Scientific Committee on Consumer Safety

SCCS

ADDENDUM

to the scientific opinion SCCS/1613/19 on the safety of aluminium in cosmetic products (lipstick) - Submission II

The SCCS adopted this document at its plenary meeting on 30-31 March 2021
ACKNOWLEDGMENTS

Members of the Working Group are acknowledged for their valuable contribution to this Opinion. The members of the Working Group are:

For the preliminary version

SCCS members
Dr U. Bernauer
Dr L. Bodin (Rapporteur)
Prof. Q. Chaudhry (SCCS Chair)
Prof. P.J. Coenraads (SCCS Vice-Chair and Chairperson of the WG)
Prof. M. Dusinska
Dr J. Ezendam
Dr E. Gaffet
Prof. C. L. Galli
Dr B. Granum
Prof. E. Panteri
Prof. V. Rogiers (SCCS Vice-Chair)
Dr Ch. Rousselle
Dr M. Stepnik
Prof. T. Vanhaecke
Dr S. Wijnhoven

SCCS external experts
Dr A. Koutsodimou
Prof. W. Uter

For the final version

SCCS members
Dr U. Bernauer
Dr L. Bodin (Rapporteur)
Prof. Q. Chaudhry (SCCS Chair)
Prof. P.J. Coenraads (SCCS Vice-Chair and Chairperson of the WG)
Prof. M. Dusinska
Dr J. Ezendam
Dr E. Gaffet
Prof. C. L. Galli
Dr B. Granum
Prof. E. Panteri
Prof. V. Rogiers (SCCS Vice-Chair)
Dr Ch. Rousselle
Dr M. Stepnik
Prof. T. Vanhaecke
Dr S. Wijnhoven

SCCS external experts
Dr A. Koutsodimou
Prof. W. Uter
Dr N. Von Goetz
All Declarations of Working Group members are available on the following webpage:
Register of Commission expert groups and other similar entities

This Opinion has been subject to a commenting period of eight weeks after its initial publication (from 15 December 2020 until 15 February 2021). Comments received during this time period are considered by the SCCS. The final version has not been amended as no change occurred.
1. ABSTRACT

The SCCS concludes the following:

1. In light of the new data provided, does the SCCS consider Aluminium safe when used in lipsticks up to a maximum concentration of 14%? In the event that the estimated exposure to Aluminium from lipsticks of cosmetic products is found to be of concern, SCCS is asked to recommend safe concentration limits.

In the light of the new data provided, the SCCS considers that the use of aluminium compounds is safe at the following equivalent aluminium concentrations up to:

- 6.25% in non-spray deodorants or non-spray antiperspirants
- 10.60% in spray deodorants or spray antiperspirants
- 2.65% in toothpaste and
- 14% in lipstick

2. Does the SCCS have any further scientific concerns regarding the use of Aluminium substances in cosmetic products taking into account the newly submitted information on aggregate exposure from cosmetics?

The SCCS considers that the systemic exposure to aluminium via daily applications of cosmetic products does not add significantly to the systemic body burden of aluminium from other sources. Exposure to aluminium may also occur from sources other than cosmetic products, and a major source of aluminium in the population is the diet. This assessment has not taken into account the daily dietary intake of aluminium.

Keywords: SCCS, scientific opinion, aluminium, addendum, lipstick, Regulation 1223/2009

Opinion to be cited as: SCCS (Scientific Committee on Consumer Safety), Addendum to the scientific opinion SCCS/1613/19 on the safety of aluminium in cosmetic products - Submission II, preliminary version of 15 December 2020, final version of 30-31 March 2021, SCCS/1626/20
About the Scientific Committees
Two independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission’s attention to the new or emerging problems which may pose an actual or potential threat. These Committees are: the Scientific Committee on Consumer Safety (SCCS) and the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) and they are made up of scientists appointed in their personal capacity.

In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA).

SCCS
The Committee shall provide Opinions on questions concerning health and safety risks (notably chemical, biological, mechanical and other physical risks) of non-food consumer products (for example cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).

Scientific Committee members
Ulrike Bernauer, Laurent Bodin, Qasim Chaudhry, Pieter Jan Coenraads, Maria Dusinska, Janine Ezendam, Eric Gaffet, Corrado Lodovico Galli, Berit Granum, Eirini Panteri, Vera Rogiers, Christophe Rousselle, Maciej Stepnik, Tamara Vanhaecke, Susan Wijnhoven

Contact
European Commission
Health and Food Safety
Directorate C: Public Health
Unit C2 – Health information and integration in all policies
L-2920 Luxembourg
SANTE-C2-SCCS@ec.europa.eu

© European Union, 2020

ISSN ISBN
Doi: ND-

The Opinions of the Scientific Committees present the views of the independent scientists who are members of the committees. They do not necessarily reflect the views of the European Commission. The Opinions are published by the European Commission in their original language only.

http://ec.europa.eu/health/scientific_committees/consumer_safety/index_en.htm
TABLE OF CONTENTS

ACKNOWLEDGMENTS .. 2
1. ABSTRACT ... 4
2. MANDATE FROM THE EUROPEAN COMMISSION ... 7
3. OPINION .. 8
 3.1 Chemical and Physical Specifications .. 8
 3.2 Function and uses .. 8
 3.3 Toxicological evaluation .. 8
 3.3.1 Acute toxicity ... 9
 3.3.2 Irritation and corrosivity .. 9
 3.3.3 Skin sensitisation and dermatitis ... 9
 3.3.4 Dermal / percutaneous absorption .. 10
 3.3.5 Repeated-dose toxicity .. 10
 3.3.6 Mutagenicity / Genotoxicity .. 11
 3.3.7 Carcinogenicity .. 11
 3.3.8 Reproductive toxicity ... 11
 3.3.9 Toxicokinetics ... 12
 3.3.10 Photo-induced toxicity .. 12
 3.3.11 Human data ... 12
 3.3.12 Special investigations ... 12
 3.3.13 Consumer Exposure assessment .. 13
 3.4 SAFETY EVALUATION (including calculation of the MoS) 16
 3.5 DISCUSSION ... 18
4. CONCLUSION ... 21
5. MINORITY OPINION ... 21
6. REFERENCES .. 22
7. GLOSSARY OF TERMS ... 24
8. LIST OF ABBREVIATIONS .. 24
 ANNEX 1: Cosmetics Ingredients containing aluminium .. 25
2. MANDATE FROM THE EUROPEAN COMMISSION

Background

Following the dossier submission on the safety of aluminium in cosmetic products, the SCCS in its corresponding opinion SCCS/1613/19, has concluded that: *the use of aluminium compounds is safe at the following equivalent aluminium concentrations up to:

- 6.25% in non-spray deodorants or non-spray antiperspirants
- 10.60% in spray deodorants or spray antiperspirants
- 2.65% in toothpaste and
- 0.77% in lipstick

The current request for an Addendum is based on the recently identified mistake in the applicant’s previous submission concerning the maximum % concentration of aluminium in lipsticks. The current submission includes in particular additional data and considerations on the MoS calculation and aggregate exposure.

