Agenda

• Review of accident statistics per aircraft type

• Review of accident statistics per accident categories

• Lessons learnt from accident statistics

• Security aspects

• Some challenges valid for most of transport means
Agenda

• Review of accident statistics per aircraft type

• Review of accident statistics per accident categories

• Lessons learnt from accident statistics

• Security aspects

• Some challenges valid for most of transport means
Aircraft accident statistics

The accident statistics which follow:

- Include western built airplanes > ~100 pax
- Exclude test flights, training flights, ferry flights, terrorism & acts of war
- Include all known fatal accidents during revenue flights
Aircraft accident statistics

- 1st generation = early jet airplanes
 (Comet*, Caravelle*, CV880*, CV990*, B707, B720*, DC-8, Trident*, VC10*)
 * No longer in commercial service

- 2nd generation = 2nd jet generation
 (A300, BAC 111, B727, B737-100/200, B747-1/2/3, DC-9, DC-10, L-1011, Mercure)

- 3rd generation = glass cockpit / FMS equipped A/C
 (A310/A300-600, B737-300/400/500, B737-600/700/800 (NG), B757, B767, B747-400, B717, BAE 146 (RJ70, RJ100), MD11, MD80, MD90, F70, F100)

- 4th generation = fly-by-wire, flight envelope protected airplanes
Fatal rate since Entry Into Service - valid end 2009

- Fatal per million departures over Years Of Operation
- 1st generation: Early jet
- 2nd generation: 2nd jet generation
- 3rd generation: Glass-cockpit, Nav display, FMS
- 4th generation: FBW, Flight Envelope Protection

Sources: Ascend, Airbus
Fatal rate by year - valid end 2009

Fatal per million departures

1st generation: Early jet
2nd generation: 2nd jet generation
3rd generation: Glass-cockpit
 Nav display
 FMS
4th generation: FBW
 Flight Envelope
 Protection

Sources: Ascend, Airbus
Accident rate *since Entry Into Service*

<table>
<thead>
<tr>
<th>Accident rate</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull Loss accident per</td>
<td>7.49</td>
<td>1.61</td>
<td>0.58</td>
<td>0.34</td>
<td>1.53</td>
</tr>
<tr>
<td>million Flight Cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatal accident per</td>
<td>4.03</td>
<td>0.84</td>
<td>0.35</td>
<td>0.17</td>
<td>0.83</td>
</tr>
<tr>
<td>million Flight Cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accident rate *for the last 10 years*

<table>
<thead>
<tr>
<th>Accident rate</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull Loss accident per</td>
<td>29.06</td>
<td>3.69</td>
<td>0.56</td>
<td>0.29</td>
<td>0.98</td>
</tr>
<tr>
<td>million Flight Cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatal accident per</td>
<td>6.92</td>
<td>1.20</td>
<td>0.30</td>
<td>0.10</td>
<td>0.38</td>
</tr>
<tr>
<td>million Flight Cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: Ascend, Airbus
Agenda

• Review of accident statistics per aircraft type

• Review of accident statistics per accident categories

• Lessons learnt from accident statistics

• Security aspects

• Some challenges valid for most of transport means
Statistics per accident categories (ICAO classification – All aircraft generation included)

Hull Loss accidents for the last 20 years
Statistics per accident categories (ICAO classification)

% of total Hull Loss accidents over the last 20 years

4th aircraft generation only

Major risks (67% of total):
- Runway excursion
- CFIT

- Runway Excursion
- CFIT
- Bird
- Runway Incursion
- Systemic Prop
- System Prop
- Unknown
- Unknown
It is generally agreed that the primary factors of accident are human performance related in a very large proportion. About 85% involve human performance issue.
Accidents – Fatal rate by area

- Fatal accident rate per million flight cycles for the last 20 years (based on operator’s country)

<table>
<thead>
<tr>
<th>Region</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australasia</td>
<td>0.00</td>
</tr>
<tr>
<td>North America</td>
<td>0.16</td>
</tr>
<tr>
<td>Europe</td>
<td>0.35</td>
</tr>
<tr>
<td>Middle East</td>
<td>0.71</td>
</tr>
<tr>
<td>Asia</td>
<td>0.76</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>1.09</td>
</tr>
<tr>
<td>Africa</td>
<td>2.65</td>
</tr>
<tr>
<td>World</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Agenda

- Review of accident statistics per aircraft type
- Review of accident statistics per accident categories
- Lessons learnt from accident statistics
- Security aspects
- Some challenges valid for most of transport means
Lessons learnt from accident statistics

