Best practices on irrigation

Daniele Massa and Alberto Pardossi
CRA-VIV

Best practices in improving the sustainability of agriculture

EXPO Milan, 6 July 2015

Joint Research Centre and Directorate-General for Environment

jrc-ipts-emas@ec.europa.eu

The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission. Neither the European Commission nor any person action on behalf of the Commission is responsible for the use which might be made of this presentation.

Global agriculture and water use (ha x 10^6)

- Cultivated area (rainfed + irrigated) = 1,500
- Irrigated area = 300 (20%)
- Irrigated area for food production = 40%
- Irrigated area with salinity = 40%

Water use efficiency (WUE)

- Seasonal/annual irrigation water use:
 - Field crops: 300 (e.g. beans) to 1200 mm (e.g. cotton)
 - Protected crops (per year): 600 (e.g. leafy vegs.) to 1500 (fruit vegs.)
 - Higher in soilless culture (open-loop hydroponics) than in soil

- Tendency to over-irrigate (+10 to +50%) results in:
 - water loss
 - nutrient loss (with drainage water) and pollution (e.g. nitrates)
 - increased production costs (energy for pumping, fertilisers, …)
 - crop water stress (due to waterlogging and hypoxia in the root zone)
 - increased susceptibility to root diseases

1 mm = 1 L m^-2 = 1 kg m^-2 = 10 m^3 ha^-1
Key elements of the BEMPs on irrigation

- Crop selection (species and cultivars)
- Soil management (tillage, amendments, etc.)
- Water treatment and storage (desalinization, etc.)
- Deficit irrigation (partial root drying, regulated d.i.)
- Closed-loop irrigation systems (substrate culture)
- Irrigation scheduling (ET models vs soil moisture sensors)
- Irrigation systems (drip vs overhead irrigation)

Approaches to efficient irrigation: Deficit irrigation

Deficit irrigation

Deficit irrigation

Deficit irrigation

Deficit irrigation
Approaches to efficient irrigation
Open vs closed irrigation systems

Soilless-grown tomato: water and N balance)
(Tuscany; 2 crops/year; yield ≈ 25 kg/m²)

- Water = 6,950 m³/ha
- N = 1,330 kg/ha (N)

- Water = 8,630 m³/ha
- N = 1,600 kg/ha (N)

- Water = 0 m³/ha
- N= 0 kg/ha N

Source: Incrocci, 2011

Approaches to efficient irrigation
Irrigation scheduling

- Irrigation timers (the standard method?)
- Determination of soil water balance (called ET-based method in greenhouse and nursery crops)
- Direct measurement of moisture content in the root zone with soil moisture sensors (SMS)
- Integration of methods 2 and 3
- Speaking-plant
Irrigation scheduling (dose and frequency)

1) Determination of available water in the root zone

2) Determination of the evapotranspiration rate

2.1) ET model: FAO equation.

\[ET = k_c \cdot ET_0 \]

- \(k_c \): crop coefficient (ET/ETP). It incorporates crop characteristics and averaged effects of soil evaporation.
- \(ET_0 \): reference or potential ET. It is assessed with evaporation pan or based on weather conditions.
2) Determination of the evapotranspiration rate

2.2) ET model: plant transpiration under greenhouse.

- ET is mostly determined by leaf transpiration (T)
- T depends basically on leaf area (LAI), the intercepted radiation \(I_c \), air temperature and relative humidity, which both determine the vapour pressure deficit (VPD)
- Stomata regulation of leaf T is often limited (due to poor gh. ventilation)

\[
T = A \cdot \frac{I_c}{\lambda} + B \cdot \text{LAI} \cdot \text{VPD}
\]

3) Direct measurement of water-related parameters in the root zone

- TDR (Time Domain Reflectometry)
- FDR (Frequency Domain Reflectometry)
Approaches to efficient irrigation

Irrigation systems: drip vs overhead irrigation

Up to \(\approx 100\% \) distribution efficiency

Conclusions on BEMPs

Why?
- Irrigation is generally inefficient due to: empiricism in irrigation scheduling, use of saline water (large leaching fraction), etc.
- Over-irrigation causes pollution due to the leaching of agrochemicals (e.g. nitrates, phosphates, plant protection products), soil erosion, etc.

What?
- Advanced irrigation management (application of crop modelling and/or sensing technology, deficit irrigation)
- Reuse of drainage water (closed system)
- Use of drip irrigation
- Other measures (crop selection, water treatment)

How?
- Regulations
- Dissemination of best practices
- Education and training

Thank you!

European Commission: Joint Research Centre and Directorate-General for Environment

Email: jrc-ipts-emas@ec.europa.eu

Websites:
http://ec.europa.eu/environment/emas/index_en.htm