
eHealth Network Guidelines

to

the EU Member States and the European Commission

on

Interoperability specifications for cross-border transmission

chains between approved apps

Detailed interoperability elements

between COVID+ Keys driven solutions

V1.0

2020-06-16

The eHealth Network is a voluntary network, set up under article 14 of Directive

2011/24/EU.

It provides a platform of Member States' competent authorities dealing with eHealth.

Adopted by consensus by the eHealth Network working group on COVID+ keys

driven solutions for tracing apps

European Proximity Tracing

An Interoperability Architecture

The least complex and most robust way to connect the backends behind all the different
national proximity tracing apps is a Federation Gateway Service, which accepts diagnosis

keys from all countries, buffers them temporarily, and provides them for all countries to be
downloaded. Additionally, all backends can be informed immediately if new data is available,
so that transmission lags are kept minimal. In this document, we propose a definite ready-to-

implement architecture of the Federation Gateway Service.

IMPRINT

Table 1: Imprint Contact

Issued by T-Systems/SAP

Title

European Proximity Tracing—An Interoperability Architecture

Version Last Review Status

1.0 16.06.2020 Released

mailto:Martin.mitev@t-systems.com
mailto:wolfram.plettscher@t-systems.com
mailto:hannes.rollin@t-systems.com
mailto:steffen.schulze@t-systems.com
mailto:mmeyer@arago.co
mailto:lukas.masuch@sap.com
mailto:dirkx@webweaving.org
mailto:cremers@cispa.saarland
mailto:niall_sinnott@health.gov.ie
mailto:rainer.schweigkoffer@sap.com
mailto:mirko.sitte@telekom.de

