Synthetic Biology in Drug Discovery and Combating Drug Resistance

Wilfried Weber
bioss - Centre for Biological Signalling Studies
Institute of Biology II
Albert-Ludwigs-Universität Freiburg, Germany
The impact of Synthetic Biology on the discovery and development of new drugs

Synthetic Biology enables...
- understanding the molecular basis of disease
- the Design of Synthetic Biology-derived Biopharmaceuticals for
  - Treatment: Designer phages as adjuvant for antibiotics
  - Prevention: Synthesis of safe vaccines and Elimination of the pathogen population
  - Compliance: Synthesis of smart drug depots
- Small Molecule Drug Discovery
  - for combating drug resistance in tuberculosis
Understanding the Molecular Basis of Disease

Understanding Diseases using Synthetic Biology

Reconstructing immunological signaling pathways in an orthogonal host
- *Drosophila* S2 cells for reconstructing B-cell signaling (EMBO J (2008) 27, 1333)
- Identifying the molecular basis of a rare form of agammaglobulinemia (J Exp Med (2007) 204, 2047)

Tracing back the SARS epidemic pathway
- Reconstruction of coronaviruses with synthetic membrane glycoproteins to understand the change in tropism from bats to humans (PNAS (2008) 105, 19944)

Understanding the virulence of influenza virus
- Reconstruction of close relatives to Spanish influenza virus to elucidate virulence factors (Science (2005) 310, 77)
Treatment: Designer phages as adjuvant for antibiotic therapy

Bacteria have protection mechanisms against antibiotics
- Oxidative stress response (SOS-response), biofilm formation, low transporter availability (Cell (2007) 130, 797)
- High antibiotic concentrations required to kill bacteria

Designer phages render bacteria more susceptible to antibiotics
- Expression of regulators to attenuate SOS response (lexA3)
- Expression of antibiotic importers (ompF)
- Attenuation of biofilm formation (csrA)

Co-application of designer phages and antibiotics...
- ...Increase survival of infected animals (80 % vs. 20 %)
- ...Reduce the emergence of drug resistance

Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy
Timothy K. Lu and James J. Collins
PNAS (2009) 106, 4629
Prevention: Development of safe vaccines

Conventional polio vaccine
- Poliovirus attenuated by 5 mutations
- Virulent viruses formed by spontaneous revertants
- Mutation and recombination with Coxsackie A virus caused small epidemics of poliomyelitis

Synthetic Biologic polio vaccines
- De novo synthesis of poliovirus genome with unfavorable codon bias (631 mutations)
- Virus strongly attenuated, no cytopathic effect
- No revertants observed in prolonged passaging, revertants extremely unlikely
- Protection of mice against poliovirus-mediated paralytic poliomyelitis
- Very likely applicable to the attenuation of other viruses for vaccine production


**Synthetic Biology Workshop - From Science to Governance**

**Prevention: Reducing pathogen prevalence**

Elimination of insects as agricultural pest or disease transmitters
- Insects transmit widespread diseases like malaria and dengue fever
- Insects are responsible for significant agricultural losses (e.g. Mediterranean fruit fly)

Inducible female-specific lethality
- Release of male insects that carry a female-specific dominant lethality determinant
- Mating with wildtype females will produce no female progeny
- For production of male insects, lethality must be suppressed
  ⇒ Design of a synthetic gene switch for inducible, female-specific lethality
  ⇒ Release approved by the US Department of Agriculture (May 2009).

---

**Female-specific insect lethality engineered using alternative splicing**

Guoliang Fu\(^1,3\), Kirsty C Condon\(^1,3\), Matthew J Epton\(^2\), Peng Gong\(^3\), Li Jin\(^1\), George C Condon\(^1\), Neil J Morrison\(^1,2\), Tarig H Dafa‘alla\(^1\) & Luke Alphley\(^1,2\)


[www.oxitec.com](http://www.oxitec.com)
Compliance: Smart drug depots

Design of an implantable drug depot that releases a defined drug dose in response to an orally available inducer molecule
- Release of the model drug VEGF in mice in response to a clinically validated inducer

Combating drug resistance in tuberculosis

Tuberculosis

30% of world population infected
1'800'000 deaths per year
Multidrug and extremely drug resistant strains emerging

The New York Times
Tuberculosis is outrunning us. The accelerated pace of resistance comes from the world’s neglect of tuberculosis. Stinginess created this problem. Generosity is needed to fix it. – editorial – 14-Sep-2006
Mycobacterium tuberculosis: intrinsic drug resistance against ethionamide

- New Molecule:
  - Inhibits EthR
  - Cell-permeable
  - Non-cytotoxic to human cells

Baulard et al. (2000) J. Biol. Chem. 275: 28326
Combating drug resistance in tuberculosis

- Mycobacterium tuberculosis
- VP16
- EthR
- O_{EthR}
- \( P_{min} \)
- seap
- HEK-293
- SV40 Virus
- Homo sapiens
- Herpes simplex
- Drosophila

\[ P_{SV40} \rightarrow ethR \rightarrow vp16 \rightarrow pA \]

March 18, 2010
Combating drug resistance in tuberculosis

Non-toxic
Cell-permeable
Target-specific

Non-permeable

Toxic

HEK-293

PSV40

ethR

vp16

pA

VP16

EthR

O_{EthR}

P_{min}

seap

pA

March 18, 2010

Synthetic Biology Workshop - From Science to Governance

Slide 11
Hit validation

Identification of the food additive 2-phenyl-ethyl butyrate as cell-permeable, non-toxic inhibitor of EthR
2-phenylethyl-butyrate shuts off drug resistance

*M. tuberculosis* H37Rv

PNAS (2008) 105, 9994
Synthetic Biology provides new insight into disease mechanisms, facilitates the discovery of conventional small molecule compounds and enables the design of biopharmaceuticals with unprecedented function and safety to treat and prevent diseases and to overcome drug resistance.

Innovations in Synthetic Biology-based drug discovery are currently achieved in universities and SMEs. Supporting these activities will stimulate creativity and entrepreneurial spirit to expand SynBio drug discovery concepts to other disease areas.

Substantial efforts in SynBio drug discovery are directed towards diseases prevalent in developing countries thus requiring ongoing support from the public sector.

As drug development (clinical trials) is a long-term but high-reward business, first drugs discovered using Synthetic Biology are expected to enter the market in 6-10 years with a highly attractive economic potential.
Thank You!

Erik Christen
Michael Kämpf
Maria Karlsson
Raphael Gübeli

ETH Zurich
Martin Fussenegger
Marc Gitzinger
Bettina Keller
Ronald Schoenmakers

University of Zurich
Martin Ehrbar
Peter Sander
Thomas Grau

University of Lyon
Marie Daoud-El Baba
Synthetic Biology in Drug Discovery
and Combating Drug Resistance

Wilfried Weber
bioss - Centre for Biological Signalling Studies
Institute of Biology II
Albert-Ludwigs-Universität Freiburg, Germany
This paper was produced for a meeting organized Health & Consumers DG and represents the views of its author on the subject. These views have not been adopted or in any way approved by the Commission and should not be relied upon as a statement of the Commission’s or Health & Consumers DG’s views. The European Commission does not guarantee the accuracy of the data included in this paper, nor does it accept responsibility for any use made thereof.