ADDENDUM

to the scientific opinion on o-Phenylphenol, Sodium o-phenylphenate and Potassium o-phenylphenate

(AGCS/1555/15)

Here: the use as preservative of

Sodium o-phenylphenate, Potassium o-phenylphenate, MEA o-Phenylphenate

(CAS n. 132-27-4, 13707-65-8, 84145-04-0)
ACKNOWLEDGMENTS

SCCS members
Dr U. Bernauer (Rapporteur)
Dr L. Bodin
Prof. Q. Chaudhry
Prof. P.J. Coenraads
Prof. M. Dusinska
Dr J. Ezendam
Dr E. Gaffet
Prof. C. L. Galli
Dr B. Granum
Prof. E. Panteri
Prof. V. Rogiers
Dr Ch. Rousselle
Dr M. Stepnik
Prof. T. Vanhaecke
Dr S. Wijnhoven

All Declarations of Working Group members are available on the following webpage:
http://ec.europa.eu/health/scientific_committees/experts/declarations/sccs_en.htm

In agreement with the mandating DG, there is no commenting period for this Addendum.

Keywords: SCCS, scientific opinion, preservative, Sodium o-phenylphenate, Potassium o-phenylphenate, MEA o-Phenylphenate, Regulation 1223/2009, CAS n. 132-27-4, 13707-65-8, 84145-04-0

Opinion to be cited as: SCCS (Scientific Committee on Consumer Safety), Addendum to the scientific opinion on the use as preservative of o-Phenylphenol, Sodium o-phenylphenate and Potassium o-phenylphenate- Here: Here: the use as preservative of Sodium o-phenylphenate, Potassium o-phenylphenate, MEA o-Phenylphenate 21-22/02/2018, SCCS/1597/18
About the Scientific Committees
Two independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat.
They are: the Scientific Committee on Consumer Safety (SCCS) and the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) and are made up of scientists appointed in their personal capacity.

In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA).

SCCS
The Committee shall provide Opinions on questions concerning all types of health and safety risks (notably chemical, biological, mechanical and other physical risks) of non-food consumer products (for example: cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).

Scientific Committee members
Bernauer Ulrike, Bodin Laurent, Chaudhry Mohammad Qasim, Coenraads Pieter-Jan, Dusinska Maria, Ezendam Janine, Gaffet Eric, Galli Corrado Lodovico, Granum Berit, Panteri Eirini, Rogiers Vera, Rousselle Christophe, Stępnik Maciej, Vanhaecke Tamara, Wijnhoven Susan

Contact
European Commission
Health and Food Safety
Directorate C: Public Health, Country Knowledge, Crisis Management
Unit C2 – Country Knowledge and Scientific Committees
L-2920 Luxembourg
SANTE-C2-SCCS@ec.europa.eu

© European Union, 2018

ISSN
ISBN

Doi: ND-

The Opinions of the Scientific Committees present the views of the independent scientists who are members of the committees. They do not necessarily reflect the views of the European Commission. The Opinions are published by the European Commission in their original language only.

http://ec.europa.eu/health/scientific_committees/consumer_safety/index_en.htm
TABLE OF CONTENTS

1. MANDATE FROM THE EUROPEAN COMMISSION .. 4
2. OPINION ... 7
3. CONCLUSION .. 7
4. MINORITY OPINION .. 8
5. REFERENCES ... 9
6. GLOSSARY OF TERMS ... 36
7. LIST OF ABBREVIATIONS ... 36
1. MANDATE FROM THE EUROPEAN COMMISSION

Background

Biphenyl-2-ol and its salts, covering o-Phenylphenol (OPP), Sodium o-phenylphenate, Potassium o-phenylphenate, MEA o-phenylphenate (CAS n. 90-43-7, 132-27-4, 13707-65-8, 84145-04-0) as preservatives are regulated in Annex V, entry 7 of the Cosmetics Regulation (EC) n. 1223/2009 at a maximum concentration of 0.2 % (as phenol).

The substance MEA o-phenylphenate is also regulated through entry 61 of Annex III on Monoalkylamines, monoalkanolamines and their salts which are restricted for use in cosmetic products to a maximum secondary amine content of 0,5% in ready for use preparation.