eHealth Network

4

TABLE OF CONTENTS

Imprint ... 3

Table of Contents .. 4

Table of Tables ... 7

Table of Figures .. 8

1 Introduction ...10

1.1 Context ...10

1.2 Scope of Document ..10

2 Architecture Overview ...12

2.1 Approach ..13

2.2 Assumptions...13

3 Communication ...15

3.1.1 Device-to-Device Communication ... 15

3.1.2 Device-to-Backend Communication .. 15

3.1.3 Backend-to-Backend Communication ... 16

4 Data Structures ...18

4.1 Data Types ...18

4.1.1 Google Exposure Notification Keys ... 18

4.1.2 Country Codes ... 18

4.1.3 Transmission Data Type .. 18

4.1.4 Client Certificates .. 20

4.1.5 Hash Calculation .. 20

4.1.6 Signature ... 20

4.2 Data Storage ..20

4.2.1 Database Requirements .. 21

4.2.2 Database .. 21

4.2.3 Database Structure .. 21

4.2.4 Data Format ... 22

4.2.5 Document Size ... 23

4.2.6 Document Expiry ... 23

4.2.7 Secondary Index .. 23

4.2.8 Document Batching ... 23

4.2.9 Document Batch Tag ... 24

5 Interfaces ..25

eHealth Network

5

5.1 Overview ..25

5.2 Versioning ..26

5.3 Download Interface ..26

5.3.1 Overview .. 26

5.3.2 Parameters .. 27

5.3.3 Responses .. 28

5.3.4 Transmission Protocol ... 28

5.3.5 Client Process .. 29

5.4 Upload Interface ...30

5.4.1 Overview .. 30

5.4.2 Parameters .. 31

5.4.3 Responses .. 32

5.4.4 Transmission Protocol ... 32

5.4.5 Client Process .. 33

5.5 Traffic Volume Estimates..34

5.5.1 Daily Incoming Traffic on Federation Gateway Service ... 34

5.5.2 Daily Traffic Between National Backends and Their Users ... 34

5.6 Callback Interface ..34

5.6.1 Overview .. 34

5.6.2 Parameters .. 35

5.6.3 Responses .. 36

5.6.4 Transmission Protocol ... 37

5.6.5 Client Process .. 38

5.6.6 Security Considerations ... 39

5.7 Audit Interface ..39

5.7.1 Overview .. 39

5.7.2 Download Audit ... 39

6 Security ...41

6.1 Confidentiality ...41

6.1.1 Certification Process .. 41

6.1.2 Certification Authority ... 41

6.2 Integrity ..42

6.3 Availability ..42

7 Technology Choice ..43

8 Auditing ...44

eHealth Network

6

8.1 Overall ..44

8.2 Data Privacy ...44

8.3 Data Transmission ...44

8.4 Traffic ...44

9 DP3T Compatibility ..46

10 Alternative Data Exchange Methods ..47

10.1 Mirroring ...47

10.2 Blockchain ..47

Appendix ..48

References ...49

eHealth Network

7

TABLE OF TABLES

Table 1: Imprint Contact ... 3

Table 2: Country Code Representation .. 18

Table 3: Data Storage Requirements ... 21

Table 4: MongoDB ObjectId Definition ... 24

Table 5: Callback Security Checklist .. 39

Table 6: Technology Proposals .. 43

eHealth Network

8

TABLE OF FIGURES

Figure 1: Comparison of interoperability patterns ... 10

Figure 2: TOGAF Architecture Model ... 11

Figure 3: Federation Gateway Service Overview ... 12

Figure 4: Autonomous National Backends ... 13

Figure 5: Device to Device Communication .. 15

Figure 6: Example for Device-to-Backend Communication 16

Figure 7: Indirect Backend-to-Backend Communication ... 16

Figure 8: Example Submission Payload for Diagnosis Keys (App-to-Backend) 19

Figure 9: Diagnosis Key Payload (Backend-to-Federation Gateway Service) 19

Figure 10: Database structure; API and outgoing traffic omitted for clarity 22

Figure 11: Batching Process ... 23

Figure 12: API Overview ... 25

Figure 13: Open API Definition Overview ... 25

Figure 14: Download Interface .. 26

Figure 15: Download Parameter Definition ... 27

Figure 16: Download Responses .. 28

Figure 17: Download Transmission Flow .. 29

Figure 18: Download Client Process .. 30

Figure 19: Upload Interface .. 30

Figure 20: Upload Parameters .. 31

Figure 21: Upload Responses .. 32

Figure 22: Upload Transmission Process ... 33

Figure 23: Upload Client Process ... 33

Figure 24: Callback Interface .. 34

Figure 25: Callback Put Parameters ... 35

Figure 26: Callback Delete Parameters .. 36

Figure 27: Get Response ... 36

Figure 28: Put Response .. 36

Figure 29: Delete Response ... 37

Figure 30: Callback Registration Flow .. 37

Figure 31: Callback Flow .. 38

Figure 32: Callback Client Flow .. 38

eHealth Network

9

Figure 33: Audit Interface ... 39

Figure 34: Download Audit Parameters .. 40

Figure 35: Download Audit Responses .. 40

Figure 36: Backend Confidentiality ... 41

Figure 37: Deployment Example .. 43

eHealth Network

10

1 Introduction

1.1 Context

Most European countries are developing proximity tracing apps to reduce the spreading of

COVID-19, generally using the Exposure Notifications API from Google and Apple. While the

proximity detection mechanisms of these apps are compatible, the national backends behind

the different national apps—as yet—don't talk to each other. This is unfortunate, as

Europeans commute and travel all over the continent; interoperability of the national

backends is a must.

Several interoperability patterns have been discussed in the document titled “European

Interoperability—Conceptual View”.

The pattern preferred by the European eHealth Network is a single European Federation

Gateway Service. Each national backend uploads the keys of newly infected citizens

(“diagnosis keys”) every couple of hours and downloads the diagnosis keys from the other

countries participating in this scheme. That’s it. Data conversion and filtering is done in the

national backends.

This document is an architectural specification of the Federation Gateway Service,

comprising its general functioning, interface specification, data structures, security aspects,

traffic volume estimates, and storage options.

Figure 1: Comparison of interoperability patterns

1.2 Scope of Document

From a TOGAF methodology point of view, we mainly cover the aspects of

https://pubs.opengroup.org/architecture/togaf9-doc/arch/

eHealth Network

11

 “C. Information System Architectures” and

 “D. Technology Architecture”

related to the Federation Gateway Service.

Figure 2: TOGAF Architecture Model

eHealth Network

12

2 Architecture Overview

As said before, the Federation Gateway Service is used to synchronize the diagnosis keys

across all national backend servers.

The amount of data uploaded by each backend server is comparatively miniscule; we’re

talking about 20-30 MB per day at most (compare section 5.5). Additionally, the number of

participants is restricted, since each country operates only one backend. It follows that a

small web service, equipped with a simple load balancer and replicated storage to ensure

high availability, is enough to meet the demand in even the most unwelcome pandemic

scenarios.

The following figure gives an overview of the Federation Gateway Service as specified in this

document:

Figure 3: Federation Gateway Service Overview

By using the Federation Gateway Service, backend-to-backend integration is facilitated and

countries can onboard incrementally, while the national backends retain flexibility and control

over data distribution to their users.

eHealth Network

13

Figure 4: Autonomous National Backends

As seen in figure 4, each device communicates only with the corresponding national

backend. In this case, the app user to the left (say, Alice from country A) has received a

positive test result, so she submits her diagnosis key to her backend. The diagnosis key is

then uploaded to the Federation Gateway Service, downloaded by the backend of country B,

and finally downloaded by those users in country B who traveled to country B. Only those

who had close contact with Alice, however, will be warned of possible exposure.

2.1 Approach

We’re advocating a Federation Gateway Service, where all participating national backends

upload all diagnostic keys received from their respective users, and each participating

backend downloads all diagnostic keys from all other countries. It might be the case that

some countries generally don’t accept certain countries or would like to reject diagnosis keys

that have certain characteristics. Nevertheless, the Federation Gateway Service always

provides everything, and the national backends may filter the data according to their needs.

In a nutshell, the Federation Gateway Service stores the information of currently infected

citizens plus the countries they visited (“countries of interest”), but it doesn’t know the true

identity of the citizens, and it doesn’t know who came into close proximity of the infected

citizens. Healthy but exposed citizens need all diagnosis keys from all their countries of

interest, since the matching of diagnosis keys to exposure data happens on the mobile

devices. Not even the national backends have access to that information to prevent contact

tracking.

Naturally, all users need to specify their countries of interest correctly, either manually or

automatically. Only then the whole fleet of European proximity detection apps is truly

interoperable.

2.2 Assumptions

The main assumptions of this architecture are the following:

eHealth Network

14

 Data volume of new diagnosis keys per country and day is typically up to 10-20 MB.

As an upper bound the volume can therefore be estimated as less than 1 GB per day

and country.

