• EQF Home Page Icon
Find information on the EQF, NQF's

The European Qualifications Framework (EQF) is a translation tool that helps communication and comparison between qualifications systems in Europe. Its eight common European reference levels are described in terms of learning outcomes: knowledge, skills and competences. This allows any national qualifications systems, national qualifications frameworks (NQFs) and qualifications in Europe to relate to the EQF levels. Learners, graduates, providers and employers can use these levels to understand and compare qualifications awarded in different countries and by different education and training systems.

For more information on NQF's and their relation to the EQF click on the buttons below:

 

Documentation

Legal documents, Studies, Documents agreed by the EQF Advisory Group and

European Qualifications Framework Series 

Find information on qualifications

Qualifications that are part of national qualifications framework are listed on this page. You can scroll down to find all information. Filter by Subject Field, EQF level and Location and you will find more detailed information on qualifications, and a link to the national database. The qualifications are part of national qualifications frameworks that have formally referenced to the EQF

Find information on qualifications

Search results

Search found 85 items
  1. Master's degree in mathematical statistics (no legal status)

    Students will be able to: (general competences) use abstraction and analyse problems, synthesise and critically assess solutions, apply knowledge in practice, share knowledge, communicate professionally and express themselves in writing, search for sources and critically assess information, undertake autonomous professional work and work in an (international) group, develop professional responsibility and ethics, (subject-specific competences) demonstrate mastery of basic knowledge of mathematical statistics, demonstrate mastery of the latest statistical approaches in individual fields, draw ideas and solutions from related problems, transfer new knowledge to their own field, solve complex and demanding methodological problems, critically assess various approaches, use complex IT (programming) tools. ...

    Category: Qualifications Location: Slovenia
  2. Master's degree in mathematics (no legal status)

    Students will be able to: describe a given situation through the correct use of mathematical symbols and notations, explain their understanding of mathematical concepts and principles, solve mathematical (and other) problems through the application of modern technology, apply an algorithmic approach; develop an algorithm to resolve a given problem, analyse a given problem numerically, graphically and algebraically, deduce new logical conclusions on the basis of given data, confidently address a given mathematical problem and find a solution. ...

    Category: Qualifications Location: Slovenia
  3. Master's degree in mathematics (no legal status)

    Students will be able to: (general competences) use abstraction and analyse problems, synthesise and critically assess solutions, apply knowledge in practice, undertake autonomous professional work and work in an (international) group, critically assess and present their results, pursue further independent learning and keep abreast of literature, (subject-specific competences) demonstrate familiarity with traditional and modern results in the field of theoretical and applied mathematics and disciplines closely connected to mathematics (computer science, mechanics, etc.), demonstrate understanding of more complex mathematical proofs, abstract practical problems, use mathematical literature, use various mathematical methods to solve specific problems, carry out programming using relevant programming tools. ...

    Category: Qualifications Location: Slovenia
  4. Master's degree in mathematics (no legal status)

    Students will be able to: (general competences) think analytically and demonstrate understanding of complex systems that enable participation in various interdisciplinary teams, demonstrate in-depth knowledge of general mathematics, computational mathematics or financial mathematics, think mathematically and provide proofs and arguments in a variety of mathematical fields, demonstrate a capacity for in-depth analytical thinking and argumentation, critically assess developments in the field of mathematics, resolve complex technical/work problems by finding sources of knowledge and applying scientific methods, develop communication skills, demonstrate autonomy in professional work, show cooperativeness and work in a team, (subject-specific competences) demonstrate understanding of and solve more complex mathematical problems at a qualitative and quantitative level, describe a non-trivial situation through the correct use of mathematical symbols and notations, explain their understanding of more complex mathematical concepts and principles, solve more difficult mathematical (and other) problems through the application of modern technology, apply an algorithmic approach; develop an algorithm to resolve a given problem, analyse a given problem numerically, graphically and algebraically, deduce new logical conclusions from given data, confidently address a given non-trivial mathematical problem and find a solution, apply the approaches of scientific thinking to the quantitative treatment of problems in nature, the en ...

    Category: Qualifications Location: Slovenia
  5. Master’s Degree in "Mathematics". Department of Mathematics. Faculty of Sciences. Univeristy of the Aegean.

    - Competence in understanding advanced mathematical tools.- Acquisition of ability for robust study and of basic competences for the conduct of research.- Competence in resolving mathematical problems that stem from the modelling of theoretical and applied problems. ...

    Awarding bodyUniversity of the Aegean

    Category: Qualifications Location: Greece
  6. Master’s Degree in "Statistics and Actuarial- Financial Mathematics". Department of Mathematics. Faculty of Sciences. University of the Aegean.

    - Acquisition of specialised scientific background on the cognitive fields of Statistics, Actuarial Science, and Financial Mathematics. - Specialisation on the use of composite techniques and tools in statistics (Direction A) and in actuarial and financial mathematics (Direction B) for the preparation of statistical, financial, and actuarial studies. - Acquisition of specialised competences and skills for the preparation of a robust study and for conducting research. - Specialisation required by the most recent scientific and technological developments, in combination with the specific characteristics and needs of modern Greek and European reality. - Preparation for postgraduate studies of doctoral level. ...

    Awarding bodyUniversity of the Aegean

    Category: Qualifications Location: Greece
  7. Master’s Degree in “Didactic of Mathematics, Sciences and TICE: interdisciplinary approach ”. Department of Pre-school Education and Educational Design. Faculty of Humanities. University of the Aegean.

