EIB Support to Investments in Proton Therapy: Key Issues and Proposed Action

Sub Group on Proton Therapy
Steering Group on Health Promotion, Disease Prevention and Management of Non-communicable Diseases

Luxembourg, 22 October 2018
The EIB Group: Who are we?

Provides finance and expertise for sound and sustainable investment projects

Leading developer of risk financing for innovative SMEs
Investments in Proton Therapy Research and Treatment Infrastructure

Background

- Growing number of financing requests for high-end proton therapy treatment centres
- Public and private promoters
- Private, commercial operators’ requests increasing
- Large scale, resource-intensive investments
 - Expensive equipment and buildings
 - Highly specialized human resources
- Past lending only for projects with research component
- **Update of EIB Appraisal Guidelines and eligibility criteria**
General features to be fulfilled by all Bank-financed health projects

- The investment must be **in line with EU and international agencies’ sector policies and established good practice**; and the corresponding national, regional and local policies and strategies;

- **Technologies and service models** supported by Bank investments are based on **sound scientific evidence** demonstrating their **effectiveness and efficiency**;

- Projects must strive to **deliver high quality and affordable health care to the general population**, and support **equity of access**; and it must be possible to measure the output generated by the investment and to establish accountability;

- The investment must be **economically viable**, and foster sustainable long-term growth and population well-being.
Challenges for investment appraisal of particle therapy treatment centres

- Current indication for proton therapy for only a small number of cancers
 - Some skull, spine, ocular soft-tissue cancers
 - Cancers in children (long-term side effects of radiation)

- Treatment very costly and time consuming
 - High unit costs per treatment episode
 - Poor financial track record of commercial operators
 - Delays and obstacles in project implementation
 - Lack of established reimbursement scheme from public payers (often case by case decision)

- Geographic coverage
 - Small countries may have too few patients to justify own centres
 - Access for patients from other regions / countries
 - Knowledge about technology and treatment opportunities and guidelines
 - Referral system unclear

- Limited research activity (especially for rare cancers)
 - Lack of sufficiently large patient cohorts
 - Resource limitations in financially constrained public systems
 - Few facilities with explicit research focus and programme
Challenges for project implementation of proton therapy treatment centres

- **Implementation delays** and problems with technology specifications and accreditation/certification

- **Patient numbers and workload over-optimistic**: Most centres only treat 100-200 patients during first few years
 - Need for adjustment in treatment protocols
 - Deficits in market assessment
 - Lack of public support
 - Referral and access

- **Unclear tariffs and reimbursement schemes**
 - High unit costs per treatment episode
 - Lengthy negotiations with insurers/payers
 - Legal action ongoing in some cases
 - Number of licenses in some countries reduced under insurance pressure
 - Fixed tariffs only for a very limited number of indications

- **Business plan and revenue forecast not met**
 - Centres run into financial difficulties
 - Distressed centres switch to treating commercial, out-of-pocket patients (e.g., prostate)
 - Research neglected

- **Human resources constraints**
 - Lack of qualified personnel
 - Technical support services
The technology: Radiation therapy for cancer treatment

Photon therapy: Standard radiation therapy for most cancers
- Linear accelerator
- Gamma knife / cyber knife

Charged particle (hadron) therapy
- Proton
- Neutron
- Heavy Ion

Common features
- Sophisticated, but much more costly than photon therapy
- Insufficient or incomplete evidence for better results (efficacy) compared with photon therapy for most applications
The Particle Therapy World
...and the European landscape
Particle Therapy Centres in Europe

- **20 Centres in operation**
 - Austria: 1
 - Czech Republic: 1
 - France: 3
 - Germany: 6
 - Italy: 3
 - Netherlands: 1
 - Poland: 1
 - Sweden: 1
 - Switzerland: 1
 - United Kingdom: 2

- **11 Centres under construction**
 - Belgium: 1
 - Denmark: 1
 - France: 1
 - Netherlands: 2
 - Slovak Rep: 1
 - United Kingdom: 5

