

48 scanf ("$d%*c", &n);

49 } while (n < 1 || n > MAX SIZE);

50

51 return n;

52 }

53

54 int ReadNumber (void)

55  {

56 int n;

57

58 printf ("Enter the number to search for: ");

59 scanf ("$d%*c", &n);

60

ol return n;

62 }




63 void ReadArray(int x[], int a)

64 |

65 int 1i;

66

67 printf ("Enter the %d integers, ordered from smallest to
largest:\n", a);

68

69 for (i = 0; i < a; ++1)

70 {

71 scanf ("$d%*c", &x[i]);

72

73 // test if well ordered

74 if (1 > 0 && x[1] < x[i - 1])

75 {

76 printf ("The ordering is not correct\n");

77 exit (5);

78 }

79 }

80 }

81

82 int BinSearch(int al], int n, int qg)

83 {

84 int first, last, middle;

85

86 first = 0;

87 last = n -

88

89 while (last >= first)

90 {

91 // integer division!!

92 middle = (first + last) / 2;

93

94 // determine new subarray if number not found yet

95 if (a[middle] == qg)

96 return middle;

97 else if (a[middle] < qg)

98 first = middle + 1;

99 else

100 last = middle - 1;

101 }

102 return -1;

103 }

1;

Code 48: binary search




10.4 Exercises

10.1.

10.2.

10.3.

10.4.

10.5.

Write a program with functions.

- In the main function, an array of 10 integers is declared.

- A first function reads the 10 integers and stores them in the
array.

- A second function swaps the first integer with the min value
present in the array. Swapping must be done in the same
array, without using a second array. Using an extra auxiliary
variable is allowed. All other numbers need to stay in their
original places.

- A third function prints the array after swapping.

Bubble sort is another method used to order arrays. It is an
algorithm that repeatedly steps through the list to be sorted. In each
pass, each pair of adjacent items is compared and swapped if they
are in the wrong order. If, for instance, ordering from smallest to
largest is needed, the biggest element will end up at the end of the
list after the first pass. The algorithm, is named for the way bigger
elements "bubble" to the end of the list. The next pass can stop a bit
sooner (the last element is already in place). How many passes are
needed? Can you stop sooner?

Write a program, with functions, that orders a list of numbers using
the bubble sort method.

Use bubble sort to order a list of names.

Write a program with (minimal) 4 functions that:

= reads a list of 9 integers. The integers must be entered in
ascending order. Make sure your program verifies if the
numbers entered are correctly ordered. If not, the program
prints a message and stops execution.

- reads a 10% integer.

- finds the correct location for this 10t integer within the sorted
list and inserts it there.

- prints the final list.

Write a sorting program based upon exercise 10.4.

= read an integer.

- read a next integer and put it in the correct place in the list.
- repeat step 2 until all numbers are read.

This method is called insertion sort.



11 Pointers
Objectives

In this chapter the basic concepts of pointers are explained. At the end of
this chapter, one should be able to:

- declare and initialize a pointer

- use pointers and pointer operators

- understand the close relationship between pointers and arrays

- use pointers to pass arguments by reference to a function

- use pointers to functions

Pointers are an extremely powerful programming tool. Some C
programming tasks are performed more easily with pointers, and other
tasks, such as dynamic memory allocation, cannot be performed without
using pointers. Pointers are used, for example, to have a function directly
modify a variable passed to it. It is also possible to use pointers to
dynamically allocate memory, which means that you can write programs
that can handle big amounts of data on the fly. You don't need to know,
when you write the program, how much memory you need.

This chapter will treat the basic concepts of pointers. Using pointers for
dynamic memory allocations will be treated in chapter 17.

11.1 Definition

In C, every variable has a type, an address in memory and a value. A
pointer is a variable whose value is the address of another variable. Hence,
you can say that the pointer “points” to that other variable. This is
illustrated in Figure 46:

address memory

variable 129B4A

IR <
pointer 402AAC 129B4A

Figure 46: pointer principle



[._

11.2 Declaration and initialization
11.2.1 Declaration

Like every variable in C, a pointer variable must be declared before it can
be used. In its most general form, a pointer declaration can be written as:

<target datatype> * <name>;

The * in the declaration indicates that the variable is a pointer. For instance

|int OIEE 2

declares the pointer variable with name ptr that can point to a variable of
the type int.

Remark
When a pointer is declared, memory is reserved to store an address only!
No memory is reserved for the variable the pointer will refer to, nor does

the pointer point to any variable yet!

11.2.2 Initialization

Pointers should be initialized when defined or they should be assigned a
value. Pointers can be initialized to NULL or an address. A pointer initialized
to NULL is a pointer that points to nothing.

Learning note

To avoid unexpected behavior, always initialize pointers!

11.3 Address and dereference operator

Now that the pointer is declared and initialized, we still need to make sure it
points to the variable of our choice. To this end, the address of that variable
must be assigned to the pointer.

To determine the memory address of a variable, the address operator ¢ is
used:

int *p = NULL; //declaration and initialization of the pointer
int a = 5; //declaration of the integer variable a
p = &a;

The statement "p = sa;” assigns the address of the integer variable a to
the pointer p. As a result, the pointer p now points to the variable a.



On the other hand, it must also be possible to read the value of the variable
the pointer is pointing to. The operator to be used is called the
dereferencing operator and is represented by the symbol *.

int *p = NULL; //declaration and initialization of the pointer
int a = 5; //declaration of the integer variable a
p = &a;

printf (“%d”, *p);

The statement “printf (“%d”, *p);” will output the number 5 to the
screen. *p performs the dereferencing operation on the pointer p. It reads
the address stored in the pointer variable p, goes to that memory location
and returns the value stored at that location.

The same operator can be used to store values into the variable the pointer
refers to:

When above statement is executed, the address stored in the pointer
variable p will be read and the number 8 will be stored at that memory
location. Therefore, in the above example, the variable a will get the value
8.

The example of Code 49 demonstrates the address and the dereferencing
operator:

1 #include <stdio.h>

2

3 int main (void)

4 {

5 int a = 5;

6 int *p = NULL;

7 p = &a;

8 printf ("The address of the variable a: %x\n", &a);

9 printf ("The content of the variable p: %$x\n", p);

10 printf ("The content of the variable a: %d\n", a);

11 printf ("The content of the variable p points to: %d\n", *p);
12 printf ("The address of the pointer variable: %$x\n\n", &p);
13 return O;

14 }

variable a: 34faf$§
variable p: 34faf$
variable a: 5

variable p points to: 5
pointer variable: 34faec

address
content

content
content
address

Code 49: demonstration of &« and * operators
Common mistake

Dereferencing a pointer that was not initialized nor assigned to
memory location is a commonly made mistake.

a specific




The following pointer example shows how pointers can be changed to point
to different variables in 1 program. Of course, the pointer always points to
one variable at a time!

1 #include <stdio.h>

2

3 int main (void)

4 {

5 int a, b;

6 int *p = NULL;

7

8 p = &a;

9 *p = 5;

10

11 p = &b;

12 printf ("Enter an integer: ");
13 scanf ("%d%$*c", p);

14

15 printf("a = %d,\tb = %d\n", a, b);
16

17 return O;

18 }

Enter an integer: 12

b =12

Code 50: pointer usage

Note that the scanf function gets p as argument. The argument must
indicate the memory address where the integer can be stored. This address
is stored in the pointer variable p.

Common mistake

Using an address operator before a pointer variable in a scanf function call
results in unexpected behavior of the program.

11.4 Passing arguments to functions
11.4.1 Pass by value

If a function with parameters is called, the values of the arguments are
copied to the function parameters. Inside the function, these parameters
can change value. Once the function is finalized, the changes done to the
function parameters are not automatically copied to the original variables
used as arguments. If one of the changed values needs to be copied to the
calling function, a return statement must be used. This behavior is
illustrated in the example of Code 51.




1 #include <stdio.h>

2 #define SIZE 10

3

4 int function(int, int[]);

5

6 int main (void)

7 {

8 int i, n, res;

9 int b[SIZE];

10

11 n = 5;

12 for (i = 0; 1 < SIZE; ++1)

13 bli] = 1i;

14

15 printf ("Before the function call: n = %d\n", n);
16 printf ("and the array b contains: ");
17 for (i = 0; i < SIZE; ++1)

18 printf ("%4d", b[i]);

19

20 res = function(n, b);

21

22 printf ("\n\nAfter the function call: n = %d,\n", n);
23 printf ("the array b contains: ");
24 for (i = 0; 1 < SIZE; ++1)

25 printf ("%$44d", blil):

26

27 printf ("\nand res = %d\n", res);
28

29 return 0;

30 1}

31

32 int function(int x, int yI[])

33 {

34 int 1i;

35

36 X = X * x;

37

38 for (1 = 0; 1 < SIZE; ++1i)

39 y[i] = 1 * i;

40

41 return Xx;

42}

$\Documents\Tempus-DESIRE\C for embedded systems‘\chapterl1\Debughexampl... QE

Before the function call:
and the array b contains:

After the function call:
the array b contains: 16 25 36 49 B4 81
and res = 25

Code 51: pass by value

In this example, the value of n is copied into the function parameter x. In
the function, x is modified, but the variable n in the main function remains
unchanged. The array b on the other hand is changed from within the
function. In the case of an array, the starting address of that array is
passed to the function. As a result the array in the function (y) and the
original array (b) point to the same memory location!




11.4.2 Pass by reference

Often, the changes carried out on the parameters in the called function
need to affect also the arguments in the calling function. To this end, a
mechanism similar to passing arrays to functions needs to be used. Instead
of passing the value of a variable to the function, the address of that
variable needs to be passed to the function parameter. As a result, the
function parameter is now a pointer that points to the original variable. So,
through the pointer in the called function, the original variable can be
altered.

Code 52 shows an example with a swap and a read function that use pass
by reference.

1 #include <stdio.h>

2

3 void read(int *, int *);
4 void swap (int *, int *);
5

9 int main (void)

7 {

8 int a, b;

9

10 read(&a, &b);

11

12 printf ("\nBefore the function call: a = %d and b = %d\n", a, b);
13 swap (&a, &b);

14 printf ("After the function call: a = %d and b = %d\n", a, b);
15

16 return 0;

17 1}

18

19 wvoid read(int *x, int *y)
20 |

21 printf ("Enter two integer numbers: ");
22 scanf ("%d%d%*c", x, Vy);
23 1}

24

25 wvoid swap(int *x, int *y)
26 {

27 int temp;

28

29 temp = *x;

30 *x o= *y;

31 *y = temp;

32}

A\Documents\Tempus-DESIRE\C for embedded systems\chapterl1\Debug\exampl... gm

Enter two integer numbers: 5 8

Before the function call: a = 5 and b = 8
After the function call: a = 8 and b = 5

Code 52: pass by reference

The pointers x and vy in the functions swap and read point to the original
variables a and b. Therefore, a and b can be modified directly from inside
the functions.




11.5 Pointers and arrays

Pointers and arrays are closely related in C. For instance, pointers can be
used to point to an element in an array.

Consider following array and pointer declarations:

int arr([5] = {1, 2, 3, 4, 5};
int *arrPtr = NULL;

The name of an array evaluates to the starting address of the array.
Therefore, an array name can be considered as a pointer to the first array
element. To make sure the pointer arrpPtr points to the first element of the

array arr the following statement can be used:

IarrPtr = arr;

or alternatively:

|arrPtr = &arr[0];

At this point, the pointer is set as illustrated in Figure 47.

arrPtr arr[0] arr[4]

F----

Figure 47: pointer to array

The value of the array element arr[2] can be accessed with the pointer
expression:

|*(arrPtr + 2);

arrPtr contains the starting address of the array. Adding an offset of 2 to
that starting address, brings us to the element with index 2 inside the
array.

Alternatively, since the array name and the pointer both contain the same
memory address, we can use the array notation in combination with the
pointer name, resulting in:

|arrPtr[2];

Or, we could move the pointer such that it points directly to the array
element with index 2:

|arrPtr += 2;




Example:

1 #include <stdio.h>

2

3 int main (void)

4 {

5 int numbers([5], *point;
6

7 point = numbers;

8 *point = 10;

9

10 point++;

11 *point = 20;

12

13 point = &numbers([2];
14 *point = 30;

15

16 point = numbers + 3;
17 *point = 40;

18

19 point = numbers;

20 *(point+4) = 50;

21

22 for (int n=0; n<5; n++)
23 printf ("%d\t", numbers([n]) ;
24

25 return 0;

26}

DESIR

Code 53: pointers and arrays

11.6 Pointer versions of some string functions

To illustrate the usage of pointers, some string functions are rewritten.

11.6.1 strlen

1 int strlen(char *s)

2 {

3 char *p = s;

4 while( *p != '\0")
5 pt++;

6 return p - s;

7 }

11.6.2 strcpy

void strcpy (char *s, char *t)
{
while( (*s = *t) != '"\0'")
{
st++;
t++;

W J o Ul W




11.6.3 strcmp

int strcmp (char *s, char *t)
{
for ( ; *s == *t; ++s, ++t)
{
if (*s == '"\0")

return 0;

}

return *s - *t;

O 0 Jo Ul b W

11.7 Pointers to functions
11.7.1 Function pointers
Like variables, functions need to be stored in memory. Therefore, also

functions have a starting address. In C, it is possible to declare a pointer
that points to the starting address of a function.

As an example we will write a program with a main and two functions where

one of the functions is called by the use of a function pointer.

1 #include <stdio.h>

2

3 float OneThird(float);
4 float OneFifth(float);
5

6 int main ()

7 {

8 float (*pf) (float);

9 pf = OneThird;

10 printf ("$f\n", (*pf) (3.0));
11 return O;

12}

13

14 float OneThird(float x)
15 {

16 return x / 3;

17 1}

18

19 float OneFifth(float x)
20  {

21 return x / 5;

22 '}

Code 54: function pointer

The line

[float (*pf) (float);

declares a variable pf that is a pointer (*pf) to a function that receives a
float as parameter and returns a float. The parentheses around *pf are
needed to indicate that pf is a pointer.



Without those parentheses, the instruction would become:

|float * pf (float);

which declares a function with name pf that receives a float as argument
and has a pointer to a float as return value.

The next statement:

|pf = OneThird;

assigns the starting address of the function with name oneThird to the
pointer pf. Like arrays, the name of a function refers to the starting
address of that function in memory.

To use the function the pointer is pointing to, the pointer needs to be
dereferenced. On top the correct function arguments need to be passed:

[printf ("$£\n", (*pf) (3.0));

11.7.2 Array of function pointers

Function pointers are commonly used in programs where a user can select a
function to be carried out from a list of options. Using an array of function
pointers to all possible functions, the user’s choice can be translated into an
index that allows to select the correct function pointer from the array. This
is illustrated in the next example:

1 #include <stdio.h>

2

3 int add(int, int);

4 int subtract (int, int);

5

9 int main (void)

7 {

8 int a, choice;

9 int (*fptr[2]) (int, int) = { add, subtract };
10

11 printf ("Enter your choice:\n");

12 printf ("\tO0:\taddition (10 + 2)\n\tl:\tsubtraction (10 - 2)\n");
13 scanf ("%d%*c", &choice);

14

15 a=(*fptr([choice]) ( 10, 2);

16

17 printf ("The requested operation gives: %d\n", a);
18 return O;

19 1}

20

21 int add(int x, int y)

22 {

23 return x + y;

24 '}

25

26 int subtract(int x, int y)

27 {

28 return x - y;

29 1}

Code 55: array of function pointers



If the users chooses option 0 (addition), the element with index 0 is
selected in the array, resulting in a function pointer to the function with
name add.

11.7.3 Function pointers as function argument

Finally, function pointers allow using functions as parameters of other
functions as illustrated in the examples of Code 56 and Code 57.