The SCCS Committee adopted an opinion on o-Phenylphenol, Sodium o-phenylphenate and Potassium o-phenylphenate (SCCS/1555/15) in June 2015, later revised on 15 December 2015, with the following conclusion:

"o-Phenylphenol as preservative with a maximum concentration of 0.2 % in leave-on cosmetic products is not safe. Also, in view of further exposures including non-cosmetic uses, the maximum concentration of o-Phenylphenol in leave-on cosmetic products should be lowered. However, the proposed maximum use concentration of up to 0.15% by the applicant can be considered safe.

The use of o-Phenylphenol as preservative with a maximum concentration of 0.2 % in rinse-off cosmetic products is considered safe.

Based on the information provided, no conclusions of safe use can be drawn for Sodium ophenylphenate and Potassium o-phenylphenate."

Following this SCCS opinion, several Member States raised specific concerns as regards the potential risk to human health of Sodium o-phenylphenate, Potassium o-phenylphenate and MEA o-phenylphenate.

In December 2017, the German Federal Institute for Risk Assessment submitted a document providing information on the safety of Sodium o-phenylphenate, Potassium o-phenylphenate and MEA o-phenylphenate when compared to OPP.
Terms of reference

1. Does SCCS consider Sodium o-phenylphenate, Potassium o-phenylphenate and MEA o-Phenylphenate safe at the current use as preservatives with a maximum concentration of 0.2 % (as phenol)?

2. Does the SCCS consider that the same conclusion for OPP, as reported in SCCS/1555/15, may also be applied to Sodium o-phenylphenate, Potassium o-phenylphenate and MEA o-Phenylphenate concerning the proposed maximum use concentration (i.e. 0.15% in leave-on and 0.2% in rinse-off cosmetic products as preservatives)?
2. OPINION

The SCCS opinion (SCCS/1555/15) relates to the safety of o-Phenylphenol (OPP), sodium-OPP, and potassium-OPP for use as preservatives, and is based on the information received in response to the Commission's call for further data. The available information mainly relates to OPP and sodium-OPP, limited information on potassium-OPP, and virtually no information on MEA-OPP. Also the document provided by the German Federal Institute for Risk Assessment did not contain any further information on sodium-OPP, potassium-OPP or MEA-OPP.

3. CONCLUSION

1. Does SCCS consider Sodium o-phenylphenate, Potassium o-phenylphenate and MEA o-Phenylphenate safe at the current use as preservatives with a maximum concentration of 0.2% (as phenol)?

Due to the lack of relevant information, the SCCS is unable to answer the question on the safe use level of sodium-OPP, potassium-OPP and MEA-OPP. In SCCS view, a direct comparison between the safety of o-phenylphenate (OPP) and its 3 compounds cannot be made due to the following concerns:

- From the limited available information, it is clear that both sodium and potassium salts of OPP have much higher water solubility than OPP (no information available on MEA-OPP). This can potentially alter their absorption and biokinetics, compared to OPP.

- From the available information, the SCCS has noted that, compared to the strongly skin irritating nature of OPP, both sodium OPP and potassium-OPP are corrosive to the skin, and sodium OPP is also corrosive to the eye. This indicates that both sodium and potassium salts of OPP may have greater skin penetration and potentially more potent toxic effects than OPP due to higher systemic exposure. No relevant information on skin irritation is available for MEA-OPP but the presence of monoethyleneamine (MEA) moiety can also be expected to alter the skin absorption and biokinetics of MEA-OPP compared to OPP, and as a consequence also systemic exposure. For OPP, the SCCS has derived dermal absorption value of 45% from toxicokinetic information. However, such information is not available for sodium-OPP, potassium-OPP or MEA-OPP, and data would be needed to allow drawing any comparisons from the safe use levels of OPP.

- The available in vivo studies in rat have also indicated that the adverse effects of OPP and its sodium salt are different. For the sodium salt, there is clear indication that the substance is more potent with respect to urinary bladder carcinoma and data point to mechanistic differences between OPP and SOPP. Amongst other factors, SOPP leads to higher sodium concentrations in urine and also to higher urinary pH. There is insufficient dose-response data available to draw a conclusion on the possibility of setting a threshold for sodium-OPP induced toxicity. The currently available data are also not sufficient to exclude such a possibility for the other two compounds (potassium-OPP and MEA-OPP). Long-term repeat dose studies have pointed out to a threshold between 35 and 40 mg/kg bw/d for OPP, but due to the lack of dose-response data, a threshold for sodium-OPP, potassium-OPP or MEA-OPP cannot be derived.
2. Does the SCCS consider that the same conclusion for OPP, as reported in SCCS/1555/15, may also be applied to Sodium o-phenylphenate, Potassium o-phenylphenate and MEA o-Phenylphenate concerning the proposed maximum use concentration (i.e. 0.15% in leave-on and 0.2% in rinse-off cosmetic products as preservatives)?

