
GPU ARCHITECTURES 



• Lecture begins with a contrast of 
conventional multi-core CPU architectures 
with modern GPU architectures 

• AMD, NVIDIA, and Cell architectures are 
presented 

• Brief description of OpenCL Installable Client 
Driver and compilation flow 

INSTRUCTOR NOTES 
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• GPU architectures 
− AMD Sourthern Islands GPU Architecture 
− Nvidia Fermi GPU Architecture 
− Cell Broadband Engine 

• OpenCL Specific Topics 
− OpenCL Compilation System 
− Installable Client Driver (ICD) 

TOPICS 
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• CPUs are optimized to minimize 
the latency of a single thread 
− Can efficiently handle control flow 

intensive workloads 
• Lots of space devoted to caching 

and control logic 
− Multi-level caches used to avoid 

latency 
• Limited number of registers due 

to smaller number of active 
threads 

• Control logic to reorder 
execution, provide ILP and 
minimize pipeline stalls 

CONVENTIONAL CPU ARCHITECTURE 
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• Array of independent 
“cores” called Compute 
Units 

• High bandwidth, banked 
L2 caches and main 
memory 
− Banks allow multiple 

accesses to occur in parallel 
− 100s of GB/s 

• Memory and caches are 
generally non-coherent 
 

MODERN GPGPU ARCHITECTURE 
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• Compute units are based on SIMD 
hardware 
− Both AMD and NVIDIA have 16-element 

wide SIMDs 
• Large register files are used for 

fast context switching  
− No saving/restoring state 
− Data is persistent for entire thread 

execution 
• Both vendors have a combination 

of automatic L1 cache and a user-
managed scratchpad 

• Scratchpad is heavily banked and 
very high bandwidth 
(~terabytes/second) 
 

MODERN GPGPU ARCHITECTURE 
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• Work-items are automatically grouped into 
hardware threads called “wavefronts” (AMD) 
or “warps” (NVIDIA) 
− Single instruction stream executed on SIMD 

hardware 
− 64 work-items in a wavefront, 32 in a warp 

• Instruction is issued multiple times on 16-lane SIMD 
unit 

• Control flow is handled by masking SIMD lanes 

MODERN GPGPU ARCHITECTURE 
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• NVIDIA coined “Single Instruction Multiple 
Threads” (SIMT) to denote multiple (software) 
threads sharing an instruction stream 

• Work-items execute in lock-step on SIMD 
hardware 
− Multiple software threads are executed on a single 

hardware thread 
− Divergence between threads handled using predication 

• Correctness is transparent to OpenCL model 
• Performance is highly dependent on 

understanding work-items to SIMD mapping 

SIMT AND SIMD 
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SIMT EXECUTION MODEL 
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 SIMD execution can be combined with pipelining 

 ALUs all execute the same instruction 
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 When first instruction completes (4 cycles here), the next 
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• 7000-series GPUs based on Graphics Core Next (GCN) architecture 
• 4 SIMDs per compute unit 
• 1 Scalar Unit to handle instructions common to wavefront 

− Loop iterators, constant variable accesses, branches 

− Has a single, integer-only ALU unit 

− Separate branch unit used for some conditional instructions 

• Radeon HD7970 
− 32 compute units 

− < Max performance> 

AMD SOUTHERN ISLANDS 
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AMD Fusion developer Summit 2011 
http://developer.amd.com/afds/assets/presentations/2620_final.pdf 



 

AMD SOUTHERN ISLANDS 
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http://developer.amd.com/afds/assets/presentations/2620_final.pdf 



• Wavefronts are associated with a SIMD unit 
and a subset of the vector registers 
− Up to 10 wavefronts can be associated with each 

SIMD 
− 4 SIMDs  
− 40 wavefronts can be active per compute unit  

• All hardware units except for the SIMDs are 
shared by all wavefronts on a compute unit 
 

AMD SOUTHERN ISLANDS 
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• Each cycle, wavefronts targeting one of the 
SIMDs are allowed to issue instructions 
− Every fourth cycle a wavefront will be active 

• An instruction takes 4 cycles to enter the 
SIMD pipeline (4 subwavefronts per 
wavefront) 

• Scalar unit and branch unit can take 1 
instruction per cycle 

• All hardware units can remain fully utilized 
with a simplified front-end using this round-
robin technique  
 
 

AMD SOUTHERN ISLANDS 
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• Up to 5 instructions can be issued per cycle 
− Only 1 per wavefront 
− Only 1 per instruction type (i.e., per hardware unit) 
− Need multiple instructions types present to fully utilize 

hardware units 
• Instruction types  

− Vector Arithmetic Logic Unit (ALU)  
−  Scalar ALU or Scalar Memory Read  
− Vector memory access (Read/Write/Atomic)  
− Branch/Message  
− Local Data Share (LDS) 
− Export or Global Data Share (GDS)  
− Internal (s_nop, s_sleep, s_waitcnt, s_barrier, s_setprio) 

AMD SOUTHERN ISLANDS 
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AMD SOUTHERN ISLANDS 
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http://developer.amd.com/afds/assets/presentations/2620_final.pdf 

• R/W L1 Caches 
− 16 KB/CU 
− Write through (dirty-

byte mask) 
− 64B lines, 4 sets, 16 

ways 

• R/W L2 Caches 
− 64-128 KB/each 

• Up to 6 per GPU 

− Write back (dirty-byte 
mask) 

− 64B lines, 16 ways 
• Sets vary with size 

 



