• EQF Home Page Icon
Find information on the EQF, NQF's

The European Qualifications Framework (EQF) is a translation tool that helps communication and comparison between qualifications systems in Europe. Its eight common European reference levels are described in terms of learning outcomes: knowledge, skills and competences. This allows any national qualifications systems, national qualifications frameworks (NQFs) and qualifications in Europe to relate to the EQF levels. Learners, graduates, providers and employers can use these levels to understand and compare qualifications awarded in different countries and by different education and training systems.

For more information on NQF's and their relation to the EQF click on the buttons below:

 

Documentation

Legal documents, Studies, Documents agreed by the EQF Advisory Group and

European Qualifications Framework Series 

Find information on qualifications

Qualifications that are part of national qualifications framework are listed on this page. You can scroll down to find all information. Filter by Subject Field, EQF level and Location and you will find more detailed information on qualifications, and a link to the national database. The qualifications are part of national qualifications frameworks that have formally referenced to the EQF

Find information on qualifications

Search results

Search found 42 items
  1. Academic bachelor's degree in financial mathematics (no legal status)

    Students will be able to: analyse, synthesise and anticipate solutions and the consequences of factors in the mathematical and financial fields, critically assess developments relating to mathematics and the application of mathematics in finance, cooperate, work in a team and work on projects and develop communication skills, autonomously seek out and acquire specialist knowledge and integrate it with existing knowledge, seek and interpret new information and place it in the context of the mathematics field, describe a given situation through the correct use of mathematical symbols and notations, explain and demonstrate understanding of mathematical concepts and principles, solve mathematical and other problems through the application of modern technology, apply an algorithmic approach; develop an algorithm to resolve a given problem, analyse a given problem numerically, graphically and algebraically, deduce new logical conclusions from given data, confidently address a given mathematical problem in economics and finance and find a solution, find approximative solutions to problems using numerical methods, demonstrate autonomy in professional work. ...

    Category: Qualifications Location: Slovenia
  2. Academic bachelor's degree in financial mathematics (no legal status)

    Students will be able to: (general competences) use abstraction and analyse problems, synthesise and critically assess solutions, apply knowledge to the resolution of practical problems, use and keep abreast of literature in their field, present technical topics in writing and orally, undertake autonomous professional work and work in an (international) group, pursue lifelong learning, (subject-specific competences) demonstrate mastery of basic mathematical knowledge, demonstrate mastery of basic knowledge of information science, demonstrate mastery of basic knowledge of economics and finance, solve nondeterministic problems using probability calculations and statistics, solve deterministic problems with the help of optimisation and operations research, find approximative solutions to problems using numerical methods, use a computer to solve problems and present results. ...

    Category: Qualifications Location: Slovenia
  3. Academic bachelor's degree in mathematics (no legal status)

    Students will be able to: describe a given situation through the correct use of mathematical symbols and notations, solve mathematical (and other) problems through the application of modern technology, apply an algorithmic approach (develop an algorithm to solve a given problem), analyse a given problem numerically, graphically and algebraically, deduce new logical conclusions from given data, confidently address a given mathematical problem and find a solution, explain their understanding of mathematical concepts and principles. ...

    Category: Qualifications Location: Slovenia
  4. Academic Bachelor's degree in mathematics (no legal status)

    Students will be able to: (general competences) think analytically and demonstrate understanding of complex systems that enable participation in various interdisciplinary teams, demonstrate familiarity with basic fields of mathematics and apply knowledge to other fields, critically assess developments in the field of mathematics, resolve technical and work problems by searching for sources of knowledge and applying scientific methods, develop communication skills, demonstrate autonomy in professional work, show cooperativeness and work in a team, (subject-specific competences) demonstrate understanding of and solve basic mathematical problems at a qualitative and quantitative level, describe a given situation through the correct use of mathematical symbols and notations, explain their understanding of mathematical concepts and principles, solve mathematical (and other) problems through the application of modern technology, apply an algorithmic approach: develop an algorithm to resolve a given problem, analyse a given problem numerically, graphically and algebraically, deduce new logical conclusions from given data, confidently address a given mathematical problem and find a solution, apply the approaches of scientific thinking to the quantitative treatment of problems in nature, the environment and society, demonstrate knowledge and understanding of the influence of mathematics on the development of other sciences. ...

    Category: Qualifications Location: Slovenia
  5. Academic bachelor's degree in mathematics (no legal status)

    Students will be able to: (general competences) use abstraction and analyse problems, synthesise and critically assess solutions, apply knowledge in practice, use and keep abreast of literature in their field, present technical topics in writing and orally, undertake autonomous professional work and work in an (international) group, pursue lifelong learning, (subject-specific competences) translate practical problems into mathematical language, undertake qualitative analysis of mathematical problems obtained in this way, create algorithms to resolve them, implement algorithms in relevant programming tools, analyse and present results. ...

    Category: Qualifications Location: Slovenia
  6. Academic bachelor's degree in mathematics for education and... (no legal status)

    Students will be able to: (general competences) think analytically and demonstrate understanding of complex systems that enable participation in various interdisciplinary teams, communicate and work in a team with experts from other professional and academic fields (broad general perspective), participate in research and development projects aimed at improving the quality of work in the field of education, demonstrate autonomy, a capacity for criticism/self-criticism and initiative and strive for quality in their own professional work, plan their own professional development, keep abreast of contemporary achievements in disciplines important for their own professional work, and critically and carefully incorporate new findings into their own work, resolve technical and work problems by searching for sources of knowledge and applying scientific methods, communicate with absolute proficiency in the Slovene language, self-educate and manage sources in at least one foreign language, use information and communication technologies in education and training, and everyday situations, effectively plan and independently control the performance of own activities, demonstrate openness and sensitivity to people and various social situations, respect diversity and the cultural, ideological and ethical values of individuals, (subject-specific competences) demonstrate knowledge and understanding of basic mathematical concepts, procedures and theories and apply mathematical knowledge in various contexts, share their own underst ...