Terms of reference

1. In light of the new data provided, does the SCCS consider Aluminium safe when used in lipsticks up to a maximum concentration of 14%? In the event that the estimated exposure to Aluminium from lipsticks of cosmetic products is found to be of concern, SCCS is asked to recommend safe concentration limits.

2. Does the SCCS have any further scientific concerns regarding the use of Aluminium substances in cosmetic products taking into account the newly submitted information on aggregate exposure from cosmetics?
3. OPINION

3.1 Chemical and Physical Specifications

Physicochemical properties of aluminium compounds used as cosmetic ingredients are summarised in Annex I of the previous opinion (SCCS/1613/19).

3.2 Function and uses

Taken from the previous opinion (SCCS/1613/19).

Antiperspirants

Aluminium salts in antiperspirants, such as aluminium chlorohydrate, form insoluble aluminium hydroxide polymer gel plugs within sweat ducts to temporarily prevent sweat reaching the surface of the skin. These substances are soluble at very low pH in the formulation; however, once applied on the skin they form chemically inert complexes with basic components of sweat and skin. The relatively high molecular weight of the compounds, low ‘Log P’ and high positive charge limits the potential for skin penetration through the stratum corneum. Moreover, absorption across the skin is further minimised by the formation of protein complexes in the outermost layers of the stratum corneum (Hostynek, 2003). These chemical properties limit the systemic delivery of aluminium via the intake skin.

Lipsticks

Aluminium colloidal colorant ‘lakes’ are mainly used in lipsticks. Colloidal colourants are prepared under aqueous conditions by reacting aluminium oxide with the organic pigments in order to make them insoluble. Aluminium oxide is usually freshly prepared by reacting aluminium sulphate or aluminium chloride with sodium carbonate or sodium bicarbonate or aqueous ammonia. Due to the complex molecular structures and high molecular weights of organic lakes, the aluminium represents only a small part of the weight of the raw material of which the extractable (bioaccessible) part will represent only a fraction.

Toothpastes

Insoluble minerals are used in toothpastes mainly to act as mild abrasives and to provide shine/gloss benefit through the polishing of the enamel. They are also used to improve rheology in striped toothpastes. Toothpastes may also contain aluminium colloidal colourant “lakes” and pigments.

3.3 Toxicological evaluation

The data related to this part were assessed and commented upon by the SCCS in the previous Opinion (SCCS/1613/19). Only SCCS’ comments and main conclusions are included in this section.
3.3.1 Acute toxicity

3.3.1.1 Acute oral toxicity

/

SCCS comment
The acute oral toxicity of those aluminium compounds for which data are available (bromide, nitrate, chloride and sulfate) is moderate to low, with LD\textsubscript{50} values ranging from 162 to 750 mg Al/kg bw in rats, and from 164 to 980 mg Al/kg bw in mice, depending on the aluminium compound (EFSA, 2008).

3.3.1.2 Acute dermal toxicity

/

3.3.1.3 Acute inhalation toxicity

/

SCCS comment
The acute inhalation toxicity of aluminium oxide seems to be up to 1,000 mg Al/m3 in male Fischer 344 rats (Thomson et al., 1986).

3.3.1.4 Acute intraperitoneal toxicity

/

3.3.2 Irritation and corrosivity

3.3.2.1 Skin irritation

/

SCCS comment
The SCCS agrees with the applicant that use concentrations of aluminium compounds in antiperspirants (at doses up to 20% ACH) will not lead to skin irritation in consumers.

3.3.2.2 Mucous membrane irritation / Eye irritation

/

3.3.3 Skin sensitisation and dermatitis

/
SCCS comment
The SCCS agrees that the available animal studies show that aluminium compounds used in antiperspirants are not skin sensitising. There is limited evidence that aluminium compounds can cause contact allergy in humans. However, taking into account the widespread use of these compounds, the SCCS considers this to be a rare phenomenon.

3.3.4 Dermal / percutaneous absorption

3.3.4.1 In vitro animal skin absorption studies

The data related to this part were assessed and commented upon by the SCCS in the previous Opinion (SCCS/1525/14, Revision of 18 June 2014).

3.3.4.2 Animal skin absorption studies

/

3.3.4.3 In vitro human skin absorption studies

/

3.3.4.4 In vivo human skin absorption study – single dose

/

3.3.4.5 In vivo human skin absorption study – single and repeat dose, in use concentrations

/

SCCS conclusion
The SCCS agrees that dermal bioavailability of 0.00052% is an appropriate value for use in risk assessment.

3.3.5 Repeated-dose toxicity

/

SCCS comments on Sub-chronic Rat/ dog oral Studies
When orally administered to rats, aluminium compounds (including aluminium nitrate, aluminium sulfate and potassium aluminium sulfate) have caused various effects, including decreased body weight gain and mild histopathological changes in the spleen, kidneys and livers of rats (104 mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/day) after subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have been reported at higher doses. Severity of effects increased with dose.
SCCS comments on repeated-dose inhalation toxicity

Neurological examinations in the Steinhagen et al., 1978, publication have been limited to measurement of brain weight and/or histopathology of the brain; no function tests were performed.

The SCCS is of the opinion that the available information does not support concerns regarding potential toxicity of aluminium compounds by inhalation. The lung effects observed in humans and animals are suggestive of particle overload.

Repeated-dose dermal toxicity

There are no repeat dose toxicology studies available via the dermal route of exposure.

3.3.6 Mutagenicity / Genotoxicity

3.3.6.1 Mutagenicity / Genotoxicity *in vitro*

/

3.3.6.2 Mutagenicity / Genotoxicity *in vivo*

/

SCCS comments

Considering all the available evidence, the SCCS is of the opinion that aluminium is not likely to pose a risk of systemic genotoxic effects through the dermal exposure from cosmetics use.