• Cache coherence supported at L2-level 
− GLC-bit allows L1 caches to be bypassed 
− Data is strided across L2s (all CUs access all caches) 
− Bypassing L1 allows coherent view at L2-level 

AMD SOUTHERN ISLANDS 
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• Local Data Store (LDS, Local memory, Scratchpad) 
− 64KB per compute unit 
− 32 banks 
− Contains integer atomic units 

AMD SOUTHERN ISLANDS 
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• Northern Islands (6xxx GPUs) SIMDs were based on VLIW 
− Each element of SIMD had 4 ALUs 
− Independent instructions (ILP) within single wavefront required to utilize 

hardware (VLIW instructions) 
• Southern Islands  

− 4 SIMDs with one ALU in each element of SIMD 
− Multiple wavefronts and instruction mix required to utilize hardware 

• Same number of ALUs in both NI and SI GPUs 

COMPARISON TO NORTHERN ISLANDS 
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• Global Memory 
− Maps to cache hierarchy 
− GDDR5 video main memory 

• Constant Memory 
− Maps to scalar unit reads 

• Local Memory 
− Maps to the LDS 
− Shared data between 

work-items of a work 
group 

− High Bandwidth access 
from SIMDs 

• Private memory  
− Maps to vector registers 

 

SI MEMORY MODEL IN OPENCL 
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• GTX 480 - Compute 2.0 
capability 
− 15 cores or Streaming 

Multiprocessors (SMs) 
− Each SM features 32 CUDA 

processors 
− 480  CUDA processors 

• Global memory  with ECC 

NVIDIA FERMI ARCHITECTURE  
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• SM  executes threads in 
groups of 32 called warps. 
− Two warp issue units per SM 

• Concurrent kernel execution 
− Execute multiple  kernels 

simultaneously to improve 
efficiency 

• CUDA core consists of a single 
ALU and floating point unit 
FPU 

NVIDIA FERMI ARCHITECTURE 
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Source: NVIDIA’s Next 
Generation CUDA Compute 
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• L1 cache per SM configurable to 
support shared memory and caching 
of  global memory 
− 48 KB Shared / 16 KB of L1 cache 

− 16 KB Shared / 48 KB of L1 cache 

• Data shared between work items of 
a group  using shared memory 

• Each SM has a 32K register bank  
• L2 cache (768KB) that services all 

operations (load, store and texture) 
− Unified path to global for loads and 

stores 

NVIDIA MEMORY HIERARCHY 
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• Global memory 
− Maps to cache hierarchy 
− GDDR5 video main memory 

• Constant memory 
− Maps to constant cache on GPU 

• Local memory 
− Maps to “Shared memory” 

or LDS equivalent 
− Single memory unit 

configurable between L1 
cache and local memory 

• Private memory  
− Maps to vector registers 

NVIDIA MEMORY MODEL IN OPENCL 
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• Developed by Sony, Toshiba, IBM 

• Transitioned from embedded 
platforms into HPC via the 
Playstation 3 

• OpenCL drivers available for Cell 
Bladecenter servers 

• Consists of a Power Processing 
Element (PPE) and multiple 
Synergistic Processing Elements 
(SPE) 

• Uses the IBM XL C for OpenCL 
compiler 

CELL BROADBAND ENGINE 
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Source: http://www.alphaworks.ibm.com/tech/opencl 
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• Cell Power/VMX CPU used as a CL_DEVICE_TYPE_CPU 
• Cell SPU (CL_DEVICE_TYPE_ACCELERATOR)  

− No. of compute units on a SPU accelerator device is <=16 

− Local memory size <= 256KB 

− 256K of local storage divided among OpenCL kernel, 8KB global data 
cache, local, constant and private variables 

• OpenCL accelerator devices, and OpenCL CPU device share a 
common memory bus 

• Provides extensions like “Device Fission” and “Migrate Objects” to 
specify where an object resides (discussed in Lecture 10) 

• No support for OpenCL images, sampler objects, atomics and  byte 
addressable memory 

CELL BE AND OPENCL 
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Source: http://www.alphaworks.ibm.com/tech/opencl 

http://www.alphaworks.ibm.com/tech/opencl


• An ideal kernel for a GPU 
− Has thousands of independent pieces of work 

• Uses all available compute units 
• Allows context switching to hide latency 

− Is amenable to instruction stream sharing 
• Maps to SIMD execution by preventing divergence 

between work items 
− Has high arithmetic intensity 

• Ratio of math operations to memory access is high 
• Not limited by memory bandwidth 

AN OPTIMAL GPGPU KERNEL 
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• LLVM - Low Level Virtual Machine  
• Kernels compiled to LLVM IR 
• Open Source Compiler  

− Platform, OS independent 
− Multiple back ends 

• http://llvm.org 
 

OPENCL COMPILATION SYSTEM 
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• ICD allows multiple 
implementations to co-exist 

• Code only links to 
libOpenCL.so 

• Application selects 
implementation at runtime 
− clGetPlatformIDs() and 

clGetPlatformInfo() examine the 
list of available implementations 
and select a suitable one 

• Current GPU driver model does 
not easily allow devices from 
different vendors in same 
platform 

INSTALLABLE CLIENT DRIVER 
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• We have examined different GPU architectures 
and how they map onto the OpenCL spec 
− An important take-away is that even though vendors 

have implemented the spec differently the underlying 
ideas for obtaining performance by a programmer remain 
similar 

• We have looked at the runtime compilation 
model for OpenCL to understand how programs 
and kernels for compute devices are created at 
runtime 

• Next Lecture 
− Cover moving of data to a compute device and some 

simple but complete OpenCL examples 

SUMMARY 
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