 Data is transferred batch-wise every few hours, not in real-time

 Google/Apple Exposure Notification API (GAEN) is used by all participating countries

 Diagnosis key information uses GAEN format, including visited countries (“countries

of interest”) for each key

 Countries may process, distribute and publish diagnosis keys. If diagnosis keys are

considered PII according to GDPR (legal review pending), the issuer of each national

app will ensure compliance with GDPR.

 Citizen are using the app of their home country

 National apps communicate only with the corresponding national backend

eHealth Network

15

3 Communication

3.1.1 Device-to-Device Communication

All apps using the Exposure Notification API (EN) by Google and Apple for proximity

detection are compatible. Fortunately, most European countries have subscribed to this

approach. If two citizens, no matter where they are from, are using EN-enabled apps, the EN

mechanism detects proximity and duration of contact in a non-traceable manner on both

devices via a modified Bluetooth handshake.

The Exposure Notification API at this point of time does not support the exchange
of country codes. Moreover, such a feature is generally not endorsed, as it could be
abused to build “foreigner scanners.”

The countries of interest—or countries visited—have to be determined by the app, using

either mobile provider metadata or manual user entries.

However, if there are two citizens from different states, so that at least one of them does not

use an EN-enabled app, proximity detection for them is as yet impossible.

Figure 5: Device to Device Communication

3.1.2 Device-to-Backend Communication

Exactly how each national app communicates with the corresponding national backend—

whether via CDN, active push, or otherwise—is completely left to each country, as long as

the GAEN requirements are met. The beauty of the Federation Gateway Service is that it

doesn’t restrict the national apps in any way except one: The exchange format is specified.

https://www.google.com/covid19/exposurenotifications/

eHealth Network

16

Figure 6: Example for Device-to-Backend Communication

3.1.3 Backend-to-Backend Communication

A direct backend-to-backend communication is not necessary, because the main purpose of

the Federation Gateway Service solution is to provide the new diagnosis keys. All

participating national backends will provide the new diagnosis keys of their citizens to the

Federation Gateway Service, which in turn stores the keys and provides them for download.

Nevertheless, bilateral communication between national backends is not categorically

excluded—it's just not necessary for those countries that are connected to the Federation

Gateway Service.

Figure 7: Indirect Backend-to-Backend Communication

eHealth Network

17

As shown in the figure, uploaded data from one country is distributed to all other countries.

Each national backend, then, stores all diagnosis keys of all other countries and can provide

the keys, filtered by countries of interest, to their own users.

The Federation Gateway Service is a slightly different from a Forwarding Gateway,
because the data is temporarily stored by the Federation Gateway Service for
retrieval and not actively forwarded. The main reason for buffering the data is this:
Directly forwarded data may get lost if the receiver is not available, which is likely to
happen at least occasionally. Passively provided data can be downloaded by the
backends at their convenience.

A VPN connection is optional, because we already have encryption in transit via
TLS.

eHealth Network

18

4 Data Structures

4.1 Data Types

4.1.1 Google Exposure Notification Keys

All diagnosis keys are based on the GAEN Key Export File Format in Version 1.4 described

here:

https://static.googleusercontent.com/media/www.google.com/de//covid19/exposurenotificatio

ns/pdfs/Exposure-Key-File-Format-and-Verification.pdf

The GAEN key signature is ignored and replaced by a PKI signature in the exchange format

(more details in section 4.1.6).

The exports need to be generated and signed by each national backend.

4.1.2 Country Codes

All country codes are based on ISO 3166-1:

https://www.unece.org/cefact/locode/service/location

In this specification is an option to specify the location as well:

https://www.unece.org/fileadmin/DAM/cefact/locode/de.htm

Examples:

LOCODE Representation Translation

DE Germany

ES Spain

IT Italy

NL Netherlands

Table 2: Country Code Representation

Google and Apple are increasingly using the Mobile Country Code as
region/country identifier in their documentations, which has to be considered in a
backend implementation.

4.1.3 Transmission Data Type

In addition to the diagnosis key, each user has to transmit the visited countries (countries of

interest) to the national backend. Example:

https://static.googleusercontent.com/media/www.google.com/de/covid19/exposurenotifications/pdfs/Exposure-Key-File-Format-and-Verification.pdf
https://static.googleusercontent.com/media/www.google.com/de/covid19/exposurenotifications/pdfs/Exposure-Key-File-Format-and-Verification.pdf
https://www.unece.org/cefact/locode/service/location
https://www.unece.org/fileadmin/DAM/cefact/locode/de.htm

eHealth Network

19

message SubmissionPayload {

 repeated Key keys = 1;

 repeated string regions = 2;

}

message Key {

 bytes keyData = 1; // key of infected user

 uint32 rollingStartIntervalNumber = 2;

 uint32 rollingPeriod = 3; // number of 10-minute windows between key rolling

 int32 transmissionRiskLevel = 4; // risk of transmission

}

Figure 8: Example Submission Payload for Diagnosis Keys (App-to-Backend)

With this information, each national backend can transfer exchange information for diagnosis

keys with a verification type and an origin country, key by key in a batch to the Federation

Gateway Service:

message DiagnosisKey {

 bytes keyData = 1; // key

 uint32 rollingStartIntervalNumber = 2;

 uint32 rollingPeriod = 3; // number of 10-minute windows between key rolling

 int32 transmissionRiskLevel = 4; // risk of transmission

 repeated string visitedCountries = 5;

 string origin = 6; // country of origin

 VerificationType verficationType = 7; // set by backend

}

enum VerificationType {

 LAB_VERIFIED = 0,

 SELF_REPORTED = 1,

 ...

