
GPU ARCHITECTURES

• Lecture begins with a contrast of
conventional multi-core CPU architectures
with modern GPU architectures

• AMD, NVIDIA, and Cell architectures are
presented

• Brief description of OpenCL Installable Client
Driver and compilation flow

INSTRUCTOR NOTES

2

• GPU architectures
− AMD Sourthern Islands GPU Architecture
− Nvidia Fermi GPU Architecture
− Cell Broadband Engine

• OpenCL Specific Topics
− OpenCL Compilation System
− Installable Client Driver (ICD)

TOPICS

3

• CPUs are optimized to minimize
the latency of a single thread
− Can efficiently handle control flow

intensive workloads
• Lots of space devoted to caching

and control logic
− Multi-level caches used to avoid

latency
• Limited number of registers due

to smaller number of active
threads

• Control logic to reorder
execution, provide ILP and
minimize pipeline stalls

CONVENTIONAL CPU ARCHITECTURE

4

Modern CPU

Core

L1

L2 Cache

L3 Cache

 ~ 25GBPS

L1

Core

L1

L2 Cache

L1

System Memory

• Array of independent
“cores” called Compute
Units

• High bandwidth, banked
L2 caches and main
memory
− Banks allow multiple

accesses to occur in parallel
− 100s of GB/s

• Memory and caches are
generally non-coherent

MODERN GPGPU ARCHITECTURE

5

CU CU CU ...

L2 L2 L2 ...

MM MM MM ...

Scheduling
Unit

GPU

 ~ 100s GBPS

• Compute units are based on SIMD
hardware
− Both AMD and NVIDIA have 16-element

wide SIMDs
• Large register files are used for

fast context switching
− No saving/restoring state
− Data is persistent for entire thread

execution
• Both vendors have a combination

of automatic L1 cache and a user-
managed scratchpad

• Scratchpad is heavily banked and
very high bandwidth
(~terabytes/second)

MODERN GPGPU ARCHITECTURE

6

SIMD

Register file

L1
Cache

SIMD ...

Scratchpad
Mem

Compute Unit

• Work-items are automatically grouped into
hardware threads called “wavefronts” (AMD)
or “warps” (NVIDIA)
− Single instruction stream executed on SIMD

hardware
− 64 work-items in a wavefront, 32 in a warp

• Instruction is issued multiple times on 16-lane SIMD
unit

• Control flow is handled by masking SIMD lanes

MODERN GPGPU ARCHITECTURE

7

• NVIDIA coined “Single Instruction Multiple
Threads” (SIMT) to denote multiple (software)
threads sharing an instruction stream

• Work-items execute in lock-step on SIMD
hardware
− Multiple software threads are executed on a single

hardware thread
− Divergence between threads handled using predication

• Correctness is transparent to OpenCL model
• Performance is highly dependent on

understanding work-items to SIMD mapping

SIMT AND SIMD

8

1 2 3 4 5 6 7 8 9

SIMT EXECUTION MODEL

9

Add Add Add Add Add Add Add Add
Add Add Add Add Add Add Add Add

Add Add Add Add Add Add Add Add
Add Add Add Add Add Add Add Add

Mul Mul Mul Mul Mul Mul Mul Mul
Mul Mul Mul Mul Mul Mul Mul Mul

Mul Mul Mul Mul Mul Mul Mul Mul
Mul Mul Mul Mul Mul Mul Mul Mul

…

Wavefront
(64 work-items)

… Cycle

SIMD Width (16)

 SIMD execution can be combined with pipelining

 ALUs all execute the same instruction

 Pipelining is used to break instruction into phases

 When first instruction completes (4 cycles here), the next
instruction is ready to execute

1 2 3 4 5 6 7 8 9

• 7000-series GPUs based on Graphics Core Next (GCN) architecture
• 4 SIMDs per compute unit
• 1 Scalar Unit to handle instructions common to wavefront

− Loop iterators, constant variable accesses, branches

− Has a single, integer-only ALU unit

− Separate branch unit used for some conditional instructions

• Radeon HD7970
− 32 compute units

− < Max performance>

AMD SOUTHERN ISLANDS

10

AMD Fusion developer Summit 2011
http://developer.amd.com/afds/assets/presentations/2620_final.pdf

AMD SOUTHERN ISLANDS

11

http://developer.amd.com/afds/assets/presentations/2620_final.pdf

• Wavefronts are associated with a SIMD unit
and a subset of the vector registers
− Up to 10 wavefronts can be associated with each

SIMD
− 4 SIMDs
− 40 wavefronts can be active per compute unit

• All hardware units except for the SIMDs are
shared by all wavefronts on a compute unit

AMD SOUTHERN ISLANDS

12

• Each cycle, wavefronts targeting one of the
SIMDs are allowed to issue instructions
− Every fourth cycle a wavefront will be active

• An instruction takes 4 cycles to enter the
SIMD pipeline (4 subwavefronts per
wavefront)

• Scalar unit and branch unit can take 1
instruction per cycle

• All hardware units can remain fully utilized
with a simplified front-end using this round-
robin technique