Example:
add and subtract with a function that receives a function pointer as
argument

1 #include <stdio.h>

2

3 int add(int, int);

4 int subtract (int, int);

5 int domath (int (*) (int, int), int, int);
6

7 int main (void)

8 {

9 int a, b;

10

11 a = domath (add, 10, 2);

12 printf ("Add with function pointer gives: %d\n", a);
13

14 b = domath (subtract, 10, 2);

15 printf ("Subtract with function pointer gives: %d\n", b);
16

17 return 0;

18 }

19

20 int add(int x, int y) {

21 return x + y;

22}

23

24 int subtract(int x, int y) {

25 return x - y;

26}

27

28 // run the function pointer with inputs
29 int domath (int (*mathop) (int, int), int x, int y) {
30 return (*mathop) (x, vy);

31}

* | C\Users\u0088734\Documents\Tempus-DESIRE\C for embedded systems\chapterl1\Debug\exampl... gm

Add with function pointer gives: 12
Subtract with function pointer gives: 8

Code 56: function pointer as function argument (add - subtract)

The first argument of the function domath is a function pointer with name
mathop that can point to a function that receives two integers as inputs and
returns an integer. Calling the function domath with add as first parameter,
assigns the function add to the function pointer mathop.




Example:
calculate Y7_,, f2(k) where f(k) can be chosen from:

f k) = sin(k)

K 1

£ =

1 #include <stdio.h>

2 #include <math.h>

3

4 double inverse (double) ;

5 double SumOfSquare (double (*) (double), double, double);

6

7 int main (void)

8 {

9 double start, end, res;

10 start = 1;

11 end = 3;

12

13 res = SumOfSquare (sqgrt, start, end);

14

15 printf ("The squares of the square root function
add up to: %1f\n", res);

16

17 res = SumOfSquare (inverse, start, end);

18

19 printf ("The squares of the inverse function
add up to: %1f\n\n", res);

20 return 0;

21 1}

22

23 double inverse (double x)

24

25 return 1.0 / x;

26 }

27

28 double SumOfSquare (double (*fptr) (double), double m, double n)
29 |

30 int k;

31 double sum = 0;

32 for (k = m; k < n; k++)

33 {

34 sum += (*fptr) (k)* (*fptr) (k);
35 }

36 return sum;

37 1}

# | CA\Users\u0088734\Documenis\Tempus-DESIRE\C for embedded systems\chapterl1\Debug\exampl...

The squares of the square root function add up to: 3.000000
The squares of the inverse function add up to: 1.250000

Code 57: function pointer as function argument (sum of squares)




11.8 Exercises

11.1. Write a program without arrays that:
- declares 3 variables of the type double in the main function

- reads all 3 variables with one function call to the function
ReadValues

- prints the values of the 3 variables in the main function

11.2. Write a program to swap two numbers. The first number is stored in
the variable number1 and the second in the variable number2. After
the swap the variable number1 contains the second number and
number?2 contains the first number. Use functions: Read, Swap,
Print. Do not use arrays!

Enter 2 numbers: 5 10

The value of the first variable is 5, the value of the
second variable is 10.

After the swap, variable 1 contains 10 and variable 2
contains 5.

11.3. Write a program that converts a humber of seconds into a number of
hours, minutes and seconds. Reading the number of seconds and
printing the result is done in the main function. The calculations are
done in a separate function. No arrays are to be used!

Enter a time in seconds: 10000
The entered time of 10000 seconds equals 2 hours,
46 minutes and 40 seconds.

11.4. Write a program that reads an amount of money (=< € 200) and that
determines the minimum number of notes and coins needed to
obtain that amount. Write a function for the calculations and a
function to print to the screen. Do not use arrays!

Enter an amount of money: 195
195 euro can be obtained with:

1 hundred
1 fifty

2 twenty
1 five

0 one




11.5.

11.6.

Write a program that reads the temperatures of a full week, finds
the min and max temperatures and prints them together with all
entered temperatures.

print the temperatures as follows:

Mon Tue Wed Thu Fri Sat Sun
Day 5.0 5.5 7.0 6.0 7.5 8.0 8.5
Night -1.5 -0.5 0.0 -1.0 0.0 1.0 1.5

Print also min and max temperatures of day and night together with
the day that temperature was measured:

Min: Night: Mon = -1.5
Day: Mon = .0
Max: Night: SURS=IE0S
Day: Sun = 29

The temperatures are stored in a 2D array with row 0 for the
temperatures measured during the day and row 1 for the
temperatures measured during the night. The names of the days are
stored in a separate array (you cannot store numbers and text in the
same array).

Use 3 functions: Read, Print and Calculate. Pass the indexes of
the min and max temperatures for day and night by reference.

Write the function print string to finalize the next program. The
function print string prints a string, received as argument,
character by character using the function putchar ().

#include <stdio.h>
#include <string.h>
#define MAXSTRING 100

void print string(char *c);

int main (void)

{
char s1[MAXSTRING], s2[MAXSTRING];

strcpy(sl, “Mary, Mary, quite contrary.\n”);
strcpy (s2, “How does your garden grow?\n”);

print string(sl);
print string(s2);
strcat (sl, s2);

print string(sl);




11.7. Write a program that reads a word and converts it as follows:

= the first 2 characters are printed.
Ex: “qwerty” => print qw

- the first and second character are compared. The largest one
is printed. Ex: g < w => print w as third letter

- now, compare the second and third character and again print
the largest. Ex: w > e => print w as forth letter

- repeat until the word is finished

Once the conversion is finished, the program prints also the

alphabetically smallest and largest letter.

The function main contains:
= asking the question “again?” and reading a 0 or 1 as answer
- printing the largest and smallest letter

The function Read takes care of:
= reading a word. Make sure only words of 2 or more
characters can be entered.

The function print takes care of:

- determining the smallest and largest letter and passing
them to the main program with pointers

= converting and printing the word

Enter a word or a series of letters:
qwerty

qWWwWrty
largest = y and smallest = e

again? (l=yes, 0O=no): 1
Enter a word or a series of letters:

beverage

beevvrrgg
largest = v and smallest = Db

again? (l=yes, 0=no): 0




11.8. Write a program that prints the tables of multiplication of an integer
number entered by the user up to a limit that is also entered by the
user. Keep on repeating the program until 0 0 is entered.

Use following functions:
- Read: read 2 integers (number and limit)
- CalcPrint: prints the table of multiplication and calculates
the sum of the odd and even numbers
- main: calls the functions Read and calcPrint and prints the
sum of the odd and even numbers
No arrays can be used!

enter the number you want to use for the table of
multiplication:

5

enter the limit:

32

5

10
15
20
25
30

the sum of the even numbers is 60
the sum of the odd numbers is 45

enter the number you want to use for the table of
multiplication:

0

enter the limit:

0

Thanks!




11.9. Write a program that performs a mathematical computation on 2
numbers entered by the user.
The numbers are read in the function rRead (do not use arrays!)

The main function:

- calls the function Read

- asks the user to choose an operator. Do this with a menu.
Make sure only valid inputs are allowed.

- uses a function pointer that points to the correct function
(use a switch statement to select the correct function)

- prints the result

Enter 2 integer numbers: 10 5

Choose an operand:
0 addition
subtraction
multiplication
division

S NN

Choose an operand:
addition
subtraction
multiplication
division

o W N P O

The result of this operation is: 15

11.10. Repeat the previous exercise but this time:

- make an array of function pointers where the function
pointer stored at index 0 points to addition, at index 1 to
subtraction,

= write a separate function “Choose” that returns the user’s
choice to the main program

= make sure the integer returned by the function Choose is
equal to the index corresponding to the correct function
pointer.



12 Comma operator, const, typedef,
enumerations and bit operations

Objectives

In this chapter some smaller topics often used in C programming are

grouped together. You will learn about:

- the comma operator

- using the type qualifier const instead of the #define precompiler
directive

- using typedef to create aliases for existing types

- using enumerations combined with typedef

- using bit operations to manipulate individual data bits

12.1 The comma operator

Expressions can be separated by a comma operator. The expressions are
evaluated from left to right and the last one determines the final value.

for(i = 0, j =n-1; 1 < n ; i++, j—-)
b[j] = alil;

After every loop execution the variable i will be increased with 1 and the
variable j will be decreased with 1. This example can be rewritten as:

for (i = 0; i < n; i++)
bln-i-1] = al[il;

In the next example, the scanf function first reads a new value of n before
the condition (n > 0) is checked.

sum = 0;

while (scanf (“%d%*c”, &n), n > 0)
sum += n;

printf (“The sum is %d\n”, sum);

12.2 typedef

In C it is possible to create an alias for a previously defined type. To avoid
using complex type names, which is the case for enumeration types (see
section 12.4) , you can define your own self explaining aliases using the
keyword typedef.

[typedef int INTEGER;

defines INTEGER as an alias for the type int. The new type INTEGER can be
used instead of the standard type int:

[INTEGER counter, size;




The above declaration reserves memory for the 2 variables counter and
size that are of the type INTEGER oOr int.

12.3 Type qualifiers

Different type qualifiers exist in C. In section 6.3, we discussed already the
type qualifiers register and static. Another very useful type qualifier in
the C language is const.

Constants can be defined in 2 different ways:

- Using the preprocessor directive #define:
this is what we have done up till now. The preprocessor will replace
every instance of the constant by the value linked to it in the #define

directive.

- Using the type qualifier const:
Using the const prefix allows to declare constants with a specific type as
follows:

const type variable = value;

Example:
const int linelength = 80;

this statement assigns the value of 80 to the variable 1inelength. Since
the const prefix is used, 1inelength can no longer be changed after
initialization.

12.4 The enumeration type
The enum keyword allows to create a new type that consists of a limited list
of elements. Variables of such an enumeration type store one of the values

of the enumeration set.

For example, the enumeration:

|enum days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

creates a new type called enum days. Variables of that type can hold any
one of the identifiers Sun till Sat. Internally, these identifiers are
represented by integers starting from 0 for Sun until 6 for Sat.

The declaration:

|enum days dl, d2;

creates 2 variables of the type enum days.



Using the keyword typedef allows to create an alias for the type enum days
as follows:

Itypedef enum days {Sun, Mon, Tue, Wed, Thu, Fri, Sat} Day;

The declaration of the variables d1 and d2 can now be done by:

[pay d1, d2;

Example:
Print the days of the week using an enumeration type.

1 finclude <stdio.h>

2

3 typedef enum days { Sun, Mon, Tue, Wed, Thu, Fri, Sat } Day;
4

5 void PrintDay (Day) ;

6

7 int main (void)

8 {

9 Day dl, dz;

10 dl = Mon;

11

12 if (dl == Mon)

13 printf ("First working day of the week\n");
14

15 for (d2 = Wed; d2 < Sat; d2++)

16 PrintDay (d2) ;

17 return O;

18 1}

19

20 wvoid PrintDay (Day d)

21 {

22 switch (d)

23 {

24 case Mon: printf ("Monday\n"); break;
25 case Tue: printf ("Tuesday\n"); break;
26 case Wed: printf ("Wednesday\n"); break;
27 case Thu: printf ("Thursday\n"); break;
28 case Fri: printf ("Friday\n"); break;
29 case Sat: printf ("Saturday\n"); break;
30 case Sun: printf ("Sunday\n"); break;
31 }

32}

Code 58: example enumeration type

Note that a switch is used to translate the identifiers Sun till Sat into real
weekdays. Remember that a switch statement can only be used if the
expression evaluates to an integer number. This is the case since the
identifiers are internally stored as integer numbers.



Replacing the for loop in the above example by:

for (d2 = Wed; d2 < Sat; d2++)
printf (“&d ”, d2);

will change the output into: 345

The integer numbers linked to the different identifiers can also be set
explicitly as shown in the example of Code 59:

1 #include <stdio.h>

2

3 typedef enum Months t { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC } Months t;

4

5 int main ()

6 {

7 enum WindDirections t { NO WIND, SOUTH WIND, NORTH WIND,

EAST WIND, WEST WIND };

8 enum WindDirections t windDirection = NORTH WIND;

9

10 Months t month = DEC;

11

12 printf ("Month is: %d\n", month);

13 printf ("Wind direction is: %d\n", windDirection);

14

15 month = (Months t) (month - 1);

16 printf ("Month is: %d\n", month);

17

18 enum Security t{TOP SECURE=100,BLACK OPS=1000,NO SECURE=0 };

19 enum Security t securitylevel = TOP_ SECURE;

20 printf ("security level is : %d\n", securitylevel);

21

22 switch (windDirection)

23 {

24 case NORTH WIND:

25 printf ("This is North Wind\n");

26 break;

27 case NO WIND:

28 printf ("There is No Wind\n");

29 break;

30 default:

31 printf ("Default case\n");

32 break;

33 }

34

35 return 0;

36}

Month is: 11
windDirection is: 2

Month is: 18

securitylevel is :
This is North Wind

Code 59: example of enumeration type 2

The statement:

Ienum Security t{TOP_ SECURE=100, BLACK OPS=1000, NO SECURE=0 };




defines a new type called enum Security t with identifiers TOP SECURE,
stored internally as 100, BLACK 0OPs, stored internally as 1000 and
NO_ SECURE stored internally as 0.

12.5 Bit operations

All data is internally stored as a sequence of bits. Depending on the data
type chosen, the number of bits needed to represent the data is different. A
character for instance is represented by 1 byte or 8 bits.

Bitwise operators allow to directly manipulate the bits themselves. This can
be very useful for instance to manipulate the content of registers inside an

embedded system.

An overview of the bitwise operators is shown in Table 9:

operator meaning

& bitwise AND

| bitwise OR
<< left shift
>> right shift

~ one's complement
» bitwise XOR

Table 9: bitwise operators

12.5.1 Bitwise AND

short int wl = 25, w2 = 77, w3;
w3 = wl & w2;

The bits in w3 are set to 1 if the corresponding bits in w1 and w2 are both 1:

wl 0000 0000 0001 1001 25
w2 0000 0000 0100 1101 77
w3 0000 0000 0000 1001 9
12.5.2 Bitwise OR

short int wl = 25, w2 = 77, w3;
w3 = wl | w2;

The bits in w3 are set to 1 if at least 1 of the corresponding bits in w1 and w2
is 1:

wl 0000 0000 0001 1001 25
w2 0000 0000 0100 1101 77

w3 0000 0000 0101 1101 93




12.5.3 Bitwise XOR

short int wl = 25, w2 = 77, w3;
w3 = wl ~ w2;

The bits in w3 are set to 1 if the corresponding bits in w1 and w2 consist of
an odd number of 1’'s:

wl 0000 0000 0001 1001 25
w2 0000 0000 0100 1101 77
w3 0000 0000 0101 0100 84
12.5.4 One’s complement

short int wl = 25, w3;
w3 = ~wl;

The bits in w3 are set to 1 if the corresponding bits in w1 are set to 0 and
vice versa:

wl 0000 0000 0001 1001 25
w3 1111 1111 1110 0110 65 510
12.5.5 Left shift

short int wl = 25, w3;
w3 = wl << 2;

The bits of w1 are shifted 2 positions to the left. The last 2 positions on the
right are filled with O:

wl 0000 0000 0001 1001 25

w3 0000 0000 0110 0100 100

Remark that shifting 2 positions to the left is equivalent to multiplying with
2%, In general, shifting n positions to the left is equivalent to multiplying
with 2™,




12.5.6 Right shift

short int wl = 25, w3;
w3 = wl >> 2;

The bits of w1 are shifted 2 positions to the right. The 2 leftmost positions
are filled with 0 or 1 depending on the value of the MSB of wi:

wl 0000 0000 0001 1001 25

w3 0000 0000 0000 0110 6

short int w2 = 0xCF83, wi4;
wd = w2 >> 2;

w2 1100 1111 1000 0011 -12 413

w3 1111 0011 1110 0000 -3 104

Remark that shifting 2 positions to the right is equivalent to dividing by 22.
In general, shifting n positions to the right is equivalent to dividing by 2".