- **7 Centres planned………...**
 - but several more in the pipeline
 - Belgium: 1
 - Italy: 1
 - Netherlands: 1
 - Norway: 2
 - Switzerland: 2
<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CITY</th>
<th>WHO</th>
<th>PARTICLE</th>
<th>BEAM DIRECTIONS</th>
<th>START of TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Wiener Neustadt</td>
<td>MedAustron</td>
<td>p</td>
<td>2 fixed beams**, 1 gantry** (under construction)</td>
<td>2017</td>
</tr>
<tr>
<td>Austria</td>
<td>Wiener Neustadt</td>
<td>MedAustron</td>
<td>C-ion</td>
<td>2 fixed beams**</td>
<td>2017</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Prague</td>
<td>PTC Czech r.s.o.</td>
<td>p</td>
<td>3 gantries**, 1 fixed beam</td>
<td>2012</td>
</tr>
<tr>
<td>France</td>
<td>Caen</td>
<td>CYCLHAD</td>
<td>p</td>
<td>1 gantry**</td>
<td>2018</td>
</tr>
<tr>
<td>France</td>
<td>Nice</td>
<td>CAL/IMPT</td>
<td>p</td>
<td>1 fixed beam, 1 gantry</td>
<td>1991, 2016</td>
</tr>
<tr>
<td>France</td>
<td>Orsay</td>
<td>CPO</td>
<td>p</td>
<td>1 gantry**, 2 fixed beams</td>
<td>1991, 2014</td>
</tr>
<tr>
<td>Germany</td>
<td>Berlin</td>
<td>HZB</td>
<td>p</td>
<td>1 fixed beam</td>
<td>1998</td>
</tr>
<tr>
<td>Germany</td>
<td>Dresden</td>
<td>UPTD</td>
<td>p</td>
<td>1 gantry***</td>
<td>2014</td>
</tr>
<tr>
<td>Germany</td>
<td>Essen</td>
<td>WPE</td>
<td>p</td>
<td>4 gantries***, 1 fixed beam</td>
<td>2013</td>
</tr>
<tr>
<td>Germany</td>
<td>Heidelberg</td>
<td>HIT</td>
<td>p</td>
<td>2 fixed beams, 1 gantry**</td>
<td>2009, 2012</td>
</tr>
<tr>
<td>Germany</td>
<td>Heidelberg</td>
<td>HIT</td>
<td>C-ion</td>
<td>2 fixed beams, 1 gantry**</td>
<td>2009, 2012</td>
</tr>
<tr>
<td>Germany</td>
<td>Marburg</td>
<td>MIT</td>
<td>p</td>
<td>3 horiz., 1 45deg. fixed beams**</td>
<td>2015</td>
</tr>
<tr>
<td>Germany</td>
<td>Marburg</td>
<td>MIT</td>
<td>C-ion</td>
<td>3 horiz., 1 45deg. fixed beams**</td>
<td>2015</td>
</tr>
<tr>
<td>Germany</td>
<td>Munich</td>
<td>RPTC</td>
<td>p</td>
<td>4 gantries**, 1 fixed beam</td>
<td>2009</td>
</tr>
<tr>
<td>Italy</td>
<td>Catania</td>
<td>INFN-LNS</td>
<td>p</td>
<td>1 fixe beam</td>
<td>2002</td>
</tr>
<tr>
<td>Italy</td>
<td>Pavia</td>
<td>CNAO</td>
<td>p</td>
<td>3 horiz., 1 vertical, fixed beams</td>
<td>2011</td>
</tr>
<tr>
<td>Italy</td>
<td>Pavia</td>
<td>CNAO</td>
<td>C-ion</td>
<td>3 horiz., 1 vertical, fixed beams</td>
<td>2012</td>
</tr>
<tr>
<td>Italy</td>
<td>Trento</td>
<td>APSS</td>
<td>p</td>
<td>2 gantries**, 1 fixed beams</td>
<td>2014</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Groningen</td>
<td>UMC PTC</td>
<td>p</td>
<td>2 gantries***</td>
<td>2018</td>
</tr>
<tr>
<td>Poland</td>
<td>Krakow</td>
<td>IFJ PAN</td>
<td>p</td>
<td>1 fixed beam, 2 gantries</td>
<td>2011, 2016</td>
</tr>
<tr>
<td>Sweden</td>
<td>Uppsala</td>
<td>The Skandion Clinic</td>
<td>p</td>
<td>2 gantries**</td>
<td>2015</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Villigen</td>
<td>CPT</td>
<td>p</td>
<td>3 gantries**, 1 fixed beam</td>
<td>1984, 1996, 2013, 2018</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Newport</td>
<td>Proton Partner's</td>
<td>p</td>
<td>1 gantry**</td>
<td>2018</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Clatterbridge</td>
<td>Rutherford CC</td>
<td>p</td>
<td>1 fixed beam</td>
<td>1989</td>
</tr>
</tbody>
</table>
Particle Therapy Centres under construction