For the reasons given above, the SCCS considers that the same conclusions on the safe use levels of OPP cannot be applied as such to sodium-OPP, potassium-OPP or MEA-OPP for use in rinse-off and leave-on cosmetic products.

Based on the available information, the SCCS is of the opinion that a potential risk to human health from the use of sodium-OPP and potassium-OPP as preservatives in cosmetic products cannot be excluded.

Although the safety of MEA-OPP was not evaluated in the Opinion SCCS/1555/15, the SCCS has a similar view that a potential risk from its use as preservative in cosmetic products cannot be excluded in the absence of relevant data.

4. MINORITY OPINION

/
5. REFERENCES

From Opinion SCCS/1555/15

1. Adams, R.M. Allergic Contact Dermatitis due to O-Phenylphenol. Contact Dermatitis 7, 332, 1981
5. Balakrishnan & Eastmond, Micronuclei and cell proliferation as early biological markers of ortho-phenylphenol-induced changes in the bladder of male F344 rats. Food Chemical Toxicology 44, 1340-1347, 2006
16. Bomhard, E. Preventol O Extra (Schuppen) - Untersuchungen zur Akuten Dermalen Toxizität an Männlichen und Weiblichen Wistar-Ratten. Bayer Ag, Report No. 19831, 1991a
18. Brasch, J., Henseler, T., Frosch, P. Patch Test Reactions to a Preliminary Preservative Series. Dermatosen, 41, 71-76, 1993
22. Burke, M.D., Bridges, J.W. Biphenyl Hydroxylations and Spectrally Apparent Interactions with Liver Microsomes from Hamsters Pre-Treated With Phenobarbitone And 3-Methylcholanthrene. Xenobiotica 5, 357-376, 1975
34. Eastmond, D.A. Personal Communication March 2002
42. EU – European Commission DG ENV. Towards the Establishment of a Priority List of Substances for Further Evaluation of Their Role in Endocrine Disruption. June 21, 2000
44. FAO/WHO - Plant Production and Protection Paper, No. 102, 49, 1990
47. Freyberger, A. O-Phenylphenol - Interactions Of O-Phenylphenol (OPP) and its Metabolites with Microsomal Prostaglandin-H-Synthase: Possible Implications for OPP-Induced Tumor Formation in The Rat Urinary Bladder. Bayer Ag, Report No. 22788, 1994
49. Fudan University; Department of Toxicology, School of Public Health, Study Report August 1, 2006
52. Fujii, T., Mikuriya, H., Kamiya, N., Hiraga, K. Enhancing Effect of Thiabendazole on Urinary Bladder Carcinogenesis Induced by Sodium Ophenylphenate in F344 Rats. Food Chem. Toxic. 24, 207-211, 1986a

Bladder Following Treatment With Tumor Promoters. Jpn. J. Cancer Res.(Gann) 77, 1074-1082, 1986

73. Geter et al. 2009a: Profiling Ortho-Phenylphenol-Induced Molecular, Cellular, and Biochemical Changes in B6C3F1 Male Mice. Toxicology & Environmental Research and Consulting (TERC) Study ID: 080538; The Dow Chemical Company. 9 October 2009

75. Gilbert, K.S. Dowicide tm1 Antimicrobial; Dermal Sensitization Potential In The Hartley Albino Guinea Pig. Dow Chemical, Report No. K-001024-057e, 1994b

90. Harbell, J.W. O-Phenylphenol - Mouse Lymphoma Assay (L5178y Tk +/-). Microbiological Associates Inc., (Lab. Study Number MI-Nci #246); 1989a
91. Harbell, J.W. O-Phenylphenol, Sodium Salt Tetrahydrate - Mouse Lymphoma Assay (L5178y Tk +/-). Microbiological Associates Inc., (Lab. Study Number MI-Nci #247); 1989b
96. Hasegawa, R., Furukawa, F., Toyoda, K., Sato, H., Takahashi, M., Hayashi, Y.
Urothelial Damage and Tumor Initiation by Urinary Metabolites of Sodium-O-
Phenylphenate in the Urinary Bladder of Female Rats. Jpn. J. Cancer Res. 81, 483-
488, 1990a