3.3.7 Carcinogenicity

/

SCCS comment

The SCCS is of the opinion that based on the available information, aluminium from aluminium compounds is not considered to have potential carcinogenicity.

3.3.8 Reproductive toxicity

3.3.8.1 Fertility and reproductive toxicity

/

SCCS comment

Based on the results of this neurodevelopmental toxicity study, the SCCS derives a NOAEL of 30 mg/kg bw/day, which will be used for MoS calculation. This is in line with SCHEER (2017), where the same NOAEL from the same study was used to derive migration limits for Al in toys.
3.3.8.2 Two generation reproduction toxicity

/

3.3.9 Toxicokinetics

3.3.9.1 Toxicokinetics in laboratory animals

/

3.3.9.2 Toxicokinetics in humans

/

SCCS comments

The SCCS considers that oral bioavailability of 0.1% is an appropriate value for use in risk assessment.

Taken together, all available data suggest that absorption of aluminium from lung deposits into the blood is low. For the purposes of lung exposure modelling and risk assessment, a conservative value for aluminium uptake by the lung is 3% (Jones & Bennett, 1986; DeVoto & Yokel, 1994). Human and animal studies cited in the current Opinion suggest that the urinary excretion of aluminium is multiphasic, and the TNO study 2019 has shown that after a single IV injection of 26Al citrate in healthy subjects, more than 50% of the Al administered is excreted in the urine within the first 24h. It is known that the remaining amounts of 26Al are eliminated extremely slowly (Priest, 2004).

3.3.10 Photo-induced toxicity

3.3.10.1 Phototoxicity / photo-irritation and photosensitisation

/

3.3.10.2 Photomutagenicity / photoclastogenicity

/

3.3.11 Human data

/

3.3.12 Special investigations

/
3.3.13 Consumer Exposure assessment

Dermal exposure

Antiperspirants

Cosmetics Europe data show that average (median) consumers apply 0.82 g/day of non-spray deodorant/antiperspirant, rising to 1.5 g/day for 90th percentile high-level consumers (Hall et al., 2007). Following the SCCS Notes of Guidance (10th Revision), the 90th percentile product exposure for non-spray deodorants/antiperspirants can be expressed on a bodyweight basis as 22.08 mg product/kg bw/day (SCCS/1602/18).

Thus, at 6.25% aluminium (from aluminium chlorohydrate or ACH) for a high-performing non-spray antiperspirant, assuming exposure at 22.08 mg product/kg bw/day, the dermal exposure to aluminium would be 1.38 mg aluminium chlorohydrate /kg bw/day (0.0625 x 22.08 mg/kg/day). Using the dermal fraction absorbed value of 0.00052%, from the human clinical TNO Study 2, where ACH was applied under in-use conditions in females, the systemic exposure of aluminium via dermal application of non-spray antiperspirants is 0.007 µg/kg bw/day.

This is expressed mathematically in the following calculation for systemic exposure dose (SED) as per the SCCS 10th Notes of Guidance (SCCS/1602/18).

\[
\text{SED} = \frac{E_{\text{product}} \times C}{100} \times \frac{D_{\text{Ap}}}{100}
\]

Where:
- SED (mg/kg bw/day) Systemic Exposure Dose
- \(E_{\text{product}} \) (mg/kg bw/day) Estimated daily exposure to a cosmetic product per kg body weight, based on the amount applied and the frequency of application (for calculated relative daily exposure levels for different cosmetic product types (SCCS/1602/18).
- C (%) Concentration of the substance under study in the finished cosmetic product on the application site
- \(D_{\text{Ap}} \) (%) Dermal Absorption expressed as a percentage of the test dose assumed to be applied in real-life conditions

Therefore, for non-spray antiperspirants:

\[
\text{SED} = 22.08 \times \frac{6.25}{100} \times \frac{0.00052}{100} = 0.007 \mu g/kg bw/day
\]

The mean cumulative ‘recovery’ in faecal data was 0.0014%. When the SCCS took into account the amount of radiolabelled aluminium found in urine and faeces, a value of dermal bioavailability of 0.00192% could be estimated (0.00052% +0.0014%). Therefore, for non-spray antiperspirants, taking account the amount of radiolabelled aluminium found in urine and faeces, for the estimations of dermal bioavailability was:

\[
\text{SED} = 22.08 \times \frac{6.25}{100} \times \frac{0.00192}{100} = 0.0265 \mu g/kg bw/day
\]
Using the dermal fraction absorbed value of 0.00192% from the human clinical study, where ACH was applied under in use conditions in females, the systemic exposure of aluminium via dermal application of non-spray antiperspirants is 0.0265 µg/kg bw/day.

For spray antiperspirants, which are generally non-ethanol based formulations due to incompatibility of antiperspirant actives and alcoholic formulations, dermal product exposure is 10 mg product/kg bw/day (SCCS, 2018). This product exposure value excludes the propellant (Steiling et al., 2012). Since aluminium is 2.86% of the full Compressed 2 formulation, aluminium would be 10.6% of the non-volatile fraction. Therefore, 1.06 mg/kg bw/day of aluminium is applied to the skin (10.6% of 10 mg/kg bw/day). Taking the dermal absorption of 0.00052% from the second TNO skin absorption study, the associated systemic exposure via the skin would be 0.006 µg/kg bw/day (0.00052% of 1.06 mg/kg bw/day).

Therefore, for spray antiperspirant products:

\[
\text{SED} = 10 \text{ (mg/kg bw/day) } \times 10.6/100 \text{ Al } \times 0.00052/100 = 0.006 \mu g/kg \text{ bw/day}
\]

Using the dermal fraction absorbed value of 0.00052% from the human clinical study, where ACH was applied under in use conditions in females, the systemic exposure of aluminium via dermal application of spray antiperspirants is 0.006 µg/kg bw/day.

The mean cumulative ‘recovery’ in faecal data was 0.0014%. When the SCCS took into account the amount of radiolabelled aluminium found in urine and faeces, a value of dermal bioavailability of 0.00192% could be estimated (0.00052% +0.0014%). Therefore, for spray antiperspirants, taking account the amount of radiolabelled aluminium found in urine and faeces, for the estimations of dermal bioavailability was:

\[
\text{SED} = 10 \text{ (mg/kg bw/day) } \times 10.6/100 \text{ Al } \times 0.00192/100 = 0.0204 \mu g/kg \text{ bw/day}
\]

Using the dermal fraction absorbed value of 0.00192% from the human clinical study, where ACH was applied under in use conditions in females, the systemic exposure of aluminium via dermal application of spray antiperspirants is 0.020 µg/kg bw/day.