}

message DiagnosisKeyBatch{

 repeated DiagnosisKey keys = 1;

}

Figure 9: Diagnosis Key Payload (Backend-to-Federation Gateway Service)

The verification type must be defined in more detail for a European-wide

standardized solution.

The values Verification Type and Origin are set by the national backend; Origin is
necessary to know where the data is coming from during the download. All other
values can be mapped from the App input.

At this time the 'transmissionRiskLevel' parameter is not yet supported. Member

states may—as a compensating measure and from a GDRP perspective—elect to

set this value to 0x7FFFFFFF to reduce the risk of data leakage and

misinterpretation.

eHealth Network

20

4.1.4 Client Certificates

The identity of an uploading instance is derived from an X.509 certificate issued by

appropriate authority. This certificate contains country, location, common name, and other

values which can be used in the architecture for security and identification purposes.

4.1.5 Hash Calculation

For a correct SHA256 hash calculation across different programming languages and data

formats, it’s important to use the same pattern for extracting the bytes to be used in the hash

function. This ensures to get the exact hash independently of format (XML, JSON or

protobuf) in every programming language.

Hash calculation over the raw content is not recommended because a lot of

different frameworks can disturb the calculation. The calculation should be done

after serialization.

4.1.6 Signature

Signatures are created in the PKC7 Standard to use the advantages of an Public Key

Infrastructure like Certificate Revocation, Rollover etc. This Cryptographic Message Standard

is defined in RFC5652 (https://tools.ietf.org/html/rfc5652). These signatures are created from

the hashed data content and certificate information, for later usage in Base64 format to

describe the content of an uploaded batch described in RFC4648.

(https://tools.ietf.org/html/rfc4648).

4.2 Data Storage

Uploaded diagnosis keys are stored for 14 days. While theoretically unnecessary if direct

forwarding is used, practical considerations make temporary buffering worthwhile:

1. Packets get lost and backends may be unavailable. With stored data, download

retries are possible.

2. Timing of downloads is left to the backends instead of forcing a schedule.

3. Newly onboarded countries get the data for the past 14 days at once, so they don’t

miss important data.

Since newly infected citizens initially submit up to 14 daily keys, stored keys can be

up to 28 days old.

https://tools.ietf.org/html/rfc5652
https://tools.ietf.org/html/rfc4648

eHealth Network

21

4.2.1 Database Requirements

As for database technology, we gathered the following requirements:

Requirement Explanation

Object Storage The database must support storage of different objects
without needing schema changes

Strong Consistency The database must support strong consistency, i.e.,
new data is fully replicated after each transaction

Data Expiry All stored diagnosis keys have a lifetime of 14 days

Download by Date National backend wants to download only new data or
data newer than a specific date

High Availability We need redundant, replicated storage to avoid down-
time

Medium Scalability If other countries join, the systems need to scale out to
provide fast uploads and downloads

Secondary Indices The diagnosis keys need to be classified by multiple
arguments, e.g., by timestamp and diagnosis type

Table 3: Data Storage Requirements

Regarding these requirements, the preferred database is a document-oriented database.

According to the CAP theorem for distributed data storage, only two of the three

requirements consistency, availability, and partition tolerance can be fully met at the

same time. Partition tolerance refers to resilience against message loss across the

network. Since consistency and availability provide the greatest value for the

national backends—and since both the number of partitions and message loss rate

will be small—we focus on the first two requirements.

4.2.2 Database

Related to the requirements, a document-oriented NoSQL DB is used to ensure the

compatibility between all current and future formats.

4.2.3 Database Structure

The database structure should provide multiple read nodes to avoid performance gaps,

especially since download traffic is much higher than upload traffic—to be precise, download

traffic is about n times higher, if n is the number of participating countries. Moreover, high

availability requirements imply replication across at least two geographically separate

regions.

eHealth Network

22

Figure 10: Database structure; API and outgoing traffic omitted for clarity

The exact mechanism for data synchronization is an implementation detail
depending on the concrete database technology and its configuration.

4.2.4 Data Format

A document in the database needs the uploader metadata, a payload, a flag “diagnosis type”

(to differentiate between self-diagnosis, lab-tested, and others), format information, and a

batch tag related to the upload. The document itself represents a single diagnosis key

together with uploader, format and batch information:

{
 "_id": "string",
 "inserted": "timestamp",
 "batchTag": "object",
 "uploader": {

 "batchTag": "string"
 "batchSignature": "string" // signature of entire upload batch
 "thumbprint": "string",

 "commonName": "string",
 "country": "string"

 // ...more certificate information...
 },
 "format": {
 "format": "string",
 "version": "string"
 },
 "payloadHash": "string" // payload hash (e.g., SHA256)
 "payload": "object" // type: DiagnosisKey Payload

eHealth Network

23

}

To ensure compatibility, the payload is described by a format information which indicates the

type and object version used. This is necessary to ensure compatibility with different formats.

Metadata of the uploader is extracted from client certificate. This includes common
name, country, thumbprint and other certificate details.

