We are doing science for policy
The Joint Research Centre (JRC) is the European Commission's science and knowledge service which employs scientists to carry out research in order to provide independent scientific advice and support to EU policy.
JRC scientists examined to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic, onshore/offshore wind and hydropower (green hydrogen).
The findings show that 88 out of 109 hydrogen-producing regions in the EU27 and the UK have abundant renewables resources and could cover both their current electricity needs and the additional power demand for hydrogen electrolysis.
Currently over 95% of our hydrogen is produced from fossil fuels (natural gas and coal) using processes that release greenhouse gases (grey hydrogen). The new EU Hydrogen Strategy will give a boost to clean hydrogen production in Europe in order to decarbonise the energy system, and in particular some "hard-to-reach" industry and transport sectors.
The study, recently published in the Energy Conversion and Management journal, assesses the technical potential of RES at regional and national levels considering environmental constraints, land use limitations and various techno-economic parameters.
It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis.
Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries.
At regional level, from the 109 regions associated with hydrogen production (EU27 and UK), 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably, 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis.
The energy technology with the largest technical potential (e.g. ground or rooftop solar, onshore or offshore wind) changes between regions and depends on local conditions.
The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall, this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Particular attention was given to EU coal-dependent regions in line with the Coal Regions in Transition (CriT) initiative.
Further studies are recommended to address economic factors such as: detailed techno-economic analysis of regional energy systems with integrated green hydrogen production; possibilities for transmission and storage of green hydrogen across regions and of the impact of growth of hydrogen demand for new applications in industry, transport and for heat (even as petrochemical use declines with increasing decarbonisation). Cost-optimal solutions will vary from region to region across the EU.
Regions with an excess or deficit of technical potential for green electricity after subtracting the current consumption for all sectors and that needed for moving from existing hydrogen production from grey to green. The shaded regions represent the CRiTs and the bold black outlined polygons the NUTS2 with current hydrogen production [Kakoulaki et al 2020].
Figure published in the related journal article