POTENTIAL GROWTH OF THE SPANISH ECONOMY AFTER THE PANDEMIC

PILAR CUADRADO
MARIO IZQUIERDO
DANilo LEIVA
ENRIQUE MORAL-BENITO
JAVIER QUINTANA

Joint OGWG - ECFIN - JRC Conference
"Assessment of output gaps and potential output in the context of the COVID-19 pandemic and its aftermath"

29 -30 September 2021

ECONOMIC DEVELOPMENTS DEPARTMENT
INDEX

1. Impact of COVID19 on potential output
 • Shock nature
 • Different mechanisms

2. Alternative estimate approaches
 • Production function methodology
 • Sectoral analysis
 • Statistical methodology
COVID-19 AND POTENTIAL GROWTH

Shock nature

- Non-economic character shock, completely exogenous
 - Nevertheless, possible **long-term impact** due to **intensity** and **persistence**
- Effects on both supply and demand
 - Impact on **factors of production** and possible structural changes in **demand**
- Very different effects between sectors
 - Concentration in sectors with **high social interaction** and **labor-intensive sectors**
- Key role of economic policies in mitigating the effects of the crisis
Analysis of the effect of the pandemic on potential growth through its determinants:

- Total Factor Productivity
- Labour
- Capital

It can be distinguished:

- Short-term effects
- Long-term effects (scarring effects)
Total Factor Productivity

• Clearly **negative** effects in the **short term** due to lower use of installed capacity
 - Restricted worker mobility and disruption of supply chains

• **Ambiguous long-term** effects
 - Changes within the company:
 - Breakdown of worker-company or customer-supplier matchings
 - Adoption of new technologies: digitalization and e-commerce

• Inter-firm shifts and business demographics:
 - Lower entry rate of new companies due to poorer economic conditions
 - High number of companies in financial difficulties: risk of an excessive level of liquidations
 + Exit of less productive firms (**empirical evidence in the EBAE**)
 + Estructural change towards sectors with higher contribution to productivity growth
COVID-19 AND POTENTIAL GROWTH

Mechanisms

Labour

• Hysteresis effects:
 - Increase in NAIRU due to mismatch between labor demand and supply
 - Workers with low qualifications or close to retirement leave the labor market
 - International restrictions on mobility reduce migratory flows
 - Long-term negative effects of school closings on human capital accumulation

Capital

- Reduced incentives to invest in new capital
- Early obsolescence of existing capital due to demand changes
+ Decreased capital depreciation and increased useful life due to lower utilization
Production Function Methodology

• Contribution to potential growth of each growth factor
 • Labour
 • NAIRU - neo-Keynesian Phillips curve estimation (Galí, 2011)
 • Working-age population - INE projections
 • Participation rate
 • Worked hours per worker
 • Capital
 • Total Factor Productivity

• Three scenarios (baseline, mild and severe) based on the outlook for the severity and duration of the pandemic
 • Based on the official macroeconomic projections of the Bank of Spain
• Projection horizon to 2023
Baseline scenario:

- Potential growth rates only slightly lower, from 2022 onwards, than the previous scenario
- Permanent lower level of potential GDP (around -2%)
ECONOMIC DEVELOPMENTS DEPARTMENT

POTENTIAL GROWTH ESTIMATE
Production Function Methodology

• Labour
 • **NAIRU increase** to about 16% between 2020 and 2023
 • **Fall in the working-age population**
 • *Reduction of net inflows of immigrants in 2020*
 • **Significant drop in activity rate and hours worked per employee**
 • *Recovery in following years*

• Capital
 • **Positive contribution**, although slightly lower
 • *Delayed investments due to increased uncertainty*

• TFP
 • **Severe drop in 2020** due to production disruptions
 • *Recovery of pre-Covid contribution by 2023*
POTENTIAL GROWTH ESTIMATE
Production Function Methodology

POTENTIAL GROWTH CONTRIBUTIONS IN SPAIN
(change rate and percentage points)

Sectoral analysis

- Large differences in the impact of the pandemic according to productive sectors
 - Greater intensity and persistence in sectors with a higher component of social interaction