12.5.7 Example

1 #include <stdio.h>

2

3 int main (void)

4 {

5 short int a, Db;

6

7 a = 0x5A03; // 0101 1010 0000 0011 = 23043

8 b = 0xCF83; // 1100 1111 1000 0011

9

10 printf ("size of int = %d\n", sizeof (int));

11 printf("a = %8x\n", a);

12 printf ("b = %8x\n\n", b);

13 printf ("~a = %8x\n", ~a); //1010 0101 1111 1100
14 printf("a & b = %8x\n", a & b); //0100 1010 0000 0011
15 printf("a | b = %8x\n", a | b); //1101 1111 1000 0011
16 printf("a ~ b = %8x\n", a " Db); //1001 0101 1000 0000
17 printf ("a>>4 = %8x\n", a >> 4); //0000 0101 1010 0000
18 printf ("a<<4 = %8x\n\n", a << 4); //0101 1010 0000 0011 0000
19 return 0;

20 }

size of int = 4
5af3
FFFFCF83

fffaSfe

= 4a03

= fFFFdF83
= fFFF9580
S5a0

52030

Code 60: example bit operations




12.5.8 Masking

Consider the example of a 16 bit register out of which only the 4 MSB's (the
4 |left most bits) need to be read. Using the above bit operators, one could
shift all bits 12 positions to the right such that the 4 MSB’s become the only
bits left.

Example:

Suppose the register a contains the value 23043 (0101 1010 0000 0011).
a>>12 then results in: 0000 0000 0000 0101

Since leading zero’s are not be taken into account, this is equivalent to 101
which is the value of the 4 MSB's.

Unfortunately, this is true only if the MSB of the register a is a 0! In that
case the leftmost positions will be filled with 0 resulting in leading zero’s
that can be ignored. However, if the MSB is a 1, shifting the bits 12
positions to the right will result in a series of 12 1’s before the bits of
interest:

a = -24523 (1010 0000 0011 0101)
a>>12 resultsin: 1111 1111 1111 1010, which is equivalent to -6. The 4
MSB'’s on the other hand are 1010 which represents the humber 10!

To get rid of the leading 1's, the result of the shift operation will be treated
with a bitmask that turns all bits to zero except for the ones we are
interested in. This process is called bit masking.

In the above example the masking can be done by using a bitwise AND
operation of the shifted number and the bit sequence that contains 0 on all
positions except on the positions corresponding to the bits of interest:
0000 0000 0000 1111 or 0x000F in hex notation.

(a>>12) & 0x000F results in 0000 0000 0000 1010

A programming example that returns the 4 MSB’s of a number is shown in
Code 61

1 #include <stdio.h>

2

3 int main (void)

4 {

5 short number;

6 printf ("Enter an integer [-32768,32767]: ");

7 scanf ("$hd%*c", &number);

8 printf ("Number:\ndec: %$hd \nhex: %x.\n\n", number, number);

9 number = number >> 12; //shift 12 positions to the right

10 printf ("number shifted:\ndec: %$hd or hex: %x.\n\n", number,
number) ;

11 number = number & 0x000f; //masking to remove leading 1's

12 printf ("4 MSB’s:\ndec: %hd of hex: %x.\n\n", number, number);

13 return 0;

14 }

Code 61: bit masking




l

12.6 Exercises

12.1. Write a program with following screen output:

Current Month | Previous Month
January | December
Februari | January
March | February
April | March
May | April
June | May
July | June
August | July
September | August
October | September
November | October
December | November
Make use of:

A\Y

- an enum type “month”:
enum t month{Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec}
- a function “lastMonth” that has the current month (type enum
t month) as input and returns the previous month
- a function “"pPrintMonth” that takes a variable of the type enum
t _month as input and prints that month to the screen

- a for loop to run through all 12 months

12.2. Write a program “next-day” with:

- a function “read” that asks the user to enter a day and a month as
integers and returns those values to the main function (hint: use
pointers)

- a function “NextDay” that has the current day and month as
arguments, calculates the next day and returns that next day to the
main function (assume the day is not part of leap year)

- a function “printDay” that takes a day and a month as input and
prints them to the screen

- use an enum type for the months

Enter the current day and month (as integers): 29 3
The current day is: March 29
The next day is: March 30

Enter the current day and month (as integers): 30 4
The current day is: April 30
The next day is: May 1




12.3. Write a program that reads an integer, stores it in a variable of the
type short int and prints the integer as a sequence of 4 nibbles
(nibble = 4 bits). The nibbles can be printed in decimal or in hex format.
Make sure the leftmost nibble is printed first and the rightmost is
printed last. Determining the values of the nibbles needs to be done
using bit operations only. Make use of functions in your program.

input: 23043 (=0x5A03)
output: 510 0 3

input: -21345 (=0xACO9F)
output: 10 12 9 15

12.4. Write a function with return value that rotates the bits of a short
int 4 positions to the left. The bits that are shifted out at the left side,
must be reentered at the right side. Rotating needs to be done inside
the variable that was entered.

Write a program that uses this function.

input: 20480
output: 5
(20480 = 0x5000 -> rotation yields: 0x0005)

input: 23043
output: -24523
(23043 = 0x5A03 -> rotation yields: 0xA035)

input: -24523
output: 858
(-24523 = 0xA035 -> rotation yields: 0x035A)

12.5. Write a function that prints the binary representation of a short int
using bit operations. Write a program that uses this function.

input: 23043
output: 0101 1010 0000 0011
input: -24523

output: 1010 0000 0011 0101



12.6. Consider a register of the CANSPI MCP2515 chip. The register
contains 8 bits out of which the 2 MSB’s (bits 6 and 7) are the
“synchronization Jump Width Length bits” and the 6 LSB’s (bits O till 5)
are the “"Baud Rate Prescaler bits” (see figure below)

REGISTER 5-1: CNF1 - CONFIGURATION 1 (ADDRESS: 2Ah)

FAW-0 R0 R0 R0 Rav-0 RAND R0 R0
Shw AN ERPS BRP4 | BRP3 | BRP2 ERP1 ERPO
hit 7 hit 0
Legend:
R =Readable bit Wy = WWitable bit L = Unimplemented bit, read as '0"
-n =‘alue &t POR 1" = Bitis set ‘0" = Bitis cleared ¥ = Bit i5 unknown
bit 7-6 SJW<1:0>: Synchronization Jurnp Width Length bits

11= Length =4 Ta
10= Length=3xTa
01= Length=2x%Ta
oo= Length=1%Ta
hit -0 ERP<5:0>: Baud Rate Prescaler bits
Ta = 2% (BRP + 1¥Fosc

Write a program that asks the user to enter a number that fits this
register (1 byte) and that prints the corresponding “"Baud Rate Prescaler
bits” (hex and binary format) and the “Synchronization Jump Width bits”
(hex and binary format).

12.7. Write a function that produces a (pseudo) random number in the
interval [1, 32767]. Make use of the following algorithm:

- use a SEED different form 0 (ex: 3254)

- store this seed number into a 16 bit static short int variable
(static is needed to continue with the changed value when the
function is called several times)

- perform a XOR operation on the bits 14 and 13 (the bits are
numbered from left to right as follows: 15, 14, 13, ..., 2, 1, 0)

- shift the number 1 bit to the left and fill the rightmost bit with the
result of the XOR operation

- make sure bit 15 remains 0 (to keep the number in the correct
range)

- the number you have now is a pseudo random number

Write a program that calls this function 10 times. Check the result.



13 The C preprocessor
Objectives

This chapter explains how preprocessor directives can be used to: e

- include files like a self-written header file

- define symbolic constants

- write macros

- use conditional compilation to specify which portions of the code need to
be compiled in specific situations only

13.1 The C preprocessor

As explained in section 1.5, a program written in C code needs to traverse
different steps before it can be executed. First, the C preprocessor or parser
will search for preprocessor directives in the source code and take the
appropriate action. Next, the compiler will translate the code produced by
the preprocessor into an object-file. Finally, the linker will create an
executable.

Preprocessor directives always begin with #. Only white spaces or
comments can be written on the same line before a preprocessor directive.

13.2 #define preprocessor directive
#define can be used to define both symbolic constants and macros.
13.2.1 Symbolic constants

The #define preprocessor directive allows to allocate symbolic names to
constants used inside the program.

The general format is:

|#define symbolic-name replacement-text |

The result of this directive is that the preprocessor will look for all
occurrences of the symbolic-name in the source code and replace each
occurrence with the replacement-text before the source code is compiled.

#define MAX 100
#define YES 1

if (i < MAX)
answer = YES;

In the above example, the word Max will be replaced with the value 100 and
the word YEs with the value 1.



The preprocessor directive #undef discards the symbolic constant from

there on.
|#undef MAX

\>rm'< Common mistake

N’
Preprocessor directives are different from C statements. Therefore, no
semicolon can be placed at the end of such a directive.
Common mistake

X

o, No assignment operator can be placed in between the symbolic name and

the corresponding replacement text! Doing so results in strange behavior!
For instance:

#define MAX = 100

will cause the preprocessor to replace every occurrence of the word MAX
with the replacement text "= 100"!

13.2.2 Macros

A macro is basically a symbolic constant with arguments, defined in a
#define preprocessor directive.

Like for a symbolic constant, all occurrences of the macro name will be
replaced by the replacement text. The only difference is the presence of the
arguments that will be substituted in the replacement text before replacing
the macro name occurrences.

[#define MAX(a,b) ((a) > (b) 2 (a) : (b))

Wherever MAX (x,y) appears in the file, the values of x and y will replace
the letters a and b in the macro. Afterwards, the full replacement text with
a and b substituted, will replace MAX (x, vy) .

For instance the statement:

[vy= 2 * Max(i+1, j-1);

will be replaced by:

vy =2 * ((d+D) > (-1) 2 (i+]) : (G-1));

The parenthesis around every a and b in the replacement text are needed
to force the correct order of evaluation when the macro arguments happen
to be an expression rather than a single value.



Consider for example the following macro definition:

[#define SQUARE (x) x * x

The statement

[x = SQUARE (a+b) ;

will be replaced by

|x = atb * atb;

Taking the rules of precedence into account, the above expression is
equivalent to:

|x =a + (b * a) + b;

which is not the same as (a+b)2 ! Using parenthesis around every x results
in the macro definition:

[#define SQUARE (x) (x)* (x)

In this case the above statement will be replaced by:

[x = (a+b) * (atb) ;

as intended.
Common mistake

No white space can be written in between the macro name and its list of
arguments.

Common mistake

Putting too little parenthesis around the macro arguments in the
replacement text is a commonly made error that can result in strange
program output.

Be careful in using macro’s that evaluate their arguments more than once
like in the macro sQUARE defined above. If the macro argument is an
expression that changes the variable value like for instance incrementing
the variable, the change will be carried out more than once! For instance,
the statement

|x = SQUARE (++a) ;

will be replaced by

|x = (tta)* (++a);

Using functions is safer in this case.



[._

Macro examples:

#define IS LEAPYEAR(J) ((§)%4 == 0 && (§)%100 != 0 || (§)%400 == 0)

#define SWAPINT (x,y) (int help=x; x=y; y=help;)

#define ISDIGIT (c) ((c)>='0' && (c)<='9")
#define TOLOWER(c) ((c) - 'A' + 'a')
Remark

A macro is different from a function! Using a macro will result in a text
substitution, not in a function call!

13.3 #include preprocessor directive

With the #include preprocessor directive a copy of the specified file will be
included in the source code.

The 2 standard formats for the #include directive are:

#include <filename>
#include “filename”

In the first case, the filename is enclosed in angle brackets (< >). This
instructs the preprocessor to search for the file with name filename in the
standard include directory. If the file is not found, a preprocessor error will
be issued.

If the filename is enclosed in double quotes (* ”), like in the second format,
the preprocessor will look for the file in the directory that contains the
source code file. If not found in that directory, the standard include
directory will be searched instead. This is typically used to include
programmer defined header files:

|#include “header.h”

Programmer defined header files contain preprocessor definitions,
declarations of structures, function prototypes, enumerations, typedef’s
and, if needed, global variables.

13.4 Conditional compilation

Conditional compilation allows to control which preprocessor directives are
carried out and what portion of the source code will be compiled. A
conditional preprocessor directive can be followed by a constant integer
expression only.



13.4.1 #ifdef preprocessor directive

The general format of the #ifdef preprocessor directive is:

#ifdef <identifier>

C code to be compiled if the identifier has been defined
#else

C code to be compiled if the identifier has not been defined
#endif

This is often used to enclose printf statements that are only to be
compiled if a debug constant is set:

#define DEBUG

int main (void)

{
#ifdef DEBUG

printf (“the values of the variables at this point are: .. 7, ..);

#endif

return 0;

If the symbolic constant DEBUG is not set, the printf statement will not be
compiled and as such it will not be part of the executable.

An example of using #ifdef to control the execution of preprocessor
directives is shown below:

#ifndef PI

#define PI 3.14159265358979

#endif

13.4.2 #if preprocessor directive

The usage of #if is similar to the one of #ifdef except that #if can be
followed by a constant expression:

#define TEST 1

int main (void)

{

#if TEST
printf (..);
#endif
return 0;

}




13.5 Exercises

13.1. Define a macro with name MIN to determine the smallest of 2 values

Write a program that tests the macro.
A4

Example:

The minimum of -9 and 10

=9

13.2. Define a macro TOLOWER (c) that changes c into a small letter if cis a

capital letter or leaves c as is otherwise. Write a program that tests the
macro.

Example:

Enter characters,

end with 0: A B Dc d 0

abdcd

13.3. Define a macro Max3 that determines the maximum of 3 values
Write a program that tests the macro.

Hint: define a macro MAx2 that determines the maximum of 2
values and use it as follows:
MAX3 (a, b, c) MAX2 (MAX2 (a, b), c)

Example:

The maximum of 20, 10 and -5

= 20

13.4. Define macro’s 1s CAPITAL and IS SMALL that result in a O if the

character entered is a capital or a small letter respectively. Write a
program that tests the macro’s.

Example:

Is A a capital letter? 1
Is A a small letter? O

13.5. Define a macro IS LETTER that results in the value 1 if the argument

is a letter. Use the macro’s from exercise 13.4 to define this macro.
Write a program that tests the macro’s.

Example:

Is a a letter? 1
Is * a letter? O




14 File handling in C

Objectives
D)
This chapter explains how files can be accessed from a C program. At the e
end of this chapter, one should be able to:

- understand the difference between text files and binary files
- open and close a file in different modes

- read data from a text file and a binary file

- write data to a text file and a binary file

- update data in binary files

14.1 File pointer

All data used in the programs written up till now, was stored in variables.
Unfortunately, this type of storage is temporary and as such all data is lost
as soon as the program terminates. To allow for long term storage, files
need to be used.

A file can be described as a sequence of bytes that is stored on a secondary
storage device, which is generally some kind of disk. Hence, to manipulate
files, the program needs to store all kinds of information about those files.
To this end, a special structure called FILE is defined in <stdio.h>. When
opening a file, a new file control block of the type F1LE will be created and
a pointer to that block (FILE *) will be provided.

C provides no specific I/0O statements, therefore a series of functions was
added to the standard library stdio. Some of those functions will be
handled in more detail in the next sections.

Every file manipulation in C consists of the following 3 steps:
1. Open the file
2. Read and or write operations

3. Close the file

We will first discuss how to open and close a file. Afterwards different
functions to read from files or write data into a file will be explained.



14.2 Opening and closing a text file

Creating a new file control block of the type FILE and initializing all fields of
that block with the correct data is done using the function fopen:

IFILE * = fopen(char * name, char * mode);

The function fopen has 2 input parameters.

The first parameter is a string that defines the name of the file to be
opened. This filename can include path information in an absolute or
relative way.