    Category: Qualifications Location: Slovenia
  7. Applied Mathematician

    A képzés célja alkalmazott matematikusok képzése, akik tudományos kutatási szintet elérő szakmai felkészültségükkel magas szintű matematikai ismereteik és modellezési tapasztalataik birtokában képesek alkotó módon a gyakorlatban felmerülő matematikai problémák megoldására. Nyitottak szakterületük és a rokon területek új tudományos eredményeinek kritikus befogadására. Felkészültségük alapján képesek a gyakorlati problémák modellezésére, megoldására és a megoldások gyakorlati kivitelezésének irányítására. Felkészültek tanulmányaik doktori képzésben történő folytatására. Az elsajátítandó szakmai kompetenciák Az alkalmazott matematikus a) tudása Rendszerszinten és összefüggéseiben ismeri a matematika tudományának módszereit az algoritmuselmélet, az alkalmazott analízis, a diszkrét matematika, az operációkutatás, a valószínűségszámítás és a matematikai statisztika területén. Összefüggéseiben ismeri az alkalmazott matematika eredményeit az algoritmuselmélet, az alkalmazott analízis, a diszkrét matematika, az operációkutatás, a valószínűségszámítás és a matematikai statisztika területén. Ismeri az alkalmazott matematika különböző részdiszciplínái közötti mélyebb, átfogóbb kapcsolatokat, egymásra épülésüket. Ismeri az absztrakt matematikai gondolkodást, az absztrakt matematikai fogalmakat. Ismeri az alkalmazott matematikai modellek megalkotásához és szimulálásához szükséges informatikai, számítástechnikai ismeretanyagot. Specializáció választása nélkül továbbá Ismeri a differenciálegyenletek, a közelítő szám ...

    Category: Qualifications Location: Hungary
  8. Bachelor of Mathematics

    Taikomosios matematikos bakalauro kvalifikacija patvirtina asmens įgytą matematinį išsilavinimą: išugdytą abstraktų loginį mąstymą, įgytas matematines kompetencijas, gebėjimą matematikos principus naudoti taikomojoje veikloje. Taikomosios matematikos specialistai geba atskleisti įvairių realių reiškinių savybes, juos analizuoja pasitelkdami tinkamus matematinius modelius ir metodus, analizuoja abstrakčių modelių savybes, matematiškai mąsto, taiko įvairius matematinių teiginių įrodymo būdus, savo veikloje taiko informacines technologijas, geba aiškiai ir suprantamai teikti informaciją, sklandžiai reiškia mintis, etiškai naudojasi informacija, yra kūrybiškos asmenybės, gebančios dirbti tiek savarankiškai, tiek komandoje. Šie aukštos kvalifikacijos specialistai geba analizuoti ir vertinti duomenis, taikyti įvairius jų peržiūros ir apdorojimo algoritmus, juos tobulinti ir kurti naujus technologinius sprendimus. Tai – plačios erudicijos asmenybės, gebančios suprasti ir vertinti situaciją, ieškančios sprendimų ir analizuojančios gautus rezultatus. Taikomosios matematikos specialistų veikla dažniausiai susijusi su keliomis sritimis, todėl gebėjimas transformuoti, taikyti įgytas žinias ir nuolatos mokytis yra vieni iš pagrindinių šios kvalifikacijos bruožų. Parengti specialistai yra matematikos žinovai, turintys supratimą apie matematikos taikymo galimybes įvairiose gyvenimo srityse: finansų sektoriuje, draudimo kompanijų veikloje, elektronikoje, medicinoje, informacinių technologijų, paslaugų sferoje ir pan. Taikomos ...

    Awarding bodyVilnius Gediminas Technical University

    Category: Qualifications Location: Lithuania
  9. Bachelor of Natural Sciences in Mathematics (DU)

    The aim of the programme is: - to ensure independent studies for students by providing them with theoretical knowledge in mathematics and its applications and by developing their skills and abilities of scientific research work, - thus ensuring acquisition of higher academic education and providing the opportunity to successfully continue studies in master’s programmes. The skills, obtained by implementing the study programme: - ability to demonstrate core and specialized knowledge as well as understanding of most essential notions and regularities of the branch of mathematics; - to carry out basic numerical modeling experiments; - to find creative solutions in changeable and unclear conditions; - to see possibilities for basic mathematical modeling in other science branches; - to evaluate the impact of one’s professional activity on the environment and society. ...

    Awarding body- University of Daugavpils

    Category: Qualifications Location: Latvia
  10. Bachelor of Natural Sciences in Mathematics (LiepU)

    Aim of the study programme: - to provide an opportunity to acquire academic education in Mathematics in the following specialized directions: Information Technologies in Mathematics or Scientific Basics of the School Course of Mathematics. By dealing with academic and applied research in Mathematics, to obtain the necessary competencies for continuation of academic or professional studies, to perform professional activity. To promote formation of creative, responsible and life-long education motivated personalities. Results of studies: - acquisition of knowledge in Mathematics, understanding of proofing Logics, the most important definitions and rules in Mathematics; - ability to perform innovative activity by using the obtained theoretical courses in Discrete and Continuous Mathematics and the obtained basic skills; - ability to use IT tools in solving mathematical problems; - ability to individually orient oneself in mathematical literature, sort out and analyse the necessary information; - ability to perform professional and research activities; - ability to formulate certain mathematical problems in mathematical language and propose solutions thereof, - ability to independently plan own learning and improve own education. ...

    Awarding body- Liepaja University

    Category: Qualifications Location: Latvia

Pages