Productivity and Growth in the Midst of the Digital Transformation Age

Bart van Ark, The Conference Board and University of Groningen
Global productivity slowdown and exacerbation of Europe’s long-term productivity stagnation

What has caused the productivity slowdown in past 10-15 years?

- The global financial crisis (slow demand, weak investment)
- Smaller contribution of globalization, incl. emerging markets running out of catching-up potential;
- Regulatory environment more challenging for productivity gains (e.g. environmental, financial)
- Slow absorption of digital technology:
 - The New Digital Economy diffuses rapidly but is not absorbed that quickly in business models
 - Slow adaptation of employee skills and management skills to NDE

Source: The Conference Board Total Economy Database (adjusted version), November 2018
The New and Old Digital Economy represent distinctly different technologies and innovation patterns

The Old Digital Economy (1980s-2000s)
Digitization driven by the rise of the personal computer and the internet as key drivers of greater business efficiency, creating access for individuals to digitization and the beginning of e-commerce.

The New Digital Economy (as of 2000s)
Digitization driven by a combination of mobile technology; ubiquitous access to the internet; and the shift toward storage, analysis, and development of new applications in the cloud.

1st: The Industrial Revolution
2nd: Steam and Railways
3rd: Steel and Heavy Engineering
4th: Energy and Combustion Engine
5th: Digital Age

Based on Carlota Perez
Digital transformation is more than just the development of a new set of tools in the workplace

- DIGITIZATION is the adoption or increase in use of digital technology, which creates value through new products, new processes, business models and organizational structures

- DIGITAL TRANSFORMATION leverages digital technologies and the data they produce to connect organizations, people, physical assets and processes, etc. which drives long-term value and productivity

<table>
<thead>
<tr>
<th>Digital Technologies</th>
<th>Digital Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>The use of digital technologies and the data they produce to</td>
</tr>
<tr>
<td>Mobile</td>
<td>Connect organizations, people, physical assets, processes, etc. in new ways</td>
</tr>
<tr>
<td>Embedded sensors</td>
<td>Rapidly develop new products, services, markets, business models</td>
</tr>
<tr>
<td>Cloud</td>
<td>Meet emerging customer needs</td>
</tr>
<tr>
<td>Social media</td>
<td>Aligned with digital business strategy</td>
</tr>
<tr>
<td>Enterprise or business</td>
<td>Digital End-to-End processes:</td>
</tr>
<tr>
<td>collaboration platforms</td>
<td>Integration of stakeholders, systems and processes across multiple functions and</td>
</tr>
<tr>
<td>Public or open platforms</td>
<td>geographies</td>
</tr>
<tr>
<td>Advanced analytics</td>
<td></td>
</tr>
<tr>
<td>Artificial intelligence/</td>
<td></td>
</tr>
<tr>
<td>cognitive computing</td>
<td></td>
</tr>
<tr>
<td>Automated trend scouting</td>
<td></td>
</tr>
<tr>
<td>Bots</td>
<td></td>
</tr>
<tr>
<td>3-D printing</td>
<td></td>
</tr>
<tr>
<td>Block chain</td>
<td></td>
</tr>
</tbody>
</table>
Productivity performance and digital competencies suggest large gaps between frontier and other firms

Labour productivity: value added per worker (2001-2013)

The digital leadership performance premium
Those organizations with the strongest digital leadership capabilities (the pioneers) are outperforming those with the weakest capabilities (the laggards).

Note: The global frontier is measured by the average of labor productivity for the top 5% of companies with the highest productivity levels within each 2-digit industry. Services refer to non-financial business services. See details in Section 3.3.

Source: OECD-Orbis productivity database; DDI, The Conference Board, EYGM Limited
CEO-awareness of slow digital transformation

CEO Perception of Impacts of Digital Transformation, % that “strongly agree”, 2017

- Digitization has a detectable impact on our organization’s ability to generate revenue from new products or services
- Digitization has a detectable impact on our organization’s efficiency and productivity
- My organization has a clear understanding of what it means to be a digitally transformed enterprise
- Our leaders currently have the skills and knowledge necessary to make our organization successful in a digitized world

Source: The Conference Board, C-Suite Challenge Survey, 2018
Hypothesis 1: During the digital transformation process the productivity gains at industry level have become randomly distributed

- Mushroom-like growth indicates a pattern in which only a limited number of industries contribute positively to the aggregate growth
 - Mushrooms are scattered and pop up almost overnight, in a fashion that is not easy to predict
 - Some industries see rapid productivity gains but depending on different “random” circumstances (technology opportunity, market opportunity, breakthrough innovation, etc.)