Common mistake

If path information is to be added to the file name, be aware that the
backslash sign “\” has a special meaning when used in a literal string.
Therefore, every directory separation character “\” needs to be written
twice!

The second parameter "mode” defines how the file needs to be opened. The
mode parameter needs to be written with a small letter, in between double
quotes and must be one of the options listed in Table 10.

mode description

“r” | Open an existing file for reading.

Create a new file for writing. If the file already exists, erase
the current content.

Append data at the end of the file. If the file does not exist, it is
first created.

AN
w

A\ 74
a

“r+” | Open an existing file for update (reading and writing).

Create a new file for reading and writing. If the file already
exists, erase the current content.

Open an existing file or create a new file for reading and

“a+” | appending. Writing operations are carried out at the end of the
file, for reading operations, repositioning is possible.

N+

Table 10: file opening modes

If the file was opened successfully, the function fopen returns a pointer of
the type FILE * to the newly created file control block. If not, the value
NULL is returned instead.

Once all read and write operations on the file are done, the file control block
can be cleared by closing the file with the function fclose:

|int fclose (FILE * filepointer);




where filepointer points to the file control block you want to erase. If the
file closure was successful, the function fclose returns 0. If not, the value
EOF is returned.

The usage of the functions fopen and fclose is demonstrated in Code 62.

1 #include <stdio.h> // contains I/O functions

2 #include <stdlib.h> // contains function exit ()

3

4 int main (void)

5 {

[ FILE * fp;

7 fp = fopen ("MyFile.txt", "zr");

8 if (fp == NULL)

9 {

10 printf ("Error opening file \"MyFile.txt\" for read.\n");
11 if ((fp = fopen("MyFile.txt", "w")) == NULL)

12 {

13 printf ("Error creating file \"MyFile.txt\".\n");
14 exit (1) ;

15 }

16 printf ("New file \"MyFile.txt\" was created.\n");
17 }

18 else

19 {

20 printf ("\"MyFile.txt\" was successfully opened\n");
21 }

22 fclose (fp) ;

23 return 0;

24 }

Code 62: opening and closing a file

With the statement

|fp = fopen ("MyFile.txt", "r");

a new file control block is made, the file pointer fp now points to that file
control block. To avoid malfunctioning of the program in case for instance
the file does not exist yet, the program checks if fp has valid content before
starting any file operation:

[if( fp == NULL ) { .. }

Both operations can be combined into 1 single instruction:

if ((fp=fopen ("MyFile.txt", "r")) == NULL)

{
printf ("Error opening file \"MyFile.txt\" for read.\n");
exit (1) ;

In case of an error during the opening operation, the function exit () will
simply stop the program in a controlled way. It is good practice to print a
line of text explaining why the program stopped before actually exiting the
program.



Common mistake

Omitting the parenthesis around the expression
fp=fopen ("MyFile.txt", "r")

is a commonly made mistake. As a result, the filepointer £p will not be
linked correctly to the opened file.

14.3 Read and write 1 symbol to a text file

14.3.1 Read one symbol: fgetc

The function fgetc, with function declaration:

lint fgetc(FILE *fp);

reads one character from the file referenced by fp and returns the ASCII
value of that character as an integer. If the end of the file is reached or if a
reading error occurred, the function fgetc returns the constant Eor. To
check which one of the 2 occurred, the functions ferror and feof can be
used.

The following example shows how the text of a file can be printed to the
screen using the function fgetc.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

9 int main (void)

7 {

8 FILE * fp;

9 int symbol;

10

11 if ((fp = fopen (FILENAME, "r")) == NULL)
12 {

13 printf ("The file \"%s\" cannot be opened.\n", FILENAME) ;
14 exit (1) ;

15 }

16

17 while ((symbol = fgetc(fp)) '= EOF)
18 putchar (symbol) ;

19

20 printf ("\n");

21 fclose (fp) ;

22 return O;

23 1}

A\Documents\Tempus-DESIRE\C for embedded systems\chapterl4\Debug\exampl... gm

This program prints the characters in this file to the screen.

The printing is done symbol by symbol, inlcuding newlines (\n)
and tabs (\t) ,until the end of the file is reached.

Code 63: read 1 symbol from a file



14.3.2 Write one symbol: fputc

The function fputc, with function declaration:

|int fputc (int char, FILE *fp);

writes one character to the file referenced by fp. The function fputc takes
the ASCII value of the character to be written (int char) as input and
returns that ASCII value, except if a writing error occurred. In the case of
an error, the value Eor will be returned.

Changing the program of Code 63 to make a file copy results in:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define IN "text.txt"

5 #define OUT "copy.txt"

6

7 int main (void)

8 {

9 FILE *fin, *fout;

10 int symbol;

11

12 if ((fin = fopen(IN, "r")) == NULL)
13 {

14 printf ("The file \"%s\" cannot be opened.\n", IN);
15 exit (1) ;

16 }

17

18 if ((fout = fopen(OUT, "w")) == NULL)
19 {

20 printf ("The file \"%s\" cannot be opened.\n", OUT);
21 exit (2);

22 }

23

24 while ((symbol = fgetc(fin)) != EOF)
25 fputc (symbol, fout);

26

27 fclose (fin);

28 fclose (fout) ;

29 printf ("The file was copied.\n");

30 return O;

31 }

Code 64: copy a file using fgetc and fputc

First, the two files are opened in read and write mode respectively. In every
execution of the while loop one symbol of the file "text.txt" is read
(fgetc (fin)) and written into the file "copy.txt" (fputc (symbol, fout)).



14.4 Read and write a full line to a text file

14.4.1 Read a full line: fgets

The function fgets, with function declaration:

Ichar * fgets(char *s, int max, FILE *fp);

reads a sequence of symbols from the file referenced by fp, and stores
them in the string s. The read process stops when a newline character is
found, the maximal number of symbols defined by the parameter max is
read (null byte included) or the end of the file is reached. At the end of the
symbol sequence a null byte is added automatically.

The function returns the string that was read except if the end of the file is
reached or if a reading error occurred. In that case, the function fgets
returns the constant NULL. To check which one of the 2 occurred, the
functions ferror and feof can be used.

The following example reads a text file line by line and prints the lines to
the screen.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

9 int main (void)

7 {

8 FILE * fp;

9 int i = 0;

10 char line[BUFSIZ]; // BUFSIZ is defined in stdio.h to be 512
11

12 if ((fp = fopen (FILENAME, "r")) == NULL)

13 {

14 printf ("The file \"%s\" cannot be opened\n", FILENAME) ;
15 exit (1) ;

16 }

17

18 while (++1i, fgets(line, BUFSIZ, fp) != NULL)
19 printf ("% %$s", i, line);

20

21 fclose (fp) ;

22 printf ("\n");

23 return O;

24 1}

This program prints the lines in this file to the screen. -

The printing is done line by line, inlcuding newlines (\n)
and tabs (\t) ,until the end of the file is reached.

Code 65: printing the content of a file line by line



14.4.2 Write a full line: fputs

The function fputs, with function declaration:

|int fputs (char *s, FILE *fp);

writes a sequence of symbols, stored in the string s, to the file referenced
by fp. If successful, the function returns a non-negative value, otherwise
EOF is returned.

The example of Code 66 reads a line of text from the keyboard and
appends it to a file.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

6 int main ()

7 {

8 FILE * pFile;

9 char sentence[BUFSIZ];

10

11 printf ("Enter sentence to append: ");

12 gets (sentence) ;

13

14 if ((pFile = fopen (FILENAME, "a")) == NULL)

15 {

16 printf ("The file \"%s\" cannot be opened\n", FILENAME) ;

17 exit (1) ;

18 }

19

20 fputs (sentence, pFile);

21 fputc('\n', pFile); //add a newline after the sentence
into the file

22 fclose (pFile);

23 return O;

24 1}

Code 66: append a line of text to an existing text file

Note that a newline character is written explicitly to the file to avoid writing
all sentences on 1 single line. In other words: fputs does not automatically
put a newline character at the end of the string written.



14.5 Formatted read and write to a text file
Formatted writing to and reading from files is done with the functions

fprintf and fscanf respectively that are very similar to the functions
printf and scanf.

14.5.1 Formatted printing to a file: fprintf

The function fprintf is declared in <stdio.h> as:

|int fprintf (FILE *fp, format control string, arguments);

except for the first argument that indicates the file to write to, this is
identical to the printf function. Beside strings, using fprintf also allows
other data types to be written to the file. This is shown in example Code 67.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "text.txt"

5

9 int main (void)

7 {

8 FILE * fp;

9

10 char namel[12] = "Smith";

11 int agel = 55;

12 float weightl = 99.56;

13 char name2[12] = "Jones";

14 int age2 = 45;

15 float weight2 = 56.78;

16

17 if ((fp = fopen (FILENAME, "w"))==NULL)

18 {

19 printf ("The file \"%s\" cannot be opened\n", FILENAME) ;
20 exit (1) ;

21 }

22

23 fprintf (fp, "%s %d %$f\n", namel, agel, weightl);
24 fprintf (fp, "%$s\t%d\t%$f\n", name2, age2, weight2);
25

26 fclose (fp) ;

27 printf ("The file was written\n");

28 return O;

29 1}

Code 67: formatted printing to a file

14.5.2 Formatted reading from a file: £scanf

Reading strings and symbols can be done using the functions fgetc and
fgets as described above. However, if only one word needs to be read or if
a number needs to be read, formatted reading is needed. To this end, the
function fscanf is defined as:

|int fscanf ( FILE *fp, format control string, arguments);




Also this function is identical to its scanf equivalent except for the file
pointer. The return value of this function is a non-negative integer if
successful.

Code 68 shows the C code needed to read the file written in Code 67 and
print it to the screen.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #fdefine FILENAME "text.txt"

5

6 int main (void)

7 {

8 FILE * fp;

9

10 char name[12];

11 int age;

12 float weight;

13

14 if ((fp = fopen (FILENAME, "r")) == NULL)

15 {

16 printf ("The file \"%s\" cannot be opened\n", FILENAME) ;

17 exit (1) ;

18 }

19

20 while (fscanf (fp, "%s%d%f", name, &age, &weight) > 0)

21 {

22 printf ("name: %-12s age: %3d weight: %5.2f\n", name,
age, weight);

23 }

24

25 fclose (fp) ;

26 printf ("\n") ;

27 return O;

28 1}

: Smith age: 55 weight: 99.56

: Jones age: U45 weight: 56.78

Code 68: formatted reading from a file

The format control string "¢s%dsf" indicates that first a string, then an
integer and finally a float must be read and stored in the addresses given
by the arguments name, sage and sweight.

Note that the spaces or tabs in between the values printed in the file are
not taken into account by the fscanf function.

14.6 stdin, stdout and stderr

When program execution begins, 3 files are opened automatically with
associated FILE pointers stdin, stdout and stderr. stdin points to the
standard input, stdout to the standard output and stderr to the standard
error.




As such, the statement printf (“Hello world\n”);
is identical to fprintf (stdout, “Hello world\n”);
and getchar () ; can be replaced by fgetc(stdin) ;

Similarly scanf (), gets () and puts () can be substituted by their
corresponding file functions.

The principle of connecting files to the standard input and output also
allows to redirect them to a file starting from the command line. If for
instance prog is an executable, the command line input:

prog > out

will run the program with name prog and redirect the standard output to
the file with name out. Similarly the command:

prog < in

makes the program prog read all standard input from the file with name in.

14.7 Binary files versus text files

Text files are used to make the information in the file readable to the user.
However, many files in a computer system contain information that is only
to be read or updated by the system itself. As a result, this information
does not need to be formatted and can be copied straight from memory
into the file. This results in files containing a sequence of bytes that are not
necessarily to be interpreted as text characters. Opening such a binary file
with a text editor is usually not very useful.

14.8 Opening and closing a binary file

The functions fopen and fclose are used to open and close binary files:

FILE * = fopen(char * name, char * mode);
int fclose(FILE * filepointer);

As with text files, the first parameter of the function fopen is a string that
defines the name of the file to be opened and can include path information.

The second fopen parameter "mode” defines how the file needs to be
opened. The possible mode options are identical to the ones used for text
files except that the letter ‘b’ is added at the end to indicate that a binary
file is being opened. This is illustrated in Table 11.




mode description

“rb” | Open an existing binary file for reading.

Create a new binary file for writing. If the file already exists,
erase the current content.

Append data at the end of the binary file. If the file does not
exist, it is created first.

AN Wb ”

AN ab ”

“rb+” | Open an existing binary file for update (reading and writing).

Create a new binary file for reading and writing. If the file
already exists, erase the current content.

Open an existing binary file or create a new binary file for
“ab+” | reading and appending. Writing operations happen at the end
of the file, for reading operations, repositioning is possible.

n Wb+ ”

Table 11: binary file opening modes

14.9 Write to a binary file: fwrite

The function fwrite, with function declaration:

|size_t fwrite(void *ptr, size t size, size t count, FILE *fp);

writes count elements of size bytes starting from the address ptr from
memory into the file corresponding to the filepointer fp. The return value is
an unsigned int (size t) that indicates the amount of elements written
and is equal to 0 if an error occurred.

The meaning of each argument is listed in Table 12:

argument description

ptr starting address in memory

size size (in bytes) of 1 element

count number of elements (size bytes each)
fp filepointer

Table 12: arguments of function fwrite

Example: write a series of 3 floats to a binary file.

#include <stdio.h>
#include <stdlib.h>

#define FILENAME "myfile.bin"

int main (void)
{
FILE* pFile;
float buffer([3] = { 1.0, 11.5, 48.45 };

O 0 Jo Ul WN -




10 pFile = fopen (FILENAME, "wb");

11 if (pFile == NULL)

12 {

13 printf ("The file %s cannot be opened.\n", FILENAME) ;
14 exit (1) ;

15 }

16

17 fwrite (buffer, sizeof(float), 3, pFile);

18 fclose (pFile);

19 return O;

20 }

Code 69: fwrite example

In the above example, buffer is the name of an array so it represents the
starting address of that array in memory. To determine the number of
bytes needed for 1 element, in this case 1 float, the function sizeof is
used.

Opening "myfile.bin” in a text editor results in unreadable content:

R RN RV SRR RERE- PN RN

€? 8afias

< | 1 | »

100% (=) U ()

Figure 48: reading binary file with text editor

Reading binary files can be done using a hex editor. Such a program shows
the bytes stored in the file in hexadecimal mode:

AP A myfilebin %

00000000 00 01 02 03 04 05 06 07 08B 09 Oa Ob Oc Od Oe Of

00000000 00 00 &80 3f 00 00 32 41 cd cc 41 42 d.€2..8n1inB
00000010

Figure 49: reading binary file with hex editor

The numbers in the above figure are the hexadecimal representations of the
floats written. Reading the content of such a binary file is easier using the
function fread and the build-in printf formatting to print the numbers in
readable format to the screen.



14.10 Read from a binary file: fread

The function fread, with function declaration:

|size_t fread(void *ptr, size t size, size t count, FILE *fp);

reads count elements of size bytes from the file corresponding to the
filepointer fp to the memory location ptr. The return value is an unsigned
int (size_t) that indicates the amount of elements read and is equal to 0
if an error occurred or the end of the file is reached.

The meaning of each argument is listed in Table 13.

argument description

ptr address in memory

size size (in bytes) of 1 element

count number of elements (size bytes each)
fp filepointer

Table 13: arguments of function fread

Example: read the file "myfile.bin” and print its content to the screen.