The calculated values above of SED from antiperspirants containing 6% ACH are used in the safety evaluations.

Oral exposure

Lipsticks

From the new applicant's submissions:

Based on a survey of Cosmetic Europe members, lipsticks currently on the EU market contain a maximum level of 14% aluminium which comes from colourant lakes and other aluminium containing ingredients such as minerals. Thus, the daily intake would be 14% x 0.9 mg product/kg bw/day = 0.126 mg Al/kg/day. If one assumes the bioaccessible fraction is 7%, then the bioaccessible amount is 0.0088 mg Al/kg/day in soluble form. The bioavailability of aluminium from insoluble aluminium-containing material is considered to be about 0.1% (EFSA, 2008), therefore 0.009 µg Al/kg bw/day maximally could be systemically bioavailable.
The value of 0.009 µg/kg bw/day will be taken forward into the safety evaluation. This is based upon the maximum level of aluminium in lipsticks according to a survey of Cosmetics Europe, with the conservative assumption of complete 100% ingestion of applied product and the conservative assumption (based upon data) of 7% bioaccessibility, which was calculated using lipstick ingredients, and is expected to be even lower from a waxy lipstick product matrix.

SCCS comments

The SCCS notes that so far bio-accessibility testing has mainly been applied in the context of soil contamination and uncertainties exist whether and to which extent bioaccessibility would reflect bioavailability.

Furthermore, from the literature available on bio-accessibility testing, large inter laboratories variation was reported and so far no internationally accepted OECD guideline exists.

Based on these uncertainties, the SCCS prefers using a worst-case approach to calculate systemic aluminium exposure from lipsticks (i.e. that 100% of the aluminium content in lipstick would be available for absorption).

The daily intake would be 14% x 0.9mg product/kg bw/day = 0.126 mg Al/kg/day. Assuming a bio-accessible fraction of 100%, the bio-accessible amount is 0.126 mg Al/kg/day in soluble form. The bioavailability of aluminium from insoluble aluminium-containing material is considered to be about 0.1% (EFSA, 2008), therefore 0.126 µg Al/kg bw/day maximally could be systemically bioavailable.

Therefore, the value of 0.126 µg/kg bw/day will be taken forward for the safety evaluation.

Toothpaste

Using the SCCS Notes of Guidance 10th revision (SCCS/1602/18) for toothpaste, the estimated daily exposure is 2.75 g/day for the 90th percentile high level consumer and it is assumed that 5% of the toothpaste used to clean teeth is swallowed, resulting in 2.16 mg product/kg bw/day for a 60kg adult (SCCS, 2018).

Based on a survey of Cosmetic Europe members in 2013, toothpaste currently on the EU market contains a maximum level of 5% aluminium oxide (equivalent to 2.65% aluminium). Thus of 2.16 mg product/kg bw/day, 57 µg Al/kg bw/day would be ingested. Using an oral bioavailability value for aluminium oxide of 0.1%, the systemic exposure dose for adults (60 kg) is calculated to be 0.057 µg Al/kg bw/day. This value is used in the safety evaluation.

Inhalation exposure

Meech et al., 2011, used an experimental measure of lung exposure to assess the intake from inhalation exposure. The same values used in risk assessment are:

- Respirable in deep lung = 0.00781 µg/kg bw/day.
- Respirable dose deposited in upper respiratory tract = 0.00234 µg/kg bw/day.
- Non-respirable dose = 0.000432 µg/kg bw/day.
The methodology used in the 2016 dossier next to the respirable dose method has also been recently published in Schwarz \textit{et al.}, 2018.

3.4 SAFETY EVALUATION (including calculation of the MoS)

The Margins of Safety for each of the three cosmetic product types, antiperspirants, lipstick and toothpaste are presented in Table 1 (considering non-spray antiperspirants) and Table 6a (considering spray antiperspirants). Each product is considered individually in terms of the MoS for systemic effects.

A total systemic body burden has been calculated assuming that all three product types are used on the same day.

Taking the NOAEL of 30 mg aluminium citrate/kg bw/day from the neurodevelopmental rat study (Poirier \textit{et al.}, 2011) and adjusting by the rat oral bioavailability (0.6%) of aluminium citrate (Poirier \textit{et al.}, 2011, Zhou \textit{et al.}, 2008), the systemic exposure at the NOAEL is estimated to be $180 \, \mu g \, Al/kg \, bw/day$. This value is used as a point of departure for the safety assessment.

Table 1: Overall margin of safety calculations for antiperspirant non-spray products (dermal exposure only), lipstick and toothpaste and a total body burden calculation to account for potential simultaneous exposure.

<table>
<thead>
<tr>
<th>Product type</th>
<th>Systemic Exposure (internal dose) (\mu g , Al/kg , bw/day)</th>
<th>MoS (based on an internal dose POD of 180 (\mu g , Al/kg , bw/day))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiperspirant (roll-on/stick)</td>
<td>0.007</td>
<td>25,714</td>
</tr>
<tr>
<td>Oral exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipstick</td>
<td>0.126</td>
<td>1428</td>
</tr>
<tr>
<td>Toothpaste</td>
<td>0.057</td>
<td>3,158</td>
</tr>
<tr>
<td>Total Systemic Body Burden</td>
<td>0.19</td>
<td>947</td>
</tr>
</tbody>
</table>

When the SCCS took into account the amount of radiolabelled aluminium found in urine and faeces for the estimations of dermal absorption (e.g. a dermal absorption of 0.00192%), it did not alter the overall safety assessment (Table 2):

Table 2: Overall margin of safety calculations for antiperspirant non-spray products (dermal exposure only), lipstick and toothpaste and a total body burden calculation to account for potential simultaneous exposure and considering dermal absorption of 0.00192%.

