EU Science Hub

Smart Meter Traffic in a Real LV Distribution Network

The modernization of the distribution grid requires a huge amount of data to be transmitted and handled by the network. The deployment of Advanced Metering Infrastructure systems results in an increased traffic generated by smart meters. In this work, we examine the smart meter traffic that needs to be accommodated by a real distribution system. Parameters such as the message size and the message transmission frequency are examined and their effect on traffic is showed. Limitations of the system are presented, such as the buffer capacity needs and the maximum message size that can be communicated. For this scope, we have used the parameters of a real distribution network, based on a survey at which the European Distribution System Operators (DSOs) have participated. For the smart meter traffic, we have used two popular specifications, namely the G3-PLC–“G3 Power Line communication” and PRIME–acronym for “PoweRline Intelligent Metering Evolution”, to simulate the characteristics of a system that is widely used in practice. The results can be an insight for further development of the Information and Communication Technology (ICT) systems that control and monitor the Low Voltage (LV) distribution grid. The paper presents an analysis towards identifying the needs of distribution networks with respect to telecommunication data as well as the main parameters that can affect the Inverse Fast Fourier Transform (IFFT) system performance. Identifying such parameters is consequently beneficial to designing more efficient ICT systems for Advanced Metering Infrastructure.