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 #define FILENAME "myfile.bin"

5

[ int main (void)

7 {

8 FILE* pFile;

9 float number;

10

11 if ((pFile = fopen (FILENAME, "rb")) == NULL)
12 {

13 fputs ("File error\n", stderr);

14 exit (1) ;

15 }

16

17 printf ("The numbers in the file \"%s\" are:\n", FILENAME) ;
18 while (fread(&number, sizeof (float), 1, pFile))
19 printf ("$.2f\n", number);

20

21 fclose (pFile);

22 return 0;

23 1}

Code 70: fread example



14.11 More binary file functions

14.11.1 function fseek

The function fseek, with function declaration:

|int fseek (FILE * fp, long offset, int origin);

places the file position pointer for the file referenced by fp to the byte
location that is the sum of origin and offset. The return value is equal to
0 unless an error occurred. In the case of an error the value -1 is returned.

The argument origin must be one of the values listed in Table 14.

origin  descripton
SEEK_SET | beginning of the file

SEEK_CUR | current location in the file
SEEK_END | end of the file

Table 14: list of values to be used as origin in the function fseek

Code 71 shows an example of fseek usage.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #define FILENAME "example.txt"

4

5 int main (void)

6 {

7 FILE* pFile;

8 pFile = fopen(FILENAME, "w");

9 if (pFile == NULL)

10 {

11 printf ("The file %$s cannot be opened.", FILENAME) ;
12 exit (1) ;

13 }

14

15 fputs ("This is an apple.", pFile);
16 fseek (pFile, 9, SEEK SET);

17 fputs (" sam", pFile);

18 fclose (pFile);

19 return 0;

20 }

Code 71: £fseek example

The statement “fseek (pFile, 9, SEEK SET);” places the file position
pointer at an offset of 9 bytes (and thus 9 letters) from the beginning of the
file. The next statement “fputs (" sam", pFile);” starts writing the
symbols " sam" from byte 9 on, overwriting the content that is already
there, resulting in following content for the file “example.txt”:

| E example.txt E:!l
" 1 ﬁhis is a sample.




14.11.2 function ftell

The function ftell, with function declaration:

|long ftell (FILE * fp);

returns the current offset of the file position pointer in the file referenced by
fp, with respect to the beginning of the file. This offset is expressed in
bytes. If an error occurs, the return value is -11L.

Using ftell to determine the length of a file is illustrated in Code 72.

1 #include <stdio.h>

2 #include <stdlib.h>

3 #define FILENAME "example.txt"

4

5 int main (void)

6 {

7 FILE* pFile;

8 long size;

9

10 if ((pFile = fopen (FILENAME, "rb")) == NULL)

11 fputs ("Error opening file\n", stderr);

12 else

13 {

14 fseek (pFile, 0, SEEK END); //put position pointer at end
of the file

15 size = ftell (pFile); //ask current position of
position pointer

16 fclose (pFile);

17 printf ("Size of %s: %1d bytes.\n", FILENAME, size);

18 }

19 return 0;

20 }

A\Documents\Tempus-DESIRE\C for embedded systems\chapterl4\Debug\exampl... gm

Size of example.txt: 17 bytes.

Code 72: ftell example

14.12 Direct access files

Binary files are often used to read and write arrays of data to and from
disk. More specifically, full structures can be written and read. We will treat
the subject of structures in chapter 15.

Such a structure can be used to represent certain records you want to save
like for instance all bank information from a certain person, address
information form a customer, ...

Since full records can be written at once to a binary file and since we know
the length of 1 record, the data from 1 specific record can be accessed by
jumping directly to the wanted record. Using fseek, we can put the file
position pointer at the right place in the file as is illustrated in Figure 50.



byte

100 200 300 400 500
offsets

l l l l |

- O

100 100 100 100 100 100
bytes bytes bytes bytes bytes bytes

Figure 50: direct access file
Therefore, binary files are often called direct access files.

Example:

the file records.dat contains the bank balances of 3 customers. Each one of
those bank balances is contained in a record with fixed length. The example
below, shows how to read the data from 1 record only.

1 #include<stdio.h>

2 #include<stdlib.h>

3 #include "account.h"

4

5 int main (void)

6 {

7 FILE * fp;

8 Account account;

9 int recnr;

10

11 if ((fp = fopen(FILENAME, "rb")) == NULL)

12 {

13 printf ("The file %s cannot be opened\n", FILENAME) ;

14 exit (1) ;

15 }

16

17 printf ("Enter the record number: ");

18 scanf ("$d%*c", &recnr);

19

20 fseek (fp, (long) (recnr-1) * sizeof (Account), SEEK SET);

21

22 if (fread(&account, sizeof (Account), 1, fp) <= 0)

23 {

24 printf ("Record %d of file %s does not exist.\n", recnr,

FILENAME) ;

25 exit (1) ;

26 }

27

28 printf ("The content of record %d is:\n%d\t%f\t%s\n", recnr,
account.nr, account.balance, account.name);

29 fclose (fp) ;

30 return O;

31}

With account.h:

#ifndef ACCOUNT H
#define _ACCOUNT_H
#define FILENAME "records.dat"
typedef struct //used to define the fields of 1 record
{
int nr;

char name([25];
float balance;
} Account;
0 #endif

O oW Jo Ul wN




p R S=S  ,im T —— e =
7 | Ch\Users\u0088734\Documents\Tempus-DESIRE\C for embedded systems\chapterl4\Debug\exampl...
Enter the recordnumber: 2

The content of record 2 is:
2 641.049988 TEST ACCOUNT 2

Code 73: usage of direct access files

Based upon the record number entered, the file position pointer is set at
the start of the wanted record by the statement:

|fseek(fp, (long) (recnr-1) * sizeof (Account), SEEK SET) ;

where sizeof (Account) evaluates to the length of 1 record. Next, the
number of bytes equal to 1 record is read and stored in the variable
account. Afterwards, the different record fields are printed. A variable like
account that contains fields of different data types is called a structure.
Structures are explained in chapter 15.

14.13 Exercises

14.1. Use a text editor to create a text file that contains a few lines of text.
Write a program that reads the text file line by line and writes
everything to the screen. | S——

14.2. Write a program that copies the text file line by line to a new file.

14.3. Write a program that copies the text file but this time with double
spacing. (instead of 1 newline, 2 newlines need to be placed at the end
of every line).

14.4. Write a program that copies the text file from exercise 14.3 to a new
file removing all empty lines.

14.5. Write a program that writes the lines of a text file to the screen. On
the screen, all lines need to be preceded by their line number.

14.6. Write a program that prints the content of 2 different text files
merged (one after the other) to the screen.

14.7. Write a program that asks the user to enter the file name, the file
extension and some text. The program creates that file and writes the
entered text to that file.

Enter file name: test
Enter file extension: txt
Enter your text: This is a test.

File has been opened with success!
Text has been written

File closed




14.8. Write a program that prints the first 20 lines of a text file to the
screen. If the user hits return on the keyboard, the next 20 lines are
printed. This is repeated until the end of the file is reached.

14.9. Use a text editor to create 2 different files that both contain a row of
integer numbers, ordered from small to large. Write a program that
prints the numbers of both files in 1 ordered row. The file content
cannot be saved into arrays to solve this problem.

Example:
numbersl.txt: 1579112377 93103
numbers2.txt: 4912 28 124 230
yields: 14579911 12 2328 77 93 103 124 230

14.10. Use a text editor to create 2 different files that both contain a
row of integer numbers, ordered from small to large. Write a program
that combines the numbers in both files to create 1 ordered row and
writes these numbers in that order to a new file. Again, no arrays can
be used.

14.11. Write a program that searches patterns in a text file. A
certain string (pattern) needs to be searched in the text file. Every line
that contains that pattern, must be printed. Print also the line number.

14.12, Write a program that asks the user to enter the name and
age of a chosen number of people and writes that data to a file. The
names do not contain any spaces.

For how many people do you want to enter data? 3
Enter name and age: Smith 40

Enter name and age: Connelly 25

Enter name and age: Jolie 39

results in a file containing:

name: Smith
age: 40

name: Connelly
age: 25

name: Jolie
age: 39




14.13. Write a program that reads the file created in exercise 14.12
and prints all data to the screen.

14.14. Write a program that searches a name entered by the user in
the file created in exercise 14.12 and prints the corresponding age to
the screen. Make sure a message is printed when the name is not
present in the file.

Enter the name of the person you want to find: Jolie

name: Jolie
age: 39




15 Structures
Objectives

In this chapter, the concept of structures is explained. You will learn how to
- define a new structure

- access the different members of a structure

- use struct variables as arguments and return values of functions

- use pointers to struct variables

- write to and read from files of structures

15.1 Definition

In chapter 7 the concept of arrays was introduced. These arrays are used to
combine different variables into 1. Unfortunately, all variables in an array
need to be of the same datatype. In real life, however, we often encounter
a group of variables of different datatypes that belong together. Such a
group of variables is called a record. To represent this real life situation,
structures will be used.

A structure combines a set of variables of different datatypes into 1
variable.

Example:
we can use a structure to combine all product data. A product has a product

number (type: int), a name or description (type: char *), an inventory level
(type: int), a purchase price (type: float) and a retail price (type: float).

15.2 Defining a structure

A structure must be defined using the struct statement as follows:

struct <name>{
datatype eleml;
datatype elem2;

}s

The statement above defines a new data type. Variables of that new
datatype can be declared by:

‘struct <name> <variable name>;




For instance, the definition of the structure “product” looks like:

struct product {
int number;
char description([30];
int inventory;
float purchase;
float retail;

i

and the declaration of variables of this new datatype is done as follows:

|struct product artl, art2;

or an array of variables of this new datatype:

|struct product art[100]; |

typedef can be used in combination with struct to define and name a new
data type. This new datatype can then be used to define structure variables
directly as follows:

typedef struct product({
int number;
char description([30];
int inventory;
float purchase;
float retail;
}Product;

Product artl, art2, art[100];

or:

typedef struct({
int number;
char description[30];
int inventory;
float purchase;
float retail;
}Product;

Product artl, art2, art([100];

Learning note

Note that the newly defined struct type can only be used after its
definition. Therefore, define structure variables always in the top section of
the source code or in the header file if any.

15.3 Accessing structure members

Once the structure is defined and variables of the new datatype are
declared, the different members of those variables need to be accessible.
To access any member of a structure, the dot operator (.) is used. This dot
operator is placed in between the variable name and the structure member
name.



Example:

artl.number = 12;
strcpy(art[20] .description, “plasma TV”);

The individual structure members can be used like any other variable of
that same type as can be seen in the examples above.

Also the structure variables themselves are regarded as ordinary variables.
As a result, a structure variable can be used directly in an assignment which
is not the case for array variables:

lart[0] = artl;

Initialization of a structure variable can also be done together with the
declaration as follows:

|Product artl={12, “plasma TV”, 35, 245.50, 999.99};

15.4 Nested structures

Next to variables and arrays, structures can also contain other structures.
The following example shows how nested structures can be used.

#include<stdio.h>

typedef struct

{
unsigned short day;
char month[16];
unsigned int year;

} Date;

QO J oy Ul WwWwDN

10 typedef struct

11

12 char name[32];

13 Date DateOfBirth;

14 } Person;

15

16 int main (void)

17 A

18 Person p = { "Mark Twain", { 7, "February", 1871 } };

19 printf ("name : %s\n", p.name);

20 printf ("date of birth: %s, %u, %u\n", p.DateOfBirth.month,
p.DateOfBirth.day, p.DateOfBirth.year);

21 return 0;

22}

name : Mark Twain

date of birth: February, 7, 1871

Code 74: usage of nested structures

Note that the structure “"pDate” needs to be defined before it can be used in
the structure “pPerson”.



15.5 Structures and functions

Individual structure members as well as entire structures can be passed to
a function as argument or returned from a function as function return
value.

When an individual structure member or an entire structure is passed to a
function as argument, it is passed by value, meaning that the structure
value in the calling function cannot be modified from within the called
function. The modifications done inside the called function can be returned
to the calling function by the use of a function return value. This is
illustrated in the example of Code 75 that shows the definition of the
function adapt.

Product adapt (Product x)

{
x.number += 1000;
x.retail *= 1.2;
return x;

Code 75: example structures and functions

Calling the function can be done as follows:

|art[5] = adapt (artl);

Like for any other variable that is passed by value, the values of the
structure members of art1 are copied into the variable x which acts as a
local variable in the function adapt. The return statement takes care of
copying all members of x into art[5].

15.6 Comparing 2 structures
C does not provide an equality operator that allows to directly compare 2
structures. Comparison can only be done by comparing the structure

variables member by member.

The following example shows a function that can be used to compare two
structures of the type pProduct:

int compare (Product x, Product y)

{

if (x.number != y.number) return 0;
if(x.inventory != y.inventory) return 0;
if (x.purchase != y.purchase) return 0;
if(x.retail != y.retail) return 0;

return !strcmp(x.description, y.description);




15.7 Pointers to structures

Like for any other data type, pointers to structures can be declared as
shown in following example:

Product a;
Product *pa;
pa = &a;

Where pa is declared to be a pointer to a variable of the type Product. The
statement “pa=sa;” assigns the address of the structure variable a to the
pointer pa.

To access the individual structure members via the pointer variable, the ->
operator needs to be used:

pa->number = 1023;
strcpy (pa->description, “dvd”);

Pointers to structures also allow to pass a structure to a function by
reference as is illustrated in Code 76:

1 #include <stdio.h>

2

3 typedef struct {

4 int number;

5 char description([30];

9 int inventory;

7 float purchase;

8 float retail;

9 } Product;

10

11 wvoid read(Product *);

12 wvoid print (Product) ;

13

14 int main (void)

15 {

16 Product a;

17 read (&a) ; //variable a is passed by reference
18 print (a); //variable a is passed by value
19 return O;

20 }

21

22 wvoid read(Product *p)

23

24 printf ("Enter product number : ");

25 scanf ("%d%$*c", & (p->number)) ;

26

27 printf ("Enter product description: ");
28 gets (p->description) ;

29

30 printf ("Enter the product inventory level: ");
31 scanf ("$d%$*c", & (p->inventory));

32

33 printf ("Enter purchase price: ");

34 scanf ("$f%*c", & (p->purchase));

35

36 printf ("Enter retail price: ");

37 scanf ("$£%$*c", & (p->retail));

38 1}

39




40 wvoid print (Product z)

41 {

42 printf ("Product number:\t%d\n", z.number);

43 printf ("description:\t%s\n", z.description);
44 printf ("inventory level:\t%d\n", z.inventory):;
45 printf ("purchase price:\t%.2f\n", z.purchase);
46 printf ("retail price:\t%.2f\n", z.retail);

47 '}

product number : 12

product description: plasma TU
the product inuventory leuel: 35
purchase price: 245.50

retail price: 999.99

Product number: 12
description: plasma TU
inventory level: 35
purchase price: 245.50
retail price: 999.99

Code 76: passing structures to functions by reference

Common mistake

Note the parenthesis around the combination pointer->member when an
address operator (&) is used. Omitting these parenthesis is a commonly
made mistake that results in accessing wrong memory locations.

15.8 Files of structures

Structures can be written to or read from a binary file as a whole using the
functions fread and fwrite respectively. To determine the number of bytes
to be read or written, the function sizeof is used:

struct Person pers;
fread (&pers, sizeof (pers), 1, fptr);

the function fread will read all data from 1 person from the file referred to
by fptr, into the variable pers.

Similarly

struct Person person[20];
fread (person, sizeof (person[0]), 20, fptr)

will read all data from 20 persons from the file referred to by fptr and
store them in an array of structures called person.