<table>
<thead>
<tr>
<th>Product type</th>
<th>Systemic Exposure (internal dose) (\mu g , Al/kg , bw/day)</th>
<th>MoS (based on an internal dose POD of 180 (\mu g , Al/kg , bw/day))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal exposure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiperspirant (roll-on/stick)</td>
<td>0.0265</td>
<td>6,792</td>
</tr>
</tbody>
</table>
Oral exposure

<table>
<thead>
<tr>
<th>Product type</th>
<th>Systemic Exposure (internal dose)</th>
<th>MOS (based on an internal dose POD of 180 µg Al/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg Al/kg bw/day</td>
<td></td>
</tr>
<tr>
<td>Lipstick</td>
<td>0.126</td>
<td>1428</td>
</tr>
<tr>
<td>Toothpaste</td>
<td>0.057</td>
<td>3,158</td>
</tr>
<tr>
<td>Total Systemic Body Burden</td>
<td>0.2095</td>
<td>859</td>
</tr>
</tbody>
</table>

Table 3: Overall margin of safety calculations for antiperspirant spray products (dermal and inhalation exposure), lipstick and toothpaste and a total body burden calculation to account for potential simultaneous exposure.

When the SCCS took into account the amount of radiolabelled aluminium found in urine and faeces for the estimations of dermal absorption (e.g. a dermal absorption of 0.00192%), it did not alter the overall safety assessment (Table 4):

Table 4: Overall margin of safety calculations for antiperspirant spray products (dermal and inhalation exposure), lipstick and toothpaste and a total body burden calculation to account for potential simultaneous exposure and considering dermal absorption of 0.00192%.
3.5 DISCUSSION

Function and uses
A variety of aluminium salts, complexes and mineral compounds are used as cosmetics ingredients, e.g. as antiperspirants, toothpaste or in lipstick (see Annex I in SCCS/1613/19).

Physicochemical properties
Physicochemical properties of aluminium compounds used as cosmetic ingredients are given in Annex I: in this Annex the correct CAS No for MICA containing aluminium is 12001-26-2.

General toxicity
The toxicological evaluation is focused on the toxicity of aluminium compounds relevant to the risk assessment of cosmetics ingredients containing aluminium. There is an extensive body of literature on the health effects and toxicity of aluminium; a number of extensive reviews and authoritative evaluations were published before 2014 (WHO IPCS 1997; Krewski et al., 2007; ATSDR, 2008; EFSA, 2008; FAO/WHO JECFA 2007; Environment Canada & Health Canada 2010; AFSSAPS 2011; FAO/WHO JECFA, 2012; VKM 2013; Willhite et al., 2014).

For the 2017 SCHEER Opinion on aluminium in toys, a literature search covering the period from 01/01/2008 until 31/01/2017 was performed. The evaluation by JECFA (2011) was based on new data which included a developmental toxicity study specifically evaluating neurobehavioural endpoints (Poirier et al., 2011). The LOAELs identified in these studies were consistent with the body of data reviewed previously by the other committees; however, the oral developmental toxicity study in rats provided a suitable and robust NOAEL for risk assessment (30 mg/kg bw/day). By applying the standard uncertainty factor of 100 to this NOAEL and considering the bioavailability of aluminium citrate, the JECFA considered it appropriate to revise the PTWI (provisional tolerable weekly intake) upward to 2 mg/kg bw/week. This new data by the JECFA Committee therefore supersedes its earlier Opinions in 2008, and does not contradict the 2008 EFSA Opinion. The SCCS agrees on the NOAEL of 30 mg/kg bw/day used by JECFA for risk assessment.

Irritation/sensitisation
Local dermal effects have been observed when aluminium compounds (10% w/v chloride, nitrate) have been applied to the skin of mice, rabbits and pigs over five-day periods (once per day) including epidermal damage, hyperkeratosis, acanthosis and microabcesses (Lansdown, 1973). In this study, these effects were not seen with aluminium acetate, hydroxide or chlorohydrate compounds.
Aluminium compounds are widely used in antiperspirants without acute harmful effects to the skin. Some people, however, may be unusually sensitive to topically-applied aluminium compounds. Skin irritation has been reported in human subjects following the application of aluminium chloride hexahydrate in ethanol used in a high-dose (20% ACH) formulation for the treatment of axillary or palmar hyperhidrosis (excessive sweating) (Ellis and Scurr, 1979; Goh, 1990; Reisfeld & Berliner, 2008) and after use of a crystal deodorant containing alum (Gallego et al., 1999). Although some high-strength antiperspirants used in hyperhidrosis treatments, using aluminium chloride, have been associated with irritation of the axilla, the long history of cosmetic antiperspirant use would suggest that irritation of the axilla is uncommon. There are several examples of cosmetic product formulations that include raw materials that are irritant in isolation, yet acceptable amongst consumers (e.g. surfactants, menthol). The SCCS agrees that the available animal studies show that aluminium compounds used in antiperspirants are not skin sensitising. There is limited evidence that aluminium compounds can cause contact allergy in humans. However, taking into account the widespread use of these compounds, the SCCS considers this to be a rare phenomenon.

Dermal absorption

In the new study described in the Opinion, the Applicant provided an estimate of the aluminium bioavailability after dermal exposure. The SCCS agrees that a dermal absorption value of 0.00052% is an appropriate value to use in risk assessment.

Mutagenicity/Genotoxicity

The most commonly reported mode of genotoxic action is induction of oxidative stress by aluminium ions. The other suggested MoA is inhibition by Al ions of proteins involved in mitotic spindle function. Hence, an existence of a threshold mechanism for Al ions can be assumed. Considering all the data, the SCCS is of the opinion that under the scenarios of dermal exposure in cosmetics, aluminium is not likely to pose a risk of genotoxic effects. The SCCS is aware of the request addressed by ECHA for combined in vivo mammalian erythrocyte micronucleus test and in vivo mammalian Comet assay with additional specific investigation on oxidative DNA damage in rats by oral route, using aluminium sulphate.

Carcinogenicity

Carcinogenicity studies in animals have been reviewed by the SCCS and are summarised in the Annex of the previous Opinion ((SCCS/1525/14, Revision of 18 June 2014). There was no indication of carcinogenicity at high dietary doses (up to 850 mg Al/kg bw/day) in animal studies, and the SCCS considers that carcinogenicity is not expected at exposure levels that are achieved via cosmetic use.

Toxicokinetics

Aluminium compounds present in food and drinking water are poorly absorbed through the gastrointestinal tract in animals and humans.

