Big Data Economics

towards

Data Market Places

Renaud Di Francesco
Overview:

- Part I: Right to be forgotten
- Part II: Asymmetry in Digital Revolution/φ_2: « the age of data »
- Part II: If unpaid work = slavery, then unpaid data = ???
Part I
Right to be forgotten?

*RTBF in EN, not in BE 😊
Right to be forgotten?

- This is 0 or 1
 - Opt-in (1) for \([t_0, t_1]\), then opt-out (0) at \(t_1\)?
- Erase everything, forget anything about me
 - Opt-out (0) until \(t_0\), then opt-in (1) for \([t_0, t_1]\)
The Pharaoh’s algorithm

- Target = « be forgotten by t1 »
- **Procedure begin**
 - Build Pyramid, complete before t1
 - Have your mummy in Pyramid before t1
 - Have architect killed in Pyramid, to be fully forgotten by t1
 - Close Pyramid by t1
- **End**
Right to be forgotten?

• The pharaoh’s algorithm is cruel, brutal and does not work
 – Have you visited the Louvre, the British Museum, the Egyptian museum of Turin, the Pergamon museum?
 – There will always be an archeologist out in the wild, able to find the pharaoh
Dissuasion by persuasion

• **Money can buy anything**
 - almost, « according to 90% of people asked » 😊

• **Price of data**
 - What it does: replace Boolean opt-in/out (1 or 0)
 by real variable p, adjustable, demand/supply, wider more flexible scope (money)
 - Data owner
 • Grant data access at t_0 for agreed price p^*
 • Revise data access price at t_1 for new price $p’ > p^*$
 - Data collector stops using data, because price $p’$ at t_1 is beyond their acceptance range
 - Assumptions
 • Contract for granting data access rights from owner to collector at price p, during agreed timeframe $[t_0,t_1]$
 • Optimal price p^* accepted by both parties
 • Enforcement mechanism for data rights (grant/block) as for Content Rights (Content Protection, Conditional Access)
Part II
Asymmetry in Digital Revolution/φ₂: « the age of data »
\(\varphi_1: \text{« Moore’s Law »} \)

\(\varphi_2: \text{« the age of data »} \)

- **Moore’s Law**
 - transistors, devices, computational capabilities
 - leads to commoditisation in pure digital electronics
- **« The age of data »**
 - Real world, real people
 - Digital representation
 - Data goes from:
 - Owner to Collector
 - Collector to User

22/09/2015
Asymmetry?

• Enterprise case
 – B2B, it’s business, markets at play

• Data owned by people
 – About what they are and what they own
 see Arthur Schopenhauer « von dem was man ist, von dem was man hat, von dem was man vorstellt » (Aphorismen zur Lebensweisheit)

• Data suppliers
 – Billions of them: humans and their things

• Data collectors
 – 4 or 5 of them

22/09/2015 R. Di Francesco
Asymmetry as a supply-chain management problem

• **Automotive**
 – from 200-300 suppliers earlier, to few tens

• **Consumer Mass Markets**
 – Few product models x 1000 000 or 1000 000 000
 – Scales: sell to millions, billions (mobile, e.g.)

• **Reversal**
 – Billions of data owners, producers, generators
 – 5 collectors
Asymmetry: rebalancing an economic relationship

• Coffee production
 – Very fragmented farming/production
 – Few large coffee brands aggregate production in customer products
 – Volatile commodity price: weather, market, etc

• Fair Trade scheme
 – Aggregate supply: less fragmented, stronger in negotiation
 – Provide stabilised economic framework
Part III

Unpaid data, why?
Two viewpoints, two equations...

An Internet company usually operates as a two-sided platform. Such a platform hosts users/consumers on one side of the platform, and a variety of B2B partners and platform ecosystem participants on the other side of the platform.

Notations:
- the revenue (or utility) of user u is denoted by $r(u)$
- the value of the content license granted to u is $c(u)$
- the value of the software license granted to u is $s(u)$
- the loss caused by data exposure is valued $d(u)$ (not offset by any revenue from data access granted currently)
- the loss caused by time consumed by potentially unwanted advertisement is valued $a(u)$

Then, a simple consumer/user-side model is:

$$r(u) = c(u) + s(u) - [d(u) + a(u)]$$

Per user u, the revenue for the platform is:

$$R(u) = D(u) + A(u) - [C(u) + S(u)]$$

where
- $D(u)$ is the data revenue from u minus its cost (NB the cost is currently zero! Unpaid data)
- $A(u)$ is the advertising revenue from u
- $C(u)$ is the content license purchase cost for user u
- $S(u)$ is the software license cost (either internal as a software development cost, or external as a software procurement cost)
The Loyalty scheme model

The net value $r(u)$ for a “valued customer” user u, of a loyalty scheme of brand B (possibly the loyalty scheme can be multi-brand scheme named B for the sake of simplicity), can be measured by

$$r(u) = r^*(r^+(u), D(u)) - d(u)$$

where

- $r^+(u)$ is the basket of purchases up to now
- $D(u)$ is the data set to which access has been granted to B by u
- $r^*(.)$ is the reward from B to u, increasing with the basket of purchase and the data set granted access to.
- $d(u)$ is the value, in the perception of u, of the access to data set $D(u)$

The value to brand B brought by the loyalty scheme for customer u is

$$R(u) = p(r^{++}(u)) + D(u) - r^*(r^+(u), D(u))$$

where

- $r^{++}(u)$ is the next purchase basket or estimate of the next purchase basket of u, p is its value
- $D(u)$ is the revenue for B from data set $D(u)$
- $r^*(r^+(u), D(u))$ is the cost of the loyalty scheme from u, for B, in other terms the rewards for u.

22/09/2015 R. Di Francesco
Conclusions

• Prices help
 – Lagrangian optimisation
 • Constraint C multiplied by factor λ
 • If λ is a price, set to zero, the constraint C is not taken into account
 – No price, no Walrasian adjustment towards a Pareto optimum

• Symmetry and fairness
 – Stimulate digital innovation, and maximise associated benefit for society and markets, incentive for innovators

• Business Model engineering for data
 – Re-purpose proven economic components:
 • Data Access Right Management: -build on Content Market Places
 • Data Access Contracts: -build on Software Licensing
 • Data Access Pricing: -build on Loyalty schemes
Priced data, and non-priced data, Market Places for Data

Scope: real world, real time, automation

rdifrancesco@ymail.com