- Two-step methodology:
 1. Setting unequal paths of recovery of the pre-covid activity level for each branch of activity based on the responses obtained in the EBAE
 - The disaggregation by sector of the aggregate GVA forecast is made according to the percentage of companies that state that they are able to recover the pre-covid level of activity in 2021, as of 2022 or that there is too much uncertainty to respond
 2. Estimated potential growth by industry based on Hodrick-Prescot filter
 - Calibrated lambdas that replicate the aggregate level of potential pre-Covid product
Potential Growth Estimate

Sectoral Analysis Methodology

- Hotels, transport and commerce and Entertainment services
 - do not recover their pre-pandemic level in 2023 in the central scenario
- Information and communication, Financial services and Education, Health and Public Administrations.
 - will maintain sustained growth paths
- Negative effects are concentrated in labor-intensive sectors with a high level of social interaction

Projected recovery paths by branches after COVID-19

Baseline scenario

Source: Banco de España.
POTENTIAL GROWTH ESTIMATE
Sectoral Analysis Methodology

- **Baseline scenario**
 - Potential growth of around 1% in 2023
 - Slightly lower than the 2019
 - Pre-COVID level not recovered

- **Mild scenario**
 - Positive effects on potential in the long term

- **Severe scenario**
 - Severe drop in the short term
 - The drop in potential is both in growth rates and levels

Source: Banco de España.
Statistical methodology

- Problem with non-parametric models (such as Band-Pass or Hodrick-Prescott filters):
 - The huge fall in GDP in 2020 Q1-QT2 implies large revisions to potential output in pre-pandemic periods
 - It is difficult to justify an endogenous nature of the COVID-19 shock

- Possible solution: Unobserved components models
 - Modeling of the cyclical and trend components of GDP
 - Including a component associated with the effect of the active pandemic
 - It prevents the estimation of the cycle and the trend from being distorted by the exogenous shock
 - And reduces potential product revisions of prior periods
 - Incorporating information on working conditions for greater accuracy
After the sharp downturn in 2020, potential output would quickly recover positive and pre-pandemic-like growth rates under all three scenarios.

The "pandemic" shock negatively influences 2020 GDP, with a similar magnitude in all three scenarios.
Conclusions

Similar results from the three approaches. In the baseline scenario:

- **Significant drop** in the potential **growth** rate in **2020**
- **Recovery** of pre-pandemic rates towards the **end of the projection horizon**
- **Permanent effect** on the **level** of potential output

According to the production function approach, **deterioration due to**:

- **Hysteresis** effects in the **labour market**
- **Significant drop** in **TFP** in the **short term**

Projections subject to **high uncertainty**: **health** and **economic policy** developments
THANK YOU FOR YOUR ATTENTION
Metodología Estadística

\[y_t = \tau_t + c_t + p_t, \ p_t \sim N(0, \sigma_{p,t}^2) \]
(1)

\[u_t = \bar{u}_t + \theta_1 c_t + \theta_2 c_{t-1} + v_{u,t}, \ v_{u,t} \sim N(0, \sigma_u^2) \]
(2)

\[\sigma_{p,t}^2 = \begin{cases} 0 & \text{si } t \notin T_{\text{pandemia}} \\ \sigma_p^2 & \text{si } t \in T_{\text{pandemia}} \end{cases} \]
(3)

\[\tau_t = \tau_{t-1} + \delta_{t-1} + \eta_{\tau,t}, \ \eta_{\tau,t} \sim N(0, \sigma_{\tau}^2) \]
(4)

\[\delta_t = \delta_{t-1} + \eta_{\delta,t}, \ \eta_{\delta,t} \sim N(0, \sigma_{\delta}^2) \]
(5)

\[c_t = \phi_1 c_{t-1} + \phi_2 c_{t-2} + \eta_{c,t}, \ \eta_{c,t} \sim N(0, \sigma_c^2) \]
(6)

\[\bar{u}_t = \bar{u}_{t-1} + \eta_{\bar{u},t}, \ \eta_{\bar{u},t} \sim N(0, \sigma_{\bar{u}}^2) \]
(7)

- **Componente tendencial,** \(\tau_t \)
 - Paseo aleatorio
 - Tasa de crecimiento como paseo aleatorio

- **Componente cíclico,** \(c_t \)
 - Proceso autorregresivo

- **Componente pandémico,** \(p_t \)
 - Activo solo a partir de 2020

- **Desempleo tendencial,** \(\bar{u}_t \)
 - Paseo aleatorio