Mapping urban food security in West Africa

Cornelia F.A. van Wesenbeeck
Amsterdam Centre for World Food Studies,
VU University, Amsterdam

Study for SWAC/OECD
Introduction

- Policies to improve FNS require solid empirical base
 - At least headcounts of people below/above thresholds
- Internationally, FAO measures used, but
 - Based on indirect measurement
 - Nationwide only
- Current trend in the world:
 - Urbanization
- Main question:
 - How can we develop methods to monitor FNS in urban areas on a large scale?
Introduction (cont)

- Demographic and Health Surveys
 - Commissioned by USAID
 - Available for many countries
 - Nowadays, mostly geo-referenced
 - Include nutritional data
 - Children
 - Weight
 - Age
 - Height
 - Weight for age
 - Height for age
 - Weight for height
 - Adults
 - Weight
 - Age
 - Height
 - BMI
The study focuses on West Africa and uses:
- Population map (Landscan)
Study area and data (II)

- Population pyramid for the 17 countries in the study

![Population pyramid chart for the study area]
Study are and data (III)

- DHS surveys
 - Georeferenced data available for 11 countries
 - Provincial reference available for 3 countries
 - Report available for 2 countries
 - Other source used (MICS) 1 country

- Survey years vary from 2010–2015
Africapolis data (OECD)

- Geospatial database on urbanization in Africa
- Combines
 - National population data
 - Satellite and aerial imagery
 - Other cartographic sources
- Provides
 - Population estimates at level of agglomerations
 - Information on the evolution of built-up area since 1950
- Identifies over 1,950 urban agglomerations
Methods (I): integrating data

- Integrating population map and Africapolis data
 - Africapolis overrules landscan for urban locations
 - Landscan total rural population corrected to maintain aggregate totals

- DHS surveys have to be harmonized
 - Coding of questions
 - Checking georeference on consistency
 - Checking consistency of rural/urban classification with Africapolis database
Methods (II): slum index

- Combine indicators related to quality of life in city
 - Quality of wall material
 - Quality of floor material
 - Type of toilet facility
 - Type of water source

<table>
<thead>
<tr>
<th></th>
<th>Severe slum</th>
<th>Moderate slum</th>
<th>No slum</th>
<th>Rich area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall/Floor</td>
<td>--</td>
<td>-- or ++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Water/Toilet</td>
<td>--</td>
<td>-- or ++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>remarks</td>
<td>One --</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method (III): Polling

- Basic observation: variables define joint empirical frequency distribution.
 - Conditional frequency distributions can be derived from this joint distribution by partitioning the answers
 - Conditional frequencies are naturally interpreted as probability estimates
 - Hence, we compute the most probable characteristics associated to each x-value.
 - Estimates of the probability that a specific FNS outcome is associated with rural or urban residence.
 - Estimates of the probability that a specific FNS outcome is associated with specific urban conditions
Methods (IV) Estimating calorie intake

- Following Van Wesenbeeck et al. (2009)
 - Biophysical relation between calorie intake and weight
 - Usually invoked for recommendations on diet
 - Here: reverse relation
 - Dependent on age, weight, physical activity
 - For children: growth allowance
 - For women in fertile age group: birth rate

\[
\text{cal}_{g,t} = \begin{cases}
A_{g,t} + b_{g,t} \times \text{weight}_{g,t} - c_{g,t} \times \text{weight}_{g,t}^2 + \text{growth}_{g,t} \\
(b_{g,t} \times \text{weight}_{g,t} + A_{g,t}) \times PAL_{g,t} \\
(b_{g,t} \times \text{weight}_{g,t} + A_{g,t}) \times PAL_{g,t} + c_{g,t} \times RATE_{g,t}
\end{cases}
\]

for age groups 0-17

for age groups 18+

for women in fertile age groups
Outcomes: rural/urban

BMI distribution

WFA distribution
Outcomes: with city distribution

BMI distribution

WFA distribution
Outcomes: rural vs urban slum

BMI distribution

WFA distribution
Zooming in: FNS in cities

Underweight

Overweight/obese
Outcomes: comparing with FAO

<table>
<thead>
<tr>
<th>Region</th>
<th>FAO (2017)</th>
<th>Own</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chad</td>
<td>4.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Benin</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Gambia</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Ghana</td>
<td>2.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Guinea</td>
<td>2.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>3.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Liberia</td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Mali</td>
<td>0.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Niger</td>
<td>2.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Nigeria</td>
<td>14.3</td>
<td>26.5</td>
</tr>
<tr>
<td>Senegal</td>
<td>1.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>Togo</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>3.7</td>
<td>5.8</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>52</td>
</tr>
</tbody>
</table>

High levels of child malnutrition and high share of children in population

Millions of undernourished
Outcomes: comparing with FAO (II)

<table>
<thead>
<tr>
<th>Region</th>
<th>FAO (2017)</th>
<th>Own estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chad</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Benin</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Gambia</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ghana</td>
<td>1.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Guinea</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Liberia</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Mali</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Niger</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Nigeria</td>
<td>8.1</td>
<td>9.0</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Togo</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>13.3</td>
<td>17.8</td>
</tr>
</tbody>
</table>

Millions of obese adults
Outcomes: comparing with FAO (III)

- Estimated average intake
- Plus allowance for waste and losses
 - 100 Kcal/day rural
 - 200 Kcal/day urban

<table>
<thead>
<tr>
<th>Region</th>
<th>Own estimates</th>
<th>FAO</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chad</td>
<td>2371</td>
<td>2204</td>
<td>-167</td>
</tr>
<tr>
<td>Benin</td>
<td>2548</td>
<td>2713</td>
<td>165</td>
</tr>
<tr>
<td>Gambia</td>
<td>2496</td>
<td>2588</td>
<td>92</td>
</tr>
<tr>
<td>Ghana</td>
<td>2570</td>
<td>2969</td>
<td>399</td>
</tr>
<tr>
<td>Guinea</td>
<td>2407</td>
<td>2580</td>
<td>173</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>2447</td>
<td>2814</td>
<td>367</td>
</tr>
<tr>
<td>Liberia</td>
<td>2423</td>
<td>2098</td>
<td>-325</td>
</tr>
<tr>
<td>Mali</td>
<td>2473</td>
<td>3090</td>
<td>617</td>
</tr>
<tr>
<td>Niger</td>
<td>2430</td>
<td>2581</td>
<td>151</td>
</tr>
<tr>
<td>Nigeria</td>
<td>2477</td>
<td>2601</td>
<td>124</td>
</tr>
<tr>
<td>Senegal</td>
<td>2855</td>
<td>2487</td>
<td>-368</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>2411</td>
<td>2313</td>
<td>-98</td>
</tr>
<tr>
<td>Togo</td>
<td>2493</td>
<td>2656</td>
<td>163</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>2344</td>
<td>2810</td>
<td>466</td>
</tr>
</tbody>
</table>
Conclusions and further work

Conclusions
- Urban slum areas deserve attention in FNS policies
 - Levels of undernutrition getting close to rural ones
 - But obesity already severe problem

DHS–based data provide empirical base
- Georeferenced
- Directly measured
- Conditional estimates possible
- Tracking over time possible
Further work

- Complete database by adding
 - WFH, HFA
 - Report-based data for missing countries

- Refining method
 - More detailed population pyramid
 - Reconsidering slum indicators

- Presentation
 - City outcomes as maps
Thank you!