- Growth is yeast-like when it is broad-based and takes place in many industries
 - Yeast makes bread to expand slowly and evenly
 - Industries contribute widely to accelerating productivity growth

Hypothesis 2: We may be transitioning from the installation to the deployment phase of the digital transformation process.

- **Installation phase**
 - Creative destruction
 - Exploration of new markets
 - Battle of new paradigm with the old
 - Supply “push”
 - Growth confided to small sectors

- **Deployment phase**
 - Creative construction
 - Consolidation & expansion of new markets
 - Widespread acceptance
 - Demand “pull”
 - Wide benefits for the economy

Source: based on Carlota Perez, *Technological Revolution and Financial Capital. The Dynamics of Bubbles and Golden Ages*, (Cheltenham, United Kingdom, Edward Elgar Publishing Limited), 2002
We looked at two taxonomies to characterize whether or not industries are “prepared” for the New Digital Economy

1. ICT Assets + Services Intensity
 - ICT investment plus purchases of ICT services as a % of “synthetic output” (value added + intermediate use of ICT services)
 - Based on minimum 4 out of DE, FI, FR, NL, IT, SE and UK for 2014

2. Innovation Potential of Occupations
 - Occupation score based on 12 innovation competencies
 - Cross tabulated occupation x employment by industry to develop ranking
 - Based on O-Net (USA) applied to average of occupations x industry, UK, 2015-2017
Two taxonomies do not always score the same

BELOW MEDIAN ACCORDING TO ICT + SERVICE INTENSITY & INNOVATION COMPETENCIES

- AGRICULTURE, FORESTRY AND FISHING
- MINING AND QUARRYING
- Textiles, wearing apparel, leather and related products
- Basic metals and fabricated metal products, except machinery and equipment
- Other manufacturing; repair and installation of machinery and equipment
- CONSTRUCTION
- ACCOMMODATION AND FOOD SERVICE ACTIVITIES

ABOVE MEDIAN ACCORDING TO ICT + SERVICE INTENSITY & INNOVATION COMPETENCIES

- Chemicals and chemical products
- Electrical and optical equipment
- Publishing, audiovisual and broadcasting activities
- Telecommunications
- IT and other information services
- FINANCIAL AND INSURANCE ACTIVITIES
- PROFESSIONAL, SCIENTIFIC, TECHNICAL, ADMINISTRATIVE AND SUPPORT SERVICE ACTIVITIES
- Public administration and defence; compulsory social security
- Arts, entertainment and recreation

UNDECIDED, INCLUDING

- Food products, beverages and tobacco
- Machinery and equipment n.e.c.
- Transport equipment
- WHOLESALE AND RETAIL TRADE; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES
- TRANSPORTATION AND STORAGE
ICT Assets + Services
The productivity paradox of the New Digital Economy

Labor productivity growth and contributions from digital-producing and more and less-intensive – using sectors, in %

Note: Euro Area 5 based on Germany, France, Italy, Netherlands and Finland
Source: Bureau of Economic Analysis; Bureau of Labor Statistics; Eurostat; The Conference Board
The productivity paradox of the New Digital Economy

Labor productivity growth decomposition into contributions from ICT- and non-ICT capital for EU-12, labor quality and total factor productivity in %

Note: VA weighted average of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Italy, Netherlands, Spain, Sweden, and United Kingdom. 2015 excluding Italy, Czech Republic, Sweden.

