Nuclear Decommissioning, a Utility’s Perspective

Dr. Hartmut Pamme
Vice President Nuclear Power Plants, RWE Power AG
Decommissioning
as legal action and time frame

Operation
Post operational Phase

Dismantling or Safe Enclosure
Nuclear Decommissioning, the German case
Nuclear in Germany, the post-Fukushima shock

Immediate and final closure of 8 of 17 nuclear units

that means

8409 out of 20457 MW
Nuclear in Germany, the outlook

NPP > 150 MW

Number of Plants in Operation

post-Fukushima: 13th Amendment of Atomic Law

Plants in operation

Plants in decommissioning

Greifswald, Unit 1-5
Gundremmingen, Unit A
Lingen
Muelheim-Kaerlich
Obrigheim
Stade
THTR-300
Wuergassen
Nuclear Decommissioning, key challenges
esp. under German conditions

Operating license: legal framework for multiyear post-operation phase.

Decom. license: required to start dismantling work.

Safety: preservation of vital safety functions in post-operation and dismantling phase
* highly motivated and competent key-staff required,
* under strict regulatory control.

Economics: minimization of cost burden under preservation of adequate safety levels.

Nuclear waste: clear solutions (esp. for final disposal) with significant delays
Nuclear Decommissioning in Germany, the market

The decommissioning market, ...

- in „paper work“ (esp. licensing activities) from now up to around 2025

- in „real“ dismantling activities from 2016 to around 2040

- in waste management solutions incl. final disposal until 2050
Nuclear Decommissioning, European outlook
EU-27 plus Switzerland, NPP > 150 MW

Simplified assumptions:
* operating times 60 years
* time frame for decom. and dismantling 25 years
* no multi-decade safe enclosures
Simplified assumptions:
* operating times 60 years
* time frame for decom. and dismantling 25 years
* no multi-decade safe enclosures

Decommissioning „boom“
around 2035 until 2075
Nuclear Decommissioning,

between proven processes and R&D-needs
Decommissioning, German experiences

NPP Kahl, „yesterday“

... and „today“

In general:
- extensive experiences in all phases of decommissioning since more than 2 decades
- technical feasibility in compliance with safety and radiation protection standards is proven
- necessary technology spectrum is available and was applied effectively several times
- qualified service providers are available
Decommissioning Process

1. Licencing process

... under national responsibility, especially German characteristics
... European harmonisation desirable

R&D:
support for licensing processes:
analyses tools plus improved measurements for the determination of (e.g. RPV) activation levels
Decommissioning Process

2. Dismantling of contaminated systems and components

3. Dismantling of activated components

For both steps
R&D: innovations in existing technologies

e.g. improved/quicker thermal cutting technologies with lower emissions, thus lower dose rates for workers, less secondary waste
Decommissioning Process

4. Dismantling of biological shield

R&D: innovations in existing technologies

- e.g. dust/dose-minimizing optimisations,
- improved robotics,
- diamond wire sawing technologies

5. Dismantling of remaining conventional components

R&D: „none“
Decommissioning Process

6 Final decontamination of buildings and structures

R&D: progressive/quicker „macro“-measurement techniques, ideally with automisation, innovations in existing „micro“/manual technologies
Decommissioning Process

7 Conventional demolishing of buildings, towards a “green meadow”

R&D: „none“
Bottle neck for economic decommissioning (in Germany)

... waste management at the back-end

(Regulation for)
Radioactive waste treatment, conditioning and packaging for final disposal,

Licensing, exploration, erection and construction of disposal sites

R&D-support, especially for a harmonized (inter)national regulation, desirable
Conclusion

- At least German utilities incl. RWE with a solid expertise in all aspects of decommissioning
- Industrial market for dismantling well established with growing trend
- R&D-challenges in the areas of ...:
 * innovations in existing decommissioning technologies
 * waste treatment towards „readiness“ for final disposal
 * safety criteria for final repositories
Back up
Final Disposal – Volumes and masses

Final disposal volumes of conditioned waste from Decommissioning of all German nuclear power plants ca. 135,000 m³ (equivalent to a cube with an edge length of 51 m)

Example: typical PWR

Mass of radioactive waste for final disposal: ca. 2.5 % of total mass

Total mass of radiologically controlled area: 156.600 t
Final repository sites Konrad & Gorleben

<table>
<thead>
<tr>
<th>Konrad</th>
<th>Gorleben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final repository for non-heat-generating waste (low- and intermediate-level waste, also medical waste)</td>
<td>Final repository for heat-generating waste (fuel rods, waste from reprocessing etc.)</td>
</tr>
<tr>
<td>• Former ore mine (1957 – 1976)</td>
<td>• Unused salt dome</td>
</tr>
<tr>
<td>• Consented for 303,000 m³ of waste packages, sufficient for all non-heat-generating waste from operation and decommissioning</td>
<td>• Begin of selection process from 140 salt domes in the 70ies, Federal government selected Gorleben in 1977</td>
</tr>
<tr>
<td>• Approx. 95% of total waste volume is non-heat-generating</td>
<td>• Exploration 1979 to 1999, moratorium in 2000</td>
</tr>
<tr>
<td>• Planning approval procedure started in 1982</td>
<td>• Moratorium ceased in 2010, next steps:</td>
</tr>
<tr>
<td>• Consent in 2002, last instance in 2007</td>
<td>- exploration continues</td>
</tr>
<tr>
<td>• Costs so far: 1.7 billion €*</td>
<td>- preliminary safety analysis</td>
</tr>
<tr>
<td>• Total costs: ca. 2.6 billion €</td>
<td>- international Peer Review</td>
</tr>
</tbody>
</table>

* Commissioning before 2020 expected

** Commissioning in 2030ies possible

* Utility share: 64.4%
** Utility share: 96.5%