97. Hasegawa, R., Kaji, N., Furukawa, F., Fukuoka, M., Kuzunishi, K., Takahashi, M.,
Hayashi, Y. Investigation of Bladder Cancer Initiation Effects of OPP-Na Metabolites

98. Hasegawa, R., Nakaji, Y., Kurokawa, Y., Tobe, M. Acute Toxicity Tests On 113

99. Hasegawa, R., Takahashi, S., Asamoto, M., Shirai, T., Fukushima, S. Species
Differences In Sodium O-Phenylphenate Induction of Urinary Bladder Lesions.
Cancer Lett. 50, 87-91, 1990b

100. Haworth, S., Lawlor, T., Mortelmans, K., Speck, W., Zeiger, E. Salmonella
Mutagenicity Test Results for 250 Chemicals. Environ. Mut. Suppl.1, 3, 1983

101. Henschke, P., Almstadt, E., Lüttgert, S., Appel, K.E. Metabolites of the Biocide O-
Phenylphenol Generate Oxidative DNA Lesions in V79 Cells. Arch. Toxicol. 73, 607-
610, 2000

102. Hiraga, K, Fujii, T. Induction of Tumours of the Urinary Bladder in F344 Rats by
Dietary Administration of O-Phenylphenol. Food Chem. Toxicol. 22, 865-870, 1984

103. Hiraga, K., Fujii, T. Induction of Tumours of the Urinary System in F344 Rats by
Dietary Administration of Sodium O-Phenylphenate. Food Cosmet. Toxicol. 19,
303-310, 1981

104. Hirayama, T., Nohara, M., Shindo, H., Fukui, S. Mutagenicity Assays of
Photochemical Reaction Products Of Biphenyl (BP) and O-Phenylphenol (OPP) With
Nox. Chemosphere 10, 223-228, 1981

105. Hodge et al., Toxicological studies of orthophenylphenol (Dowicide 1). Journal of
Pharmacology and experim. Therapeut. 104, 202-210, 1952

104, 202-210, 1952

Agglutinability of Bladder Epithelial Cells by Concanavalin A in Rats Fed Several

108. Horvath, E., Levay, G., Pongracz, K., Bodell, W.J. Peroxidative Activation of
Ortho-Phenylhydroquinone Leads to the Formation of DNA Adducts in HI-60 Cells.
Carcinogenesis 13, 1937-1939, 1992
111. IARC: Sex Hormones. Monographs on the evaluation of Carcinogenic Risks of Chemicals to Humans. 21, 1979
Addendum to the scientific opinion on the use as preservative o-Phenylphenol, Sodium o-phenylphenate and Potassium o-phenylphenate– ref. SCCS/1555/15

122. Ishidate, M., Yoshikawa, K., Sofuni, T., Mutagenicity Tests on OPP, OPP-Sodium Salt, and Their Possible Metabolites. Unpublished Report From the Division of Mutagenesis, Biological Safety Research Center, National Institute of Hygienic Sciences, Tokyo, Japan, 1983 Submitted To Who By Dow Chemical Co., Midland, Mt., USA Cited according to : FAO/WHO - Evaluations 1985, - Toxicology

127. JECFA (Joint FAO/WHO Expert Committee on Food Additives) fifty-fifth meeting, Geneva, 6-15 June 2000

137. Kimmerle & Lorke; Study Report dated March 31, 1969

145. La Via, M.F., La Via, D.S., Phenol Derivatives are Immunodepressive in Mice. Drug Chem. Toxicol. 2, 167-177, 1979a

155. Maertins, T. Bayer Ag, Letter Report, 1988b

170. Morimoto, K., Fukuoka, M., Hasegawa, R., Tanaka, A., Takahashi, A., Hayashi, Y. DNA Damage in Urinary Bladder Epithelium of Male F344 Rats Treated With 2-Phenyl-1,4-Benzoquinone, One of the Non-Conjugated Urinary Metabolites of Sodium O-Phenylphenate. Jpn. J. Cancer Res. 78, 1027-1030, 1987