The payload hash is an SHA256 representation of the payload. This hash is used to
ensure the uniqueness of each diagnosis key within the database.

4.2.5 Document Size

Document size is small, since each diagnosis key is stored in a single document. When a

batch of diagnosis keys is received, the API stores each key set as a single small document.

This avoids query performance gaps, ensures flexibility, and makes it easier to query the

data. Of course, some redundancy has to be accepted.

4.2.6 Document Expiry

The documents expire automatically after 14 days.

4.2.7 Secondary Index

For effective querying, secondary indices for uploader country and diagnosis type are

necessary.

4.2.8 Document Batching

The documents need to be split into batches to minimize download problems. During upload,

the Federation Gateway Service bundles incoming documents into batches of a fixed size,

e.g., 5000 diagnosis keys per batch, so that downloads are split into bite-sized chunks—the

batches—by design. After upload completion, the documents are marked with a unique batch

tag.

Figure 11: Batching Process

eHealth Network

24

4.2.9 Document Batch Tag

As seen in the data format, the data storage documents have two batch tags, one in the

uploader section and one in the root document.

Here’s why: The uploader tag is used to identify the documents of the uploader. The other

tag is used to identify the documents across all uploaders, which is important during the

download. Therefore, both of them have a different data type. The uploader tag is an

arbitrary unique value provided by the uploader. The other tag is an object which needs to be

incremental and unique per day, because it’s used to “navigate” within the day.

Example from MongoDB: https://docs.mongodb.com/manual/reference/method/ObjectId/

Definition Value

4 Byte Timestamp

5 Byte Random Value

3 Byte Incrementing Value

Table 4: MongoDB ObjectId Definition

This definition results in a globally unique and incremental hexadecimal string, the Object ID,

which will be used as batchTag.

A timestamp for navigation within the day is not recommended, because it’s very

hard to hit the “right second” in a data query, if a format like 01-22-2020-

20:20:20:43434Z is used. A batchTag together with a date is much easier to handle

in case of thousands of batches per day.

https://docs.mongodb.com/manual/reference/method/ObjectId/

eHealth Network

25

5 Interfaces

5.1 Overview

The Federation Gateway Service provides a simple REST API with four access points, one

for update, one for download, one for callback registration, and one for auditing.

Figure 12: API Overview

Purpose of the interfaces are in a few words: download of diagnosis keys, upload diagnosis

keys, get notified if new diagnosis keys are available and audit the system from outside.

For detailed description of REST interfaces, we rely on the Open API Specification 3.0. This

allows a comprehensive human-readable and machine-readable representation of all

aspects of the defined interface.

We defined three access points were which have the following scheme:

Figure 13: Open API Definition Overview

eHealth Network

26

The Federation Gateway Service API performs no signing of data packages
according to GAEN specifications. Each national backend needs to pack and sign
the data by itself.

5.2 Versioning

The REST API uses versioning within the Accept Header to negotiate content types. This

ensures compatibility between different upload formats. The pattern for the Accept header is:

application/[MIME-SubType]+v[Version]

Examples:

application/json+v1.0

application/protobuf+v1.0

This format ensures the exact content for national backends and avoids API duplications and

broken links because of mixed formats between different countries. The format of the version

number is defined by semver (https://semver.org/). In a few words: the major version number

is changing for incompatible API changes, the minor version for backwards compatible

changes and patch version for bugfixes (optional).

The exact data format has to be negotiated between the member states.

Standard MIME types are not accepted.

Implicit conversion between major versions of data formats is not supported.

Means: upload in v1.0 and download in v2.0 is not possible. Backwards

compatibility is given within minor versions.

5.3 Download Interface

5.3.1 Overview

The download interface consists of one possible request for retrieving a batch of diagnosis

keys.

Figure 14: Download Interface

The request accepts only a date variable; this indicates the maximum age of requested

diagnosis keys. In other words, only diagnosis keys newer than {date} will be downloaded.

The download affects only diagnosis keys which are not uploaded by the requesting
backend (verified by the client certificate identity information).

https://semver.org/

eHealth Network

27

5.3.2 Parameters

Figure 15: Download Parameter Definition

Here’s a brief explanation of the download batchTag:

If a download is triggered, there might be thousands of diagnosis keys available, so that the

API returns just the first batch with a tag (see Response Codes). The same download call is

then repeated, but including the received tag, so that the next batch is returned. This

improves performance and fault tolerance.

The download batchTag is unrelated to the upload batchTag.

eHealth Network

28

5.3.3 Responses

Figure 16: Download Responses

5.3.4 Transmission Protocol

The download is triggered by calling the download URL with the timestamp of the last query.

If the client certificate is valid and the requested content type is available, the data will be

queried and transformed into the response.

eHealth Network

29

Figure 17: Download Transmission Flow

To get all data, the download operation needs to be done multiple times, if the
number of batches exceeds one. The last call is empty and returns the same
timestamp as requested.

5.3.5 Client Process

The client process is defined as active polling:

eHealth Network

30

Figure 18: Download Client Process

Each national backend is responsible for packing and publishing keys for their own
citizens. The implementations of the various national backends can be different.

