• EQF Home Page Icon
Find information on the EQF, NQF's

The European Qualifications Framework (EQF) is a translation tool that helps communication and comparison between qualifications systems in Europe. Its eight common European reference levels are described in terms of learning outcomes: knowledge, skills and competences. This allows any national qualifications systems, national qualifications frameworks (NQFs) and qualifications in Europe to relate to the EQF levels. Learners, graduates, providers and employers can use these levels to understand and compare qualifications awarded in different countries and by different education and training systems.

For more information on NQF's and their relation to the EQF click on the buttons below:

 

Documentation

Legal documents, Studies, Documents agreed by the EQF Advisory Group and

European Qualifications Framework Series 

Find information on qualifications

Qualifications that are part of national qualifications framework are listed on this page. You can scroll down to find all information. Filter by Subject Field, EQF level and Location and you will find more detailed information on qualifications, and a link to the national database. The qualifications are part of national qualifications frameworks that have formally referenced to the EQF

Find information on qualifications

Search results

Search found 23 items
  1. Bachelor of Science in de wiskunde

    1. Grondige kennis hebben van en inzicht hebben in wiskundige kernbegrippen, basismethoden en technieken en de aanwending ervan op een gepast abstractieniveau. 2. Grondige fundamentele kennis en inzicht hebben in de belangrijkste deelgebieden (analyse, algebra, meetkunde, statistiek, kanstheorie, numerieke wiskunde) en hun onderling verband. 3. Verbredende kennis en inzicht hebben m.b.t. verbanden van wiskunde met één of meerdere wetenschapsgebieden. 4. De taal van de wiskunde beheersen: een tekst opgesteld in termen van definities, stellingen en bewijzen begrijpen; logisch redeneren, correct hanteren van wiskundige taal en symbolen. 5. Zelfstandig een wiskundige redenering volgen, analyseren en hiaten onderkennen. Verschillende technieken beheersen om zelf een correcte wiskundige bewijsvoering op te bouwen. 6. Zelfstandig relatief eenvoudige wiskundige problemen analyseren en oplossen door het toepassen van theorieën en standaardmethoden. Kritisch reflecteren over het oplossingsproces en het eindresultaat. 7. Gevorderde wiskundige rekenvaardigheid bezitten. 8. De ICT-vaardigheden bezitten die aansluiten bij de wiskunde, zoals programmeren, werken met computeralgebra- en texgebaseerde pakketten en statistische dataverwerking. 9. Wiskundige literatuur (zeker ook Engelstalige) begrijpen. Zelfstandig wetenschappelijke bronnen opzoeken en raadplegen. 10. Binnen een afgelijnd kader een probleemstelling formuleren en een wiskundeproject plannen en uitwerken. 11. Schriftelijk en mondeling rapporteren over onderzoek en ...

    Category: Qualifications Location: Belgium, Flemish Community
  2. Bachelor's Degree in Mathematics. Department of Mathematics. Faculty of Sciences. University of the Aegean.

    The graduates of the Department of Mathematics: - Have knowledge of core mathematical tools of Algebra, Analysis and Differential Equations.- Have knowledge of the core principles of Programming and Computer Software. - Understand mathematical problems and are capable of designing models for the solution thereof. - Have basic Physics knowledge. - Have basic knowledge of Pedagogics, History, and Didactics for Mathematics. - Have the opportunity of acquiring professional experience either in Secondary Education, or in Businesses through Practical Training. ...

    Awarding bodyUniversity of the Aegean

    Category: Qualifications Location: Greece
  3. Bachelor's Degree in Statistics and Actuarial- Financial Mathematics. Department of Mathematics. Faculty of Sciences. University of the Aegean.

    - Have knowledge of the cognitive fields of Statistics, Actuarial Science, and Financial Mathematics. - Know how to use composite mathematical methods in order to resolve statistical, actuarial and financial mathematical problems. - Acquire a noteworthy mathematical background, along with the acquisition of sufficient knowledge about Information Technology, Accounting, and Economics. - Combine the advanced competences of a positive science and business executive. - Are capable of acquiring professional experience (through Practical Training) in Public Agencies and Insurance or Financial Businesses and Organisations. - Know and assess business risks. - Know and decide about the pricing of goods and services. - Know and prepare insurance, financing, or pension plans and investment programmes. - Know how to study the method of allocating limited resources in time. - Know how to prepare (plan and implement) statistical studies and research in every market field. ...

