
L-tryptophan
produced by fermentation with Escherichia coli K12 KCCM80135
(FAD-2017-0033; CRL/170005)

Dossier related to: FAD-2017-0033 - CRL/170005
Name of Product: L-tryptophan produced by fermentation with Escherichia coli K12 KCCM80135
Active Agent (s): L-tryptophan
Rapporteur Laboratory: European Union Reference Laboratory for Feed Additives (EURL-FA) JRC Geel, Belgium
Report prepared by: Stefano Bellorini
Report checked by: Zigmas Ezerskis (EURL-FA)
Date: 15/06/2018
Report approved by: Christoph von Holst
Date: 15/06/2018
EXECUTIVE SUMMARY

In the current application authorisation is sought under Article 4(1) for L-tryptophan produced by fermentation with Escherichia coli K12 KCCM80135, under the category/functional group 3(c) 'nutritional additives'/'amino acids, their salts and analogues', according to Annex I of Regulation (EC) No 1831/2003. Authorisation is sought for all animal species. L-tryptophan is already authorised as feed additive under Commission Implementing Regulation (EU) 2017/873. According to the Applicant, the product has a minimum purity of 98% and it is intended to be mixed either in premixtures or added directly to feedstuffs or water for drinking. However, the Applicant did not propose a minimum or maximum L-tryptophan content in feedstuffs.

For the quantification of L-tryptophan in the feed additive, premixtures, feedstuffs and water the Applicant submitted a single-laboratory validated analytical method based on High Performance Liquid Chromatography (HPLC) with photometric detection. However, based on the data provided, the EURL cannot recommend this method for official control.

The EURL previously evaluated and recommended (i) the ring-trial validated EN ISO 13904:2016 method based on HPLC with fluorescence detection (HPLC-FLD) for the quantification of L-tryptophan in feed additive and premixtures (containing more than 2% of tryptophan); and (ii) the ring-trial validated Community method based on HPLC-FLD for the quantification of L-tryptophan in feedstuffs. Based on the performance characteristics available, the EURL recommends for official control these two ring-trial validated methods to quantify tryptophan in the feed additive, premixtures and/or feedstuffs. Furthermore, in the frame of the stability studies, the Applicant presented experimental data obtained analysing tryptophan in water with the VDLUFA official method based on HPLC-FLD dedicated for the determination of tryptophan in feed. The results presented are considered sufficient to demonstrate the suitability of the method for the analysis of the amino acid in water. Hence, the EURL recommends for official control this method to quantify tryptophan in water.

In addition, the EURL identified the "L-tryptophan monograph" of the Food Chemical Codex (FCC) for the identification of the feed additive.

Further testing or validation of the methods to be performed through the consortium of National Reference Laboratories as specified by Article 10 (Commission Regulation (EC) No 378/2005, as last amended by Regulation (EU) 2015/1761) is not considered necessary.

KEYWORDS

L-tryptophan produced by fermentation with Escherichia coli K12 KCCM80135, nutritional additives, amino acids, their salts and analogues, all animal species
1. BACKGROUND

In the current application authorisation is sought under Article 4(1) (authorisation of a new feed additive) for **L-tryptophan produced by fermentation with Escherichia coli K12 KCCM80135**, under the category/functional group 3(c) 'nutritional additives/amino acids, their salts and analogues', according to Annex I of Regulation (EC) No 1831/2003. Authorisation is sought for all animal species [1,2]. **L-tryptophan** produced by Escherichia coli is already authorised as *feed additive* under Commission Implementing Regulation (EU) 2017/873 [3].

According to the Applicant, the product is a yellow/white crystalline powder with a minimum purity of 98% [4]. The *feed additive* is produced through fermentation with a genetically modified strain of Escherichia coli K12. The production strain is deposited in the "Korean Culture Centre of Microorganisms" (KCCM) with accession number KCCM80135 [5].

L-tryptophan is intended to be mixed either in *premixtures* or added directly to *feedingstuffs* or *water* for drinking [6]. However, the Applicant did not propose a minimum or maximum **L-tryptophan** content in *feedingstuffs* [2].

Note: The EURL has previously evaluated the analytical methods in the frame of several **L-tryptophan** related dossiers [7-12].

2. TERMS OF REFERENCE

In accordance with Article 5 of Regulation (EC) No 378/2005, as last amended by Regulation (EU) 2015/1761, on detailed rules for the implementation of Regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the duties and the tasks of the European Union Reference Laboratory concerning applications for authorisations of feed additives, the EURL is requested to submit a full evaluation report to the European Food Safety Authority for each application or group of applications. For this particular dossier, the methods of analysis submitted in connection with **L-tryptophan produced by fermentation with Escherichia coli K12 KCCM80135** and their suitability to be used for official controls in the frame of the authorisation were evaluated.