Several small scale human studies estimated aluminium absorption efficiencies of 0.07–0.39% following administration of a single dose of the radionuclide aluminium-26 (26Al) in drinking water (Hohl et al., 1994; Priest et al., 1998; Stauber et al., 1999; Steinhausen et al., 2004). Fractional absorption was estimated by measuring aluminium levels in urine; it is likely that most of these studies (with the exception of Stauber et al., 1999) underestimated gastrointestinal absorption because the amount of aluminium retained in tissues or excreted by non-renal routes was not factored into the absorption calculations. Several animal studies also utilised 26Al to estimate aluminium bioavailability from drinking water. When aluminium levels in urine and bone were considered, absorption rates of 0.04–0.06% were estimated in rats (Druke et al., 1997; Jouhanneau et al., 1993): when liver and brain aluminium levels were also considered, an absorption rate of 0.1% was estimated (Jouhanneau et al., 1997). Another study that utilised a comparison of the area under the
plasma aluminium concentration-time curve after oral and intravenous administration of 26Al estimated an oral aluminium bioavailability of 0.28% (Yokel et al., 2001).

Two human studies examined the bioavailability of aluminium in the diet. An absorption efficiency of 0.28–0.76% was estimated in subjects ingesting 3 mg aluminium lactate/day (0.04 mg Al/kg/day) or 4.6 mg aluminium citrate/day (0.07 mg Al/kg/day) (Greger and Baier 1983; Stauber et al., 1999). When 125 mg Al/day (1.8 mg Al/kg/day) as aluminium lactate in fruit juice was added to the diet, aluminium absorption decreased to 0.094% (Greger and Baier, 1983). Yokel and McNamara (2001) suggested that the bioavailability of aluminium from the diet is 0.1% based on daily urinary excretion levels of 4–12 μg and average aluminium intake by adults in the United States of 5,000–10,000 μg/day. Considering the available human and animal data as discussed above, it is likely that the oral absorption of aluminium can vary up to 10-fold, based on the chemical form alone. Although bioavailability appears to generally parallel to water solubility, insufficient data are available to allow direct extrapolation from solubility in water to bioavailability. Additionally, due to the available dietary ligands, such as citrate, lactate, and other organic carboxylic acid complexing agents, the bioavailability of any particular aluminium compound can be markedly different depending on if someone’s stomach was full or empty.

Aluminium retention in the body

The SCCS notes that aluminium has several half-lives corresponding to the different distribution phases preceding the terminal elimination half-life. The terminal half-life of aluminium is not known. Human and animal studies cited in the current Opinion suggest that the urinary excretion of aluminium is biphasic and have shown that after a single IV injection of 26Al citrate in healthy subjects, more than 50% of the Al administered is excreted in the urine within the first 24h. In conclusion, even if aluminium accumulation cannot be ruled out after dermal exposure, any significant accumulation in the body is unlikely following daily use of cosmetic products.

Human data

The SCCS considers that aluminium is a known neurotoxicant in animals. Circumstantial evidence has linked this metal with several neurodegenerative disorders, like Alzheimer’s disease (Miu and Benga, 2006; Percy et al., 2011), Parkinson’s diseases (Oyanagi, 2005) and other chronic neurodegenerative diseases (Bondy, 2010), but no causal relationship has yet been proven.
4. CONCLUSION

1. In light of the new data provided, does the SCCS consider Aluminium safe when used in lipsticks up to a maximum concentration of 14%? In the event that the estimated exposure to Aluminium from lipsticks of cosmetic products is found to be of concern, SCCS is asked to recommend safe concentration limits.

In the light of the new data provided, the SCCS considers that the use of aluminium compounds is safe at the following equivalent aluminium concentrations up to:

· 6.25% in non-spray deodorants or non-spray antiperspirants
· 10.60% in spray deodorants or spray antiperspirants
· 2.65% in toothpaste and
· 14% in lipstick

2. Does the SCCS have any further scientific concerns regarding the use of Aluminium substances in cosmetic products taking into account the newly submitted information on aggregate exposure from cosmetics?

The SCCS considers that the systemic exposure to aluminium via daily applications of cosmetic products does not add significantly to the systemic body burden of aluminium from other sources. Exposure to aluminium may also occur from sources other than cosmetic products, and a major source of aluminium in the population is the diet. This assessment has not taken into account the daily dietary intake of aluminium.

5. MINORITY OPINION

/
6. REFERENCES

EFSA 2011 Statement of EFSA on the evaluation of a new study related to the bioavailability of aluminium in food. EFSA Journal. 9(5):2157

VKM 2013 Norwegian scientific Committee for Food Safety, Risk assessment of the exposure to aluminium through food and the use of cosmetic products in the Norwegian population, 5 April 2013