The usage of the fwrite function in combination with structures, is
illustrated in Code 77. In this example, a file with phone numbers is
Created:




1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include "phone.h"

5

6 int readPhone (Phone *);

7

8 int main (void)

9 {

10 Phone phone;

11 FILE* fp;

12

13 if ((fp = fopen (FILENAME, "wb")) == NULL)
14 {

15 printf ("\"%$s\" cannot be opened\n", FILENAME);
16 exit (1) ;

17 }

18

19 while (readPhone (&phone))

20 fwrite (&phone, sizeof (Phone), 1, fp);
21

22 fclose (fp);

23 return 0;

24 1}

25

26 int readPhone (Phone *pa)

27 |

28 printf ("Enter name (<enter> to stop): ");
29 gets (pa->name) ;

30

31 if (pa->name[0] == '\0")

32 return O;

33

34 printf ("Enter phone number : ");

35 gets (pa->phonelNr) ;

36 return 1;

37 '}

With phone.h containing:

#ifndef PHONE H
#define PHONE H

#define FILENAME "phone.dat"

typedef struct {
char name[20];
char phoneNr([12];
} Phone;
0 #endif

O oW Jo Ul d wN

Code 77: writing structures to files

The next example shows how to read the phone numbers back from the file
and print them to the screen.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "phone.h"

void printPhone (Phone *);

~ o U WN




8 int main (void)

9 {

10 Phone phone;

11 FILE* fp;

12 if ((fp = fopen (FILENAME, "rb")) == NULL)

13 {

14 printf ("\"%$s\" cannot be opened\n", FILENAME) ;
15 exit (1) ;

16 }

17

18 while (fread(&phone, sizeof (Phone), 1, fp) >0)
19 printPhone (&phone) ;

20

21 fclose (fp);

22 return 0;

23 1}

24

25 wvoid printPhone (Phone *pa)

26 {

27 printf (" %$-20s %-12s\n", pa->name, pa->phonelNr) ;
28 1}

# | C\Users\uD088734\Documents\Tempus-DESIRE\C for embedded systems\chapterl5\Debug\exampl... gm

John Smith 012345678
Keuin 0'Neil 023456789

Mark Twain 0998765432
Kate Ramsay 087654321

Code 78: reading structures from files

Finally, we can combine the write and read operation into 1 program and
add a menu to offer the user the possibility to choose what to do next:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "phone.h"

char menu (void) ;

void add(FILE *);

void list (FILE *);

9 void search (FILE *);

10 wvoid takeOut (FILE *);

11 wvoid printPhone (Phone *, int);
12 wvoid line(void):;

O J oy Ul WwWN

14 int main (void)
15 |

16 FILE* fp;
17 int stop;

19 if ((fp = fopen (FILENAME, "r+b")) == NULL)

20 {

21 if ((fp = fopen (FILENAME, "w+b")) == NULL)

22 {

23 printf ("\"%$s\" cannot be opened\n", FILENAME) ;
24 exit (1) ;

28 stop = 0;




30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

while (!stop)

{
switch (menu())
{
case 'e': stop = 1; break;
case 'a': add(fp); break;
case 'l': list(fp); break;
case 's': search(fp); break;
case 'r': takeOut (fp); break;
}

}

fclose (fp);

return 0;

}

char menu (void)

{

char s[16]; int i;
= 0;

for (i i < MENU SIZE; i++)
{
printf (" %s : %$s\n", menutext[i][0], menutext[i][1l]);
}
printf ("Your choice: ");
gets(s);

return s[0];

}

void add(FILE *fp)
{
Phone a;
Phone *pa;
pa = &a;
memset (pa, '\0', sizeof (Phone)); // set all bytes in Phone to \0
printf ("Name: ");
gets (pa->name) ;
printf ("Phone Number: ");
gets (pa->phonelNr) ;
fseek (fp, 0, SEEK END);
fwrite(pa, sizeof (Phone), 1, fp);
}

void list (FILE *fp)
{
Phone a;
Phone *pa;
int recnr = 0;
pa = &a;
line () ;
fseek (fp, 0, SEEK SET);
while (fread(pa, sizeof (Phone), 1, fp) > 0)
{
// removed records with name[0]=='\0' cannot be printed
if (pa->name[0] != '"\0")
printPhone (pa, recnr);
recnr++;

line();

}

void search (FILE *fp)
{

}

void takeOut (FILE *fp)
{

// put all bytes to '\0' in the record you want to remove

}




98 wvoid printPhone (Phone *pa, int recnr)
99 {

100 printf ("%$3d : %20s %12s\n", recnr, pa->name, pa->phoneNr);
101 }

102

103 void line (void)

104 {

105 int 1i;

106 for (i = 0; i<50; i++)

107 printf("-");

108 printf ("\n");

109 }

With phone.h containing:

1 #ifndef PHONE H

2 #define PHONE H

3

4 #define FILENAME "phone.dat"

5 #define NLEN 25

6 #define PLEN 20

7 #define MENU_SIZE 5

8

9 typedef struct

10 |

11 char name [NLEN] ;

12 char phoneNr [PLEN];

13 '} Phone;

14 char* menutext[][2] = {{"a","add"},{"1","1list"},{"s","search"},
{"r","remove"}, {"e","end"}};

15 #endif

Code 79: phone numbers program with menu

15.9 Exercises

15.1. Write a program with functions:
- define a structure “Person” with 2 members: name and firstname
- declare an array of N persons (take N = 5 for instance)
- read the data of N persons
- print that data

write at least following functions:
- a function to read the data of 1 Person
- a function to print the data of 1 Person

The main program looks like:

#include <stdio.h>
#define N 5

typedef struct {
}Person;

void readPerson (..);
void printPerson (..);



int main (void)

{

15.3.

Person p[N];

int i;

printf (“Enter %d names (first name and surname) \n, N);
for (i=0; 1 < N; i++) readPerson(&pli])

printf (“The %d entered names are\n, N);

for (i=0; i < N; i++) printPerson(pl[i]);

return 0;

Repeat exercise 15.1 with following additions:

a structure pate with a day(int), a month(string) and a year(int)
a function that reads a pDate

a function that prints a Date

add a dateOfBirth to the structure Person. dateOfBirth must be
of the type Date.

the function to read a Date must be called in the function
readPerson

the function to print a bate must be called in the function
printPerson

Repeat exercise 15.2 with addition of an enrollmentDate added to

the structure person. Change only the structure person and use the
existing functions to read and write a Date at the right place.

15.4.

Define a structure Address with streetAndNr, postalCode, town

and phoneNr. Define a structure student with a name, homeAddress and
schoolAddress. Write a program to test the structures defined.

Write a function that reads an Address:

readAddress (Address *p)

Both addresses are read with this function. Change the parameters
passed on to the function to read in the correct type of address.

Ditto to print an Address:

printAddress ( Address p)



15.5. Write a program that asks the user to enter the name and the home
town of 3 persons. Name and home town are stored in a structure
Person. The 3 persons are stored in an array. Afterwards, the program
asks the user to enter a name and searches the town that person lives
in.

Use the functions readPerson and searchTown

The function searchTown has 2 arguments:

- the array that needs to be searched

- a variable of the type person that contains the name that needs to
be searched. The town member of that variable needs to be filled
with the town found by the function searchTown.

Reading the name of the person you want to search for is done in the
main function. Printing the resulting town can also be done in the main
function. If the name entered is not present in the array, an appropriate
message needs to be printed.

Enter name: Smith

Enter town or city: Berkeley
Enter name: Minogue

Enter town or city: London
Enter name: O’Neil

Enter town or city: Dover

Enter the name of the person you want to search for: Smith
This person lives in Berkeley

15.6. Write a program that reads name, age and salary of a chosen
number of people and stores that information into a file. All data of 1
person is stored in a structure. Once the data of 1 person is read, the
structure containing that data is written to a file at once. Afterwards,
the data of the next person is read, ... Make sure the names can contain
spaces!

How many people do you want to enter? 3
Enter name: Smith

Enter age: 25

Enter salary: 1950

Enter name: Minogue

Enter age: 47

Enter salary: 6500

Enter name: O Neil

Enter age: 66

Enter salary: 2200




15.7. Write a program that reads the data from the file written in the

previous exercise. Print the data to the screen as follows:

Name: Smith
Age: 25
Salary: 1950

Name: Minogue
Age: 47
Salary: 6500

Name: O Neil
Age: 66
Salary: 2200

15.8. Write a program that searches the age and wages of a person based

upon a name entered by the user:

Name: Smith
Age: 25
Salary: 1950

What’s the name of the person you want to search for? Smith

15.9. Now, we want to add the first name of all people in the file. Ask the
first names and save them together with the already existing data in a

new file. Print the list of data:

Enter the first name of Smith: Will
Enter the first name of Minogue: Kylie
Enter the first name of O Neil: Kate

following data was entered:
Name: Smith

First name: Will

Age: 25

Salary: 1950

Name: Minogue
First name: Kylie
Age: 47

Salary: 6500

Name: O Neil
First name: Kate
Age: 66

Salary: 2200

15.10. Complete the example of Code 79 in section 15.8 by writing

the missing functions.



15.11. Repeat exercises 15.10 and add for each person also street,
number, postal code and town information.

15.12. Make a text file that contains:

Will Smith; 132 King Street; 2000; Berkeley
Kylie Minogue; 47 Jason Street; 2850; London
Kate O Neil; 65 York Street; 6547; Dover

or
Will Smith 132 King Street 2000 Berkeley
Kylie Minogue 47 Jason Street 2850 London
Kate O Neil 65 York Street 6547 Dover

write a program that reads 1 of these text files line by line and adds the
data into the file of the previous exercise.

15.13. Repeat exercise 15.7 and add a function that prints the
addresses ordered alphabetically.

Hint: define a two dimensional array with a record number for every
person in the file:

Smith
Minogue
O Neil
Allen
Donovan

NP WIN|-

Now order this matrix:

Allen
Donovan
Minogue

O Neil
Smith

H WN U

Read the records from the file in the order specified by the matrix: first
record number 4, then record number 5, ...



16 Command line arguments
Objectives

In this chapter you will learn how to pass arguments to your programs from
the command line.

16.1 argc, argv|[]

In C, it is possible to pass arguments to your program from the command
line. These arguments are handled by including the parameters int argc
and char * argv[] into the parameter list of the main function:

|int main( int argc, char * argvl[])

The parameter argc, short for argument counter, contains the number of
arguments passed from the command line including the program name. The
argument vector, argv[], contains an array of char pointers, pointing to the
first, second, ... argument respectively.

Code 80 demonstrates the usage of the command line arguments.

1 #include <stdio.h>

2

3 int main(int argc, char *argv[])
4 {

5 int 1i;

6 printf ("argc = %d\n", argc);
7

8 for (1 = 0; 1 < argc; i++)

9 {

10 printf ("argv[%d] = %s\n", i, argv[i]);
11 }

12 return 0;

13 1}

Code 80: command line arguments

Assuming that after compilation, the executable file for above program is
called myprogram, it produces following result:

= C\Windows\system32\cmd.ex¢ I J

C:\Temp>myprogram Will Sarah Tom

Figure 51: command line arguments



Note that the content of argv[] is depending on the arguments entered by
the user. If, for instance, the user enters too little arguments, a run time
error might occur. This can be avoided by verifying the number of
arguments entered before any further manipulations of the command line
arguments:

if (argc<3)

{
printf (“too little arguments”);
exit (1) ;

Common mistake

Since argv[] is an array of char pointers, the different array elements are
pointers to strings! Saving a string into a variable must be done using the
function strcpy! Using a simple assignment operator is a commonly made
mistake.

Common mistake

If a number is to be passed to the program from the command line, the
corresponding string argv[i] must be converted into a number before
using it! Omitting the string to integer conversion is a commonly made
mistake. The conversion can be carried out with the function atoi ().

16.2 Exercises

16.1. Write a program with name mycopy.exe that expects 2 command
line arguments and that copies one file to another.

Example:
mycopy text.txt copy.txt

copies the content of text.txt into the file copy.txt.

16.2. Write a program with command line arguments that compares two
text files. If the files are identical, the program will print an appropriate
message. If not, all lines containing differences must be printed to the
screen with their line numbers. If the files differ in more than 10 lines,
the program can stop printing after the 10% line.

extra: try to redirect the screen output to a text file without changing
the source code.



16.3. Write a program with command line arguments that calculates the
age (in number of years) of a humber of people based upon their date
of birth and the current date.

- make a text file containing a number of names with their
corresponding dates of birth. Make sure names and dates of birth
are always written in the same way in the text file.

- write a function “read person” to read the data of 1 person from the
file and save that data into a struct of the type “Person”. This
struct contains a name field and a field to save the date of birth,
which is a struct of the type “Date”.

- call the program from the command line with the current date and
the text file as arguments

- write a function “calculate” that calculates the age of a person in
years, months and days. This function also determines which person
is the oldest and which person has the longest name.

- printing the ages is done in the main function. Print also the names
of the oldest person and of the person with the longest name.

age calc ages.txt 01 12 2014

the ages are:

Wilbur is 18 years old
Tom is 18 years old
Sarah is 15 years old

Tom is the oldest of the 3 persons in the file.
The person with the longest name is: Wilbur

The text file ages.txt contains:

Wilbur

01 03 1996
Tom

25 12 1995
Sarah

06 06 1999




17 Dynamic memory allocation
Objectives

In this chapter, the concept of allocating and freeing memory at run time is
explained.

Following functions will be handled:

- malloc

- free

- calloc

- realloc

17.1 Introduction

So far, memory allocations were done explicitly in the source code by
indicating the variable type and, for arrays and structures, also the variable
length. As a result, the programmer needs to know in advance how much
memory will be needed. If, for instance, there is some uncertainty on the
maximal number of array elements needed for program execution, the
programmer would be forced to choose a large enough number even if for
90% of the time the array will contain only 2 valid elements.

Therefore, dynamic memory allocation is used. It allows to allocate extra
memory while the program is running and to free that memory as soon as

possible.

The functions used to accomplish this are all defined in “stdlib.h” and will
be treated in the following sections.

17.2 The function malloc

The function malloc, with function declaration:

|void * malloc(size t size);

allocates size bytes in memory at runtime. If the memory allocation went
well, a pointer to the newly allocated memory is returned. Since malloc can
be used to allocate memory for all types of data, the returned pointer is of
the type void *. Hence, type casting to the wanted data type will be
needed. In case of an error during the memory allocation, NULL is returned
instead.

To determine the number of bytes needed, the function sizeof can be
used:

int *p;
p = (int *) malloc(sizeof (int)) ;




Common mistake

The only reference to the dynamically created memory block is the pointer
returned by the malloc function. Reusing that pointer for other purposes
without freeing the memory first is a common mistake that leads to lost
objects like in the code below:

char * p;

p = (char *) malloc(32);
strcpy (p, “lost”);

p = (char *) malloc(32);

After copying the string “lost” into the first block of memory, the pointer p
is altered to point to yet another newly created memory block. Since the
memory containing the string “lost” has no name associated with it, it is
now no longer possible to retrieve it!

17.3 The function free

Once the dynamically allocated memory is no longer needed, it can be freed
using the function free as follows:

|void free(void * ptr);

where ptr points to the memory block that needs to be released. If ptr is a
NULL pointer, nothing will happen.

The usage of the functions malloc and free is demonstrated in Code 81:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main (void)

5 {

6 int* p;

7 double* g;

8 int i, n;

9 char * buffer;

10

11 p = (int*)malloc(sizeof (int));

12 *p = 5;

13 printf ("The value is %d\n", *p);

14 free(p);

15

16 g = (double*)malloc(sizeof (double));
17 *q = 5.25;

18 printf ("The value is %1f\n", *q);

19 free(q);

20

21 printf ("How long do you want the string? ");
22 scanf ("%$d%*c", &i);

23 buffer = (char*)malloc(i + 1); //+1 for the null byte at the end
24

25 if (buffer == NULL)

26 exit (1),




27 for (n = 0; n<i; n++)

28 buffer[n] = rand() % 26 + 'a';
29

30 buffer[i] = '\0';

31 printf ("Random string: %s\n", buffer);
32 free (buffer);

33

34 return 0;

35 1}

© | C\Users\u0088734\Documents\Tempus-DESIRE\C for embedded systems\chapterl7\Debug\exampl... QE

The value is 5

The value is 5.250000

How long do you want the string? 6
Random string: phgghu

Code 81: malloc and free example

17.4 The function realloc

If the size of a previously dynamically allocated memory block needs to be
changed, the function realloc can be used:

|void * realloc(void *ptr, size t size);

The pointer ptr points to the original memory block. If this pointer is NULL,
the function realloc acts like the function malloc. The new size, in bytes,
can be specified with the size argument. If size equals zero, the memory
ptr points to, is freed and the function returns NULL.