3. EVALUATION

Description of the analytical methods for the determination of the active substance in the feed additive, premixtures, feedingstuffs and when appropriate water (section 2.6.1 of the dossier - Annex II of Commission Regulation (EC) No 429/2008)

For the quantification of **L-tryptophan** in the *feed additive, premixtures, feedingstuffs* and *water* the Applicant submitted an analytical method based on High Performance Liquid Chromatography (HPLC) with photometric detection [13]. The method has been single-
laboratory validated for the determination of diluted aqueous L-tryptophan solutions in a range from 0.03 to 0.3 g/l [14]. However, based on the data provided, the EURL cannot recommend this method for official control.

For the determination of L-tryptophan in feedingstuffs a ring-trial validated Community method exists [15]. This method is applicable for the determination of free (synthetic and natural) and total (peptide-bound and free) amino acid using HPLC with fluorescence detection (FLD). The method does not distinguish between the amino acid enantiomers. Depending on the nature of the L-tryptophan, two different procedures can be applied:

- to analyse free tryptophan, the amino acid is extracted with diluted hydrochloric acid in the presence of an internal standard; the sediment is allowed to settle and the supernatant is transferred into a beaker, where the solution is adjusted to pH 3 with sodium hydroxide;
- to determine the total tryptophan, the sample is hydrolysed under alkaline conditions using a saturated barium hydroxide solution and autoclaved at 110 °C for 20 hours. After hydrolysis the internal standard is added and the solution is adjusted to pH 3.

These solutions are then diluted with methanol (with a volume ranging between 10 to 30 % of the total volume) and water, to reach approximately the same concentration as the calibration standard solution. After a filtration step, the solutions are injected and measured by reversed phase HPLC-FLD (excitation and emission at 280 nm and 356 nm, respectively).

The Community method was ring-trial validated for the determination of free and total tryptophan in various matrices in the frame of three inter-laboratory comparisons. The performance characteristics reported [15] are shown in Table 1.

For the quantification of free tryptophan in commercial products and premixtures (containing more than 2 % of tryptophan), the EURL recommended in previous reports the ring-trial validated CEN method EN ISO 13904:2016 specifically designed for these matrices [16]. The analytical procedure for the determination of the amino acid is identical to the one described for the Community method but includes a specific sample preparation step for the extraction of tryptophan from these more complex matrices. A fourth inter-laboratory comparison study was organised to assess the performance characteristics when analysing pure products and premixtures [16]. The performance characteristics are shown in Table 1.
Table 1: Method performance characteristics obtained in the frame of ring-trial validation studies (Community method [15] and EN ISO 13904:2016 [16]) for the determination of free and total tryptophan in feed additives (FA), premixtures (PM) and feedingstuffs (FS).

<table>
<thead>
<tr>
<th>References</th>
<th>Matrix</th>
<th>L-tryptophan content g/kg</th>
<th>RSD_r (%)</th>
<th>RSD_R (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[15,16]</td>
<td>FS</td>
<td>Pig feed</td>
<td>total</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pig feed supplemented with L-tryptophan</td>
<td>total</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feed concentrate for pigs</td>
<td>total</td>
<td>4.2</td>
</tr>
<tr>
<td>[15,16]</td>
<td>FS</td>
<td>Wheat & soya mixture</td>
<td>free</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wheat & soya mixture with L-tryptophan</td>
<td>free</td>
<td>0.93</td>
</tr>
<tr>
<td>[15,16]</td>
<td>FS</td>
<td>Mixed pig feed</td>
<td>total</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low fat fish meal</td>
<td>total</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soybean meal</td>
<td>total</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skimmed milk powder</td>
<td>total</td>
<td>5.2</td>
</tr>
<tr>
<td>[16]</td>
<td>FA</td>
<td>Pure product 1</td>
<td>free</td>
<td>903</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pure product 2</td>
<td>free</td>
<td>938</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pure product 3</td>
<td>free</td>
<td>958</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pure product 4</td>
<td>free</td>
<td>998</td>
</tr>
<tr>
<td>[16]</td>
<td>PM</td>
<td>Premix 1</td>
<td>free</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Premix 2</td>
<td>free</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Premix 3</td>
<td>free</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Premix 4</td>
<td>free</td>
<td>500</td>
</tr>
</tbody>
</table>

RSD_r, RSD_R - relative standard deviation for repeatability and reproducibility, respectively

Based on the performance characteristics available, the EURL recommends for official control the above mentioned two ring-trial validated methods based on reversed phase HPLC-FLD to determine tryptophan in the feed additive, premixtures and/or feedingstuffs.