7. **GLOSSARY OF TERMS**

8. **LIST OF ABBREVIATIONS**

ANNEX 1: Cosmetics Ingredients containing aluminium

Aluminium salts, complexes and mineral compounds used as cosmetics ingredients

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>INCI Name</th>
<th>CAS Number</th>
<th>Common synonyms</th>
<th>Chemical formula</th>
<th>Mol Wt</th>
<th>LogP</th>
<th>Water solubility (g/l)</th>
<th>Physical Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Inorganic Salts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium Sulphate</td>
<td>Aluminium sulfate</td>
<td>10043-01-3</td>
<td>Alum, E520</td>
<td>$\text{Al}_3\text{SO}_4^{2+}$</td>
<td>342.15</td>
<td>-</td>
<td>soluble</td>
<td>white crystal/powder</td>
</tr>
<tr>
<td>Aluminium Potassium Sulphate</td>
<td>Potassium alum</td>
<td>10043-67-1</td>
<td>Potassium alum; E500</td>
<td>$\text{KAl(SO}_4\text{)}$</td>
<td>258.19</td>
<td>-</td>
<td>slightly soluble</td>
<td>white powder</td>
</tr>
<tr>
<td>Aluminium Ammonium Sulphate</td>
<td>Ammonium alum</td>
<td>7784-25-0</td>
<td>Ammonium alum</td>
<td>$\text{NH}_4\text{Al}_2\text{SO}_4^{2-}$</td>
<td>237.15</td>
<td>-0.8</td>
<td>very soluble</td>
<td>white powder</td>
</tr>
<tr>
<td>Simple Organic Salts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium Lactate</td>
<td>Aluminium lactate</td>
<td>18917-91-4</td>
<td>Alucyl</td>
<td>$\text{Al}([\text{CH}_3\text{OH}]\text{CO}_2\text{)}$</td>
<td>294.19</td>
<td>-2.43 to -1.90</td>
<td>soluble</td>
<td>white/yellow powder</td>
</tr>
<tr>
<td>Aluminium Citrate</td>
<td>-</td>
<td>31142-56-0</td>
<td>Aluminium citrate</td>
<td>$[\text{NH}_4\text{]}^+\text{Al}([\text{H}_2\text{Cit}]^2+\text{)[(OH)(H}_2\text{O}][\text{NO}_3\text{]}\times\text{H}_2\text{O}$</td>
<td>216.08</td>
<td>-1.48</td>
<td>soluble</td>
<td>white powder</td>
</tr>
<tr>
<td>Aluminium Glycolate</td>
<td>Dihydroxyalum inum aminoacetate</td>
<td>13682-92-3</td>
<td>Dihydroxy aluminium aminoacetate</td>
<td>$\text{Al}([\text{OH}][\text{CH}_2\text{N}_2\text{CO}_2\text{)}]^+$</td>
<td>135.05</td>
<td>-1.85</td>
<td>insoluble</td>
<td>fine powder</td>
</tr>
<tr>
<td>Aluminium Benzoate</td>
<td>Aluminium benzoate</td>
<td>555-32-8</td>
<td>Aluminium tribenzoate</td>
<td>$\text{Al}([\text{C}_6\text{H}_4\text{O}_2\text{)}]^+$</td>
<td>390.32</td>
<td>1.895/3.923/10</td>
<td>very slightly soluble</td>
<td>white crystal/powder</td>
</tr>
<tr>
<td>Chlorohydrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium chloride hexahydrate</td>
<td>-</td>
<td>7784-13-6</td>
<td>Hydrated aluminium chloride</td>
<td>$\text{AlCl}_3\times\text{H}_2\text{O}$</td>
<td>241.43</td>
<td>-</td>
<td>soluble</td>
<td>colorless/white</td>
</tr>
<tr>
<td>Aluminium chloride (ACH)</td>
<td>-</td>
<td>1327-41-9</td>
<td>aluminium hydroxichloride, aluminium chlorohydride</td>
<td>$\text{Al}_2\text{Cl}_3\text{(OH)}_3$</td>
<td>138.50</td>
<td>-</td>
<td>soluble</td>
<td>-</td>
</tr>
<tr>
<td>Aluminium chloride 80% solid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aluminium sesquichlorohydrate</td>
<td>-</td>
<td>173766-15-0</td>
<td>-</td>
<td>$\text{Al}_2\text{(OH)}_3\text{Cl}_3\times\text{nH}_2\text{O}$ (t=1,3, y=6x)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zirconium - aluminium - glycine complexes (ZAG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium Zirconium Trichlorohydrate Glycine</td>
<td>Aluminium zirconium trichlorohydrate</td>
<td>134375-99-8</td>
<td>Aluminium zirconium trichlorohydrate</td>
<td>$\text{Al}_2\text{Zr(OH)}_3\text{Cl}_3\times\text{nH}_2\text{O}$ with glycine</td>
<td>-</td>
<td>-</td>
<td>soluble</td>
<td>white powder</td>
</tr>
</tbody>
</table>
Addendum to the scientific opinion SCCS/1613/19 on the safety of aluminium in cosmetic products (lipstick) - Submission II

<table>
<thead>
<tr>
<th>Alumina/ Zirconium Tetrachlorohydrate Glycine</th>
<th>134910-86-4</th>
<th>Alumina/ Zirconium Octachlorohydrate Glycine</th>
<th>174514-58-0</th>
<th>Complex reaction product obtained from the reaction of aluminium zirconium octachlorohydrate ((\text{AlOZr(OH)2Cl8,xH2O})) and glycine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina/ Zirconium Pentachlorohydrate Glycine</td>
<td>173752-83-9</td>
<td>AlCl3ZrH2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Zirconium-aluminium complexes (ZAC)\(^{1}\)

Water insoluble Minerals, glasses and Clays

<table>
<thead>
<tr>
<th>Alumina hydioxide (Gibbsite)</th>
<th>21643-51-2</th>
<th>Aldroxyaluminahydrate; gibbsite</th>
<th>Al(OH)3</th>
<th>78.00</th>
<th>Insoluble</th>
<th>white amorphous powder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium magnesium hydioxide</td>
<td>39366-43-8</td>
<td>Aluminium magnesium pentahydrate</td>
<td>AlMg(_2)(_3)O(7)({12}) Cl(_2) (_2)</td>
<td>186.32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aluminium oxide (Alumina, aluminium sesquioxide)</td>
<td>1344-28-1</td>
<td>Al(_2)O(_3)</td>
<td>101.96</td>
<td>-</td>
<td>Insoluble</td>
<td>white crystal/powder</td>
</tr>
<tr>
<td>Perlite (Volcanic Glass, 12–15% Al(_2)O(_3))</td>
<td>593763-70-3/130885-09-5</td>
<td>Sodium Potassium Aluminium Silicate</td>
<td>Natural volcanic glass with higher amounts of water (2-5%). White to light gray, glassy.</td>
<td>-</td>
<td>-</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Bentonite (volcanic ash derived clay; ESS8)</td>
<td>1302-78-9</td>
<td>Taylorite; Wilkinite; Aluminosilicate; Sodium</td>
<td>Al(_4)H(_2)O(_8)Si</td>
<td>180.06</td>
<td>-</td>
<td>Insoluble</td>
</tr>
</tbody>
</table>
Addendum to the scientific opinion SCCS/1613/19 on the safety of aluminium in cosmetic products (lipstick) - Submission II