AMD SOUTHERN ISLANDS

13

• Up to 5 instructions can be issued per cycle
− Only 1 per wavefront
− Only 1 per instruction type (i.e., per hardware unit)
− Need multiple instructions types present to fully utilize

hardware units
• Instruction types

− Vector Arithmetic Logic Unit (ALU)
− Scalar ALU or Scalar Memory Read
− Vector memory access (Read/Write/Atomic)
− Branch/Message
− Local Data Share (LDS)
− Export or Global Data Share (GDS)
− Internal (s_nop, s_sleep, s_waitcnt, s_barrier, s_setprio)

AMD SOUTHERN ISLANDS

14

AMD SOUTHERN ISLANDS

15

http://developer.amd.com/afds/assets/presentations/2620_final.pdf

• R/W L1 Caches
− 16 KB/CU
− Write through (dirty-

byte mask)
− 64B lines, 4 sets, 16

ways

• R/W L2 Caches
− 64-128 KB/each

• Up to 6 per GPU

− Write back (dirty-byte
mask)

− 64B lines, 16 ways
• Sets vary with size

• Cache coherence supported at L2-level
− GLC-bit allows L1 caches to be bypassed
− Data is strided across L2s (all CUs access all caches)
− Bypassing L1 allows coherent view at L2-level

AMD SOUTHERN ISLANDS

16

• Local Data Store (LDS, Local memory, Scratchpad)
− 64KB per compute unit
− 32 banks
− Contains integer atomic units

AMD SOUTHERN ISLANDS

17

• Northern Islands (6xxx GPUs) SIMDs were based on VLIW
− Each element of SIMD had 4 ALUs
− Independent instructions (ILP) within single wavefront required to utilize

hardware (VLIW instructions)
• Southern Islands

− 4 SIMDs with one ALU in each element of SIMD
− Multiple wavefronts and instruction mix required to utilize hardware

• Same number of ALUs in both NI and SI GPUs

COMPARISON TO NORTHERN ISLANDS

18

NI 6xxx: 1 SIMD, 4 ALUs per lane SI 7xxx: 4 SIMDs, 1 ALU per lane

A
L
U

A
L
U

A
L
U

0 1 3 2 ..
. 0 1 3 2 ..

. 0 1 3 2 ..
.

0 1 15 3 2
...

0 1 15 3 2 ..
.

A
L
U

A
L
U

A
L
U

A
L
U

A
L
U

• Global Memory
− Maps to cache hierarchy
− GDDR5 video main memory

• Constant Memory
− Maps to scalar unit reads

• Local Memory
− Maps to the LDS
− Shared data between

work-items of a work
group

− High Bandwidth access
from SIMDs

• Private memory
− Maps to vector registers

SI MEMORY MODEL IN OPENCL

19

Global Memory

Private
Memory

Workitem 1

Private
Memory

Workitem 1

Compute Unit 1

Local Memory

Global / Constant Memory Data Cache

Local Memory

Private
Memory

Workitem 1

Private
Memory

Workitem 1

Compute Unit N

Compute Device

Compute Device Memory

• GTX 480 - Compute 2.0
capability
− 15 cores or Streaming

Multiprocessors (SMs)
− Each SM features 32 CUDA

processors
− 480 CUDA processors

• Global memory with ECC

NVIDIA FERMI ARCHITECTURE

20

Source: NVIDIA’s Next
Generation CUDA
Architecture Whitepaper

Register File 32768 x 32bit

Warp Scheduler

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Dispatch Unit

Instruction Cache

LDST
LDST
LDST
LDST
LDST
LDST
LDST
LDST

LDST
LDST
LDST
LDST
LDST
LDST
LDST
LDST

SFU

SFU

SFU

SFU

Interconnect Memory

L1 Cache / 64kB Shared Memory

L2 Cache

Warp Scheduler

Dispatch Unit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Dispatch Port

Operand Collector

FP
Unit

Int
Unit

Result Queue

CUDA Core

• SM executes threads in
groups of 32 called warps.
− Two warp issue units per SM

• Concurrent kernel execution
− Execute multiple kernels

simultaneously to improve
efficiency

• CUDA core consists of a single
ALU and floating point unit
FPU

NVIDIA FERMI ARCHITECTURE

21

Source: NVIDIA’s Next
Generation CUDA Compute
Architecture Whitepaper

Register File 32768 x 32bit

Warp Scheduler

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Dispatch Unit

Instruction Cache

LDST
LDST
LDST
LDST
LDST
LDST
LDST
LDST

LDST
LDST
LDST
LDST
LDST
LDST
LDST
LDST

SFU

SFU

SFU

SFU

Interconnect Memory

L1 Cache / 64kB Shared Memory

L2 Cache

Warp Scheduler

Dispatch Unit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Dispatch Port

Operand Collector

FP
Unit

Int
Unit

Result Queue

CUDA Core

• L1 cache per SM configurable to
support shared memory and caching
of global memory
− 48 KB Shared / 16 KB of L1 cache