    Awarding bodyUniversity of the Aegean

    Category: Qualifications Location: Greece
  4. üzleti adatelemző

    A képzés célja, hogy fejlessze és erősítse az üzleti intelligencia és a data science területhez tartozó  szakmai ismereteket, elsődlegesen az elemzési kompetenciák vonatkozásában. Elsősorban azokat a munkavállalókat szólítja meg, akiknek munkájukhoz szükségük van az üzleti intelligencia és a data science által nyújtott elméleti és gyakorlati támogatásra, valamint üzleti intelligencia rendszert akarnak kialakítani, fejleszteni, működtetni.           A képzés során elsajátítandó tudáselemek, megszerezhető ismeretek:- vállalati architektúra menedzsment;- üzleti intelligencia és részterületei;- döntéselmélet, döntéstámogató rendszerek, vezetői döntések támogatása, kontrolling;- adattárházak, adatminőség és menedzsmentje;- üzleti analitika, vizualizáció és analitika, az adatelemzés eszközei, módszerei;- üzleti teljesítménymenedzsment;- intelligens alkalmazások, big data technológiák;- adatbányászat folyamata, modelljei, webbányászat és szövegbányászat;- informatikai vezetési ismeretek, IT Projekt menedzsment.      A képzés során elsajátítandó kompetenciák:- a hallgató képes lesz adatmenedzsment/adatéletciklushoz kötődő feladatok megoldására;- a hallgató le tudja fordítani az üzleti kihívásokat analitikai problémákká;- a hallgató képes lesz üzleti analitikai problémák felismerésére és megoldására;- a hallgató fel tud ismerni és meg tud oldani adat, web és szövegbányászati problémákat;- a hallgató ismeri az adatelemzés legújabb technológiáit, képes lesz ”big data” menedzsment feladatok azonosítására és megoldására;- a ...

    Awarding bodyBudapesti Corvinus Egyetem

    Category: Qualifications Location: Hungary
  5. Mathematician

    A képzés célja matematikusok képzése, akik olyan elméleti és alkalmazott matematikai ismeretekkel rendelkeznek, melyek képessé teszik őket arra, hogy alapszintű matematikai ismereteiket műszaki, gazdasági, statisztikai és számítógépes területen alkalmazzák. Felkészültek tanulmányaik mesterképzésben történő folytatására. A matematikus a) tudása - Ismeri a matematika alapvető módszereit az analízis, algebra, geometria, véges matematika, operációkutatás és valószínűség-számítás (statisztika) területén. - Ismeri az elméleti matematika alapvető összefüggéseit az analízis, algebra, geometria, véges matematika, operációkutatás és valószínűség-számítás (statisztika) területén. - Ismeri a matematika különböző részdiszciplínái közötti alapvető kapcsolatokat. - Tisztában van az absztrakt fogalmak definiálásának követelményeivel, az alkalmazott problémákban rejlő általános sémákat, fogalmakat felismeri. - Ismeri a matematikai bizonyítás követelményeit, alapvető módszereit. - Tisztában van a matematikai gondolkodás sajátos jellemzőivel. b) képességei - Képes logikus, igaz matematikai állítások megfogalmazására azok feltételeinek és fontosabb következményeinek pontos megadásával. - Képes a mennyiségi adatokból minőségi következtetéseket levonni. - Képes az analízis, algebra, geometria, véges matematika, operációkutatás és valószínűségszámítás (statisztika) területen megszerzett ismereteinek alkalmazására. - Képes az analízis, algebra, geometria, véges matematika, operációkutatás és valószínűségszámítás (statiszt ...

    Category: Qualifications Location: Hungary
  6. Bachelor of Natural Sciences in Mathematics (DU)

    The aim of the programme is: - to ensure independent studies for students by providing them with theoretical knowledge in mathematics and its applications and by developing their skills and abilities of scientific research work, - thus ensuring acquisition of higher academic education and providing the opportunity to successfully continue studies in master’s programmes. The skills, obtained by implementing the study programme: - ability to demonstrate core and specialized knowledge as well as understanding of most essential notions and regularities of the branch of mathematics; - to carry out basic numerical modeling experiments; - to find creative solutions in changeable and unclear conditions; - to see possibilities for basic mathematical modeling in other science branches; - to evaluate the impact of one’s professional activity on the environment and society. ...

