How Genomics solves undiagnosed patients

This project receives funding from the European Union's Horizon 2020 research and innovation programme

Start date: January 2018, Duration: 5 years

Conflict of interest:
I declare no potential conflict of interest in relation to this presentation.
The exome is only 1-2% of our entire genome!
UNSOLVED after WES:
50% of all patients with a rare disease will not have access to health care without having a clear diagnosis

300 Mio RD patients worldwide
150 Mio patients unsolved

30 Mio patients in Europe
15 Mio unsolved

3-4 Mio RD patients in Germany
1.5 Mio unsolved after WES
Limitations of Whole Exome Sequencing (WES)

Important: Type of enrichment system: SureSelectXT Human All Exon v6

Statistics of coverage:
- complete coding sequence +/-5bp intronic region
- depth of sequencing (at least 20 fold)
- coverage: 98.99%

Limitations of WES:
- Coverage
- Copy number
- Aberrant splicing
RNAseq in diagnostics

Improving genetic diagnosis in Mendelian disease with transcriptome sequencing
https://enhancer.lbl.gov/gallery_n.html
Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions

Dario G. Lupiáñez,¹,² Katerina Kraft,¹,² Verena Heinrich,² Peter Krawitz,¹,² Francesco Brancati,³ Eva Klopfick,⁴ Denise Horn,² Hülya Kayserili,⁵ John M. Opitz,⁶ Renata Laxova,⁶ Fernando Santos-Simarro,⁷,⁸ Brigitte Gilbert-Dussardier,⁹ Lars Wittler,¹⁰ Marina Borschwer,¹ Stefano A. Haas,¹¹ Marco Osterwalder,¹² Martin Frank,¹,² Bernd Timmermann,¹³ Jochen Hecht,¹,¹⁴ Malte Spielmann,¹,²,¹⁴ Axel Visel,¹²,¹⁵,¹⁶ and Stefan Mundlos¹,²,¹⁴,*

B

Deletion B1
Deletion B2
Deletion B3

PAX3

Brachydactyly
B1 patient B2 patient

C

Inversion F1
WNT6

Duplication F2

F-syndrome
F1 patient F2 patient

D

Duplication P1

IHH

Dbf deletion

Polydactyly
P1 patient Dbf Mouse
PacBio sequencing reads

Read lengths > 20 kb
Data per SMRT Cell: 750 Mb - 1.25 Gb

- Half of data in reads: > 20 kb
- Top 5% of reads: > 30 kb
- Maximum read length: > 60 kb

From: http://www.pacificbiosciences.com
Technical hurdles in diagnostics

Implementation into diagnostics pathways

"Pilot diseases"
Challenge in Diagnostic Transition: From genome analysis towards „System Diagnostics“

Technological hurdles in diagnostics
Re-analysis of **19.000** exomes of unsolved cases

800 ultra-rare RD patients presenting new phenotypes that will undergo WES/WGS

WGS for 2.000 cases to achieve a more complete coding sequence

Long-read genomes for **500 cases** with smartly chosen phenotypes such as anticipated repeat expansion disorders (SBMA; DM1 and DM2)

Novel omics approaches (transcriptome, epigenome, proteome, metabolome, deep WES, deep molecular phenotyping) for more than **2.000 cases**

Multi-Omics approaches for 120 „unsolvable syndromes“
Main implementation steps

<table>
<thead>
<tr>
<th>Challenge 2: New and improved approaches for the discovery of novel molecular causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reanalyse exomes/genomes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Novel molecular strategies</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Functional analysis</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Resources and infrastructures

Core group of 4 European Reference Networks: ERN-RND, ERN-EURO-NMD, ERN-ITHACA, ERN-GENTURIS

Associated networks: 6 additional ERNs and 2 Undiagnosed Patient Programmes (Italy, Spain)

Existing RD infrastructures: RD-Connect/ELIXIR, Orphanet, HPO, EuroGentest, Canadian Models and Mechanisms Network

Patient organisations: EURORDIS, Genetic Alliance UK
Solving the unsolved Rare Diseases

Coordinators: Olaf Riess, Holm Graessner (Tübingen)

Co-coordinators: Han Brunner (Nijmegen), Anthony Brookes (Leicester)

<table>
<thead>
<tr>
<th>Participant Nº</th>
<th>Participant Organisation Name</th>
<th>Short Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eberhard Karls Universitaet Tuebingen</td>
<td>EKUT</td>
<td>Germany</td>
</tr>
<tr>
<td>2</td>
<td>Stichting Katholieke Universiteit Nijmegen</td>
<td>RUMC</td>
<td>Netherland</td>
</tr>
<tr>
<td>3</td>
<td>University of Leicester</td>
<td>ULEIC</td>
<td>U.K.</td>
</tr>
<tr>
<td>4</td>
<td>University of Newcastle upon Tyne</td>
<td>UNEW</td>
<td>U.K.</td>
</tr>
<tr>
<td>5</td>
<td>Central Manchester University Hospitals NHS Foundation Trust</td>
<td>MUH</td>
<td>U.K.</td>
</tr>
<tr>
<td>6</td>
<td>Centre Hospitalier Reg Universitaire Dijon</td>
<td>DIJON</td>
<td>France</td>
</tr>
<tr>
<td>7</td>
<td>Fundacio Centre de Regulacio Genomica</td>
<td>CRG-CNAG</td>
<td>Spain</td>
</tr>
<tr>
<td>8</td>
<td>EURORDIS – European Organisation for Rare Diseases Association</td>
<td>EURORDIS</td>
<td>France</td>
</tr>
<tr>
<td>9</td>
<td>Institut National de la Sante et de la Recherche Medicale</td>
<td>INSERM</td>
<td>France</td>
</tr>
<tr>
<td>10</td>
<td>Univerzita Karlova</td>
<td>CUP</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>11</td>
<td>European Molecular Biology Laboratory</td>
<td>EMBL-EBI</td>
<td>U.K.</td>
</tr>
<tr>
<td>12</td>
<td>The Jackson Laboratory Non Profit Corporation</td>
<td>JAX</td>
<td>USA</td>
</tr>
<tr>
<td>13</td>
<td>King’s College London</td>
<td>KCL</td>
<td>U.K.</td>
</tr>
<tr>
<td>14</td>
<td>University College London</td>
<td>UCL</td>
<td>U.K.</td>
</tr>
<tr>
<td>15</td>
<td>Universiteit Antwerpen</td>
<td>UA</td>
<td>Belgium</td>
</tr>
<tr>
<td>16</td>
<td>Universita degli Studi della Campania Luigi Vanvitelli</td>
<td>Uni Naples</td>
<td>Italy</td>
</tr>
<tr>
<td>17</td>
<td>Universita degli Studi di Ferrara</td>
<td>UNIFE</td>
<td>Italy</td>
</tr>
<tr>
<td>18</td>
<td>Universitaetsklinikum Bonn</td>
<td>UHB</td>
<td>Germany</td>
</tr>
<tr>
<td>19</td>
<td>IPATIMUP – Instituto de Patologia Eimunologia Molecular da Universidade do Porto PCUP</td>
<td>UoP</td>
<td>Portugal</td>
</tr>
<tr>
<td>20</td>
<td>Academisch Ziekenhuis Groningen</td>
<td>UMCG</td>
<td>Netherlands</td>
</tr>
<tr>
<td>21</td>
<td>Charite – Universitaetsmedizin Berlin</td>
<td>Charité</td>
<td>Germany</td>
</tr>
</tbody>
</table>