5.4 Upload Interface

5.4.1 Overview

The upload interface consists of one call to upload a set of diagnosis keys, potentially

separated into several batches:

Figure 19: Upload Interface

eHealth Network

31

5.4.2 Parameters

Figure 20: Upload Parameters

Here’s a brief explanation of the upload batchTag:

If an upload is triggered, the Federation Gateway Service accepts a batchTag as a group

identifier for uploaded payloads. This supports possible delete, update, and release actions

in the future.

The batchTag in the download section is unrelated to the upload batchTag.

The upload batchTag can be chosen arbitrarily. The API appends uploaded
payloads to the same set and returns the submitted tag.

The batchSignature has to be calculated over the individual keys inside the batch
instead of the batch itself.

eHealth Network

32

5.4.3 Responses

Figure 21: Upload Responses

The batchTag in the response is the same as in the request, which is helpful to
support parallel requests.

The 207 Response contains a document which tells the receiver more about
successful or unsuccessful operations. In this document, the API returns the index
of the key within the batch.

5.4.4 Transmission Protocol

During the upload, the uploader identity is extracted from the client certificate. If the client

certificate is valid, the submitted content is validated, split and stored in the database. The

size of the payload is limited to avoid to big requests.

eHealth Network

33

Figure 22: Upload Transmission Process

The API returns a “batchTag” to uniquely identify the uploaded set. This is
necessary to support a release process of uploaded keys in future versions.

5.4.5 Client Process

Figure 23: Upload Client Process

eHealth Network

34

5.5 Traffic Volume Estimates

5.5.1 Daily Incoming Traffic on Federation Gateway Service

We estimate the amount of data uploaded to the Federation Gateway Service during a 24-

hour period, assuming a very bad pandemic situation and complete pan-European

participation in this scheme. The basis of our estimate is the upload size of a single key

including metadata, which is less than 200 bytes.

Each currently infected user uploads one key, while a newly infected user uploads up to 14

daily keys of the past two weeks. Hence, we need the current number of infections (say,

1M—the total cumulative number of reported infections in Europe and Russia, as of June

2020, is less than 2.5M) and the rate of daily new infections (say, 0.01% = 10−4, which is

large). Let’s assume the European population at 750M and virtually complete app adoption.

This gives 14 ⋅ 10−4 ⋅ 750 ⋅ 106 = 1.05 ⋅ 106 new diagnosis keys and 1M other diagnosis keys

per day, summing up to roughly 2.05M keys in total.

Consequently, the Federation Gateway Service receives 2.05 ⋅ 106 ⋅ 200 𝑏𝑦𝑡𝑒𝑠 ≈ 390 𝑀𝐵 per

day, most of which has to be downloaded by each participating country.

In theory, higher values are possible. This is a pragmatic upper bound; we expect

much lower values in practice. Factoring app adoption rates below 75% and

significantly lower infection rates than assumed above, daily volume won’t exceed

100 MB. Moreover, the precise numbers vary somewhat, depending on formatting,

frameworks, header compression, batch size, and other technical details.

5.5.2 Daily Traffic Between National Backends and Their Users

Not all keys need to be distributed to everyone. Depending on the size of a country, the rate

of cross-border travel, the relative number of visitors from other countries, and

epidemiological factors, the relation between domestic keys and foreign keys varies greatly.

5.6 Callback Interface

5.6.1 Overview

The callback interface consists of three operations for managing callback URLs:

Figure 24: Callback Interface

eHealth Network

35

With this operation, it’s possible for each national backend to register a callback GET

operation which receives data changes—this way, there’s minimal lag between new uploads

and downloads. The Federation Gateway Service acts virtually as a forwarding gateway.

The API will append the parameters “batchTag” and “date” to the query; compare the

example below.

Provided by backend:

https://national.backend/notify_me

Called by the Federation Gateway Service:

https://national.backend/notify_me?batchTag=dbg34924jfdnn&date=04-03-2020

The national backend is informed by the callback function that a new batch, tagged

dbg34924jfdnn, is available since 04-03-2020. (And no, a more precise timestamp isn’t

necessary—for each day, any batch can be uniquely identified using the batchTag.)

The Federation Gateway Service performs mutual authentication with the national
backends. This means the API validates the provided server certificate of the
national backend and provides its identity as a client certificate to them. Each
national backend has to explicitly whitelist this identity and has to provide a server
certificate public key to the Federation Gateway Service for whitelisting.

5.6.2 Parameters

The GET operation has no parameters.

The PUT operation contains the parameters for ID and URL:

Figure 25: Callback Put Parameters

Delete Operation:

https://national.backend/notify_me
https://national.backend/notify
https://national.backend/notify

eHealth Network

36

Figure 26: Callback Delete Parameters

5.6.3 Responses

GET:

Figure 27: Get Response

PUT:

Figure 28: Put Response

eHealth Network

37

DELETE:

Figure 29: Delete Response

5.6.4 Transmission Protocol

Registration Flow:

Figure 30: Callback Registration Flow

eHealth Network

38

Callback Flow:

If a new batch of diagnosis keys was received, the API calls all registered URLs to signal that

there is a change for a special batch and date.

Figure 31: Callback Flow

The API remembers the last downloaded batch of a backend. If a backend
downloads a later batch the Callback URL is not executed.

5.6.5 Client Process

On clients side the callback URL is called with batchTag and date. The national backend can

execute then custom logic or download the data directly.

Figure 32: Callback Client Flow

eHealth Network

39

5.6.6 Security Considerations

The callback interface needs to verify the given URLs during the registration and before the

execution. Mandatory checks are:

Check Reason

HTTPS Non-HTTPS connections are
rejected. No FTP, gopher etc.

