Disclaimer

The information contained in this presentation for the Annual Conference of the European Science and Technology Network on Unconventional Hydrocarbon Extraction held on February 23, 2016 is provided at the sole discretion of the Alberta Department of Energy (the Department). The Department makes no warranties or representations regarding the information contained in the presentation, or any statements made during the course of the presentation. All information is provided for general information purposes only. You should not use or rely on this information for any other purpose. The information in the presentation and any statements made during the course of the presentation should not be relied upon as a representation of the Department’s official position in law or policy. That material is publicly available through the Department’s website at www.energy.alberta.ca. Reproduction of the presentation in any form is prohibited.

Any questions about this presentation should be directed to:

Hans Custers
Energy Technical Services
Alberta Department of Energy
9945 – 108 Street
Edmonton, Alberta Canada
T5K 2G6
Hans.Custers@gov.ab.ca
Unconventional Resources in Alberta

- **Extra heavy oil**
 - 177 billion barrels
- **Tight formations**
 - 434 billion barrels of oil
 - 59 billion barrels of NGLs
 - 3,424 Tcf of natural gas
Focus Areas in Alberta

• **Thermal processes**
 – Viscous oil extraction
 • Decreasing footprint
 • Increasing energy efficiency
 – Decreasing carbon intensity
 – Cost of extraction

• **Non thermal processes**
 – Tight oil and gas extraction
 • Reducing footprint
 – GHG, water
 • Reducing costs
 • Improving oil recovery

• **Technology development & risk**
 – Staged (de-risking)
 – Revolution => evolution

After Fair et al IPTC 12361

Courtesy of Tom Boone, Imperial Oil
Shales are Very Complex

- **Geological complexity**
 - Locally heterogeneous
 - “design one build many” does not work
- **Economics**
 - Recoverable oil
 - Decline rates?
- **Footprint and Sensitivities**
 - Water use & GHGs
 - Infrastructure, population, receptors
- **Montney Example**
 - 3,500 MSHF wells = confidence in geological characterization
 - Comfort level sufficient to commence optimization

<table>
<thead>
<tr>
<th>Basin</th>
<th>Technically Recoverable oil (bbls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakken - USGS 1995</td>
<td>151 million</td>
</tr>
<tr>
<td>Bakken - USGS 2014</td>
<td>7.4 billion</td>
</tr>
<tr>
<td>Monterey Shale (EIA, 2012)</td>
<td>13.7 billion</td>
</tr>
<tr>
<td>Monterey Shale (EIA, 2015)</td>
<td>600 million</td>
</tr>
</tbody>
</table>

Courtesy of the Oil and Gas Journal, 08/13/2014
Recoverability

- **EUR: 3% - 6%**
 - > 90% left in ground
- **Characterizing gas release and production**
 - Storage & release mechanisms?
 - Free gas vs. adsorbed gas
 - Phase trapping and nanopores
 - Flow characteristics?
 - Diffusive transport regime
 - Fundamental science required
- **Optimizing release and flow**
 - Microfractures and pores
 - Sensitivity to contacting fluids
 - Fluid and process selection
 - Timescale and cost

Courtesy of Dr. Maurice Dusseault, 2015

Courtesy of Dr. Chris Clarkson, 2015
Improving Reservoir Models

- **Geology**
 - Gas & liquid storage
 - Natural fracture network
 - Release mechanisms

- **Geomechanics**
 - Stress/strain behavior
 - Flow regime
 - Fracture geometry

- **Elastic/planar models insufficient**
 - Dual porosity systems
 - 3D coupling (geomechanics)
 - Look-back studies, history match, calibration

- **Repeat for each formation**
 - Predictive models

After Gonzalez et al, SPE 159765
Fluid Trends in Alberta

- Trend towards foamed/energized fluids
 - Liquid and gas combinations
 - Stability, phase behavior, proppant transport
 - Familiarity, safety & cost

- N2 and CO2 used as commercial energizers
 - Lots of equipment and expertise
 - Reservoir impacts (?)
 - Flowback is not saleable (cleanup or flare)
Energized (“Foamed”) Fluids

- **Alberta**: energized fluid gas quality 70% - 80%
 - 79% water reduction vs. non-foamed
- **Some energizer benefits**
 - Leak-off reduction by ~ 50%
 - Cold fluid & hot reservoir
 - Expansion & net fracture fluid volume reduction
- **Lifecycle cost/benefit analysis important**
 - Higher upfront costs
 - Increased production and lower lifecycle costs
- **Balance between**
 - EUR, economics, environment

