Numerical analysis of accidental hydrogen releases from high pressure storage at low temperatures

Abstract: 

Evaluations of the performance of simplified engineering and CFD models are important to improve risk assessment tools e.g. to predict accurately releases from various types of hydrogen storages. These tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (down to 20 K), e.g. cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33 K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modeled using a simplified engineering and a CFD model to evaluate the performance of various EOS to predict vessel pressures, temperatures mass flow rates and jet flame lengths. It is shown that the chosen EOS and the chosen specific heat capacity correlation are important to model accurately hydrogen releases at low temperatures.

Authors
Authors: 
BARALDI Daniele, MELIDEO Daniele, MARKERT Frank
Publication Year
Publication Year: 
2014
Type

Type:

Appears in Collections
Appears in Collections: 
Institute for Energy and Transport
Science Areas
Science Areas: 
JRC Institutes
IET
Publisher
Publisher: 
PERGAMON-ELSEVIER SCIENCE LTD
ISSN
ISSN: 
0360-3199
Citation
Citation: 
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY p. 7356-7364 no. 14 vol. 39