184. Nakagawa, Y., Moore, G.A. Cytotoxic Effects of Postharvest Fungicides, Ortho-Phenylphenol, Thiabendazole and Imazalil, on Isolated Rat Hepatocytes. Life Sciences 57, 1433-1440, 1995
185. Nakagawa, Y., Tayama, S. Effect of Buthionine Sulfoximine on Orthophenylphenol-Induced Hepato- And Nephrotoxic Potential in Male Rats. Arch. Toxicol. 62, 452-457, 1988

201. NTP - National Toxicology Program Public Health Service, NTP-85-055, 1985

214. Pathak, D.N., Roy, D. Examination of Microsomal Cytochrome P450-Catalyzed in Vitro Activation of O-Phenylphenol to DNA Binding Metabolite(S) By 32p-Postlabeling Technique. Carcinogenesis 13, 1593-1597, 1992a

215. Pathak, D.N., Roy, D. In vivo Genotoxicity of Sodium Ortho-Phenylphenol: Phenylbenzoquinone is one of the DNA binding Metabolite(s) of Sodium Ortho-Phenylphenol. Mutat. Res. 286, 309-319, 1993

236. San, H.C., Springfield, K.A. O-Phenylphenol - Salmonella/Mammalian-Microsome Plate Incorporation Mutagenicity Assay (Ames Test). Microbiological Associates Inc., (Lab. Study Number C141.501017); 1989a
240. Sasaki, Y. The Comet Assay With 8 Mouse Organs: Results With 39 Currently Used Food Additives, Mutation Research 519, 103-119, 2002
244. Savides, M.C., Oehme, F.W. Urinary Metabolism Of Orally Administered Ortho-Phenyl-Phenol in Dogs and Cats. Toxicology 17, 355-363, 1980

250. Sekihashi K., Comparative Investigations of Multiple Organs of Mice and Rats in the Comet Assay Mutat. Res. 517, 53-74, 2002

269. Sugihara, N., Shimomichi, K., Furuno, K. Cytotoxicity of Food Preservatives in Cultured Rat Hepatocytes Loaded With Linolenic Acid. Toxicology 120, 29-36, 1997

284. Tayama, S., Kamiya, N., Nakao, T., Hiraga, K. Detection of O-Phenylphenol (OPP) and the Activated Metabolites with S-9 mix by HPLC and the Effect of These

293. Tuer, W.F., James, W.D., Summers, R.J. Contact Urticaria to O-Phenylphenate. Annals Allergy 56, 19-21, 1986

294. US EPA: Reregistration Eligibility Decision for 2-phenylphenol and Salts (Orthophenylphenol or OPP), July 28, 2006

Addendum to the scientific opinion on the use as preservative o-Phenylphenol, Sodium o-phenylphenate and Potassium o-phenylphenate– ref. SCCS/1555/15

302. Van Hecke, E. Contact Dermatitis to O-Phenylphenol in a Coolant. Contact Dermatitis 15, 46, 1986

311. WRC: EUROPEAN COMMISSION - STUDY ON THE SCIENTIFIC EVALUATION OF 12 SUBSTANCES IN THE CONTEXT OF ENDOCRINE DISRUPTER PRIORITY LIST OF ACTIONS. Authors: I Johnson and P Harvey; WRc-NSF Ref: UC 6052, NOVEMBER 2002

SCCS References:

Anses (2014):
Addendum to the scientific opinion on the use as preservative o-Phenylphenol, Sodium o-phenylphenate and Potassium o-phenylphenate– ref. SCCS/1555/15

https://www.anses.fr/en/content/anses-publishes-its-recommendations-reduce-exposure-five-substances-which-are-reproductive

https://www.anses.fr/en/documents/CHIM2009sa0331Ra-01-An01.pdf (Filières, usages et expositions liées à la présence de substances reprotoxiques et/ou perturbatrices endocriniennes dans les produits de consommation : le o-phénylphénol (OPP) (n° CAS 90-43-7)).

References obtained after public consultation:

References obtained in December 2017:

Opinion of the German Federal Institute for Risk Assessment

6. GLOSSARY OF TERMS

See SCCS/1564/15, 9th Revision of the SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and their Safety Evaluation – from page 144

7. LIST OF ABBREVIATIONS

See SCCS/1564/15, 9th Revision of the SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and their Safety Evaluation – from page 144