If sufficient space is available to expand the original memory block to the
newly wanted size, the additional memory is allocated and the function
returns the same pointer ptr. If not, a new block of size bytes is allocated,
the content of the original memory block is copied into the new block and
the original memory block is freed. The function now returns a pointer to
the newly created block. In case the reallocation failed, the value NULL is
returned.

Code 82 shows an example where the function realloc is used:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main (void)

5 {

6 int input, n;

7 int count = 0;

8 int *numbers = NULL;

9 int *more numbers;

10

11 do

12 {

13 printf ("Enter an integer value (0 to end): ");
14 scanf ("%d%*c", &input);

15 count++;




16

17 more numbers = (int*)realloc (numbers, count * sizeof (int));
18

19 if (more numbers != NULL)

20 {

21 numbers = more numbers;

22 numbers[count - 1] = input;
23 }

24 else

25 {

26 free (numbers) ;

27 puts ("Error (re)allocating memory");
28 exit (1) ;

29 }

30 } while (input != 0);

31

32 printf ("Numbers entered: ");

33 for (n = 0; n<count; n++)

34 printf ("%d ", numbers[n]);

35

36 printf ("\n");

37 free (numbers) ;

38 return 0;

39 1}

an integer value
an integer value
an integer value

an integer value

an integer value

an integer value
Numbers entered: 5 2 8 46

Code 82: usage of realloc

17.5 The function calloc

The function calloc, with function declaration:

|void * calloc(size t num, size t size);

allocates memory for an array of num elements of size bytes each and
initializes all elements to 0. The return value is again a pointer to the
allocated memory block or NULL if the memory allocation failed.

In the example below, the function calloc is used to read and print an
array of integers:

#include <stdio.h>
#include <stdlib.h>

int main (void)
{
int i, n;
int* pData;
printf ("Amount of numbers to be entered: ");
scanf ("%d%*c", &i);
0 pData = (int*)calloc (i, sizeof(int));

O o Jo Ul W




11

12 if (pData == NULL)

13 exit (1) ;

14

15 for (n = 0; n<i; n++)

16 {

17 printf ("Enter number %d: ", n);
18 scanf ("%d%*c", pDhata+n);
19 }

20

21 printf ("You have entered: ");
22 for (n = 0; n<i; n++)

23 printf ("%d ", pDatalnl]);
24

25 printf ("\n");

26 free (pData) ;

27 return 0;

28 1}

Amount of numbers to be entered: 5
number ©: -1
number 1: 6

number 2: 456
number 3: -25
number 4: 8
You have entered: -1 6 456 -25 §

Code 83: usage of calloc

17.6 Dynamic arrays

As explained in chapter 7, arrays are stored in contiguous memory
locations. Therefore, an array of num elements of size bytes each will
occupy a memory block of num*size bytes. As a result, allocating memory
for such an array at runtime can be done using the function malloc as
illustrated in the next example:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main (void)

5 {

9 double* p;

7 int 1i;

8 p = (double*)malloc(5 * sizeof (double)); // allocate memory for
9 an array of 5 doubles
10 *p = 1.11;

11 *(p + 1) = 2.22;

12 *(p + 2) 3.33;

13 *(p + 3) 4.44;

14 *(p + 4) 5.55;

15

16 printf ("The values in the array are: ");
17 for (i = 0; i<5; i++)

18 printf("%5.2f ", plil);

19

20 printf ("\n");

21 free(p);

22 return 0;




# | C\Users\u0088734\Documents\Temp

The values in the array are: 1.11 2.22 3.33 4.44 5.55

Code 84: dynamic arrays

Also multidimensional arrays can be dynamically allocated using malloc.
Remember that an array of r rows and k columns, is stored in memory in
r*k contiguous memory locations.

Example:

Write a program that asks the user to enter the number of rows and
columns needed, that dynamically creates the requested array, fills it with
data and prints that data.

1 #include <stdio.h>

2 #include <stdlib.h>

3 void fillMatrix(int *, int, int);

4 void printMatrix (int *, int, int);

5

9 int main (void)

7 {

8 int rows, columns;

9 int *p;

10 printf ("Enter the number of rows and columns for the matrix: ");
11 scanf ("$d%d%$*c", &rows, &columns);
12

13 p = (int *)malloc (rows*columns*sizeof (int));
14 fillMatrix(p, rows, columns);

15 printMatrix (p, rows, columns);

16 return O;

17 '}

18

19 void printMatrix(int *m, int r, int k)
20

21 int 1i;

22 for (i = 0; 1 < (r*k); i++)

23 {

24 printf ("%4d\t", *(m + i));

25 if ((1 + 1) % k == 0) //print only k elements per line
26 printf ("\n");

27 }

28 }

29

30 void fillMatrix (int *m, int r, int k)
31 {

32 int 1i;

33 for (i = 0; 1 < (r*k); i++)

34 {

35 *(m + 1) = 1;

36 }

37 1}

0

y
8

Code 85: dynamic multidimensional array




17.7 Exercises

17.1. Write a program that sums all elements of the matrix diagonals and
prints the maximal array element. The matrix dimensions are chosen by
the user.

What is the matrix dimension? 3
Enter the matrix

1 4 2
2 5 1
2 4 8

The diagonal top left to bottom right sums up to 14
The diagonal bottom left to top right sums up to 9
The maximum number in the matrix is 8

Use a function readaArray to read the content of the matrix and a
function calculate to calculate the diagonals and the maximum
number. Printing can be done in the main function.

17.2. Write a program that asks the user to enter the wanted number of
rows and columns, creates the matrix dynamically, fills it and prints the
content. Use a separate function to fill the matrix and one to print the
matrix. Fill every matrix element with (row+1)* (column + 1)

Enter the number of rows and columns for the matrix: 2 4

The matrix contains following elements:
1 2 3 4
2 4 6 8

17.3. Write a program with name “clients” that:

- reads customer numbers and corresponding customer names and
stores them in an array of structs.

- reads customer numbers and corresponding customer addresses
and stores them in a second array of structs. Use a different
struct.

- can be called from the command line with the size of the arrays as
argument (ex: clients 3)

- uses arrays of the correct size (use malloc)

- prints the customer data

use a separate function to read the data and one to print the data.



clients 3

Enter a list of 3 customer numbers and corresponding names:
AB

John Smith
AC
Tom Black
AD

Sarah White

Enter a list of 3 customer numbers and corresponding
addresses (the customer numbers must be identical to

the ones above but can be entered in an arbitrary order.)
AD

London

AB

Paris

AC

Brussels

All customer data:

AB John Smith Paris

AC Tom Black Brussels
AD Sarah White London




18 Dynamic data structures
Objectives

In this chapter, you will learn more about linked data structures. You will
learn how to create and manipulate linked lists, stacks and queues.

18.1 Introduction

In chapter 15, we introduced structures to group variables of different types
together to emphasis the cohesion between them. In this chapter, we will
use structures to create a special kind of data. To do so, we first need to
define a self-referential element. This is a structure that has a pointer to a
structure of the same type as one of its members as illustrated in the
example below:

typedef struct node
{
char name[64];
struct node *next;
} Node;

Code 86: self-referential structure

Combining these self-referential structures with dynamic memory
allocations allows to create a data structure that can grow and shrink at
execution time. Such data structures are called dynamic data structures.

Different types of dynamic data structures exist in C. In the next chapters
(single-)linked lists, queues and stacks will be treated. Next to linear data
structures, also binary trees are a commonly used examples of dynamic
data structures. Unfortunately, binary trees fall beyond the scope of this
course.

18.2 Linked lists
18.2.1 Definition

A linked list is a dynamic data structure that consist of a number of nodes.
Each node is a self-referential structure that contains one or more data
fields and one pointer member that is used to point to the next node. As a
result a chain of nodes is built. The first node of the list is accessed via a
head pointer. The last node of the list does not need to point to anything,
therefore, the link pointer of this node is set to NULL. Figure 52 shows an
example of a linked list with one data field per node.

\ 4

S ton |

head
pointer

|

Figure 52: linked list



18.2.2 Creating a single-linked list

As node element, we will use the self-referential structure of Code 86. First
we start by creating a head pointer. This is a pointer that will point to a
node of the list hence it needs to be of the type Node *:

|Node * head = NULL;

head

To create a first node in the list, memory needs to be allocated using
malloc with head pointing to the newly allocated memory block:

|head = (Node*)malloc (sizeof (Node)) ;

head

S

The only thing left to do now is assigning data to that first node:

printf (“Enter a name: ”); gets(s);
strcpy (head->name, s);
head->next = NULL;

resulting in:

head

S 1™

The second node of the list is created using the same steps. This time the
newly allocated memory needs to be accessible from the next field of the
first node resulting in:

head->next = (Node*)malloc (sizeof (Node)) ;
printf (“Enter a name: ”); gets(s);

strcpy (head->next->name, s);
head->next->next = NULL;

head

CREERREN

Combining all pieces of code shown above and adding the creation of a third
node in the list results in the C code of Code 87:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

DSw N




@0 J oy

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

typedef struct node
{
char name[64];
struct node *next;
} Node;

void printList (Node *ptr);

int main (void)
{
Node *head;
char s[64];
// create first node
head = (Node*)malloc (sizeof (Node));
head->next = NULL;

// read a name
printf ("Enter a name: ");
gets(s);

// copy name to first node
strcpy (head->name, s);

// print current list
printList (head) ;

// create second node
head->next = (Node*)malloc (sizeof (Node)) ;
head->next->next = NULL;

// read a name
printf ("Enter a name: ");
gets(s);

// copy name to second node
strcpy (head->next->name, s);

// print current list
printList (head);

// create third node
head->next->next = (Node*)malloc (sizeof (Node)) ;
head->next->next->next = NULL;

// read a name
printf ("Enter a name: ");
gets(s);

// copy name to third node
strcpy (head->next->next->name, s);

// print current list
printList (head);
return 0;

}

void printList (Node *h)
{
printf ("The list contains:");
while (h != NULL) //if h==NULL the list is finished
{
printf ("%$s ", h->name);
h = h->next; //move pointer h one node further
}
printf ("\n");

Code 87: creation of a single-linked list




In the above example, addition of a new element requires running through
the full list. This is very unpractical. Therefore, we will rewrite the previous
example using a pointer that always points to the last element of the list:

1 finclude <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 typedef struct node

6 {

7 char name[64];

8 struct node *next;

9 } Node;

10

11 wvoid printList (Node *ptr);

12

13 1int main(void)

14 {

15 Node *head;

16 Node *last;

17 char s[64];

18

19 // create first node head
20 head = (Node*)malloc (sizeof (Node));
21 last = head;

22 last->next = NULL;

23 printf ("Enter a name: ");

24 gets(s);

25 strcpy(last->name, s);

26

27 // print current list

28 printList (head) ;

29

30 // create second node

31 last->next = (Node*)malloc (sizeof (Node));
32 last = last->next;

33 last->next = NULL;

34 printf ("Enter a name: ");

35 gets (s);

36 strcpy(last->name, s);

37 printList (head) ;

38

39 // create third node

40 last->next = (Node*)malloc (sizeof (Node)) ;
41 last = last->next;

42 last->next = NULL;

43 printf ("Enter a name: ");

44 gets(s);

45 strcpy(last->name, s);

46 printList (head) ;

47 return 0;

48 }

49

50 wvoid printList (Node *h)

51 {

52 printf ("The list contains:");
53 while (h != NULL)

54 {

55 printf ("%$s ", h->name);
56 h = h->next;

57 }

58 printf ("\n");

59 }

Code 88: creation of a single-linked list (improved code)




Finally, we can introduce loops containing the instructions that are repeated
for every extra node creation:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 typedef struct node

6 {

7 char name[64];

8 struct node *next;

9 } Node;

10

11 void addNode (char *, Node **);

12 wvoid printList (Node *ptr);

13

14 int main (void)

15 {

16 Node *head = NULL;

17 char s[64];

18

19 // read a name

20 printf ("Enter a name (end with <Enter>): ");
21 gets(s);

22

23 // while there is input...

24 while (s[0])

25 {

26 // create a new node and insert into the list
27 addNode (s, &head);

28

29 // read next name

30 printf ("Enter a name: ");
31 gets (s);

32 }

33 printList (head);

34 return O;

35 1}

36

37 wvoid addNode (char *s, Node **h)

38 {

39 Node *new;

40 Node *temp;

41

42 // create a new node

43 new = (Node*)malloc (sizeof (Node)):;
44 new->next = NULL;

45

46 // copy s to the new node

47 strcpy (new->name, s);

48

49 // if there is no starting node yet, create one
50 if (*h == NULL)

51 {

52 *h = new;

53 }

54 // if there is a starting node, insert new node at end of list
55 else

56 {

57 temp = *h;

58

59 while (temp->next != NULL) // go to end of list
60 temp = temp->next;

61

62 temp->next = new; // insert the new node
63 }

64 }




65 void printList (Node *h)

66 |

67 printf ("The list contains:");
68 while (h != NULL)

69 {

70 printf ("%$s ", h->name);
71 h = h->next;

72 }

73 printf ("\n");

74}

1= C\Users\u00 [FETER——)

(eﬁa Wwith <Enter>): Sarah
: Tom
: John

The list contains:Sarah Tom John

Code 89: creation of a single-linked list using loops

18.2.3 Insertion of a new node in a single-linked list

Suppose we build a list where all elements are ordered alphabetically.
Insertion of a new element needs to be done in the correct place respecting
the alphabetic ordering of the list. To this end, following steps are carried
out:

1. Creation of a new node:

”

2. Initialization of the pointers “prev” and “next”:

prev next

head

G -[= -1

3. Positioning the pointers “prev” and “next” to the correct list

elements
prev next

.9 @

(© 2 Iy I

(a1 X




4. Insertion of the new element in between the elements pointed to by
“prev” and “next”

prev next

head

o—

new

o -

Following code shows how a list can be used to alphabetize:

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4

5 typedef struct node

6 {

7 char name[64];

8 struct node *next;

9 } Node;

10

11 wvoid insertNode (char s[], Node **ptr);
12 void printList (Node *ptr);

13

14 int main (void)

15 {

16 Node* head = NULL;

17 char s[64];

18

19 // read a name

20 printf ("Enter a name: ");

21 gets(s);

22

23 // while still input...

24 while (s[0])

25 {

26 // create new node and insert in list (alphabetically)
27 insertNode (s, &head);

28 printf ("Enter a name: ");
29 gets(s);

30 }

31 // print list

32 printList (head);

33 return 0;

34 1}

35

36 void insertNode (char s[], Node **h)
37 |

38 Node *temp;

39 Node *prev;

40 Node *new;

41

42 // create new node

43 new = (Node*)malloc (sizeof (Node)) ;
44 new->next = NULL;

45 strcpy (new->name, s);




46 // if list is empty, first node = new node

47 if (*h == NULL)

48 {

49 *h = new;

50 }

51 else // 1f list is not empty, insert node in correct place

52 {

53 // 1f name new node<name first node, first node=new node

54 if (strcmp(s, (*h)->name) < 0)

55 {

56 new->next = *h;

57 *h = new;

58 }

59 else

60 {

61 // initialize pointers prev and temp

62 prev = *h;

63 temp = prev;

64

65 // while name new node > name current node and
list not empty, go to next node

66 while (temp != NULL && strcmp (s, temp->name) >= 0)

67 {

68 prev = temp;

69 temp = temp->next;

70 }

71 // adjust pointers to insert node

72 new->next = temp;

73 prev->next = new;

74 }

75 }

76}

77

78 wvoid printList (Node *h)

79 |

80 printf ("\n Ordered alphabetically:\n");

81 while (h != NULL)

82 {

83 printf("%$s ", h->name);

84 h = h->next;

85 }

86 printf ("\n");

87 }

ns\chapterl8\|

name: Sarah
name: Tom
name: John
name:

Ordered alphabetically:
John 3arah Tom

Code 90: using a linked list to order alphabetically




18.2.4 Removal of a node in a single-linked list

Removal of a specific node of a linked list can be done using following
steps:

1. find the node to be removed and the node preceding that one:

prev remove

.9 @

CANERNER NN

2. change the next pointer of the preceding node:

prev remove

.o ®
o-om HE-fm

3. remove the node (free (remove)):

prev remove

. @ ©
ofm o




18.2.5 Double-linked list

Traversal of a single-linked list can only be done in one way. As a result, a
pointer to the previous node is needed for simple operations like insertion
and deletion of a node. To overcome this problem, we could add a link to
the previous element in each node resulting in following node structure:

typedef struct node
{
char name[64];
struct node *next;
struct node *prev;
} Node;

Linking different elements of above node type together results in a double-
linked list as illustrated in Figure 53.