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CITY</th>
<th>WHO</th>
<th>STATUS</th>
<th>PARTICLE</th>
<th>BEAM DIRECTIONS</th>
<th>Treatment Rooms</th>
<th>START of TREATMENT PLANNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>Louvain</td>
<td>ParTICLE</td>
<td>Under construction</td>
<td>p</td>
<td>1 gantry (PBS),</td>
<td>2</td>
<td>2019</td>
</tr>
<tr>
<td>Denmark</td>
<td>Aarhus</td>
<td>DCPT</td>
<td>Under construction</td>
<td>p</td>
<td>3 gantries, 1 fixed beam (r&d)</td>
<td>4</td>
<td>2018</td>
</tr>
<tr>
<td>France</td>
<td>Caen</td>
<td>ARCHADE</td>
<td>Under construction</td>
<td>C-ion</td>
<td></td>
<td>1</td>
<td>2023</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Delft</td>
<td>HollandPTC</td>
<td>Under construction</td>
<td>p</td>
<td>2 gantries,</td>
<td>3</td>
<td>2018</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Maastricht</td>
<td>ZON PTC</td>
<td>Under construction</td>
<td>p</td>
<td>1 gantry</td>
<td>1</td>
<td>2018</td>
</tr>
<tr>
<td>Slovak Rep</td>
<td>Ruzomberok</td>
<td>CMHPTC</td>
<td>Under construction</td>
<td>p</td>
<td>1 horiz. fixed beam</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>London</td>
<td>Proton Partners Int.</td>
<td>Under construction</td>
<td>p</td>
<td>1 gantry</td>
<td>1</td>
<td>2019</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>London</td>
<td>PTC UCLH</td>
<td>Under construction</td>
<td>p</td>
<td>3 gantries</td>
<td>3</td>
<td>2019</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Manchester</td>
<td>The Christie Proton Therapy Center</td>
<td>Under construction</td>
<td>p</td>
<td>3 gantries</td>
<td>3</td>
<td>2018</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Newport, UK</td>
<td>Proton Partners Int.</td>
<td>Under construction</td>
<td>p</td>
<td>1 gantry</td>
<td>1</td>
<td>2018</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Reading, UK</td>
<td>Proton Partners Int.</td>
<td>Under construction</td>
<td>p</td>
<td>1 gantry</td>
<td>1</td>
<td>2018</td>
</tr>
</tbody>
</table>
Particle Therapy Centres planned

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CITY</th>
<th>WHO</th>
<th>PARTICLE</th>
<th>BEAM DIRECTIONS</th>
<th>Treatment Rooms</th>
<th>START PLANNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>Charleroi</td>
<td>University Hospitals Wallonia</td>
<td>p</td>
<td>1 gantry</td>
<td>1</td>
<td>2020</td>
</tr>
<tr>
<td>Italy</td>
<td>Milan</td>
<td>European Institute of Oncology</td>
<td>p</td>
<td>1 gantry</td>
<td>1</td>
<td>2020</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Amsterdam</td>
<td>APTC Amsterdam</td>
<td>p</td>
<td>2 gantries</td>
<td>2</td>
<td>2021?</td>
</tr>
<tr>
<td>Norway</td>
<td>Bergen</td>
<td>Haukeland University Hospital</td>
<td>p</td>
<td>1 gantry</td>
<td>1 (2)</td>
<td>2023-2025</td>
</tr>
<tr>
<td>Norway</td>
<td>Oslo</td>
<td>Norwegian Radium Hospital</td>
<td>p</td>
<td>3 gantries,</td>
<td>3</td>
<td>2023</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Galgenen</td>
<td>PTC Zürichobersee</td>
<td>p</td>
<td>4 gantries</td>
<td>4</td>
<td>2020</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Lausanne</td>
<td>CHUV</td>
<td>p</td>
<td>1 gantry</td>
<td>1</td>
<td>2020</td>
</tr>
</tbody>
</table>
Health expenditure per capita
Cancer incidence

Particle Therapy facilities by status
- In operation
- Planned
- Under construction

Malignant neoplasms - Incidence per 100,000 population

<table>
<thead>
<tr>
<th>Incidence</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>163.00</td>
<td></td>
<td>338.00</td>
</tr>
</tbody>
</table>
Population density
Particle Therapy Centres
Treatment Capacity Estimates