<table>
<thead>
<tr>
<th>Substance</th>
<th>Reference</th>
<th>Form</th>
<th>Chemical Formula</th>
<th>Molecular Weight</th>
<th>Solubility</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hectorite (Na0.3(Mg; Li)3Si4O10(OH)2; 0.6% Al2O3)</td>
<td>12173-47-6</td>
<td>Hectorite (clay mineral)</td>
<td>Na₈₃[Mg₆Li]₁²Si₉O₃₃(OH)₂</td>
<td>283.25</td>
<td>Insoluble</td>
<td>White powder</td>
</tr>
<tr>
<td>Synthetic Sapphire</td>
<td>-</td>
<td>-</td>
<td>Al₂O₃ + Cr₂O₃</td>
<td>-</td>
<td>Insoluble</td>
<td>Blue powder</td>
</tr>
<tr>
<td>Cobalt Aluminium Oxide</td>
<td>1345-16-0</td>
<td>Aluminium cobalt oxide; C.I. Pigment Blue 28; Cobalt aluminate blue spinel</td>
<td>Al₂CoO₄</td>
<td>176.89</td>
<td>Insoluble (< 0.1 mg/L)</td>
<td>White powder</td>
</tr>
<tr>
<td>Aluminium silicate (Kaolin and clay minerals; E 555; C1 77004)</td>
<td>1332-58-7</td>
<td>-</td>
<td>Al₈Si₈O₃₂(OH)₄</td>
<td>259.76</td>
<td>Insoluble</td>
<td>White powder</td>
</tr>
<tr>
<td>Kaolin (Al₂Si₂O₅(OH)₄; Clay silicate mineral)</td>
<td>1332-58-7</td>
<td>-</td>
<td>Al₈Si₈O₃₂(OH)₄</td>
<td>259.76</td>
<td>Insoluble</td>
<td>White powder</td>
</tr>
<tr>
<td>Topaz (Silicate of aluminium and fluorine; Al₂SiO₄(F,OH)₂)</td>
<td>1302-32-6</td>
<td>Pycnite</td>
<td>Al₈Si₈O₃₂(F,OH)₂</td>
<td>182.25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aluminium calcium sodium silicate (Andesite)</td>
<td>-</td>
<td>-</td>
<td>(Na₈Ca)Al₆Si₈O₂₀</td>
<td>266.60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium potassium aluminium silicate</td>
<td>06402-68-4</td>
<td>Silicate, aluminium potassium silicate</td>
<td>(Na,K)Al₈O₁₄</td>
<td>301.84</td>
<td>Insoluble</td>
<td>White powder</td>
</tr>
<tr>
<td>Sodium silver aluminium silicate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Insoluble</td>
<td>White powder</td>
</tr>
<tr>
<td>Aluminium Calcium Sodium Silicate</td>
<td>1344-01-0</td>
<td>Silicate, aluminium calcium sodium silicate</td>
<td>AlCaNa₈Si₁₆O₃₂</td>
<td>182.13</td>
<td>Insoluble</td>
<td>73 mg/L; White powder</td>
</tr>
<tr>
<td>Magnesium aluminium silicate (Angila)</td>
<td>1327-53-1</td>
<td>Silicate, aluminium magnesium silicate</td>
<td>AlMg₈O₁₆Si₁₆</td>
<td>143.37</td>
<td>0.650</td>
<td>2.24 mg/L; White powder</td>
</tr>
<tr>
<td>Magnesium Silicate</td>
<td>1327-43-1</td>
<td>Silicate, aluminium magnesium silicate</td>
<td>AlMg₈O₁₆Si₁₆</td>
<td>143.37</td>
<td>0.650</td>
<td>2.24 mg/L; White powder</td>
</tr>
<tr>
<td>Alumina Magnesium</td>
<td>30958-44-6</td>
<td>Aluminium</td>
<td>AlMg₈O₁₆Si₁₆</td>
<td>143.37</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Addendum to the scientific opinion SCCS/1613/19 on the safety of aluminium in cosmetic products (lipstick) - Submission II

<table>
<thead>
<tr>
<th>Metasilicate</th>
<th>magnesium tetraoxosilane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Aluminium Silicate (Moonstone Powder)</td>
<td>Kal2Al6Si4O162</td>
</tr>
<tr>
<td>Ammonium Silver Zinc Aluminium Silicate</td>
<td>Ag2Al2H4N2O23Si3Zn2</td>
</tr>
<tr>
<td>Pumice (volcanic glass)</td>
<td>Amorphous aluminium silicate</td>
</tr>
<tr>
<td>Loess (aeolian/wind-blown silt)</td>
<td>-</td>
</tr>
<tr>
<td>Calcium aluminium borosilicate (Al2O3, 14.5%)</td>
<td>Calcium aluminium borosilicate</td>
</tr>
<tr>
<td>Talc (Magnesium Silicate, containing a small portion of aluminium silicate)</td>
<td>Talc (Mg6H2(SiO3)4) [Cl 77718]; Talcum</td>
</tr>
<tr>
<td>Mica (Cl 77891); silicate minerals of varying chemical composition</td>
<td>Cl 77891</td>
</tr>
</tbody>
</table>

Carbohydrates

<table>
<thead>
<tr>
<th>Carbohydrates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium starch octenylsuccinate (E1452)</td>
<td>Aluminium starch octenylsuccinate</td>
</tr>
<tr>
<td>Aluminium Sucrose Octasulfate</td>
<td>Aluminium Sucrose Octasulfate</td>
</tr>
</tbody>
</table>

Fatty acids salts

<table>
<thead>
<tr>
<th>Fatty acids salts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium dimyristate</td>
<td>Aluminium dimyristate</td>
</tr>
<tr>
<td>Aluminium dioleate</td>
<td>Aluminium dioleate</td>
</tr>
<tr>
<td>Aluminium stearate</td>
<td>Aluminium stearate</td>
</tr>
</tbody>
</table>
Addendum to the scientific opinion SCCS/1613/19 on the safety of aluminium in cosmetic products (lipstick) - Submission II

<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular Structure</th>
<th>CAS Number</th>
<th>Description</th>
<th>USP Density</th>
<th>Insolubility</th>
<th>Physical Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium tristearate</td>
<td>Stearic acid,</td>
<td>637-12-7</td>
<td>Aluminium monostearate</td>
<td>877.39</td>
<td>Insoluble</td>
<td>White powder</td>
</tr>
<tr>
<td>Aluminium octadecanoate</td>
<td>aluminium(3+)</td>
<td>637-12-7</td>
<td>Sodium octaoctadecanoate</td>
<td>877.39</td>
<td>10.81 / 7.15</td>
<td>White powder</td>
</tr>
<tr>
<td>Hydroyxaluminium Distearte</td>
<td>Sodium stearate</td>
<td>300-92-5</td>
<td>Sodium stearate</td>
<td>610.93</td>
<td>Insoluble</td>
<td>White powder</td>
</tr>
<tr>
<td>Aluminium magnesium</td>
<td>Aluminium magnesium</td>
<td>-</td>
<td>Aluminium 18-hydroxyoctadecanoate</td>
<td>549.65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hydroxystearate</td>
<td>Hydroxyoctadecanoate</td>
<td>-</td>
<td>Sodium stearoyl glutamate</td>
<td>426.21</td>
<td>Slightly soluble in water</td>
<td>Solid</td>
</tr>
<tr>
<td>Aluminium stearoyl</td>
<td>Sodium stearoyl</td>
<td>-</td>
<td>Sodium stearoyl glutamate (1:3)</td>
<td>426.21</td>
<td>Slightly soluble in water</td>
<td>Solid</td>
</tr>
</tbody>
</table>