    Awarding body- University of Daugavpils

    Category: Qualifications Location: Latvia
  7. Bachelor of Natural Sciences in Mathematics (LiepU)

    Aim of the study programme: - to provide an opportunity to acquire academic education in Mathematics in the following specialized directions: Information Technologies in Mathematics or Scientific Basics of the School Course of Mathematics. By dealing with academic and applied research in Mathematics, to obtain the necessary competencies for continuation of academic or professional studies, to perform professional activity. To promote formation of creative, responsible and life-long education motivated personalities. Results of studies: - acquisition of knowledge in Mathematics, understanding of proofing Logics, the most important definitions and rules in Mathematics; - ability to perform innovative activity by using the obtained theoretical courses in Discrete and Continuous Mathematics and the obtained basic skills; - ability to use IT tools in solving mathematical problems; - ability to individually orient oneself in mathematical literature, sort out and analyse the necessary information; - ability to perform professional and research activities; - ability to formulate certain mathematical problems in mathematical language and propose solutions thereof, - ability to independently plan own learning and improve own education. ...

    Awarding body- Liepaja University

    Category: Qualifications Location: Latvia
  8. Bachelor of Natural Sciences in Mathematics (LU)

    To theoretically acquire basic courses in various sub-branches of mathematics and be able to apply the knowledge in practice; - to be able to freely work on a computer; - to be competent in mathematical methods of solving a variety problems and be able to apply these methods working with a computer; - to be able to understand the basics of natural sciences and apply mathematical modelling in the area of natural sciences, technical and social processes; - to write a Bachelor’s thesis, which includes an independent study in the selected branch of mathematics requiring understanding of mutual interconnections between different courses of mathematics, practical application of fundamental knowledge of mathematics and computer science. - to theoretically acquire basic courses in various sub-branches of mathematics and be able to apply the knowledge in practice; - to be able to freely work on a computer; - to be competent in mathematical methods of solving a variety problems and be able to apply these methods working with a computer; - to be able to understand the basics of natural sciences and apply mathematical modelling in the area of natural sciences, technical and social processes; - to write a Bachelor’s thesis, which includes an independent study in the selected branch of mathematics requiring understanding of mutual interconnections between different courses of mathematics, practical application of fundamental knowledge of mathematics and computer science. ...

    Awarding body- University of Latvia

    Category: Qualifications Location: Latvia
  9. Professional Bachelor Degree in Financial Engineering, Financial Analyst (RTU)

    Graduate student skills and knowledge in compliance with the profession standard is the major learning outcome. Students should be able to make decisions independently and to apply the acquired knowledge in practical work. Graduates are able:   - to identify financial and actuarial problems that can be solved by applying information technologies;   - to analyse business-related processes;   - to manage optimisation of security portfolios and investments;   - to analyse, model and forecast financial flow, as well as to design management systems for financial analysis;   - to explain basic principles of the use of financial instruments;   - to assess profitability and risk of financial investments, as well as to come up with recommendations for reduction of financial risks;    - understand how to deal with economic and social factors in statistical analysis of financial flows;    - to conduct statistical analysis of indicators such as mortality, functional disorders, etc.;   - to analyse insurance market trends and calculate insurance losses and premiums;   - to apply modern quantitative methods in financial analysis and financial engineering;   - to use software for mathematical and statistical calculations.    Competences:1. The KNOWLEDGE at the level of notion: 1.1. guidelines of the European Union and international organizations in the field of financial analysis and planning; 1.2. financial theories. 2. The KNOWLEDGE at the level understanding: 2.1. macroeconomics; 2.2. microeconomics; 2.3. mon ...

    Awarding body- Riga Technical University

    Category: Qualifications Location: Latvia
  10. Professional Bachelor's Degree in Statistics Mathematics, Statistics Mathematician (LU)

    - to study basic courses of different sub-branches of mathematics; - to master courses of mathematical statistics and economics of mathematics; - to be able to use computer and special computer packages; - to accomplish a practice period in statistics or development of mathematical models of economy in a state or a private enterprise; - to develop and defend in public a Bachelor thesis, which requires understanding of various study courses of mathematics and particularly the courses on theory of probability and mathematical statistics and their mutual interconnections; - demonstrates practical application of basics of mathematics, statistics and computer science in concrete mathematical and statistical problem solving. The purpose of the professional higher education study programme Mathematician Statistician is to train qualified mathematicians and statisticians for Latvian State institutions as well as for the state and private structural units of national economy. Competences:1. of The KNOWLEDGE at the level of notion: 1.1. European Union Convention on personal data protection; 1.2. local and international economic environment, market development trends and perspectives; 1.3. international financial and securities markets; 1.4. Latvian and international legal provisions related to the work in the profession. 2. The KNOWLEDGE at the level of understanding of: 2.1. economy development; 2.2. statistical theories; 2.3. professional terminology in the official language and at least two foreign languages; 2 ...

    Awarding body- University of Latvia

    Category: Qualifications Location: Latvia

Pages