The European Commission’s science and knowledge service

Joint Research Centre
Plastics LCA - challenges and knowledge gaps

Rana Pant, Simone Nessi, Davide Tonini, Claudia Bulgheroni

RTD innovative bio-based products workshop, Brussels, June 06, 2018
Key challenges and knowledge/data gaps: 1

- Compute **ready-to-use figures to assess ILUC impacts** from the use of bio-based feedstocks for polymer production
- Extend the modelling of indirect effects, including ILUC, to **non GHG-related impacts**
- **Scarcity of data on type and amount of additives** used in plastic production (incl. for bio-based)
- Accounting for **potential recycling incompatibilities** between bio-based/biodegradable and fossil based plastics in mechanical recycling
Key challenges and knowledge/data gaps: 2

• Risk of “non level playing field” comparison between bio-based and fossil-based feedstocks, due to:

 • (a) the availability of only averaged and aggregated/intransparent LCI data for fossil-based plastics (PlasticsEurope)

 • (b) difference in the level of maturity in production technologies compared to relatively new bio-based feedstocks/polymers (high variability in technologies and in their efficiency/performance)
Key challenges and knowledge/data gaps: output related / LCI

- Assessment of **quantities of leaked plastics** (in absolute terms; on land or marine):
 - data are available for items found on beaches, which may be taken as a proxy and extrapolated to the amount initially discarded to land and oceans
 - Rough estimates go up to 5-10 Mio t ending up in the environment annually. More macroplastics than microplastics (global figures with huge regional differences).

- The **share of produced plastic products, which is littered**:
 - Rough estimate would give litter rate of up to 1-3% of annual production of plastics (5-10 Mio t littered / 300 Mio t produced)
 - LCA needs product specific data: e.g. out of 1000 bottles produced, 950 are collected (of those 40% recycled, 40% incinerated, 20% landfilled) and 50 littered – fictive figures for illustration only!

- Availability of data on product-specific degradation rates and leakage of additives (for littered products but also during conventional waste treatment and degradation in soil)
Key challenges and knowledge/data gaps: output related / LCIA

- Assessment of emissions and impacts from **products littered/left on the field**: fate, exposure, and effect modelling for macro- and micro-plastics

- Impacts of **littering and microplastics are currently not captured in the toxicity-related impact categories** (ecotoxicity & human toxicity)
 - Physical impacts (e.g. entanglement; ingestion of larger plastic particles and their effects)
 - Chemical impacts (e.g. due to microplastic formation, microplastics as carrier of other chemicals, what about additives?)
 - Biological impacts (e.g. microplastics as carrier of germs/alien species)
Summary of key challenges and gaps

• Ready-to-use figures to assess ILUC impacts / indirect effects
• Scarcity of data on type and amount of additives used
• Clarify potential recycling incompatibilities
• Asymmetries in data availability and quality
• Quantities of leaked plastics and share (%) per leaked product
• Fate, exposure, and effect modelling for macro- and micro-plastics (incl. additives)
• Do we need a new “littering” impact category or should it be dealt with in the available ecotoxicity and human toxicity categories?
Any questions?

Your thoughts and input is welcome!

You can find me rana.pant@ec.europa.eu