− 16 KB Shared / 48 KB of L1 cache

• Data shared between work items of
a group using shared memory

• Each SM has a 32K register bank
• L2 cache (768KB) that services all

operations (load, store and texture)
− Unified path to global for loads and

stores

NVIDIA MEMORY HIERARCHY

22

Shared
Memory L1 Cache

L2 Cache

Global Memory

Thread
Block

Registers

• Global memory
− Maps to cache hierarchy
− GDDR5 video main memory

• Constant memory
− Maps to constant cache on GPU

• Local memory
− Maps to “Shared memory”

or LDS equivalent
− Single memory unit

configurable between L1
cache and local memory

• Private memory
− Maps to vector registers

NVIDIA MEMORY MODEL IN OPENCL

23

Global Memory

Private
Memory

Workitem 1

Private
Memory

Workitem 1

Compute Unit 1

Local Memory

Global / Constant Memory Data Cache

Local Memory

Private
Memory

Workitem 1

Private
Memory

Workitem 1

Compute Unit N

Compute Device

Compute Device Memory

• Developed by Sony, Toshiba, IBM

• Transitioned from embedded
platforms into HPC via the
Playstation 3

• OpenCL drivers available for Cell
Bladecenter servers

• Consists of a Power Processing
Element (PPE) and multiple
Synergistic Processing Elements
(SPE)

• Uses the IBM XL C for OpenCL
compiler

CELL BROADBAND ENGINE

24

Source: http://www.alphaworks.ibm.com/tech/opencl

SPU

LS

SPU

LS

SPU

LS

SPU

LS

Element Interconnect ~ 200GBPS

L1 and L2
Cache

POWER PC

SPE 0 SPE 1 SPE 2 SPE 3

LS = Local store
per SPE of
256KB

PPE

25 GBPS 25 GBPS 25 GBPS

Memory &
Interrupt
Controller

http://www.alphaworks.ibm.com/tech/opencl

• Cell Power/VMX CPU used as a CL_DEVICE_TYPE_CPU
• Cell SPU (CL_DEVICE_TYPE_ACCELERATOR)

− No. of compute units on a SPU accelerator device is <=16

− Local memory size <= 256KB

− 256K of local storage divided among OpenCL kernel, 8KB global data
cache, local, constant and private variables

• OpenCL accelerator devices, and OpenCL CPU device share a
common memory bus

• Provides extensions like “Device Fission” and “Migrate Objects” to
specify where an object resides (discussed in Lecture 10)

• No support for OpenCL images, sampler objects, atomics and byte
addressable memory

CELL BE AND OPENCL

25

Source: http://www.alphaworks.ibm.com/tech/opencl

http://www.alphaworks.ibm.com/tech/opencl

• An ideal kernel for a GPU
− Has thousands of independent pieces of work

• Uses all available compute units
• Allows context switching to hide latency

− Is amenable to instruction stream sharing
• Maps to SIMD execution by preventing divergence

between work items
− Has high arithmetic intensity

• Ratio of math operations to memory access is high
• Not limited by memory bandwidth

AN OPTIMAL GPGPU KERNEL

26

• LLVM - Low Level Virtual Machine
• Kernels compiled to LLVM IR
• Open Source Compiler

− Platform, OS independent
− Multiple back ends

• http://llvm.org

OPENCL COMPILATION SYSTEM

27

OpenCL Compute
Program

LLVM IR

Nvidia
PTX

AMD CAL
IL x86

LLVM Front-end

http://llvm.org

• ICD allows multiple
implementations to co-exist

• Code only links to
libOpenCL.so

• Application selects
implementation at runtime
− clGetPlatformIDs() and

clGetPlatformInfo() examine the
list of available implementations
and select a suitable one

• Current GPU driver model does
not easily allow devices from
different vendors in same
platform

INSTALLABLE CLIENT DRIVER

28

Application

libOpenCL.so

libamdocl64.
so

AMD

libcudart.so
NVIDIA

• We have examined different GPU architectures
and how they map onto the OpenCL spec
− An important take-away is that even though vendors

have implemented the spec differently the underlying
ideas for obtaining performance by a programmer remain
similar

• We have looked at the runtime compilation
model for OpenCL to understand how programs
and kernels for compute devices are created at
runtime

• Next Lecture
− Cover moving of data to a compute device and some

simple but complete OpenCL examples

SUMMARY

29

	GPU Architectures
	Instructor Notes
	Topics
	Conventional CPU Architecture
	Modern GPGPU Architecture
	Modern GPGPU Architecture
	Modern GPGPU Architecture
	SIMT and SIMD
	SIMT Execution Model
	AMD Southern Islands
	AMD Southern Islands
	AMD Southern Islands
	AMD Southern Islands
	AMD Southern Islands
	AMD Southern Islands
	AMD Southern Islands
	AMD Southern Islands
	Comparison to Northern Islands
	SI Memory Model in OpenCL
	NVIDIA Fermi Architecture
	NVIDIA Fermi Architecture
	NVIDIA Memory Hierarchy
	NVIDIA Memory Model in OpenCL
	Cell Broadband Engine
	Cell BE and OpenCL
	An Optimal GPGPU Kernel
	OpenCL Compilation System
	Installable Client Driver
	Summary