• Air Transport accidents are very rare events

 ▶ 0.4 fatal accident per million departures – all a/c type included

 ▶ 0.1 fatal accident per million departures – latest a/c generation
Lessons learnt from accident statistics

- Technology implementation has allowed to significantly reduce the accident rate

 - Reduction of the accident rate by a factor of 3 when comparing the last 2 aircraft generations

 - Quicker maturity rate

 - Increased survivability

⇒ To continue investing on technology for safety benefit
Lessons learnt from accident statistics

• Most of the accidents now involve a significant proportion of Human Performance related issues

 ‣ Understanding the Human Performance is most probably the biggest challenge

• Whatever the level of technology, the cockpit crew remains at the center of the aircraft operations

 ⇒ To reinforce ab-initio and training
 ⇒ To integrate training aspects from design phase
 ⇒ To take benefit of new IT tools for training
Lessons learnt from accident statistics

• CFIT – Controlled Flight Into Terrain

 ▶ Significant improvements with
 – Improved navigation precision
 – Latest TAWS (Terrain Avoidance Warning System)
 ▶ Challenge to address « Loss of Situation Awareness »

⇒ Potential Technology benefits by increasing
 ⇒ the number of precision approaches (RNP/FLS)
 ⇒ the robustness of navigation performance & precision
 to develop new safety nets such as Auto-Pull Up function

⇒ To reinforce training to detect « loss of situation awareness »
Lessons learnt from accident statistics

• Runway Excursions
 ‣ The current highest safety risk with the last 2 a/c generations
 ‣ Known recurrent contributing factors
 – Energy management (too high, too fast, too long)
 – Economical pressure to avoid diverting
 – New airfield operations with challenging environments

⇒ Potential Technology benefits by
 ⇒ providing real time information regarding the stopping distance
 ⇒ assisting the crew in the « go-around » decision making process

⇒ To reinforce training addressing all known contributing factors

⇒ NPRM under review for new landing performance
Lessons learnt: Runway excursion prevention

Runway end Overrun Prevention System (ROPS)
A Technology Contribution to Prevent Runway Excursion at Landing
Agenda

• Review of accident statistics per aircraft type

• Review of accident statistics per accident categories

• Lessons learnt from accident statistics

• Security aspects

• Some challenges valid for most of transport means
Overall Security depends on the weakest link of the Global Security Chain

Non exhaustive list

Physical threats

IT threats vectors

Satellite Communication (SATCOM)

Unruly passenger, Hijacker, Terrorist

Improvised Explosive Device (IED)

Ground attack (Bomb missile…)

Air/Ground Links

GateLink (Wireless)

COTS, Plugs, Wifi

HF et VHF Satcom

ACARS

Wide Area Network

Maintenance Operation

Local Area Network

Passenger services

Airline Operation

Suppliers

Service provider Network

Internet

© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.
Agenda

• Review of accident statistics per aircraft type

• Review of accident statistics per accident categories

• Lessons learnt from accident statistics

• Security aspects

• Some challenges valid for most of transport means
Some challenges

• Air Transport accidents are very rare events

• Technology opportunity has demonstrated its safety benefit
 ▪ proven over more than 22 years of operations and 60 million flights
 and 140 million flight hours with more than 6000 aircraft from the
 latest aircraft generation

• Further decreasing the accident rate has became a significant
 challenge considering the already very low accident rate

⇒ Any space for improvements has to be challenged in all fields
 ▪ Technology opportunity into the design
 ▪ Reinforcing ab-initio and training
Some challenges

• Technology brings safety added value while increasing complexity

• Increased complexity may be a challenge to the human operator when faced to unexpected situation

⇒ Technology must be thought together with training solution
⇒ The future role of human operator
Some challenges

• Public & Political response to major events
 ‣ Looking to RISK ZERO: the utopia
 ‣ Major events are not accepted, even when hardly predictable
 ‣ « Precaution Principle »

⇒ Risk Management
 ‣ To be implemented to all domains involved in any public transport system
Some challenges

• Today environment is Global
 ‣ Worldwide
 ‣ Multi-partners

⇒ Need to strengthen network amongst partners
 ‣ To increase responsiveness to properly manage risks
 ‣ To maintain independency
© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.

This document and all information contained herein is the sole property of AIRBUS S.A.S.. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS S.A.S. will be pleased to explain the basis thereof.