Local Addresses To avoid the execution of internal
services, the given address must be
checked for non-public addresses.

DNS Checkup The resolution of the HTTPS
addresses needs to be checked for
non-public addresses.

Table 5: Callback Security Checklist

5.7 Audit Interface

5.7.1 Overview

The audit interface contains operations to audit parts of the service by the users from outside

to validate the integrity of the running system.

Figure 33: Audit Interface

5.7.2 Download Audit

This audit operation provides the possibility to verify data integrity within a batch. The

operation returns information about the batch, for instance:

 Countries contained in the batch

 Batch signatures by country

 Uploading Information

All this information can be cross-checked over the certificate authority.

eHealth Network

40

5.7.2.1 Parameters

Figure 34: Download Audit Parameters

5.7.2.2 Responses

Figure 35: Download Audit Responses

The batchSignature in the response is calculated over all keys within the batch by

country of origin. For verification purposes, it is necessary to hash all keys of each

country and check this against the signature of the same country. Hashing all keys

across different countries won’t work.

eHealth Network

41

6 Security

Security consists of three major components, commonly dubbed confidentiality, integrity, and

availability. A single Federation Gateway Service, if designed correctly, covers all these

components perfectly.

6.1 Confidentiality

Confidentiality refers to the requirement that only approved users—in this case, the national

backends—can access the service, and that the service can be identified. This is achieved

by using both client certificates (to authenticate clients) and a server certificate (to

authenticate the server where the service is running). Additionally, client backends will be

subject to certificate whitelisting, that is, only accepted client certificates can access the

server.

Hence, authentication is mutual. The server proves his identity to the client and the client

provides a client certificate to the server. Both can verify their identity via a certificate

authority (CA). After this authentication process, the identity is retained for the duration of the

session.

Figure 36: Backend Confidentiality

6.1.1 Certification Process

The provider of the Federation Gateway Service orders a server certificate from a certificate

authority and the clients order client certificates from a certificate authority as well. Both

parties exchange and integrate the certificate information manually by whitelisting in the

systems.

6.1.2 Certification Authority

As certification authority (CA), Verizon can be used to order the certificates by each

country/app. It’s also possible to use other CAs.

eHealth Network

42

To improve security, we favor a dedicated CA which alone provides all certificates
to the Federation Gateway Service and the national backends, because these
certificates are then wholly controlled by this dedicated CA and will only be issued
to accredited participants.

6.2 Integrity

Integrity refers to the requirement that data structures and content—either accidentally or

maliciously—won’t be compromised. This is achieved simply by verifying client identity and

checking the uploaded data for validity. Since the data stored by the roaming service is kept

locally encrypted and read-only, validity of the downloaded data is guaranteed.

It improves trust and integrity, if each national backends signs each key. Thus,
uploaded data can be validated by each downloader. Note that this step increases
the traffic and validation overhead.

6.3 Availability

Availability refers to the twin requirement that the service delivers a guaranteed uptime (as a

percentage of time) and a guaranteed performance (as a maximum response time). Both

these demands can be met by running the service on any of the state-of-the-art cloud

environments, which provide elastic compute power, sufficient storage and bandwidth, and

all the necessary defense mechanisms against malicious attacks, natural disasters, and the

occasional accident.

Moreover, we suggest deploying the Federation Gateway Service in at least two

geographically separate zones.

eHealth Network

43

7 Technology Choice

Component Technology Core Features

Container Platform OpenShift Kubernetes-based: high availability
and scalability

REST API Express (Node.js) Powerful, lightweight web
Framework

Distributed NoSQL Database MongoDB TTL index, Object ID, secondary
indices, aggregation pipelines,
changed streams

Load Balancer HAProxy Reverse proxy, load balancing,
detailed traffic metrics, SSL
offloading

Web Server Nginx Reverse proxy, lightweight web
server

Table 6: Technology Proposals

Deployment Example:

Figure 37: Deployment Example

eHealth Network

44

8 Auditing

8.1 Overall

To ensure the auditing conditions, all requests to the Federation Gateway Service passes an

audit module creating an audit log, which produces log files, event streams, or tables within

the database. This data can be displayed on a dashboard via standard visualization tools like

Tableau, Kibana, Splunk, Grafana, etc.

8.2 Data Privacy

Data privacy is being heavily discussed in all EU member states. There are lots of different

laws and concerns about medical data sharing, overshadowed by the GDPR. The auditing

mechanism should reflect these concerns from a technical perspective to ensure:

1) Data processing in compliance with GDPR

2) Risk minimization of unauthorized access

3) Protection of the rights of the data subject

This can happen in several ways:

 Client certificates to verify the identity of the national backends

 An active trust mechanism—backends may choose whom to trust (whitelisting) or not

to trust (blacklisting)

 Logging of data access

 Encryption in transit using TLS

 Encryption at rest in the database

 Intrusion detection and abuse alerts

Has to be specified more detailed after EDPB has published its opinion on
document version 0.9.

8.3 Data Transmission

Client information is extracted from the client certificate, the requested or submitted data (key

origins, key destinations), and the timestamp of the operation. This information is used to

create statistics about the clients and the traffic details. Consequently, all uploaded and

downloaded information is guaranteed provable.