LT LTS T

Figure 53: double-linked list

18.2.6 Circular linked list

A circular linked list is a linked list in which the next pointer of the last node
points to the first node. Circular linked lists can be both single-linked and
double-linked. Figure 54 shows an example of a circular single-linked list.

head
pointer

Figure 54: circular single-linked list

18.2.7 Stack

A stack is a linear list that can only be accessed from its top. Adding and
removing nodes can be done only at one side of the list resulting in a Last
In First Out or LIFO behavior. The top element in the stack is referenced via
a stack pointer (stackPtr) as illustrated in Figure 55:

7
), Sarah Tom

stackPtr last element first element

Figure 55: Stack



18.2.8 Queue

A queue is another type of linear list. Nodes can only be added at the tail of
the queue and removed from the head of the queue, resulting in a FIFO or
First In First Out behavior. In this case a head pointer and a tail pointer will
be needed to refer to the 2 access points of the queue as can be seen in
Figure 56:

headPtr tailPtr

Figure 56: queue

18.3 Exercises

18.1. Write a program that allows to build and adapt an alphabetically
ordered single-linked list with a command interpreter. Part of the code is
written below. Only the missing functions need to be programmed. S

#include <stdio.h>

#include <string.h> // needed for strcpy() and strcmp ()
#include <stdlib.h> // needed for malloc (), free()
#define STRLEN 64

typedef struct node
{
char name[STRLEN] ;
struct node *next;
} Node;

void showHelp (void) ;

void add(char *, Node **);

void removeElement (char *, Node **);
int isItem(char *, Node *);

int countItems (Node *);

void removelList (Node **);

void showList (Node *);

char * trim(char *);

int main (void)

{
char instruction[STRLEN] ;
Node *head = NULL;
char *pi; // pli = pointer to the instruction
printf ("Test program for a single-linked list.\n");
printf ("\nEnter an instruction (h = help)\n");
printf ("\n> ") ;



memset (instruction, '\0', STRLEN) ;
gets (instruction) ;
pi = trim(instruction) ;

while (*pi != 'qg')
{
switch (*pi)
{
case 'i': add(trim(pi + 1), é&head);

break;

case 'd': removeElement (trim(pi + 1), é&head);
break;

case '"f': if (isItem(trim(pi + 1), head))

printf ("\"%$s\" is in the list.\n",
trim(pi+l)) ;
else
printf ("\"%$s\" is NOT in the list.\n",
trim(pi+l));
break;
case 'l': showList (head);
break;
case 'n': printf (" Number of list items: %d\n",
countItems (head));

break;

case 'r': removelist (&head);
break;

case 'h': showHelp();

case 'qgq': break;

default: printf (" Unknown instruction (h = help)\n");
}

printf ("\n> ");

memset (instruction, '\0', STRLEN) ;

gets (instruction) ;

pi = trim(instruction) ;

removeList (&head) ;
return O;

void showHelp (void)

{

printf ("i <string> : inserts the element in <string>
alphabetically into the list\n");

printf ("d <string> : removes the element in <string> from the
list\n");

printf ("f <string> : searches the list and returns if the string

is in the list or not.\n");
printf ("1 shows the full list\n");
printf ("n : returns the number of items in the list\n");
printf ("r : removes the full list\n");
printf ("h : shows the help menu (this list).\n");
printf("g : end of the program (first remove the list)\n");

void add(char *s, Node **b)
{
printf ("This function inserts \"%s\" (alphabetically) into the
list\n", s);



void removeElement (char *s, Node **b)
{

printf ("This function removes \"%s\" from the list\n", s);

int isItem(char *s, Node *b)
{

printf ("This function searches \"%$s\" in the list\n", s);
return ..;

int countItems (Node *b)
{

printf ("This function returns the number of items in the
list\n”);

return ..;

voilid removelist (Node **Db)
{
Node * p = *Db;
while (p != NULL)
{
*b = p->next;
free(p);
p = *b;

void showList (Node *b)
{
if (b == NULL)
{
printf ("The list is EMPTY\n");

else

printf ("The list:\n");

while (b != NULL)

{
printf ("%s ", b->name);
b = b->next;

}
printf ("\n\n") ;

char * trim(char *s)

{
while (*s == "' ') s++;
return s;

Remark: the function trim is not absolutely needed for this exercise. It
removes extra spaces at the beginning of an instruction or string.



18.2. Modify exercise 18.1 by using a double-linked list. The Node
structure is defined as follows:

typedef struct node

{
char name[64];
struct node * previous;
struct node *next;

} Node;

Use a head pointer and an end pointer that points to the last element of
the list. Add also a function that prints the list in reverse order.

18.3. Write a program with a command interpreter that builds and
manipulates a stack.
The commands you need to support are:

p <string>: add a string to the stack (push)

d: remove an element from the stack and print it (pop)
1: show the full stack

g: end of the program. (remove the stack first)

Hint: declare a pointer to the last element of the stack (stackpointer)

18.4. Write a program with a command interpreter that builds and
manipulates a queue.
The commands you need to support are:

a <string>: add a string to the queue

d: remove an element from the queue and print it
1: show the full queue

g: end of the program. (remove the queue first)

Hint: declare a pointer to the first element of the queue (at this side

elements can be removed) and a pointer to the last element of the
queue (at this side elements can be added).

18.5. Modify exercise 18.1 using a single-linked circular list.
18.6. Modify exercise 18.2 using a double-linked circular list.

18.7. Add following commands to exercise 18.1 or 18.2.

s <filename> : saves the names in the list to a file
o <filename> : reads names from a file and inserts them into a list



18.8. The problem of Josephus.
Suppose N people decide to commit suicide together. To do so, they
stand in a circle and every M people, 1 person is eliminated. What is the
order of elimination?

Enter the number of people in the circle: 7
Enter the number M: 4

The order of elimination is: 4 1 6 5 7 3 2

Hint: use a circular list and count each time 4 items.



Literature

e Teach yourself programming in 21 days; Peter Aitken, Bradley L. Jones; Sams
Publishing; ISBN 0-672-30736-7

. C How to Program seventh edition, international edition; Harvey Deitel, Paul Deitel;
Pearson Education; ISBN 0-273-77684-3

. De programmeertaal C (4% vernieuwde editie); Al Kelley, Ira Pohl; Pearson
Education; ISBN 978-90-430-1669-8



Attachments

1. Visual Studio Express 2013 for Desktop

In this course, we will use Visual Studio Express 2013 for Desktop as

development environment.

Visual Studio works with solutions and
projects.

One solution can contain one or more
projects and every project can contain one
or more source files, header files, text
files, ...

In figure 7, you see an example of a
solution called “structures” that includes
6 projects. The project
“DoubleLinkedList” contains a header file
“Header.h” and a source file
“DoublelLinkedList.c”

1.1 Creation of a new project

Solution Explorer * A X

@ o-ed@l o s -

Search Solution Explorer (Ctrl+$) P~
faJ Solution 'Structures' (6 projects)
4 DoubleLinkedList
P ;@ External Dependencies
4 . Header Files
Headerh
+  Resource Files
4 . Source Files
[%] DoubleLinkedList2
%] LinkedList
Queue
Stack
[%] structStudent

VvV v v v

Figure 57: solution with 6 projects.

To create a new project, click “File -> New Project”. As a result, the “"New
Project” wizard opens. Now, select "Templates -> Visual C++ -> Win32"
and make sure “"Win32 Console Application” is highlighted in the right side

of the window (see Figure 58).

Enter a name for the new project and the new solution and make sure the
location for the new project directory is set correctly. Now press “"OK” to

New Proje: |
b Recent Sort by: EES Search Installed Templates (Ctrl+E) @ ~
4 Installed 3 .

ﬁ Win32 Console Application Visual C++ Type: Visual C++
4 Templates . A project for creating a Win32 console
b Visual Basic Win32 Project Visual C++ application
b Visual C#
4 Visual C++
CLR
General
Test
Win32
SQL Server
Python
Visual Studio Solutions
Samples
b Online Click here to go online and find templates,
Name: MyProject
Location: C:\Users\u0088734\Documents\Projects| -
Solution: ‘ Create new solution - |
Solution name: MySolution Create directory for solution
[] Add to source contral

Figure 58: New Project window




A new window called "Win32 Application Wizard” opens. Click “next” to
open the “application settings” window. Make sure to unselect “Precompiled
header” and “Security Development Lifecycle (SDL) checks” and select
“"Empty project” (see Figure 59). Now click “Finish” to start the creation of
the new project.

= Application Settings
C\_

Overview Application type: Add common header files for:
() Windows application ATL

(@) Console application

Opu

() Static library

Application Settings

Additional options:
—— > [ enpty project

< Previous

Figure 59: application settings window

1.2 Creation of a new source file

To create a new source file, right click “source files” in the “solution
explorer” and choose “add -> new item” (see Figure 60).

Solution Explorer
m| - @B &=
Search Solution Explorer (Ctrl+$)
m Solution 'MySolution' (1 project)
4 [ MyProject
+m External Dependencies

+  Header Files
+ FResource Files

Add ‘O Newltem.. Ctrl+Shift+A
s Class Wizard.. Ctrl +Shift+X Existing ftem... Shift+Alt+A

Scope to This New Filter
New Solution Explorer View Class... Shift+Alt+C
Cut Cirl+X

Copy Ctrl+C Iter Properties
Paste Ctrl+V

Delete Del

4% Rename F2

Properties

Figure 60: add new item



The “"Add New Item” window opens. Now, select “Visual C++ -> Code” and
make sure “C++ File(.cpp)” is highlighted in the right side of the window
(see Figure 61). Since we will write C code and not C++ code, the name of
the source file must end in “.c” instead of the suggested “.cpp”. Click “"Add”
to create the new source file.

Add New Item - My? e e
4 Installed Sort by: = = Search Installed Templates (Ctrl+E) P -
++ .
4 Visual C++ D C++ File (cpp) Visual C++ Type: Visual C++
ul " Creates  file containing C++ source cade
Eudg rm Header File (h) Visual C++
Web
Test ﬁl Component Class Visual C++
Utility =

Property Sheets I

b Online

Click here to go online and find templates.

Name: ‘Mysour(e C‘ ‘

Location: | CAUsers\u0088734\Documents\Projects\MySolution\MyProject\ - Browse..

Figure 61: Add New Item window

1.3 Compile and run a program

Once the source code is written, the program can be compiled and run by
clicking the green button “Local Windows Debugger”.

By default, the program is run in debug mode showing all screen output in
a console window that will disappear at the end of the program. To keep the
window active, add a breakpoint before the statement “return 0;” in the
main function or precede that statement with “getchar () ;” to make sure
the program waits for a user input.

If you want to run the program without debugging, press CTRL-F5 instead.



2. ASCII table

Dec Hex Oct Bin

a

e =L B I S LR SR

o

w00 000 DO0D000
OwD1| 001 |GO00001
OwD2| 002 |0000010
OwD3| 003 |0000011
OneDa 004 0000100
OwD5| 005 |0000101
OwDE| 006 (0000110
7| 007 0000111
OwD8| 010 |0001000
Ow09| 011 |0001001
OwDA| 012 |0001010
OnDB 013 0001011
OwOC| 014 |0001100
OwOD 015 |0001101
OwDE 016 0001110
OwOF| 017 |0001111
Ox10| 020 |0D10000
Oxll| 021 |0010001
Owl2 022 0010010
Oxl3| 023 0010011
Oxl4| 024 0010100
Owl5 025 0010101
OwlE| 026 (0010110
Owl7| 027 0010111
Ox18| 030 0011000
013 031 0011001
OxlA| 032 (0011010
OxlB| 033 0011011
OnlC 034 0011100
OwlDly 035 0011101
OwlE| 036 0011110
OwlF 037 0011111

Char
NUL
50H

5TX

EOT
ENG,
ACK

BEL

DLE
oCl
o2
DC3
D4
MAK
YN
ETH
CAN

EM

i
[
[==]

i
[

= R s
i LA G A

[

Dec
32
33
34
35
36
37
38
35
40
41
42
43
iz
45
456
47
48
45
50
51
52
53
54
55
56
57
52
59
&0
61
62
63

Hex Oct Bin

w20 040 0100000| space

Om21 041 | 0100001
Ow22 | 042 |0100010
w23 043 0100011
w24 044 0100100
w25 045 0100101
Ow2& 046 (0100110
w27 047 0100111
Ow28 050 (0101000
Ow29 051 |0101001
Ow2A 052 (0101010
On2B 053 0101011
Ow2C 054 (0101100
Ow2 Dy 055 (0101101
On2E 056 0101110
Ox2F| 057 0101111
Ox30 060 (0110000
Ox31 061 0110001
w32 062 0110010
Ox33 063 0110011
Ox34 064 0110100
w35 065 0110101
Ox3& 066 (0110110
Ow37 | 067 (0110111
Ox38 070 0111000
w35 071 0111001
Ow3A 072 0111010
Ow3B 073 0111011
Ow3C 074 0111100
w30 075 0111101
Ox3E| 076 0111110
Ox3F 077 0111111

Char

H

Ee

=l

[EUIR S5 T PR = T

=l

oa

w

Dec

m M mmm
[V T I TR Y

LY T R R TT R R '

e e B I B e B I I B |

L = L R = B =, R = == R = R = R« B = e QR < R R =
[ N R TY R e Ry R R R, T R S TR o R s R Y I

Hex Oct
OwdD) 100
Owdl 101
Owd2 102
Owd3 103
Owdd 104
Owd5 105
Owde 106
Owd 7| 107
w43 110
w43 111
OwdA 112
OJwdB 113
OwdC 114
Owdlr 115
OwdE 116
OwdF 117
Ox50 120
w51 121
w52 122
w53 123
Ox54 124
w55 125
w56 126
w57 127
Ox53 130
w59 131
Ow5A 132
Ox5B 133
Jw5C 134
Ow5Dr 135
Ox5E 136
Ow5F 137

Bin
1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111

Char
@

— ™ = — T @M mmOo @ om s

==

w0\ 0

| P |

Dec
96
97
93
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Hex
OwBl
OwE1
OwG2
OwE3
Oubd
OwE5
OwGE
Owb7
OwEd
OwE9
OwBA
OwGB
OwEC

Oct
140
141
142
143
144
145
148
147
150
151
152
153
154

OmED 155

OnGE
OxEF
070
7l
w72
73
w74
w75
7 &
77
78
73
7 A
7B
7 C

156
157
160
161
162
163
164
165
166
167
170
171
172
173
174

125 |Ow7Dr 175

126
127

On7E
On7F

176

177

Bin
1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

Char

- M O ~n O W

—_— = O

W o= o | a3 3

E |+

DEL