Source: The Conference Board, EUKLEMS, 2017
U.S. pattern of industry-level total factor productivity growth

Source: The Conference Board, EUKLEMS, 2017
Germany pattern of industry-level TFP productivity growth

Harberger Diagram: TFPG, Germany

Source: The Conference Board, EUKLEMS, 2017
UK pattern of industry-level total factor productivity growth

Harberger Diagram: TFP, United Kingdom

Source: The Conference Board, EUKLEMS, 2017
Declines in productivity stronger for LP than TFP growth, pointing at importance of ICT services for spillover effects

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Factor Productivity Growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICT producing</td>
<td>ICT intensive</td>
</tr>
<tr>
<td>Germany</td>
<td>-0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>France</td>
<td>-2.1</td>
<td>-0.8</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>-3.6</td>
<td>-0.8</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Italy</td>
<td>-3.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Finland</td>
<td>-7.3</td>
<td>-1.8</td>
</tr>
<tr>
<td>Sweden</td>
<td>-0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>United States</td>
<td>-5.5</td>
<td>-0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Labor Productivity Growth</th>
<th>Contribution to aggregate labor productivity growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICT producing</td>
<td>ICT intensive</td>
</tr>
<tr>
<td>Germany</td>
<td>-1.6</td>
<td>-0.4</td>
</tr>
<tr>
<td>France</td>
<td>-2.0</td>
<td>-0.9</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>-6.8</td>
<td>-1.7</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-5.0</td>
<td>-1.2</td>
</tr>
<tr>
<td>Italy</td>
<td>-3.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Finland</td>
<td>-10.3</td>
<td>-1.5</td>
</tr>
<tr>
<td>Sweden</td>
<td>-4.1</td>
<td>-0.7</td>
</tr>
<tr>
<td>United States</td>
<td>-7.6</td>
<td>-2.3</td>
</tr>
</tbody>
</table>
Innovation Potential of Occupations
Innovation competencies need to go beyond STEM – measuring a broader list of 12 competencies

- STEM
 - Adaptability/Flexibility
 - Autonomy
 - Empowerment
 - Decision Making
 - Cooperative teams and group interaction

- Creativity
- Mistake handling
- Learning culture
- Conflict Handling
- Enterprising
- Deal With External Customers

Data on the innovation competencies of 772 U.S. occupations, across all business functions

Innovation Potential of Occupations Dashboard
Physicists as well as HR managers, sales managers, and marketing managers have high innovation potential, but for different reasons.

Note: IPO Dashboard scores are in brackets by the title of the occupation. We care more about whether the score of a particular occupation falls into, for example, the top 10 percentile (most innovative) than its exact IPO Dashboard score, for reasons related to weights of the 12 competencies we have explained in the main text and in the Methodology. A spider chart such as Chart 1 looks across the 12 axes and gives us a complete view of the occupation’s innovation competencies. Zero on the axis indicates the mean score of that particular competency across 700+ occupations.
Occupations in services sector have highest innovation competencies

Innovation potential of occupations (IPO) score by industry UK, 2017

Source: The Conference Board Innovation Potential project; UK Office of National Statistics
Occupations in services sector have highest innovation competencies

Average productivity growth 2007-2017 and innovation potential score in 2017

Source: The Conference Board Innovation Potential project; UK Office of National Statistics
Observations so far

- Productivity effects from New Digital Economy are still fairly random – confirming we are still in the installation phase.
- Taxonomies of New Digital Economy point at different industries as intensive users.
- While productivity growth for more intensive ICT-using has declined, it is less so for TFP pointing at signs from spillover effects from digital services.
- Innovation competencies point at stronger productivity effects in services than in manufacturing.
- One important insights from evolutionary theory: the transition from installation to deployment phase usually happens through frenzy period followed by crisis.
Next steps for research

- Improve taxonomies, e.g. along different dimensions of digital performance, e.g. skills, intangibles
- Further analysis to identify the drivers of relationship between digital dimensions and performance
- Can an uptick in productivity growth be observed beyond cyclical effects?
- What causes a transition from the installation to the deployment phase?
Contributors

Bart van Ark
Chief Economist
The Conference Board & University of Groningen

Klaas de Vries
Associate Economist
The Conference Board

Abdul Erumban
Senior Economist
The Conference Board & University of Groningen

Ilaria Maselli
Senior Economist
The Conference Board