    Knowledge:- Concepts and research methodology for Teaching Mathematics and Positive Sciences. - Theoretical bases and educational and internet applications of ICTs. - Theoretical principles and methodologies for the design of analytical programmes and educational material. - Importance and development of interdisciplinary connections and fields, as well as of the collaboration in research and learning. - Interactions between the teaching of Mathematics and Positive Sciences and ICTs.- Functional relation between the Didactics for Positive Sciences and the ICTs in the pedagogic and vocational training of educators. Skills - Identification and diagnosis of learning difficulties for Mathematics and Positive Sciences within the context of the environment in and outside of school. - Understanding of the difficulties for the design and educational use of ICTs in the school environment and in connecting school, the family, and society. - Pedagogic and interdisciplinary adjustment of analytical programmes of learning and teaching of Mathematics and Positive Sciences in special educational and social cooperative environments.- Differential development and management of the Educational Material and of the internet sources in scientific learning activities. - Collaboration in research and further learning actions for the Didactics of Positive Sciences and ICTs. Competences- Combination of methods for the scientific observation and educational intervention in school. - Design of teaching situations and learning environmen ...

    Awarding bodyUniversity of the Aegean

    Category: Qualifications Location: Greece
  8. Mathematical-technical software developer

    Type of qualification This qualification is a dual vocational education and training (3-year and 3½-year training course). The vocational education and training system is highly significant in Germany. Central importance in this regard is attached to training within the dual system, which facilitates access to many areas of occupational activity for which in other countries training at an institute of higher education is required. The system is described as “dual” because training is conducted at two independent training venues, the company and the vocational school. Training combines the acquisition of theoretical knowledge and practically related competences with company practice. Successful completion of training confers the right directly to exercise the occupation in question as a qualified skilled worker in a state recognised training occupation. It also leads to the subsequent opportunity to access a wide range of upgrading training. Those completing training hold the professional skills, knowledge and competences (employability skills) necessary for the exercising of a qualified occupational activity. They are in possession of competences for the autonomous planning and processing of professional tasks assigned within a comprehensive area of learning or field of occupational activity which is subject to change. Description of the qualification (learning outcomes) Apply mathematical models to solve problems in the areas of computing, technology, natural sciences and trade and industry , Analyse problems ...

    Awarding bodyChamber of Commerce and Industry

    Category: Qualifications Location: Germany
  9. Mathematician

    A képzés célja tudományos kutatásra szakmai felkészültséggel rendelkező matematikusok képzése, akik megszerzett matematikai szaktudásukat képesek alkotó módon a gyakorlatban is felhasználni. Nyitottak szakterületük és a rokon szakterületek új tudományos eredményeinek kritikus befogadására. Egyaránt alkalmasak elméleti és gyakorlati matematikai problémák modellezésére, megoldási eljárások kidolgozására és ezen eljárások tényleges folyamatának irányítására. Felkészültek tanulmányaik doktori képzésben történő folytatására. Az elsajátítandó szakmai kompetenciák A matematikus a) tudása Rendszerszinten és összefüggéseiben ismeri a matematika tudományának módszereit az analízis, algebra, számelmélet, geometria, diszkrét matematika, operációkutatás és valószínűségszámítás (matematikai statisztika) területén. Összefüggéseiben ismeri az elméleti matematika eredményeit az analízis, algebra, számelmélet, geometria, diszkrét matematika, operációkutatás és valószínűségszámítás (matematikai statisztika) területén. Jártas a matematika különböző részdiszciplínái közötti mélyebb, átfogóbb kapcsolatokban. Jártas az absztrakt matematikai gondolkodásban, a matematikai fogalomalkotásban. Alkotó módon ismeri a matematikai bizonyítás alapelveit, módszereit. Ismeri az új matematikai eredmények eléréséhez vezető kutatások speciális módszereit, problémamegoldó technikáit. b) képességei Képes az analízis, algebra, számelmélet, geometria, diszkrét matematika, operációkutatás és valószínűségszámítás (matematikai statisztika) terü ...

    Category: Qualifications Location: Hungary
  10. Mathematician

    A képzés célja matematikusok képzése, akik olyan elméleti és alkalmazott matematikai ismeretekkel rendelkeznek, melyek képessé teszik őket arra, hogy alapszintű matematikai ismereteiket műszaki, gazdasági, statisztikai és számítógépes területen alkalmazzák. Felkészültek tanulmányaik mesterképzésben történő folytatására. A matematikus a) tudása - Ismeri a matematika alapvető módszereit az analízis, algebra, geometria, véges matematika, operációkutatás és valószínűség-számítás (statisztika) területén. - Ismeri az elméleti matematika alapvető összefüggéseit az analízis, algebra, geometria, véges matematika, operációkutatás és valószínűség-számítás (statisztika) területén. - Ismeri a matematika különböző részdiszciplínái közötti alapvető kapcsolatokat. - Tisztában van az absztrakt fogalmak definiálásának követelményeivel, az alkalmazott problémákban rejlő általános sémákat, fogalmakat felismeri. - Ismeri a matematikai bizonyítás követelményeit, alapvető módszereit. - Tisztában van a matematikai gondolkodás sajátos jellemzőivel. b) képességei - Képes logikus, igaz matematikai állítások megfogalmazására azok feltételeinek és fontosabb következményeinek pontos megadásával. - Képes a mennyiségi adatokból minőségi következtetéseket levonni. - Képes az analízis, algebra, geometria, véges matematika, operációkutatás és valószínűségszámítás (statisztika) területen megszerzett ismereteinek alkalmazására. - Képes az analízis, algebra, geometria, véges matematika, operációkutatás és valószínűségszámítás (statiszt ...

    Category: Qualifications Location: Hungary

Pages