The Applicant did not submit a suitable method for the determination of L-tryptophan in water [13,14]. However, in the frame of the stability studies the Applicant presented experimental data in water obtained analysing tryptophan with the VDLUFA official method based on HPLC-FLD and designed for feedingstuffs [17-19]. The results presented are considered sufficient to demonstrate the suitability of the procedure for the analysis of the amino acid in water. Hence the EURL, as in former reports, recommends this method for official control.

Methods of analysis for the determination of the residues of the additive in food (section 2.6.2 of the dossier - Annex II of Commission Regulation (EC) No 429/2008)

Evaluation of corresponding methods of analysis is not relevant for the present application.

For the identification of the feed additive the EURL recommends the "L-tryptophan monograph" of the Food Chemical Codex (FCC), where a test based on infrared absorption is described [20].

Further testing or validation of the methods to be performed through the consortium of National Reference Laboratories as specified by Article 10 (Commission Regulation (EC) No 378/2005. as last amended by Regulation (EU) 2015/1761) is not considered necessary.

4. CONCLUSIONS AND RECOMMENDATIONS

In the frame of this authorisation the EURL recommends for official control (i) the "tryptophan" monograph of the Food Chemical Codex (FCC) based on infrared absorption for the identification of L-tryptophan in the feed additive; (ii) two ring-trial validated methods (EN ISO 13904:2016 and Community method) based on High-Performance Liquid Chromatography with fluorescence detection (HPLC-FLD) to quantify tryptophan in the feed additive, premixtures and/or feedingstuffs; and (iii) the analytical method described by VDLUFA (4.11.2) based on High-Performance Liquid Chromatography with fluorescence detection (HPLC-FLD) to quantify tryptophan in water.

Recommended text for the register entry (analytical method)

For the identification of L-tryptophan in the feed additive:
- Food Chemical Codex "L-tryptophan monograph"

For the quantification of tryptophan in the feed additive and premixtures:
- High performance liquid chromatography with fluorescence detection (HPLC-FLD) - EN ISO 13904

For the quantification of tryptophan in feedingstuffs:

For the quantification of tryptophan in water:
- High performance liquid chromatography with fluorescence detection (HPLC-FLD)

5. DOCUMENTATION AND SAMPLES PROVIDED TO EURL

In accordance with the requirements of Regulation (EC) No 1831/2003, reference samples of L-tryptophan produced by fermentation with Escherichia coli K12 KCCM80135 have been sent to the European Union Reference Laboratory for Feed Additives. The dossier has been made available to the EURL by EFSA.
6. REFERENCES

[2] *Application, Proposal of Registry Entry – Annex A
[5] *Technical dossier, Section II: II.1.1. Name of the additive
[6] *Technical dossier, Section II: II.5.1 Proposed mode of use in animal nutrition
[13] *Technical dossier, Section II: 2.6.1 Methods of analysis for the active substance
[14] *Technical dossier, Section II: Annex_II_4_05
[17] *Technical dossier, Section II: II.4.1 Stability of the additive used in water
[18] *Technical dossier, Section II: Annex_II_4_05
[19] VDLUFA MB III 4.11.2 Tryptophan
*Refers to Dossier no: FAD-2017-0033

7. RAPPORTEUR LABORATORY & NATIONAL REFERENCE LABORATORIES

The Rapporteur Laboratory for this evaluation is the European Union Reference Laboratory for Feed Additives, JRC, Geel, Belgium. This report is in accordance with the opinion of the consortium of National Reference Laboratories as referred to in Article 6(2) of Commission Regulation (EC) No 378/2005, as last amended by Regulation (EU) 2015/1761.
8. ACKNOWLEDGEMENTS

The following National Reference Laboratories contributed to this report:

- Centro di referenza nazionale per la sorveglienza ed il controllo degli alimenti per gli animali (CReAA), Torino (IT)
- Państwowy Instytut Weterynaryjny, Pulawy (PL)
- RIKILT Wageningen UR, Wageningen (NL)
- Österreichische Agentur für Gesundheit und Ernährungssicherheit (AGES), Wien (AT)
- Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft. Geschäftsbereich 6 — Labore Landwirtschaft, Nossen (DE)
- Ústřední kontrolní a zkušební ústav zemědělský (ÚKZÚZ), Praha (CZ)
- Thüringer Landesanstalt für Landwirtschaft (TLL). Abteilung Untersuchungswesen. Jena (DE)
- Elintarvikuturvallisuusvirasto/Livsmedelssäkerhetsverket (Evira), Helsinki/Helsingfors (FI)
- Fødevarestyrelsens Laboratorie Aarhus (kemisk) (DK)
- Instytut Zootechniki — Państwowy Instytut Badawczy, Krajowe Laboratorium Pasz, Lublin (PL)