Comparison of Normalized Fluid Volumes Used for Fracturing in Alberta

After Seifert et al, SPE 178490-MS
Flowback Management

- **Wellsite gas separation technology evolving**
 - First trailer mounted CO2 separation unit: 2014
- **Recompression and reuse**
 - Technology still some years away

Both figures courtesy of Reynolds et al, SPE 167197
Economics => Fluid Selection

- **Some commercial use in Alberta**
 - Gelled propane, butane
 - Natural gas

- **Ideal fracturing fluid**
 - Native reservoir fluid (natural gas)
 - Compatibility with reservoir
 - Flowback pipelinelable

- **Economics**
 - 62% greater per stage cost for gas base fluids
 - High pressure compressed (flammable) gas purchase, equipment, handling costs
 - MSHF volumes are massive
 - Reservoir retention & loss
 - Cost $$$
Waterless Research is Needed

- Few comparative analyses available
 - Economic advantage not apparent
 - Not apples to apples - smaller volumes of NGLs used
- Fundamental understanding will help
 - Need for field scale studies
Summary

- Local innovation and technology adaptation
 - Long lead time to development and commercial application
- Shared data and IP
 - Leverage infrastructure already in place
 - Common knowledge base for reservoir type
 - Iteration and adaptation of technology
- Commercial scale pilots are essential
 - Government has an important role
- Enabling environment important
 - Fiscal and regulatory policies
 - Favorable environment for operator persistence
- Economics are fundamental
 - Lack of alternatives to reserves growth
 - Stable price environment

Figure 2: Cold Lake Development History and Production Growth

After Fair et al IPTC 12361
Backup slides
Evolution of Thermal Processes

- **SAGD**
 - 100% water
 - Solvent Assisted SAGD
 - 80% - 95% saline water (~5% - 20% solvent)
 - Solvent SAGD
 - 100% solvent (no water)

- **CSS**
 - 100% water
 - LASER
 - 85% - 95% saline water (~5% - 15% solvent)
 - Cyclic solvent process
 - 100% solvent (no water)

After Dickson et al., SPE 165485

Courtesy of the Government of Alberta
SAGD – A New Technology Ecosystem

• 2003 – 2010
 – SAGD commercial: 2003
 • Fresh water, 500m long wells
 – No fresh water: 2006
 • WLS & WAC
 – 90% water recycling (2012)
 • Drum boilers, MVR
 – ESPs, fiber optic sensors

• ~ 2010 +
 – SA-SAGD
 • 5% – 20% solvent
 • Assess solvent recovery and cost
 – Longer wells (~1.5 km), ICDs
 – “WedgeWells”
 – Improved geoscience & models

• Waterless SAGD is here
 – Warm Solvent SAGD
 – Solvent EM and resistive heating
Waterless CSS is also here

- **CSS**
 - 1966: steam only
- **LASER (2005)**
 - Add 5% solvent to steam
 - Cost, benefit
 - Solvent loss and geological knowledge/understanding
- **Cyclic Solvent Process (2010)**
 - Waterless - solvent only process
 - First commercial application in 2015
 - Improved process and geology knowledge fundamental to economic success

Both figures courtesy of Tom Boone, Imperial Oil
Mechanical Vapor Recompression (MVR)

Figure 3: Simplified Vapour Compression Falling Film Evaporator System

Courtesy of GEWater
300 Degrees Celsius Electrical Submersible Pumps (ESP)

Courtesy of www.schlumberger.com
Inflow Control Device (ICD)

Without EquiFlow® ICDs

With EquiFlow® ICDs controlled steam injection

Courtesy of www.halliburton.com
Electromagnetic Heating (EM)

RFH Gated Path to Develop the Technology

Electromagnetic Property IR&D

Scaled Breadboards

Small Scale Breadboards

Pressure Test (2kW)

Dirt Box I IR&D (10kW)

Dirt Box II IR&D (10kW)

Fall 2009

Fall 2009

Spring 2010

Summer 2010

Winter 2011

Summer 2011

Fall 2011

Winter 2012

Pilot in 2014

Malabar Test Facility (100kW)

CCEMC Mine-face (100kW)

CCEMC 100M Pilot (0.5MW)

We are Here

Courtesy of the Government of Alberta