Comparison of wired and wireless broadband technologies | | Down-Upstream
Rate (technical
standard max.) | Efficiency
range
(technical
standard
max.) | Infrastructure architecture | Suitability | Future of the technology | |------------------------------|--|--|---|---|--| | | | | Wired Broadband Te | chnologies | | | ADSL,
ADSL2,
ADSL2+ | 24/3 Mbps | 5 km | internet access by
transmitting digital data
over the wires of a | | | | VDSL,
VDSL2,
Vectoring | 100 /40 Mbps | 1 km | local telephone network copper line terminates at telephone | use of existing telephone infrastructure | further speed and range improvements by enhancing and combining new DSL-based | | G.Fast | Gbps bandwidths possible | 100 m | exchange (ADSL) or street cabinet (VDSL) Vectoring: Elimination of cross talks for higher bandwidths G.Fast: Frequency increase up to 212 MHz to achieve higher bandwidth | fast to install small efficiency range due to the line resistance of copper connection lines | technologies (phantom mode, bonding, vectoring) • bridge technology towards complete fibre optic cable infrastructure | | CATV | 200/100 Mbps | 2-100 km | coaxial cable in the streets and buildings; fibre at the feeder segments network extensions to provide backward channel functionality | use of existing cable television infrastructure fast to install high transmission rates | Further implementation of new standards (DOCSIS 3.1 & 3.1 full) will allow to provide higher bandwidth to end-users | | | Down-Upstream
Rate (technical
standard max.) | Efficiency
range
(technical
standard
max.) | Infrastructure architecture | Suitability | Future of the technology | | |---------------------------|--|--|---|---|---|--| | Optical Fibre
Cable | 10/10 Gbps (and more) | 10-60 km | signal transmission via fibre distribution of signals by electrically powered network equipment or unpowered optical splitters | highest bandwidth capacities high efficiency range high investment costs bandwidth depends on the transformation of the optical into electronic signals at the curb (FTTC), building (FTTB) or home (FTTH) | next generation
technology to meet future
bandwidth demands | | | | Wireless Broadband Technologies | | | | | | | LTE
(Advanced)
(4G) | 100/30
(1000/30) Mbps | 3-6 km | mobile devices send and receive radio signals with any number of cell site base stations fitted with microwave antennas sites connected to a cabled communication network and switching system | highly suitable for coverage of remote areas (esp. 800 MHz) quickly and easily implementable shared medium limited frequencies | commercial deployment of new standards with additional features (HSPA+,5G) and provision of more frequency spectrum blocks (490 - 700 MHz) meets future needs of mobility and bandwidth accessing NGA-Services | | | HSPA /
HSPA+ (3G) | 42,2 / 5,76 Mbps /
337 Mbps / 34
Mbps | 3 km | | | | | | 5G | 10/20 Gbps | 3-6 km | | high achievable data rates low latency high reliability higher frequency bands advanced multi-antenna transmission | meets future needs of
mobility and bandwidth
accessing NGA-services | | | | Down-Upstream
Rate (technical
standard max.) | Efficiency
range
(technical
standard
max.) | Infrastructure architecture | Suitability | Future of the technology | |----------------------|---|--|--|--|--| | | | | mobile devices send and receive radio signals with any number of cell site base stations fitted with microwave antennas sites connected to a cabled communication network and switching system | handling of extreme device
densitiesflexible spectrum usage | enables connectivity for a wide range of new applications | | Satellite | 30/10
Mbps | High | | highly suitable for coverage of remote areas quickly and easily implementable run time latency asymmetrically | 30 Mbps by 2020 based
on next generation of
high-throughput satellites | | LEO Satellites | Signal distribution
to user via
WIFI/LTE/HSPA | | mobile devices send and receive radio signals with any number of cell site base stations fitted with microwave antennas sites connected to a cabled communication network and switching system | reduced latency affordable internet access possible controlling by the necessary ground stations of non-stationary flying satellites is very challenging | internet service for very
rural and remote areas
possible | | INTERNET
Balloons | Signal distribution
to user via
WiFi/LTE/HSPA | | | currently in a testing phase challenging controlling controlling by the necessary ground stations of non-stationary flying balloons is very challenging | internet service for very
rural and remote areas
possible | | | Down-Upstream
Rate (technical
standard max.) | Efficiency
range
(technical
standard
max.) | Infrastructure architecture | Suitability | Future of the technology | |------------------------|--|--|--|---|--| | (802.11n)
(IEEE | 600/600 Mbps
(7 Gbps) | 200 m (10 m) | mobile devices send and receive radio signals with any number of cell site base | inexpensive and proven quickly and easily implementable small efficiency range shared medium | increased use of hotspots
at central places | | WiMAX
(IEEE802.16e) | 6/4 Mbps
(70 Mbps) | 60 km | stations fitted with microwave antennas • sites connected to a cabled communication network and switching system | | gets continually replaced
by Wi-Fi and LTE and
plays therefore no
significant role anymore;
further developments are
therefore not expected | | Lifi | max. 224 Gbps | several
meters | | only delivers communication over short ranges low reliability high installation costs cheaper than Wi-Fi only effective and permanent within closed rooms | useful in electromagnetic sensitive areas such as in aircraft cabins, hospitals and nuclear power plants without causing electromagnetic interference |