Advances in microseismic monitoring and understanding of hydraulic fracturing: the contribution of the SHEER EU project.

T. Dahm, S. Cesca, J. A. Lopez Comino, S. Heimann, D. Kühn, S. Lasocki, B. Dost
GFZ - German Research Center for Geosciences, Potsdam, Germany
NORSAR, Norway,
Institute of Geophysics, Polish Academy of Sciences
KNMI The Royal Netherlands Meteorological Institute
torsten.dahm@gfz-potsdam.de

Transatlantic Knowledge Sharing Conference on Unconventional Hydrocarbons: Resources, Risks, Impact and Research Needs
Session 1: Induced seismicity from hydraulic fracturing and waste water management.
De Bazel Conference Centre, Amsterdam, 20-21 June 2017

European on-shore basins and their potential for shalegas/-oil

Gas production in UK dropped 1/3 since 2000.
Shale exploration with strict regulations
70 shale gas licences

Expected shalegas production in USA in 2040 (EIA, 2014): 53%
Four projects under EU-LCE-16-2014 on impacts and risks of shale gas

1. Fracrisk - Furthering the Knowledge Base For Reducing the Environmental Footprint of Shale Gas Development
2. M4ShaleGas - Measuring, Monitoring, Mitigating, Managing the environmental impact of Shale Gas
3. STX, ShaleXenvironmenT, Maximizing the EU shale gas potential by minimizing its environmental footprint
4. SHEER - SHale gas Exploration and Exploitation induces Risks

Objectives:
- Groundwater contamination by chemical contained in flow back and produced water
- Air pollution by migration of methane & other gases through fractures
- Induced seismicity by fracking and injection of waste water

Global aspects of induced and triggered earthquakes

Main scientific challenges:

a) Understand and predict probability of larger earthquakes (EQ)
b) Monitor small induced EQ and use them for characterization (e.g. traffic light)
Mechanism of induced seismicity

Main industrial activities which can "induce" or "trigger" seismicity

- Mining operations (IV)
- Hydrocarbons storage and extraction (I)
- Shale gas exploitation (II)
- CO\(_2\) sequestration (V)
- Dams (VI)
- Geothermal energy exploitation (III)

(a, b)

(a, c)

Earthquake rupture:

- nucleates where Coulomb stress exceeds fault strength
- is driven by shear stress

Monitoring network Wysin

Detection performance:
- Synthetic catalogue
- Real data

2x11 stages in Jun/Jul 2016, 17E3 m\(^3\)

- vertical fracking drilling
- horizontal fracking drillings (depth ~ 4000 m)
- broadband stations
- short period stations
- shallow borehole stations (depth ~ 55 m)
Detections during/after fracking operations

a) Potential triggered events?

- The most of local detections (M>0.4) corresponds to sources close to the surface. E.g., two EQ with M_w 1 and 0.5 likely occurred close to the surface.

- Weak EQ (M<0.4) associated with fracking operations detected only in the three borehole stations.

- The number of fracking induced high frequency events are (unusual) low. Instead, un-typical long period events were recorded.

- Some transients / peaks in methane observed after fracking

- No ground water anomalies

f) Long period signals

Some transient / peaks in methane after fracking

New waveform detection/location approach

$M_w \approx 1.0$. Near surface source (wave velocity = 400 m/s). $M_c \approx 0.45$
What happens at the fracture at the borehole?

- Micro-earthquakes occur in shear mode at fracture tip
- Opening of fractures generate long period transients (e.g. measured on tilt or broadband sensors)
- Magnitude of events increases with injected volume and duration. Largest events often after stop of injection
Sequence of mine-fracs using “frac-monitoring tool”

Goals of the field experiment:
- verify soft stimulation concepts
- test hydraulic fracturing seismicity models

Hydrofrac experiments in massive granite (Äspö, Sweden)

Zang et al. (2017) GJI
Is seismicity controlled by pressure or by deformation?

- BB ground velocity
- Long period transients
- Injection pressure HF2
- High freq. microcracks
- Event rate ($M_{AE} > 1.25$)
- High freq. microcracks
- Event magnitudes

Duration of fracture opening (T_r) is $\approx 1.6 \times$ duration of injection (T_d)

$T_r = 0.6 \times T_d$
First results: $M_{AE_{\text{max}}}$ is controlled by fracture size (stress anomaly)

Note: - M_{max} does not correlate to injection pressure
- Event rate correlate with P_i

Summary (Wysin / Åspö)

- Monitoring of $M<0.5$ EQ is challenging and needs borehole sensors
- Significant EQ ($M>3$) can be induced by fracking. Wysin experiment did not induce EQ with $M>1$
- Long period events have been recorded in Wysin – LP transients measured close to well (e.g. tilt) are associated with frac opening
- Fracture after-growth after stop of injection measured by tilt signals
- Frac tip EQ rate is controlled by injection pressure
- Frac-induced EQ magnitude is controlled by size and not pressure