<table>
<thead>
<tr>
<th>No. Centres</th>
<th>400</th>
<th>600</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>8,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>4,400</td>
<td>6,600</td>
</tr>
<tr>
<td>Total</td>
<td>12,400</td>
<td>18,600</td>
<td>24,800</td>
</tr>
<tr>
<td>Planned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2,800</td>
<td>4,200</td>
</tr>
<tr>
<td>Total</td>
<td>15,200</td>
<td>22,800</td>
<td>30,400</td>
</tr>
</tbody>
</table>
Opportunities and challenges: The case for a European approach

- **Kick-start strategic investments:**
 - Experience from technology development in the past suggests a potential for accelerated deployment of new technologies with a joint initiative
 - Exploration of economies of scale and scope
 - Improve patient access to treatment
 - Engage (European) industry to foster innovation and R&D

- **Informed planning** to guide efficient allocation of (public) investments in infrastructure

- Prepare for **future growing demand** due to demography

- Follow-up on basis laid by European research networks and international agencies
Shall the EIB expand lending to proton therapy treatment centres?
- Support to strategic investments that promote the use of innovative technologies
- Facilitate the roll-out and improvement of technology and procedures
- Long-term lending for infrastructure with a relatively long economic life

Trends observed:
- single-room centres seem to have operational and financial advantages over multi-room centres
- Investment costs have seen a substantial reduction in the last 2-3 years
- Clinical results in some areas are promising
- Public payers / social health insurance reimbursement schemes increasing

Current point of view: Lending can possibly be justified if
- Public sector is involved
- Authorization and permits are clear and available
- Tariffs specified and cost-covering
- Appropriate technology and size of centre
- Business plan financially sustainable

- *Remains a case-by-case assessment*
- *General policy still evolving and to be adapted and approved by management*
Priority questions

- Capacity needs for EU?
- Actual tariffs and public coverage?
- Referral system to ensure equity of access and cross-border cooperation?
- Best technology?
Priority questions

- Project management good practice:
 - **Planning** – construction design, permits, functional set-up of centres
 - **Implementation** - regulatory framework, technical expertise during construction
 - **Operation** – treatment planning time, patient logistics, nuclear safety, business plan and financial sustainability, human resources
Sub-group objectives: Cooperation for information exchange and avoiding duplication of efforts

Mapping Report: current availability and use of proton therapy centres across the EU – resources and stakeholders

- **Proton therapy treatment: Indications and provision**
 - Efficacy of proton therapy compared with alternative treatment options;
 - Good practice: standard treatment guidelines and clinical protocols,
 - Clinical evidence and studies’ results
 - Current access in public and private sectors
 - Integrated care structures
 - Member States' referral systems including equity of access,

- **Overview of technology,** manufacturers of proton therapy equipment and systems

- **Human resources**
 - Staffing and skills requirements
 - Training programmes
• Financial and economic evidence:
 - Cost- effectiveness compared with alternative treatment options
 - Investment costs
 - Operating costs

• Regulatory aspects:
 - Member States' licensing and accreditation requirements,
 - Supervision of treatment quality and service delivery,
 - Safety / radiation protection

• Research and training programmes:
 - Research results and data access,
 - Training and education programmes for staff.

• Case studies and experience from existing centres
What are the current evidence-based indications for using proton therapy (mapping of the current state of play - which therapy for which indication including on-going research activities)? What are the indications where clinical studies are ongoing?

What are the different features and the pros and cons of currently available proton therapy systems in terms of clinical value?

What are the potential future indications for using proton therapy?

What human resources need to be available for running a proton therapy facility and what skills are needed?

What should be research priorities for identifying further indications of using proton therapy?
● **Cost-effectiveness:**
 - different features and pros and cons of currently available systems
 - Catchment area: characteristics of a cost-effective catchment area for facilities?

● **Reimbursement schemes:**
 - Use of existing cross-border reimbursement schemes?
 - What are the ideal characteristics of such a scheme, ensuring both cost covering operation of centres and equitable and fair access of all potential patients in the catchment area?

● **Geography:** Best distribution in the geographical area of participating countries regardless of borders?

⇒ Report will be a technical document that may facilitate relevant analysis by the EIB and the Member States.
⇒ It will not provide political recommendations on national competences such as access or reimbursement of healthcare services.
● Review and update clinical evidence on indication for particle therapy: end 2018
● Mapping and market study: First half 2019
● Discussion and next steps – action plan: late Spring 2019
● Contacts with Member States’ Institutions desired

Discussion
Life Science Division
Projects Directorate

European Investment Bank
98-100 boulevard Konrad Adenauer
L-2950 Luxembourg