ROLE OF DATA SCIENCE IN FOOD CHAIN SAFETY DECISION MAKING: CURRENT STATUS AND FUTURE TRENDS

ÁKOS JÓŻWIAK
NATIONAL FOOD CHAIN SAFETY OFFICE (NÉBIH), HUNGARY

40 years of RASFF: “All you need is RASFF?” – theme: smarter data = better analysis

Increasing volume & complexity of the food chain
7 COUNTRIES FORM THE CORE OF THE AGRI-FOOD TRADE NETWORK

Each trading with over 77% of all the countries in the world

THE WORLD WE KNOW IS MORE LOCAL THAN GLOBAL

GLOBAL DEPTH MEASURES VERSUS US SURVEY ESTIMATES

<table>
<thead>
<tr>
<th>Category</th>
<th>Metric</th>
<th>Actual Metric</th>
<th>Average Survey Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade</td>
<td>Exports of Goods & Svcs. (% of GDP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>Foreign Direct Investment Flows (% of GFCF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stock Market Investment (% Intl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td>Telephone Calls (% Int’l, incl. Skype)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourists (% Int’l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>People</td>
<td>University Students (% Int’l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Migrants (% of Pop’n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Pankaj Ghemawat and Steven A. Altman: DHL GLOBAL CONNECTEDNESS INDEX 2016. The State of Globalization in an Age of Ambiguity
Increasing volume & complexity of the food chain

Growth of the amount of data available for analysis
INFORMATION BOOM

- **From the dawn of the civilization to 2003** humans produced **5 exabytes** of data in total.
- IBM has estimated in 2016 that **2.5 exabytes** (2.5 million terabytes) of data are produced every day.
- Now it is around **5 exabytes daily**.
- We are in the middle of a **transition from a society of facts to a society of data**.
- Numbers are being generated much faster than we have any specific use for.

Source: https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
POST-NORMAL SCIENCE

• Policy-related scientific problems:
 • uncertain facts
 • disputes over ethics and values
 • urgent decisions needed
 • that may have far-reaching consequences

• Policy makers are required to make difficult and firm decisions based on data characterized by high levels of uncertainty.
Increasing volume & complexity of the food chain.

Growth of the amount of data available for analysis.

Better evidence-based decision making?
COMPUTATIONAL SCIENCE AS A SOLUTION

- Computational science:
 - Able to detect patterns which cannot be detected by a smaller set of data
 - Those *emerging patterns* can be surprising & counter-intuitive
 - 'more is different'

- What do we need to achieve this?
DATA ANALYSIS FRAMEWORK

Data Collection & Reporting

Data Modelling

Commission & EFSA

IT Architecture

Data Analysis

Data

People

Member States
ROLE OF DATA SCIENCE IN FOOD CHAIN SAFETY DECISION MAKING: CURRENT STATUS AND FUTURE TRENDS

EFSA ADVISORY FORUM
DATA COLLECTION AND MODELLING TASK FORCE
The main objective of the Task Force is to overview the data collection and reporting processes and the data model and IT infrastructure used, from a strategic perspective, and to formulate recommendations at a strategic level.
DATA COLLECTION

Inventory of MS reporting needs/tasks was mapped (>120)

- ‘IMSOC’
- ‘chemical hazards’
- ‘traceability’
- ‘animal health’
- ‘microbiological hazards’
- ‘ECHA’
- ‘food composition’
DATA COLLECTION

- Important hubs identified:
 - IMSOC, SIGMA, chemical monitoring, foodborne pathogens
- Important modules identified:
 - food composition
 - traceability
- Many similar/overlapping/parallel report flows
- Many connections could/should be improved
DATA MODELLING

- A data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to properties of the real world entities.

- Data models are specified in a data modelling notation, which is often graphical in form.

- Why data modelling is important?
 - Data is an asset of your organization
 - Needs to be understood to be managed
 - Don’t need to look at the detail right away (or sometimes ever)
 - An aid to understanding
 - Provides a common vocabulary
DATA MODELLING

Suggestions for the extension of existing formats and formation of new ones
DATA ARCHITECTURE

Traditional paradigm: give me all your data
DATA ARCHITECTURE

This pattern is repeated in every stage
DATA ARCHITECTURE

- Too many data models (pipelines)
 - Data models become obsolete
 - High cost of redesigning
 - Added complexity
- No added value
 - Reporting data becomes a task with no added value
 - Data submitted is a subset of data already processed
- Inefficient use of resources
 - The data is repackaged, wasting resources
 - Clunky reporting mechanism (Sending files. Trying to understand error messages...)
FURTHER CHALLENGES

2x increase:
Growth in number of enterprise respondents with over 100 TB of unstructured data between 2016 and 2017.¹

By 2019, 75 percent of analytic solutions will incorporate 10 or more exogenous data sources from second-party partners or third-party providers.²

By 2025, real-time IoT data will make up more than 95% of real-time data.³

² Gartner, "2018 Data Science Report."

Source: IBM
DATA ARCHITECTURE
Current paradigm
DATA ARCHITECTURE

So, what if…

Stuff

Analytics

Machine Learning

AI

BI

Insights
DATA ARCHITECTURE

So, what if…

Analytical Sandboxes

Data Exploration | Data Analytics | Data Discovery

Data Sources

Data Lake (Unstructured data) | Data Warehouse (structured) | STUFF Aggregation level interoperability

Results

Reports
Insights
The living opinion
Predictions

"Smart Ecosystem" or Connected database
DATA DRIVEN ORGANIZATIONS
DATA DRIVEN ORGANIZATION

- Data is in the core of business activities
- It drives the strategy
- Organizational, procedural, capacity building changes
 - data-informed culture, agile working, room for experiments...
 - more expertise on data is needed → education
Creation and development of (big) databases is not only an IT problem

The ability of analysis and evaluation of input data and results: high-level knowledge of food chain science is needed enabling interpretation and validation.

Source: https://xkcd.com/688/
DATA LITERACY

- We need data literate people
- Data literacy: spectrum of related skills
 - MIT: the ability to
 - read
 - work with
 - analyse
 - and argue with data
ARE WE READY?
ARE WE READY?

- We need to invest in data sharing and exploring capacities
- We need careful strategic planning for multiple timelines
- Building the future may destroy some of the current investments/achievements
- IT systems become obsolete after 7-10 years → build from scratch is better than patching
- Striving for “full” standardization vs Connected Databases
- Expectation Management & Change Management
ARE WE READY FOR THE FUTURE?

REACTIVE
Ability to share information and react to the current events

RAPID ANALYSIS
Ability to quickly assess the situation, and conduct an epidemiological investigation

PREDICTIVE
Ability to predict risks and prevent adverse events from occurring, based on past data

REALTIME
Ability to predict risks and prevent adverse events from occurring, based on past and real time data
FOOD SCIENTISTS WILL NOT BE REPLACED BY AI…

...THEY WILL BE REPLACED BY FOOD SCIENTISTS USING AI

CONTACT
Ákos Józwiak
jozwiaka@nebih.gov.hu

40 years of RASFF: “All you need is RASFF?” – theme: smarter data = better analysis