8.4 Traffic

Traffic can be monitored in three ways:

1. Via database logs

eHealth Network

45

2. Via database functionality (manually)

3. Via external event-based monitoring tools

eHealth Network

46

9 DP3T Compatibility

The Federation Gateway Service is fully compatible to DP3T’s publishing/feed system,

provided the following conditions:

 The formats used by DP3T have to be converted to the Federation Gateway Service

data format by the DP3T publishers

 The Federation Gateway Service doesn’t actively pull the DP3T feeds

From another perspective it’s also possible to implement the used data formats directly in the

Federation Gateway Service, e.g., with a new input format type:

application/dp3t+v1.0

Concerns regarding security, Bluetooth communication, and other details are not part of this

architecture consideration.

More information about the specification can be found here:

https://github.com/DP-3T/documents/raw/master/DP3T%20-

%20Interoperability%20Decentralized%20Proximity%20Tracing%20Specification%20(Previe

w).pdf

https://github.com/DP-3T/documents/raw/master/DP3T%20-%20Interoperability%20Decentralized%20Proximity%20Tracing%20Specification%20(Preview).pdf
https://github.com/DP-3T/documents/raw/master/DP3T%20-%20Interoperability%20Decentralized%20Proximity%20Tracing%20Specification%20(Preview).pdf
https://github.com/DP-3T/documents/raw/master/DP3T%20-%20Interoperability%20Decentralized%20Proximity%20Tracing%20Specification%20(Preview).pdf

eHealth Network

47

10 Alternative Data Exchange Methods

If a single European Federation Gateway Service, run in a suitable cloud environment,

cannot be agreed upon for political reasons, the Federation Gateway Service can also be

implemented in a distributed fashion using either of two different technologies: mirroring or a

blockchain.

Both technologies offer neither better performance nor more security, and they’re both

adding an additional layer of complexity. Nevertheless, a storage solution that is distributed

across several or all participating countries may be the preferred solution for some

policymakers.

10.1 Mirroring

Mirroring lifts the idea of database synchronization for load balancing and disaster resistance

to a higher level. Instead of the built-in capabilities of a single cloud environment—which

includes load balancing and replicated databases (see section on database structure)—a list

of available mirrors in different countries is the starting point. Each session between a

national backend and one of the mirrored Federation Gateway Services needs to be

replicated across all other servers, which leads to small inconsistencies, especially if

download intervals are large.

For instance, imagine the backend of country A uploads a batch of new diagnosis keys to the

Federation Gateway Service in country A just seconds after the backend of country B

downloads the new diagnosis keys from the Federation Gateway Service in country B. Now,

depending on the interval until the backend of country B downloads fresh data, it can’t see

the new data from country A’s backend, potentially for hours.

Granted, this lag could be reduced by sending notifications about new uploads across the

different Federation Gateway Services, but this once more complicates the architecture,

increases the amount of traffic, and introduces new pitfalls that aren’t there in the case of a

single European Federation Gateway Service.

10.2 Blockchain

A blockchain has the twin advantage of providing hamper-proof distributed data storage and

catering to the yearning after new technology. Since data lifetime is restricted to 14 days, the

usual downside of any blockchain—scalability—is not an issue. Nevertheless, blockchain

technology arouses as much doubt and criticism in some as it produces enthusiasm in

others. Just like mirroring, it introduces needless complexity and synchronization lags.

eHealth Network

48

APPENDIX

(A) Authentication:

 Connections to the Federation Gateway Service (FGS) will be over HTTP using TLS

with cryptographic settings that meet or exceed the relevant ENISA recommendations

on algorithms, key sizes, and parameters.

 There will be mutually authenticated TLS connections between the FGS and each

national backend.

 Trust validation happens by means of certificate validation based on TLS client, TLS

server certificate, and server name (CN/subjectOtherName, according the CAB forum

standard).

 This is combined with pinning by both parties on explicit certificate, a dedicated CA in

the chain or issuing CA by the FGS.

 For this reason, each national backend will inform the FGS of the Certificate in the

chain below which they consider any client certificate as being authorized by the

national backend to connect to the FGS on their behalf.

 In the most extreme case, this may be just the actual leaf certificate or a self-signed

certificate. In general implementers are urged to provide a (dedicated) CA certificate

as to minimize operational logistics (from the perspective of the gateway operator)

around key rollover, revocation and general long term certificate management.

 The operator of the FGS will communicate the certificate in the chain below which

they consider any server certificate as being appropriate for the FGS.

(B) Digital Signature TEKs:

 Contents submitted to the FGS will be digitally signed by the national backend.

 For this reason, each national backend will inform the FGS of the certificate in the

chain below which they consider any client certificate as being authorized by the

national backend to sign their domestic TEKs on their behalf.

(C) Operational and Runtime Considerations:

 The national backends will communicate a contact point for operational matters if

such is not readily evident from the certificate.

 The operator of the FGS will communicate the certificates used by each national

backend to all other national backends.

eHealth Network

49

REFERENCES

[1] Google and Apple: Exposure Notifications – Roaming Approaches (May 5, 2020).pdf

[2] CWA Project: “European Interoperability Conceptual View”, Version 0.02 from of 22th May

2020.

[3] Ulrich Luckas, et al.: „Interoperability of decentralized proximity tracing systems across

regions” – version 2.1 (7 May 2020)

